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A class of strongly interacting many-body fermionic systems in 2þ 1-dimensional nonrelativistic
conformal field theory is examined via the gauge-gravity duality correspondence. The five-dimensional
charged black hole with asymptotic Schrödinger isometry in the bulk gravity side introduces parameters of
background density and finite particle number into the boundary field theory. We propose the holographic
dictionary, and realize a quantum phase transition of this fermionic liquid with fixed particle number by
tuning the background density β at zero temperature. On the larger β side, we find the signal of a sharp
quasiparticle pole on the spectral function Aðk;ωÞ, indicating a well-defined Fermi surface. On the smaller
β side, we find only a hump with no sharp peak for Aðk;ωÞ, indicating the disappearance of the Fermi
surface. The dynamical exponent z of quasiparticle dispersion goes from being Fermi-liquid-like z≃ 1

scaling at larger β to a non-Fermi-liquid scaling z≃ 3=2 at smaller β. By comparing the structure of Green’s
function with Landau Fermi liquid theory and Senthil’s scaling ansatz, we further investigate the behavior
of this quantum phase transition.
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I. INTRODUCTION

Experimental physics on strongly interacting nonrela-
tivistic many-body bosonic and fermionic systems develops
rapidly on account of the progress of controlling ultracold
atoms [1–3]. The dynamical exponent z of those micro-
scopic states is usually z ≠ 1, along with other well-known
condensed matter systems such as non-Fermi liquid metals
from heavy fermions and high Tc superconductor (see [4,5]
and reference therein), beyond the paradigm of Landau
Fermi liquid theory. In this strongly coupling regime, the
traditional perturbative field theory study has been chal-
lenged, while holography, specifically anti–de Sitter space
and conformal field theory (AdS/CFT) correspondence
[6–8], becomes a powerful alternative. Holographic meth-
ods have shown some success in the study of certain
strongly interacting fermion systems [9–12], with the
emergence of Fermi surface and non-Fermi liquid behavior.
(See [13–15] for reviews on the holography applied to
condensed matter physics.) However, there are at least two
major shortcomings to bridge this success to ultracold
atomic systems. On one hand, the dual field theories of this
study are asymptotic conformal and relativistic, which are
quite different from the nonrelativistic nature of ultracold
atoms. On the other hand, this AdS/CFT setting bears no
parameters identifying the particle number, mass or density
spectrum, because these parameters are not good quantum
numbers in the relativistic theory. Tuning physical param-
eters such as particle number or doping density becomes
important in the absolute zero temperature, where purely

quantum fluctuations can drive phase transitions, known as
quantum phase transitions [16].
Substantial works in the literature had contributed to

understand nonrelativistic conformal field theory (NRCFT)
([17–19] and references therein), as a renormalization
group fixed point of the nonrelativistic systems. Its gravity
dual theory had been proposed, with solutions of zero
temperature pure Schrödinger (Schr) geometry [20,21],
finite temperature black holes [22–24], and charged black
holes [25,26]. There has been some pursuits on studying
fermions in this asymptotic Schrödinger geometry [27–29].
However, to our knowledge, the holographic study of the
Fermi surface from strongly interacting fermions with
NRCFT background has not yet been explored in the
literature. Our paper is aimed to bridge this gap and tackle
the two aforementioned shortcomings.
The Schrödinger black hole in the bulk gravity theory, on

one hand, realizes an asymptotic NRCFT background with
the dynamical exponent z ¼ 2 for the boundary field theory
naturally. On the other hand, the Schrödinger black hole
provides the particle number (or the mass operator [30]) M
from thegauge invariantξmomentum:M ¼ l − qAξjq∂ [30]
and background density β to the nonrelativistic boundary
field theory. Our approach is similar to the AdS/CFT setup
[10], considering a Dirac fermion field in the probe limit
under a charged black hole spacetime, the Green’s function
can be read from the asymptotic behavior of Dirac fermion
field in the UV of the bulk side. Here we also propose the
holographic dictionary of a real-time retarded Green’s
function for fermions in Schr/NRCFT correspondence
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[31], analog to the work of [32] for the AdS/CFT case. For
convenience, we name these classes of strongly interacting
nonrelativistic fermionic liquids under asymptotic NRCFT
background as Schrödinger Fermi liquids.
The paper is organized as follows. First, we discuss the

charged Schrödinger black hole solution and its Dirac
fermion equation of motion, to introduce our notations in
Sec. II. We then provide our holographic dictionary [31]
analog to the setting of [10,32] in Sec. III. In Sec. IV, we
demonstrate the zero temperature nearly ground state of this
fermion system shows a sharp quasiparticle peak in the
spectral function—the evidence of Fermi surface, with a
non-Fermi liquid dispersion relation. We compare our
spectral functions Aðk;ωÞ of Schrödinger Fermi liquids
with LandauFermi liquid theory and Senthil’s scaling ansatz

]33,34 ]. In Sec. V, we show the evidence of a quantum phase
transition, by tuning the background density β but fixing the
particle number at zero temperature. On the larger β side, we
find a well-defined Fermi surface. On the smaller β side, we
find only a hump with no sharp peak for Aðk;ωÞ, indicating
thedisappearanceofFermi surface.Thedynamical exponent
z of the quasiparticle dispersion goes from Fermi-liquid-like
scaling z ¼ 1 at larger β to larger zð≃3=2Þ non-Fermi liquid
at smaller β. Finally, we conclude with some remarks and
open questions in Sec. VI.
Our program code for numerical computation is shared

through Supplemental Material [35].

II. SETUP: DIRAC FERMION FIELD IN A
CHARGED SCHRöDINGER BLACK HOLE

Based on the holography, a quantum field theory of finite
charge density can be mapped to a charged black hole of a
gravity theory [10]. The U(1) charge of the Schrödinger
black hole induces finite charge density to the boundary
field theory, which meanwhile breaks the nonrelativistic
conformal invariance. Thus, we only have “asymptotic”
NRCFT. Before we discuss the details of bulk gravity
theory, it will be helpful to introduce generic labels for a
large class of NRCFT (with charge and mass densities) we
will study. We characterize our asymptotic NRCFT by five
parameters, ðΔ;M; μQ; β; TÞ [30]. Two parameters, the
conformal dimension Δ and the mass operator M ¼ l −
qAξj∂ from the gauge invariant ξ momentum, define the
boundary NRCFT in a universal sector. The U(1) charge
chemical potential μQ and other relevant terms from the
current Jμ (such as charge density ρQ and mass density ρM)
in NRCFT is mapped to the U(1) gauge field Aμ of the bulk

gravity. Background density β is introduced by the
Schrödinger black hole through Null Melvin Twist (or
TsT transformation) [22–26]. The physical way to interpret
this β could be the density of doping background, or an
analog of interaction strength t=U of the Hubbard model.1

Temperature T of the boundary theory is given by the black
hole temperature TBH. Notably, the conformal dimension of
NRCFT here depends on the mass operator M, which is
quite different from CFT. More peculiarly, the conformal
dimension for spinors has an extra m� 1

2
split, as already

noticed in [27,28]. In the following we denote dimension d
as the spatial dimension of x1; x2;…; xd. The asymptotic
Schrödinger bulk spacetime is denoted as Schrdþ3 (dis-
tinguished from the AdSdþ2), where as the corresponding
boundary theory of Schrdþ3 is NRCFTdþ1 (CFTdþ1 for
AdSdþ2). We summarize the conformal dimensions of the
spin-0 boson [30] and spin-1=2 fermion operator ([27,28])
in Table I.

A. Charged Schrödinger black hole

We focus on d ¼ 2, five-dimensional (5D) Schrödinger
black hole Schr5 in the bulk and 2þ 1D NRCFT3 on the
boundary. Let us briefly go through our setup for the
charged Schr5. In string frame, the metric is

ds2Str ¼
Kr2

R2
ð−fdτ2 þ dy2 − β2r2fðdτ þ dyÞ2Þ

þ r2

R2
ðdx21 þ dx22Þ þ

R2

r2
dr2

f
; (2.1)

where R is curvature radius. By converting to light-cone-
like coordinates, t ¼ βðτ þ yÞ, ξ ¼ 1

2β ð−τ þ yÞ, and
switching to the Einstein frame for the later use of holo-
graphic dictionary,

ds2Ein ¼ K−1=3
�
Kr2

R2

��
1 − f
4β2

− r2f

�
dt2 þ β2ð1 − fÞdξ2

þ ð1þ fÞdtdξ
�
þ r2

R2
ðdx21 þ dx22Þ þ

R2

r2
dr2

f

�
;

where fðrÞ ¼ 1þ Q2

r6
− ðr40 þ Q2

r2
0

Þ 1
r4, KðrÞ ¼ 1

1þβ2r2ð1−fðrÞÞ.
The charged black hole supports a gauge field,

TABLE I. Conformal dimensions of CFT and NRCFT for spin-0 boson and spin-1=2 fermion.

Asymptotics AdSdþ2 Schrdþ3

Scalar conformal dimension Δ� ¼ dþ1
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ1

2
Þ2 þm2

q
Δ� ¼ dþ2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ2

2
Þ2 þm2 þM2

q
Spinor conformal dimension Δ� ¼ dþ1

2
�m Δ� ¼ dþ2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm� 1

2
Þ2 þM2

q

1Indeed β has dimension ½length�1, so the “background density
over area” with correct dimension should be defined as β−2. We
simply name β as background density for convenience.
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A ¼ Aτdτ; Aτ ¼
Q

R2r20

�
1 − r20

r2

�
: (2.2)

Adopted in [30] notation for later use, A ¼ Aτ
2β dt−

βAτdξ ¼ Atdtþ Aξdξ, with

At ¼ μQ þ ρQr−2; Aξ ¼ Mo þ ρMr−2: (2.3)

By holography [30], μQ is identified as U(1) charge
chemical potential, ρQ; ρM are the charge density and mass
density, Mo is related to the mass operator by M ¼ l −
qAξj∂ ¼ l − qMo with l as the ξ momentum. The temper-
ature of the black hole is given by identifying the inverse of
the near-horizon Euclidean periodicity of boundary time
coordinate t,

TBH ¼ r0
πβR2

�
1 − Q2

2r60

�
: (2.4)

Our interest of study is the boundary field theory at
zero temperature, which corresponds to the extremal
black hole with Q ¼ ffiffiffi

2
p

r30. This being said, all the
numerical analysis contained in this paper pertains to zero
temperature only. At zero temperature, the charged
black hole Schr5 horizons degenerate, meanwhile the
near horizon geometry becomes AdSAdS2 ×R3, with2

ds2¼−ϵ2d~τ2=R2
AdS2

þR2
AdS2

ðdϵ2=ϵ2Þþr20d ~⃗x
2=R2

AdS 2, with

RAdS2 ¼
ð1þβ2r2

0
Þ1=6ffiffiffiffi

12
p R.

B. Dirac fermion

To probe the fermionic response of the boundary theory
via holography, we proceed to solve the Dirac fermion
equation in the bulk curved spacetime of the charged
Schrödinger black hole. The action is

SDirac ¼
Z

d5x
ffiffiffiffiffiffiffiffiffiffiffiffi−gEinp

iψ̄ðeμâΓâDμ −mÞψ ; (2.5)

and its equation of motion (EOM) is ðeμâΓâDμ −mÞψ ¼ 0;
with covariant derivative

Dμ ¼ ∂μ þ
1

8
ηâ ĉω

ĉ
b̂μ
½Γâ;Γb̂� − iqAμ; (2.6)

where the gamma matrix of flat tangent space fΓâ;Γb̂g ¼
2ηâ b̂; vielbeins eμâ relate flat tangent space to curved
spacetime, gμνe

μ
âe

ν
b̂
¼ ηâ b̂. The spin connection is

ωĉ
b̂μ

¼ eĉν∂μeνb̂ þ Γν
σμeĉνeσb̂, Γ

ν
σμ are the Christoffel symbols.

We choose the specific vielbein,3

ett̂ ¼ K
1
6
β2ðf − 1Þ
2r2fB

; eξt̂ ¼ K
1
6
f þ 1þ 2

ffiffiffiffiffiffiffiffiffi
f=K

p
4r2fB

;

et
ξ̂
¼ K

1
6B; eξ

ξ̂
¼ K

1
6
Bðf þ 1 − 2

ffiffiffiffiffiffiffiffiffi
f=K

p Þ
2β2ðf − 1Þ ; (2.7)

ex1x̂1 ¼K
1
61=r; ex2x̂2 ¼K

1
61=r; err̂¼K

1
6r

ffiffiffi
f

p
; (2.8)

where other unwritten components of eμâ are zeros. To
simplify the Dirac equation calculation, here B is a function
of r chosen ensuring the coefficient of Γt̂Γξ̂Γr̂ in the EOM
is zero. The boundary behavior of Bðr → ∞Þ is a constant
Bb times 1=r. We choose Bb to be 1. Asymptotically,

Bðr → ∞Þ ≃ 1
r þ 3β2

2r3 þ
3ð4−4β2−3β4Þ

16r5
þ −16þ60β2þ24β4þ27β6

32r7 þ
9ð48−64β2−24β4−48β6−45β8Þ

256r9 þ � � �. The near-horizon behavior
of B is Bh=ðr − 1Þ, where Bh is a constant. Given Bb ¼ 1,
we can numerically solve this equation to find Bh. In 5D
spacetime, each of Γâ matrices has 4 × 4 components, we
choose to express them as follows:

Γτ¼
�
0 iσ3
iσ3 0

�
; Γy¼

�
0 −iI
iI 0

�

Γx1 ¼
�
0 σ2

σ2 0

�
; Γx2 ¼

�
0 σ1

σ1 0

�
; Γr¼

�
I 0

0 −I
�
;

σi are Pauli sigma matrices, I is identity matrix.
Γt ¼ βðΓτ þ ΓyÞ, Γξ ¼ ð−Γτ þ ΓyÞ=ð2βÞ. Rewrite the
four-component Dirac spinor field ψ as

ψ ¼
�
ψþ
ψ−

�
e−iωtþilξþik1x1þik2x2

¼ ð−ggrrÞ−1=4
�
ϕþ
ϕ−

�
e−iωtþilξþik1x1þik2x2 ; (2.9)

where ϕþ and ϕ− are two-component spinors. This
ð−ggrrÞ−1=4 factor eliminates a Γr term in the Dirac
equation, which is simplified to

ðr
ffiffiffi
f

p ∂r∓mK−1=6Þϕ�

�
�
�uþ vσ3 þ i

k1
r
σ2 þ i

k2
r
σ1

�
ϕ∓ ¼ 0; (2.10)

where u and v are linear combinations of the vielbein
components ett̂,e

ξ
t̂ , e

t
ξ̂
, and eξ

ξ̂
:

u ¼ K−1
6

�
ðωþ qAtÞ

�
−βett̂ −

1

2β
et
ξ̂

�

þ ðl − qAξÞ
�
βeξt̂ þ

1

2β
eξ
ξ̂

��
; (2.11)

2See Appendix A for details.
3For convenience, we rescale the coordinates to set R ¼ r0 ¼ 1

from now on.
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v ¼ K−1
6

�
ðωþ qAtÞ

�
βett̂ −

1

2β
et
ξ̂

�

þ ðl − qAξÞ
�
−βeξt̂ þ

1

2β
eξ
ξ̂

��
: (2.12)

By rotational symmetry of the boundary theory, we will
work on the case k1 ¼ 0 and set k2 ¼ k from here on. We
will write ϕ ¼ ðϕþ;ϕ−ÞT, also its ϕþ ¼ ðyþ; zþÞT and
ϕ− ¼ ðy−; z−ÞT in the component form.

III. GREEN’S FUNCTION
FROM HOLOGRAPHY

A. Holographic dictionary

We study the fermionic response of the boundary
theory, by probing the Dirac fermion field in the
bulk spacetime of the Schrödinger black hole. The holo-
graphic dictionary of source-response relation can be
set up by reading the boundary action of Eq. (2.5). From
[32,36], the variation of bulk action induces a boundary term
S∂ ¼ R

∂M d3xdξ
ffiffiffiffiffiffiffiffiffiffiffiffi−ggrrp

ψ̄ψ . Therefore the relation between
bulk field and its conjugate momentum are

Πþ ¼ − ffiffiffiffiffiffiffiffiffiffiffiffi−ggrrp
ψ̄−; Π− ¼

ffiffiffiffiffiffiffiffiffiffiffiffi−ggrrp
ψ̄þ: (3.1)

We can identify the source (χ) and response (O) from
boundary (or UV) behavior of bulk field (ψ�) and momen-
tum (Π�), from the holographic dictionary,

exp½−Sgrav½ψ ; ψ̄ �ðr → ∞Þ�

¼
�
exp

�Z
ddþ1xðχ̄Oþ ŌχÞ

��
QFT

: (3.2)

The source χ and bulk field ψ are related by

χ ¼ lim
r→∞

r
dþ1
2
−ν�ψ ; (3.3)

the response O and momentum Π� are related by

O ¼ − lim
r→∞

rν�−dþ1
2 Π̄; (3.4)

where ν� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm� 1

2
Þ2 þ ðl − qMoÞ2

q
generically,4

analogue to the result of [32]. Here we show only the
standard quantization (corresponding to source A and
response D of [32]). The alternate quantization (corre-
sponding to source C and response B of [32]) can be

done in the same manner.5 The Green’s function GR is
related to the ratio of O and χ.
We now study the Dirac equation (2.10) in the boundary

UV asymptotic limit to extract O and χ from the coef-
ficients of ψ and Π, or equivalently related to ϕþ and ϕ− at
r → ∞. In this limit, (2.10) becomes

ðr
ffiffiffi
f

p ∂r∓mK−1=6Þϕ� þ
�ðlþ qQβÞr

2β
P� þ C

r
P�

þ 2βðlþ qQβÞ
r

P∓ � ik1
r
σ2 �

ik2
r
σ1

�
ϕ∓ ¼ 0;

where

C ¼ 1

8β2
ð−4 qQð1þ β2Þ þ 5ðlþ qQβÞβ3

− ðlþ qQβÞQ2β3 − 8βωÞ;

P� ¼ 1� σ3
2

ϕþ ¼ S1rνþ−
1
2ðA1 þ A2r−2Þ þR1r−νþ−

1
2ðα1 þ α2r−2Þ

þ S2rν−þ
1
2ðB1 þ B2r−2Þ þR2r−ν−þ

1
2ðβ1 þ β2r−2Þ

þ � � � ; (3.7)

ϕ− ¼ S1rνþþ
1
2ðC1 þ C2r−2Þ þR1r−νþþ

1
2ðγ1 þ γ2r−2Þ

þ S2rν−−
1
2ðD1 þD2r−2Þ þR2r−ν−−

1
2ðδ1 þ δ2r−2Þ

þ � � � ; (3.8)

here

ν� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm� 1=2Þ2 þ ðlþ qQβÞ2

q
: (3.9)

Each of S1, S2,R1,R2 is an r-independent one-component
multiplier, as the coefficient of the spinor.6 There is a
projection relation between the two-component spinors7:

4Specifically ν equals to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm� 1=2Þ2 þ ðlþ qQβÞ2

p
in our

charged Schrödinger black hole case.

5For the alternate quantization,

χ ¼ lim
r→∞

r
dþ3
2
−ν�ψ ; (3.5)

the response O and momentum Π� are related by

O ¼ lim
r→∞

rν�−dþ3
2 Π: (3.6)

6When doing numerics for this field redefinition, it is im-
portant to keep subleading term C2 in the S1rνþþ

1
2ð� � � þ C2r−2 þ� � �Þ series, since this C2 term dominates R1r−νþ−

1
2α1 when

νþ > 1
2
, which is indeed our case in the numerical study. Thus

here we keep the expansion for all four sets of solutions to the
subleading orders.

7Each of A1; A2; C1; C2; α1; α2; γ1; γ2; B1; B2; D1; D2; β1; β2;
δ1; δ2 is a two-component spinor. List above totally there are
sixteen two-componentspinors.ThespinorsC1,C2,γ1, andγ2 are in
the null space of Pþ, the spinors B1, B2, β1, and β2 are in the null
spaceofP−.Thereare four independent setsofbases, eachbasis asa
solution of Dirac EOM: the first set contains A1, A2,C1,C2 and its
subleading terms, the second set contains α1, α2, γ1, γ2 and its
subleadings, the third set contains B1, B2,D1,D2 and its sublead-
ings, the fourth set contains β1, β2, δ1, δ2 and its subleadings.
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S1C1 ¼
−ðlþ qQβÞ

2βðνþ þmþ 1
2
ÞP−S1A1;

S2B1 ¼
−ðlþ qQβÞ

2βðν− −mþ 1
2
ÞPþS2D1; (3.10)

R1γ1 ¼
−ðlþ qQβÞ

2βð−νþ þmþ 1
2
ÞP−R1α1;

R2β1 ¼
−ðlþ qQβÞ

2βð−ν− −mþ 1
2
ÞPþR2δ1:

(3.11)

We now apply our holographic dictionary to identify the
source and response from (3.7) and (3.8). To read the
boundary value, in the following we take r → ∞ as the UV
limit. Consider the leading behavior of the ϕ− contribution,

ψ− ¼ ð−ggrrÞ−1=4ϕ− ≃ r−2ϕ− ≃ S1C1rνþ−3=2 (3.12)

which corresponds to the source χ−,

χ− ¼ lim
r→∞

r
3
2
−νþψ− ≃ S1C1; (3.13)

χ− is proportional to S1. The momentum field Π̄− is

Π̄− ¼
ffiffiffiffiffiffiffiffiffiffiffiffi−ggrrp

ψþ ¼ ð−ggrrÞ1=4ϕþ ≃ r2ϕþ ≃ S1A1rνþþ3=2

þR1α1r−νþþ3=2 þ � � � (3.14)

which corresponds to the response O−,

O− ¼ lim
r→∞

rνþ−3
2Π̄− ≃R1α1: (3.15)

We take the asymptotic constant term on the UV boundary.
O− is proportional to R1.
On the other hand, we can go through the same

logic again, though consider the leading behavior of ϕþ
contribution,

ψþ ¼ ð−ggrrÞ−1=4ϕþ ≃ r−2ϕþ ≃ S2B1rν−−3=2 (3.16)

which corresponds to the source χþ,

χþ ¼ lim
r→∞

r
3
2
−ν−ψþ ≃ S2B1; (3.17)

χþ is proportional to S2. The momentum field Πþ is

Π̄þ ¼ − ffiffiffiffiffiffiffiffiffiffiffiffi−ggrrp
ψ− ¼ −ð−ggrrÞ1=4ϕ− ≃ −r2ϕ−

≃ −S2D1rν−þ3=2 −R2δ1r−ν−þ3=2 þ � � � (3.18)

which corresponds to the response Oþ,

Oþ ¼ − lim
r→∞

rν−−3
2Π̄þ ≃R2δ1; (3.19)

Oþ is proportional to R2. Now we derive S1, S2 are
identified as sources,R1,R2 are identified as responses for
this standard quantization. A similar argument works for
the alternative quantization by taking the subleading terms
of the bulk field and its conjugate momentum; we leave this
detail to Appendix C.
In addition to the above dictionary, we provide another

intuitive argument on identifying source and response. We
notice the boundary action ψ̄ψ , due to the Γτ form; it
couples the first component of the spinor ψ to the third
component of ψ , which couples the second component of ψ
to the fourth component of ψ . Both two-point function or
ψ̄ψ shows r2νþ scaling in [27] and [28] and our work.
However, the r2ν− scaling is only seen in our and the
Green’s functions of [28]. We will perform a more con-
structive comparison with [27] and [28] and a pure
Schrödinger Green’s function computation via our dic-
tionary in Appendix D. Lastly, we are aware that the
detailed construction of the Schr/NRCFT holographic
dictionary involves nontrivial holographic renormalization
[28,37,38]. Our work here only follows the strategy in
Refs. [10,32] constructing the source-response holographic
dictionary. The rigorous holographic renormalization for
spinors is the future step to justify the complete dictionary
for the Green’s function.

B. Source and response from UV expansion

To extract the data of source and response, we define a
converting matrix Cv as a function of r (see Appendix B
and a shared program code through a URL link), and a set
of functions S1ðrÞ, S2ðrÞ, R1ðrÞ, R2ðrÞ satisfies

φðrÞ ¼ ðφþðrÞφ−ðrÞÞT ¼ ðyþðrÞzþðrÞy−ðrÞz−ðrÞÞT
¼ Cv · ½S1ðrÞR1ðrÞS2ðrÞR2ðrÞ�T: (3.20)

By this field definition, neatly S1ðrÞ, S2ðrÞ, R1ðrÞ,
R2ðrÞ approach to S1, S2, R1, R2 as r → ∞. Due to
projection, we find the spinors have the properties
c1þ ¼ c2þ ¼ γ1þ ¼ γ2þ ¼ b1− ¼ b2− ¼ β1− ¼ β2− ¼ 0.
To deal with the standard quantization, from the lesson of
Sec. III A, we choose c1− ¼ 1 to compute the first set of
bases, α1− ¼ 1 to compute the second set of bases, b1þ ¼ 1
to compute the third set of bases, and δ1þ ¼ 1 to compute
the fourth set of bases. Each of four independent bases in
(3.7) and (3.8) (equivalently in (B2), see 7), can be
determined by a free parameter, thus totally four free
parameters. Now the four free parameters for four inde-
pendent bases are S1, S2, R1, R2. Argue from Sec. III A,
for the standard quantization, the source terms are S1C1,
S2B1, with their corresponding response termsR1α1,R2δ1,
respectively. Our choice of spinor CT

1 ¼ ð0; 1Þ and its
coupled spinor αT1 ¼ ðα1þ; 1Þ justifies that coefficient S1

is exactly a source and R1 is its response. Our choice of
spinor BT

1 ¼ ð1; 0Þ and its coupled spinor δT1 ¼ ð1; δ1−Þ
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justifies that coefficient S2 is exactly a source and R2 is its
response.8

C. IR behavior and the infalling boundary condition

To determine the near horizon initial condition of the
Dirac equation, here we deal with IR behavior and solve the
infalling boundary condition at zero temperature, Q ¼ ffiffiffi

2
p

.
Consider the small ϵ expansion of the equations, where
r ¼ 1þ ϵ. The equation forBðrÞ becomes B

0
B ¼ −1=ϵ. Thus,

wetakethebehaviorofBðrÞnearhorizonasBh=ϵ,whereBh is
another constant, limr→1ðr − 1ÞBðrÞ ¼ Bh. For the later use,
we define

~ω ¼ l
2β

þ βω; (3.21)

~ω is the coefficient of τ in the exponent dependence of
Eq. (2.9).We find that the behavior off,u,v in the IR is given
by

f → 12ϵ2; u →
i ~ω
ϵ
U; v →

i ~ω
ϵ
V (3.22)

with U≡ i
4
ffiffi
3

p ð2
ffiffi
3

p
Bh

β2
− β2

2
ffiffi
3

p
Bh
Þ and V ≡ i

4
ffiffi
3

p ð2
ffiffi
3

p
Bh

β2
þ β2

2
ffiffi
3

p
Bh
Þ.

The Dirac equation near horizon and its infalling wave
function ansatz are

ϵ2ϕ0
� ¼ −i

2
ffiffiffi
3

p ~ωðU � Vσ3Þϕ∓ (3.23)

ϕ� ∝ eþi ~ω=ð12ϵÞ: (3.24)

Theexponentofwave functionϕ� is chosen tobe aþ sign, in
order to combine with Eq. (2.9) to be e−i ~ωτþi ~ω=ð12ϵÞ infalling
into the black hole.9 The infalling condition is obtained by
plugging Eq. (3.24) into Eq. (3.23), where the subscript H
stands for values at the horizon:

ϕþjH ¼ ðU þ Vσ3Þϕ−jH: (3.25)

Theinfallingconditionforspinorshas twolinear independent
choices, the first set isϕ−;1 ¼ ð1; 0Þ thusϕþ;1 ¼ ðU þ V; 0Þ,
and the second set is ϕ−;2 ¼ ð0; 1Þ thus ϕþ;2 ¼ ð0; U − VÞ.

Therefore thisgives twoindependentsetsof initial conditions
athorizonforS1ðrÞ,R1ðrÞ,S2ðrÞ,R2ðrÞ,whereweintroduce
one more upper indices 1, 2 to distinguish the first and the
second sets:

½S1
1ðrÞR1

1ðrÞS1
2ðrÞR1

2ðrÞ�TjH ¼ Cv
−1jH · ðϕþ;1ϕ−;1ÞTjH

¼ Cv
−1jH · ðU þ V010ÞT;

½S2
1ðrÞR2

1ðrÞS2
2ðrÞR2

2ðrÞ�TjH ¼ Cv
−1jH · ðϕþ;2ϕ−;2ÞTjH

¼ Cv
−1jH · ð0U − V01ÞT:

More conveniently in matrix form,

SðrÞ ¼
�
S1
1ðrÞ S2

1ðrÞ
S1
2ðrÞ S2

2ðrÞ
�
; RðrÞ ¼

�
R1

1ðrÞ R2
1ðrÞ

R1
2ðrÞ R2

2ðrÞ
�
;

D. Green’s function

Green’s function of the boundary theory is defined
to be the ratio between source matrix SðrÞ and response
matrix RðrÞ. Thus we define GðrÞ based on
RðrÞ ¼ GðrÞSðrÞ, and evaluate GðrÞ at r → ∞, to read
the 2 × 2 matrix Green’s function G of the boundary
theory,10

G ¼ lim
r→∞

GðrÞ ¼ lim
r→∞

RðrÞSðrÞ−1: (3.26)

We derive the EOM of GðrÞ in the bulk gravity (see
Appendix B), and solve this EOM with the initial con-
dition: GðrÞjH ¼ RðrÞjH · SðrÞ−1jH to obtain physical
results of Eq. 3.26.

IV. SPECTRAL FUNCTION Aðk;ωÞ
We now equip with the holography tool developed

in Secs. II and III. The original questions driving our
interests are: What is the nearly ground state of this
fermionic system under asymptotic NRCFT background
at zero temperature? Will there be a Fermi surface?
Will Fermi surface collapse, destabilized by tuning non-
temperature parameters (such as background density β)?
Will this realize a certain quantum phase transition of
fermionic liquids? With the holographic dictionary for
Green’s function, we proceed to study these questions. We
focus on Q ¼ ffiffiffi

2
p

as zero temperature phase.
The spectral function Aðk;ωÞ of this boundary system

can be determined by the imaginary part of Green’s
function. In 2þ 1 D boundary theory with 2 × 2 matrix

8For the alternate quantization, we should alternatively choose
a1− ¼ 1 to compute the first set of bases, γ1− ¼ 1 to compute the
second set of bases, d1þ ¼ 1 to compute the third set of bases,
β1þ ¼ 1 to compute the fourth set of bases. From Sec. III A, the
source terms are S2D1, S1A1; with their corresponding response
terms R2β1, R1γ1, respectively. Our choice of spinor AT

1 ¼
ða1þ; 1Þ and its coupled spinor γT1 ¼ ð0; 1Þ justifies that coef-
ficient S1 is exactly a source andR1 is its response. Our choice of
spinor DT

1 ¼ ð1; d1−Þ and its coupled spinor βT1 ¼ ð1; 0Þ justifies
that coefficient S2 is exactly a source and R2 is its response.

9The 12 factor appearing here originates from the near horizon
geometry AdS2.

10There is no extra Γτ factor multiplied with GðrÞ for this
Green’s function, because in our dictionary sources and responses
are related to the coefficients of two-component spinors, instead
of spinors itself.
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G, we should take eigenvalues of G, namely,
Im½Gðr → ∞Þeigenvalues�. 11

A. Fermi surface

This nonrelativistic fermionic system has five parame-
ters, conformal dimensions Δ�ðν�Þ, temperature T, chemi-
cal potential (of background) μQ, particle number
eigenvalue or mass M, and background density β. We first
study the background density at β ¼ 1=

ffiffiffi
2

p
at T ¼ 0. The

gauge-invariant mass operator M ≡ l − qMo ¼ lþ qQβ
is fixed to be 1=10. The Dirac fermion charge q ¼ 1, its
mass is chosen to be m ¼ 1=10, nonzero value in order to

avoid scaling dimension ν� degeneracy and extra loga-

rithmic term in UV expansion.
Similar to [10], among two eigenvalues (sayG1,G2) one

of the eigenvalues,G1 with its imaginary Im½G1� has shown
a polelike structure [see Fig. 1], thus is picked for detailed
studies in our analysis. The other eigenvalue G2 with its
imaginary Im½G2�, only shows less-distinguished wedge-
like structure [see Fig. 1], which appears to be less
interesting physically. Following [10], we focus on study-
ing one of these eigenvalues, G1. Below we will simply
abbreviate Im½G1�, Re½G1� as ImG1, ReG1. We find there is
a sharp pole on Im½G1� at ωF ¼ 0.8984, kF ¼ 1.3169,
indicating a stable quasiparticle like excitation at Fermi-
momentum kF. This indicates a well-defined Fermi surface.
Normally the locationofFermi surfaceon theωaxis is shifted
bychemicalpotentialμ, one redefines ω̄ ¼ ω − μ thus ω̄ ¼ 0
has the Fermi surface. In our case, ωF is shifted by the
presence of ξ momentum l, this can be realized from the
fact that the location of Fermi surface is determined mainly
from the low energy IR physics. which in the bulk gravity
corresponds to the near horizon region. Thus, instead of
using boundary time coordinate t and its coupled conjugate
energy ω, we identify the near-horizon time coordinate τ
and its conjugate energy ~ω. When ~ω ¼ ð l

2β þ βωÞjωF
¼ 0,

namelyωF ¼ −l=ð2β2Þ, its value indicates the pole location
of a Fermi surface. Denote k⊥ ≡ jk − kFj, we find near the
quasiparticle like peak has scalings,

ω�ðk⊥Þ ∼ kz⊥; z≃ 1.14 (4.2)

Im½G1ðω�ðk⊥Þ; k⊥Þ� ∼ k−α⊥ ; α≃ 1.00: (4.3)

FIG. 1 (color online). At β ¼ 1=
ffiffiffi
2

p
, (a) the imaginary part of Green’s function, Im½G1� as a function of ω and k. A sharp quasiparticle-

like pole at ωF ¼ 0.8984, kF ¼ 1.3169 indicates a well-defined Fermi surface. The pole indicates an infinite lifetime stable quasiparticle
at kF. Notice the main branch of dispersion goes into ω < ωF and k > kF, a holelike excitation. While in [10], their main branches of
dispersion goes into ω > ωF and k > kF, a particlelike excitation. (b) The imaginary part of Green’s function, Im½G2� as a function of ω
and k; it is more or less featureless, except a wedgelike structure.

11In principle, the spectral function is written as

Aðk;ωÞ ¼ − 1

π
Im½G�: (4.1)

The usual angle resolved photoemission spectroscopy (ARPES)
data [39] sum rule is

R
∞−∞ Aðk;ωÞdω ¼ 1 [39]. This ARPES sum

rule holds in a nonrelativistic system. The relativistic version of
sum rule is written as, see Ref. [40],

R
∞−∞ ωAðk;ωÞdω ¼ 1. In the

context of gauge-gravity duality, the modification of the ARPES
sum rule has been studied [41], e.g. see a comment at Eq. (5.27)
of Ref. [41]. To produce any of the above sum rules, we comment
on a subtlety in Schrödinger holography. When we relate the
dþ 3-D gravity theory to a dþ 1-D boundary theory via
Eq. (3.2), the constant factor

R
dξ≡ Lξ needs to be absorbed

into
R
ddþ1xðχ̄Oþ ŌχÞ; this gives an extra constant factor for

source field or response field. Namely, the Aðk;ωÞ may be
different from Im½G� with another extra constant factor. This
factor should be important when justifying the spectral density
sum rule,

R
∞−∞ Aðk;ωÞdω ¼ 1. The exact value of our Im½G� is

less informative, only the relative height of Im½G� has physical
indication. In addition, we are aware that there is an alternative
proposal to study the trace part [11], Im½Tr½Gðr → ∞Þ��.
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In Fig. 2, we show the imaginary part Im½G1� and real
part Re½G1� of Green’s function; see the location of the
Fermi surface indicates a pole in Im½G1� and switches the
sign of Re½G1�. The main branch of dispersion goes into
ω < ωF and k > kF, which is a holelike excitation. The
result is different from [10], where their main branches go
into a particlelike excitation with ω > ωF and k > kF. In
Fig. 3, the dispersion relation shows particle-hole asym-
metry in large scale, though close to ðωF; kFÞ it gives a
unique dynamical exponent z.

B. Comparison to Landau Fermi liquid theory
and Senthil’s scaling ansatz

To better understand the physics of Green’s function
Gðk;ωÞ, we now study the functional form of Gðk;ωÞ in
terms of two different classes. Both classes hold under
general arguments. The first class is Landau Fermi liquid
theory, which holds for the weak coupling system,
where the free fixed point is still a good description of the
system. The second class is even more general based on
scaling ansatz for non-Fermi liquid theory and critical
Fermi surface, proposed by Senthil [33,34]. In Landau
Fermi liquid (LFL) theory, the retarded Green’s function is
of the form

Gðk;ωÞ ¼ 1

ω − ξk − Σðω; kÞ

¼ 1

ω − ðξk þ ReΣðk;ωÞÞ − iImΣðk;ωÞ
¼ Z

ðω − ωFÞ − ~ξk þ i
2 ~τk

: (4.4)

Σðω; kÞ is the particle irreducible retarded self-energy.
ξk ≡ εk − μ is the excitation around the original chemical
potential. The condition ξkF þ ReΣðkF;ωFÞ ¼ ωF to
define renormalized Fermi-momentum kF. The final
form is obtained by expanding ξk þ ReΣðk;ωÞ around
ðkF;ωFÞ, with the definition of quasiparticle residue
Z, with Z−1≡1− ∂

∂ωReΣðk¼kF;ω¼ωFÞ, also ~ξk≡
ðk − kFÞZ ∂

∂k ðξkF þ ReΣðkF;ωFÞÞ≡ vðk − kFÞ, and quasi-
particle decay rate 1=τk ≡−2Z ImΣðk;ωÞ. The specific
LFL form we use to fit our Green’s function is

G ¼ Z
ð−ðω − ωFÞ − vðk − kFÞÞ − iγðωÞ (4.5)

with our quasiparticle self-energy ansatz as γðωÞ ¼
κðω − ωFÞn, where κ is some real constant, LFL has
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FIG. 2 (color online). At β ¼ 1
ffiffiffi
2

p
, (a) the imaginary part of Green’s function, with a pole. (b) The real part of Green’s function

switches sign crossing zero value at a specific ω near the peak of Im½G1�.
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FIG. 3 (color online). The dispersion relation traces the pole
into four branches on the ðk;ωÞ plane in a large scale. The
asymmetric behavior indicates a particle-hole asymmetry.
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FIG. 4 (color online). k ¼ 621=500 < kF. The blue curve is for
ImG1; the red curve is for ReG1.
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n ¼ 2. We will take general n for fitting ansatz. We flip the
sign of ðω − ωFÞ to have a holelike dominant excitation as
Fig. 3 suggests.
The scaling ansatz proposed by Senthil [33,34] based on

general arguments, has the form at T ¼ 0,

G ¼ c0ðk − kFÞ−αF0

�
c1ðω − ωFÞ
ðk − kFÞz

�
: (4.6)

In order to have the best fitting, we will be forced to choose
c0 and c1 their values on two sides ω > ωF and ω < ωF
differently to reflect particle-hole asymmetry.
In the following subsections, we present our Green’s

function data for k < kF, k ¼ kF, and k≃ kF, and fit these
data by LFL and Senthil’s ansatz. The main message of
fitting our data (Figs. 4, 5, and 6) to LFL and Senthil’s
ansatz (Figs. 7, 8, and 9) are:
(1) Senthil’s ansatz generally has better agreement than

LFL fitting for our ImG1 data.
(2) Our ReG data are sandwiched by the LFL fitting

with LFL fitting with n ¼ 2 and marginal Fermi
liquid (MFL) with n ¼ 1 [42,43], which likely
implies that our Schrödinger Fermi liquids can be
a closer description between LFL and MFL theory
with 1 < n < 2. From our quasiparticle self-energy
ansatz as γðωÞ ¼ κðω − ωFÞn and quasiparticle
decay rate 1=τk ∼ γðωÞ, this may suggest
Schrödinger Fermi liquids have shorter lifetime
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FIG. 5 (color online). k ¼ 8=5 > kF. The blue curve is for ImG1; the red curve is for ReG1.
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FIG. 6 (color online). k ¼ kF. The blue curve is for ImG1 the
red curve is for ReG1.

(a)

0.0 0.5 1.0 1.5
0

500

1000

1500

2000

2500

ImG1

k kF

(b)

0.0 0.5 1.0 1.5

1000

500

0

500

1000

1500

2000

ReG1

k kF

FIG. 7 (color online). k ¼ 621=500 < kF, both (a) and (b) with three fitting curves: (1) LFL Eq. (4.5) with n ¼ 2 in the gray-dashed
line, (2) LFL Eq. (4.5) with n ¼ 1 in the purple-dashed line, (3) scaling ansatz form Eq. (4.8) in the black-dot-dashed line. c0, c1, γ0 are
chosen to be positive but their values on two sides ω > ωF and ω < ωF are chosen differently.
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and larger decay rate 1=τk∼ ðω−ωFÞ2−ϵ than LFL
1=τk ∼ ðω − ωFÞ2 close to Fermi energy ωF. Com-
pared to LFL, the quasiparticle description of Schrö-
dinger Fermi liquids is less robust.

(3) Near the pole location, we have not found a
promising fitting for Senthil’s ansatz for both sides
of ω > ωF and ω < ωF.

1. k < kF
For k < kF, our scaling ansatz is12

c0ðk − kFÞ−α
logð−ðω−ωFÞ

c1ðk−kFÞzÞ þ iγ0
: (4.8)

2. k > kF
For k > kF, our scaling ansatz is13

c0ðk − kFÞ−α
logð−ðω−ωFÞ

c1ðk−kFÞzÞ − iγ0
: (4.10)

3. k ¼ kF.

LFL fitting must be symmetric with respect to ω ¼ ωF at
k ¼ kF for ImG1; however, the ImG1 from Schrödinger
Fermi liquids is not symmetric along ω ¼ ωF. This is the
major difference.
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FIG. 8 (color online). k ¼ 8=5 > kF, both (a) and (b) with three fitting curves: (1) LFL Eq. (4.5) with n ¼ 2 in the gray-dashed line,
(2) LFL Eq. (4.5) with n ¼ 1 in the purple-dashed line, and (3) scaling ansatz form Eq. (4.10) in the black-dot-dashed line. c0, c1, γ0 are
chosen to be positive but their values on two sides ω > ωF and ω < ωF are chosen differently.
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FIG. 9 (color online). k ¼ kF, both (a) and (b) with two fitting curves: (1) LFL Eq. (4.5) with n ¼ 2 in the gray-dashed line, (2) LFL
Eq. (4.5) with n ¼ 1 in the purple-dashed line. At k ¼ kF, scaling ansatz of both forms Eq. (4.8) and Eq. (4.10) runs into trouble. We
have not yet found a good fitting.

12For ω < ωF under k < kF, the term inside logarithmic
becomes negative, where we choose the complex logarithm as
follows:

c0ðk − kFÞ−α
logð ðω−ωFÞ

c1ðk−kFÞzÞ þ iπ þ iγ0
: (4.7)

13For ω > ωF under k > kF, the term inside logarithmic
becomes negative, where we choose the complex logarithm as
follows:

c0ðk − kFÞ−α
logð ðω−ωFÞ

c1ðk−kFÞzÞ − iπ − iγ0
: (4.9)
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V. FERMIONIC QUANTUM
PHASE TRANSITION

The Schrödinger black hole introduces two additional
parameters to the nonrelativistic conformal background,
other than the parameters which occurred already in
asymptotic AdS spacetime [10]. The first parameter is
the mass operator M(particle number eigenvalue), the
second one is background density β.14 In the zero temper-
ature phase, a natural question arises: what happened to the
Fermi surface if background density β is tuned? We should
fix M while varying β.15 In Sec. V A, we encounter again
the phase with Fermi surfaces, gradually tune down β near
1=2; we find a critical point (or critical line) in Sec. V B.
Smaller β shows that Fermi surface collapses and then
disappears in Sec. V C. Altogether this may indicate a
quantum phase transition of fermionic liquids.

A. Well-defined Fermi surface (β > β�)

When β > 1=2, an obvious peak appears in Im G1, see
Fig. 10. Analytically the peak should approach δðk −
kF;ω − ωFÞ at ðkF;ωFÞ. However, the numerical value
ImG1ðkF;ωFÞ cannot really be infinite. What we find is
that the peak ImG1ðkF;ωFÞ values in this region β > 1=2
depends on the finite IR cutoff. The smaller the initial cutoff
ϵ ¼ r − 1, the larger the numerics ImG1ðkF;ωFÞ at the
peak grows. This is a sign for the suppose-to-be infinite
pole. The pole of ImG1 indicates a well-defined Fermi
surface. At larger β, the pole and nearby region on the
ðk;ωÞ plane develops much sharper. Notice that the pole
shifts to larger ωF and smaller kF by decreasing β.

B. Near the quantum critical point (β≃ β�)

As β approaches in the range between 1=
ffiffiffi
2

p
and 1=2, we

find the ImG1ðkF;ωFÞ peak becomes insensitive to IR
finite cutoff ϵ, the peak values are lower for smaller β,
shown in Fig. 11. The stable peak value indicates there is no
δ-function-like pole on the ðk;ωÞ plane. By tuning β to a
smaller value, the Fermi surface gradually collapses and
disappears. We interpret the physics as

β > 1=2; ImG1ðkF;ωFÞ≃ Zδðk − kF;ω − ωFÞ
þ finite terms; where Z ≠ 0. (5.1)

β≃ 1=2; ImG1ðkF;ωFÞ≃ Zδðk − kF;ω − ωFÞ
þ finite terms; with Z → 0: (5.2)

Since the Z goes to zero at finite β≃ 1=2, we suspect it is
not a smooth crossover behavior. We expect a quantum
critical point β� (or quantum critical line) slightly larger
than β ¼ 1=2, and smaller than β ¼ 1=

ffiffiffi
2

p
. For conven-

ience, we denote β� ≃ 1=2, as in Fig. 11. We do not
numerically determine β� due to the computational limi-
tation. A more detailed scan near the peak at β≃ 1=2 may
determine the exact value of β�.
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FIG. 10 (color online). ImG1 of Schrödinger Fermi liquids for β > β�: (a) β ¼ 2; (b) β ¼ 1.

14Usually a quantum phase transition is tuned by a dimension-
less coupling [16]; in our case we can define the coupling
gβ ≡ β

ffiffiffiffiffiffi
μQ

p with μQ fixed in our case. Since the Hamiltonian
description of boundary theory is unknown, we schematically
tune β to address the same physics as tuning gβ.

15Here we tune β with various values 1=16, 1=4, 1=2, 1=
ffiffiffi
2

p
, 1,

2, 8. The other parameters should be fixed. We choose M ¼
lþ qQβ fixed to be 1=10, T ¼ 0ðQ ¼ ffiffiffi

2
p Þ, Δ�ðν�Þ is fixed by

m ¼ 1=10 and M. Among all the five parameters of the system,
the remaining parameter μQ is subtle, which is μQ ¼ Q=ð2βÞ. In
our numerics, we choose to fix q ¼ 1, in this case it seems like
chemical potential μQ varies while β is tuned. One may argue that
a resolution is considering μq ≡ qμQ, where μq is still allowed to
be fixed while q compensates to be adjusted correspondingly.
This resolution seems to fix the (chemical potential) energy to
add a fermion of charge q into the system. However, we should be
aware that in any case the chemical potential μQ is indeed varied.
In addition, the “real” chemical potential to set the scale of Fermi
energy μF is not merely as in [10] only μq alone. In our
Schrödinger system, the Fermi energy should be identified by
the coordinate ~ω, the Fermi energy μF is set by
~ωþ μF ¼ ðβðωþ qAtÞ þ ðl − qAξÞ=ð2βÞÞj∂ ¼ ~ω. This shows
that μF ¼ qðβAt − Aξ=ð2βÞÞj∂ ¼ 0 is independent of β. There-
fore, Fermi energy μF ¼ 0 is already fixed. We choose to fix the
charge q of fermionic contents, instead of varying fermion charge
q to fix the energy μq of inserting a fermion.
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C. Fermi surface collapse and disappearance (β < β�)

At smaller β < 1=2, we find no sharp peak but only a
smoother hump. Unlike the Mott insulator for Mott
transition [33,34], we do not have gaps opened up in
Aðk;ωÞ. Indeed Aðk;ωÞ does not dip to zero in this phase.
There is no nonanalyticity in Aðk;ωÞ to pinpoint kF. This
shows it is still a gapless phase but with Fermi surface
disappearance. We show a series of ImG1 plots by
varying β in Figs. 10–12. Note that the vertical axes

for ImG1 shows no tick marks, we only show a landscape
scanning through many slices of ImG1. Each slice of
ImG1ðk;ωÞ has a fixed ω, and scanning k values. Each
slice of ImG1 has been shifted vertically for a clear vision
of the landscape. As in footnote 11, we had discussed the
Lξ size of the compact ξ circle modifies ImG1 to the
physical value of Aðk;ωÞ. Therefore, here the exact value
of ImG1 is immaterial; only the relative height of ImG1

matters.
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FIG. 12 (color online). ImG1 of Schrödinger Fermi liquids for β < β�: (a) β ¼ 1=4; (b) β ¼ 1=16.
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FIG. 13 (color online). (a) The relation between z and β for six data points are: β ¼ 1=4, z ¼ 1.593, β ¼ 1=2, z ¼ 1.299, β ¼ 1=
ffiffiffi
2

p
,

z ¼ 1.143, β ¼ 1, z ¼ 1.050, β ¼ 2, z ¼ 1.021, β ¼ 8, z ¼ 1.009. (b) For various β ¼ 1=4, 1=2, 1=
ffiffiffi
2

p
, 1, 2, the Fermi momentum and

energy ðkF;ωFÞ are (0.0000303, 2.020), (0.8762, 1.212), (1.317, 0.8984), (1.789, 0.656), (2.8304, 0.3266).
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FIG. 11 (color online). ImG1 of Schrödinger Fermi liquids near β�: (a) β ¼ 1=
ffiffiffi
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p
; (b) β ¼ 1=2≃ β�.
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D. Evolutions of dynamical exponent z
and Fermi-momentum kF under tuning

background density β

Here we study the evolutions of the dynamical exponent
z, Fermi energy ωF, and Fermi-momentum kF while tuning
β in Figs. 13 and 14. When β ≲ β�, there is no good
quasiparticle description for the system, so in which case
ðωF; kFÞ means the ðω; kÞ coordinates of the highest peak
in spectral function, z just means the dispersion reading
from the branches structure around the highest peak.
In all of the data above, α≃ 1.00, thus our data follows

the general relation z ≥ α and z ≥ 1 as Senthil’s argument
[33,34]. As β increases, z goes close to 1. Tentatively it
suggests a more Landau Fermi liquids like behavior at the
large β limit. Though from the spectral density fitting, we
find the imaginary part of quasiparticle does not obey
γðωÞ ∝ ω2 and Im½G1ðk;ωÞ� near kF is not symmetric with
respect to ωF. These two features are distinct from LFL.
The large β limit is at most a close cousin of LFL.
In Sec. IVA, we showed ωF ¼ −l=ð2β2Þ. In the case of

tuning β while fixing the mass operator l − qMo ¼
lþ qQβ ¼ M, we expect ωFðβÞ ¼ −ðM − qQβÞ=ð2β2Þ.
We show this power law fitting agrees with our data in
Fig. 14. On the other hand, the Fermi-momentum kF
requires better understanding of UV physics; we do not
have a fitting here.

VI. CONCLUSION AND OPEN QUESTIONS

In summary, we have studied a class of strongly
interacting nonrelativistic fermions under asymptotic
NRCFT background in 2þ 1D. We make some efforts
to deal with the aforementioned two shortcomings of AdS
space. First, our model has a better realization of non-
relativistic properties of many-body systems, and we have
observed the well-defined Fermi surface of Schrödinger
Fermi liquids. Second, by tuning the background density β
with fixed particle number M, we realized a fermionic
quantum phase transition as Fig. 15, where the larger β side
shows a sharp Fermi surface, while the smaller β side

shows Fermi surface disappearance. We find Senthil’s
scaling ansatz generally a better fit than Landau Fermi
liquid (LFL) to our non-Fermi liquids. Based on quasipar-
ticle self-energy scaling, we argue the quasiparticle descrip-
tion of Schrödinger Fermi liquids has shorter lifetime and is
less stable comparing to LFL.
We leave some questions for future directions:

(1) Quasiparticle residue Z may be regarded as the order
parameter for the quantum phase transition. How does Z in
Eq. (5.1) behave near the quantum critical point (or line);
what is the order of phase transition? We have not yet been
able to answer these questions. It will be illuminating to
understand whether Schrödinger Fermi liquids shows
discontinuous 1st, or continuous 2nd order or higher order
transition, and the possibility to realize similar phase
transitions proposed in [33,34]. It is also noteworthy that
the location of poles has been captured very well analyti-
cally by the speculated curve ωFðβÞ ¼ −ðM − qQβÞ=
ð2β2Þ as in Fig. 14, though we see numerical data slightly
deviated from the analytic curve (at three digits after the
decimal mark). It will be important to know the physical
mechanism or subleading corrections for this deviation.
(2) Notably the charge or particle number U(1) sym-

metry are unbroken in our probe limit. Fermi surface and
gauge-gravity duality relation are mentioned in [44,45],
especially the relation between a global U(1) symmetry and
the existence of Fermi surface. How does our system realize
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FIG. 14 (color online). (a) The location of the Im½G1� peak at ωF varies with respect to β. The numerical data points compared to the
dashed curve fitting ωFðβÞ ¼ −ðM − qQβÞ=ð2β2Þ. (b) The location of the Fermi-momentum kF varies with respect to β.

Β
FSFSNo

Β�

FIG. 15. The zero T quantum phase transition diagram of
Schrödinger Fermi liquids. A phase with Fermi surface (FS)
appears in β > β�. A quantum critical region near β≃ β� (it is
undetermined yet whether β� is a critical point or critical line,
and unknown whether the transition is 1st order or higher
order). A phase without Fermi surface appears in β < β�. Note
to tune a dimensionless coupling gβ, we can define gβ ≡ β

ffiffiffiffiffiffi
μQ

p
with μQ fixed.
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a quantum phase transition with Fermi surface disappear-
ance without breaking global U(1) symmetry or transla-
tional symmetry? Our attention is brought to an earlier
work [30], where we consider a toy model of bosonic
system under asymptotic NRCFT, where a U(1) symmetry
is broken by condensed boson fields around the
Schrödinger black hole. The bosonic quantum phase
transition is likely found there at low temperature phase
as Fig. 16. It is unavoidable to ask whether these two
phase transitions in Figs. 15 and 16 have any similar nature.
On one side, β > β� of Fig. 15 shows a conducting phase
with Fermi surface with unbroken U(1) symmetry; the
Ω > Ω� side of Fig. 16 shows a metallic state with
unbroken U(1) symmetry. On the other side, β < β� of
Fig. 15 shows Fermi surface disappearance; the Ω < Ω�
side of Fig. 16 shows a superfluid state with broken U(1)
symmetry. Though the two systems have similar asymp-
totic NRCFT background, one should be aware that the two
systems are rather different. The bulk side of the fermionic
model has a charged Schrödinger black hole, where the
gauge field is chosen to be fixed, the Dirac fermion is in a
probe limit. On the other hand, the bulk side of the bosonic
model in [30] has a neutral Schrödinger black hole, where
both the gauge field and bosons are in a probe limit. The
comparison with a Hawking-Page-like transition such as
[46] would be interesting. Another possible future direction
is studying the effective Schrödinger potential with the
density β dependence along the lines of [47–49].
(3) It will be illuminating to address more about the

phase with Fermi surface disappearance. In the phase
without Fermi surface, there is no superconducting gap
opened up in the spectral function. Specifically we do not
introduce any pairing term (such as Yukawa spinor-scalar
pairing) in the bulk action, so it is not a superconducting
phase.16 We only can suspect that tuning β from large to
small effectively implies tuning fermion interaction from
weaker coupling to stronger coupling—from more Fermi-
liquid-like (z≃ 1) to non-Fermi liquids (z > 1) to strongly
correlation smear the Aðk;ωÞ discontinuity into continuity
near ωF, kF. Whether one can understand more about the

nature of this Fermi surface disappearance, we leave this
for future study.
(4) It is of considerable interest to perform rigorous

holographic renormalization for spinors to justify the
holographic dictionary of Green’s function, following
[28,37,38]. The issue of the proposed counterterms, being
totally local [28] or nonlocal [37], has not found complete
agreement in the literature. We remark that the discrepancy
in holographic renormalization seems to persist and
remains to be satisfactorily resolved.
On the other hand, a subtle issue is that the conformal

dimensions Δ of Schrödinger spinors have ν� with peculiar
m� 1=2 dependence, distinct from the AdS case [10,32].
In the AdS case, there are two sets of two component
spinors (in [10,32] notation, D and A for the standard
quantization, B and C for the alternate quantization). In the
Schrödinger case, there are doubled sectors, i.e. νþ sectors
(as S1, R1) and ν− sectors (as S2, R2) shown in Eqs. (3.7)
and (3.8). There is only one independent parameter left for
each projected spinor in each sector. One may wonder why
the Green’s function in the Schrödinger case does not
possess the two-component spinor structure as in the AdS
case? We emphasize that Green’s function with two-
component spinor structure (such as the result of [27])
has two problems. First, it is known that the (two-component)
spinor structure does not appear in a free nonrelativistic
fermion theory (analogous to nonrelativistic bosons) as
discussed in [28]. At this level, [28] and our work find an
agreement—there is no apparent gamma matrices/spinor
structure in the final two-point fermionic Green’s function.
The second problem is that we find that this approach will
sacrifice the distinction between the standard quantization
and the alternate quantization, which is unreasonable.
These two known issues seem to suggest our dictionary
is a sensible approach.
While we may not have the final word in the correct

prescription, our results show very interesting physical
features, in particular the numerical results for the Fermi
frequency matches closely an analytic guess based on
physical reasoning. This should be another piece of support-
ing evidence that we are capturing the correct physics.
(5) Our model is a 2þ 1D fermionic system. It will be

important to study a system in 3þ 1D which may
exhibit fermions at unitarity [19,20]. It will also be
interesting to explore dynamical exponents other than
z ¼ 2. Indeed gravity duals of finite density systems with
asymptotic Schrödinger isometry for d ≠ 2, z ≠ 2 are
known [23,52,53].
(6) The Schrödinger black hole at zero temperature has

finite entropy, which implies that our theory may not
describe a unique ground state but an ensemble of low
energy states. Moreover, it has been pointed out that
discrete light-cone quantization and β deformation from
the parent AdS black hole [22–24,54,55] causes peculiar
free energy scaling F ∼ −T4=μ2 for the system. It will be

�
MetalSuperfluid

��

FIG. 16. Bosonic quantum phase transition is likely found at
low temperature phase in [30]. On the large background density
(Ω > Ω�) side, the phase is in the metallic state with unbroken
U(1) symmetry. On the smaller background density (Ω < Ω�)
side, there shows a superfluid phase with broken U(1) symmetry.
Note to tune a dimensionless coupling gΩ, we can define
gΩ ≡ Ω= ffiffiffiffiffiffi

μQ
p with μQ fixed.

16A setup along [50,51] is the next-step toward boson-fermion
interaction, with a superconducting state under NRCFT
background.
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interesting to know whether bosons or fermions with
a full consideration of spacetime backreaction can
change the physics of our study, especially the IR AdS2

geometry.
(7) It will be interesting to explore the electron star

[56–59] in the context of Schrödinger asymptotic geometry.
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APPENDIX A: AdS2 SCALING

The near horizon geometry of the charged Schrödinger
black hole can be obtained by taking r ¼ r0 þ ϵ, with the
coordinate redefinition:

~τ ¼ K−1=3
0

�
τ þ β2r20

1þ β2r20
y

�
; ~y ¼ K1=6

0ffiffiffiffiffi
12

p y;

~xi ¼
K−1=3

0ffiffiffiffiffi
12

p x;

(A1)

where K0 ¼ ð1þ β2r20Þ−1. The metric is

ds2 ¼ −ϵ2d~τ2=R2
AdS2

þ R2
AdS2

ðdϵ2=ϵ2Þ
þ r20ðd~y2 þ d ~x12 þ d ~x22Þ=R2

AdS2
; (A2)

with RAdS2 ¼
ð1þβ2r2

0
Þ1=6ffiffiffiffi

12
p R ¼ K−1=6

0ffiffiffiffi
12

p R, which is AdS2 ×R3

metric. The gauge field near horizon is
A ¼ Aτdτ ¼ ðAτK

1=3
0 Þd~τ þ ð−Aτβ

2r20K
5=6
0

ffiffiffiffiffi
12

p Þd~y, with

Aτ ≃ 2Q
R2r3

0

ϵ ¼ QK−1=3
0

6R2
AdS2

r3
0

ϵ. One can solve the Dirac equation,

with this AdS2 background and supporting gauge field. We
take the AdS2 rescaling as in [26], send τ → τ=λ and ϵ →
λϵ with λ → 0. In this case, the Dirac equation near the
AdS2 boundary becomes�

ϵ

RAdS2

Γr∂ϵ þ
1

2RAdS2

Γr þC~τΓτ þC~yΓy þC ~x1Γx1 −m

�
ψ

¼ 0: (A3)

Rewrite the above in terms of two sets of two-component
spinors and “square” the operator to make it a second order
differential equation; we find the “AdS2” scaling dimension
is the exponent ν of ψ ∝ ϵ−1

2
�ν:

ν ¼ RAdS2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ C2

~τ − C~y2 − C ~x12

q
(A4)

with C~τ¼−i qQ
6r3

0
RAdS2

, C~y¼iRAdS2

ffiffiffiffiffi
12

p
K−1=6

0 ð−βωþ l
2βÞ,

C ~x1 ¼ iRAdS2k
ffiffiffiffiffi
12

p
K1=3

0 .

APPENDIX B: NUMERICAL SETUP
FOR GREEN’S FUNCTION

For the foreseeing convenience, we define a matrix Dm,
which satisfies the Dirac equation Eq. (2.10),
ϕ0 ≡ ∂rϕ ¼ Dmϕ,

Dm ≡ 1

r
ffiffiffi
f

p

0
BBB@

mK−1=6 0 −u − v −ik=r
0 mK−1=6 −ik=r −uþ v

−uþ v ik=r −mK−1=6 0

ik=r −u − v 0 −mK−1=6

1
CCCA: (B1)

We define a converting matrix Cv as a function of r as

Cv ≡ r1=2

2
666664
rνþ−1ða1þ þ a2þr−2Þ r−νþ−1ðα1þ þ α2þr−2Þ rν−ðb1þ þ b2þr−2Þ r−ν−ðβ1þ þ β2þr−2Þ
rνþ−1ða1− þ a2−r−2Þ r−νþ−1ðα1− þ α2−r−2Þ rν−ðb1− þ b2−r−2Þ r−ν−ðβ1− þ β2−r−2Þ
rνþðc1þ þ c2þr−2Þ r−νþðγ1þ þ γ2þr−2Þ rν−−1ðd1þ þ d2þr−2Þ r−ν−−1ðδ1þ þ δ2þr−2Þ
rνþðc1− þ c2−r−2Þ r−νþðγ1− þ γ2−r−2Þ rν−−1ðd1− þ d2−r−2Þ r−ν−−1ðδ1− þ δ2−r−2Þ

3
777775 (B2)
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and a set of functions S1ðrÞ, S2ðrÞ, R1ðrÞ, R2ðrÞ can be
defined from Eq. (3.20). This field-redefinition S1ðrÞ,
S2ðrÞ, R1ðrÞ, R2ðrÞ goes to S1, S2, R1, R2 at r → ∞.
The EOM of GðrÞ in the bulk gravity is G0ðrÞ ¼

R0ðrÞSðrÞ−1 −GðrÞSðrÞ0SðrÞ−1. Apply Eqs. (B1) and
(3.20), then S0ðrÞ and R0ðrÞ can be simplified in terms
of the linear combination of SðrÞ and RðrÞ:
½S10ðrÞR1

0ðrÞS20ðrÞR2
0ðrÞ�T ¼ ðCv

−1ϕðrÞÞ0
¼ ðCv

−1 Dm Cv − Cv
−1Cv

0Þ
× ½S1ðrÞR1ðrÞS2ðrÞR2ðrÞ�T:

(B3)

The matrix DgðrÞ≡ Cv
−1Dm Cv − Cv

−1Cv
0 simplifies

EOM to

G0ðrÞ ¼
�
Dg2;1 Dg2;3

Dg4;1 Dg4;3

�
þ
�
Dg2;2 Dg2;4

Dg4;2 Dg4;4

�
·GðrÞ

−GðrÞ ·
��

Dg1;1 Dg1;3

Dg3;1 Dg3;3

�
þ
�
Dg2;1 Dg2;3

Dg4;1 Dg4;3

�
·GðrÞ

�
:

(B4)

Numerically we solve this bulk EOM [Eq. (B4)] of the
Green’s function with the initial condition to obtain
physical results of Eq. (3.26).
Our program code for numerical computation is shared

through Supplemental Material [35].

APPENDIX C: HOLOGRAPHIC DICTIONARY
FOR THE ALTERNATIVE QUANTIZATION

In Sec. III A, we set up the holographic dictionary for the
standard quantization. Here we also walk through the
similar setup for the alternative quantization. Consider
the subleading term of ϕ− contributes as a source field, then

ψ− ¼ ð−ggrrÞ−1=4ϕ− ≃ r−2ϕ− ≃ S2D1rν−−5=2 (C1)

which corresponds to the source χ−,

χ− ¼ lim
r→∞

r
5
2
−ν−ψ− ≃ S2D1: (C2)

χ− is proportional to S2. The momentum field Π̄− is

Π̄− ¼
ffiffiffiffiffiffiffiffiffiffiffiffi−ggrrp

ψþ ¼ ð−ggrrÞ1=4ϕþ
≃ r2ϕþ ≃ S2B1rν−þ5=2 þR2β1r−ν−þ5=2 þ � � � (C3)

which corresponds to the response O−,

Ō− ¼ lim
r→∞

rν−−5
2Π̄− ≃R2β1: (C4)

O− is proportional to R2. On the other hand, we can go
through the same logic again, though consider the

subleading term of ϕþ contributes as a source field,
then

ψþ ¼ ð−ggrrÞ−1=4ϕþ ≃ r−2ϕþ ≃ S1A1rνþ−5=2 (C5)

which corresponds to the source χþ,

χþ ¼ lim
r→∞

r
5
2
−νþψþ ≃ S1A1: (C6)

χþ is proportional to S1. The momentum field Π̄þ is

Π̄þ ¼ − ffiffiffiffiffiffiffiffiffiffiffiffi−ggrrp
ψ−

¼ −ð−ggrrÞ1=4ϕ− ≃ −r2ϕ− ≃ −S1C1rνþþ5=2

− R1γ1r−νþþ5=2 þ � � � (C7)

which corresponds to the response Oþ,

Oþ ¼ − lim
r→∞

rνþ−5
2Π̄þ ≃ R1γ1: (C8)

Oþ is proportional to R1. Now we again derive S1, S2 are
identified as sources,R1,R2 are identified as responses for
this alternative quantization.

APPENDIX D: PURE SCHRÖDINGER GREEN’S
FUNCTION AT ZERO T ZERO DENSITY

1. Two-point correlators at the leading order

Here we compare the pure Schrödinger two-points
function at zero T zero density of Ref. [27] with our
formulation.17 Specifically, in d ¼ 2, they show

hψMðx; tÞψ̄Mð0; 0Þi ∝ r2νþ : (D1)

Here we cross-check our analysis indeed matches theirs.
The boundary action is

R
∂M dtdξd2x

ffiffiffiffiffiffiffiffiffiffiffiffi−ggrrp
ψ̄ψ , withffiffiffiffiffiffiffiffiffiffiffiffi−ggrrp ¼ r4, by plugging our UV boundary expansion

in Eqs. (3.7) and (3.8), with ψ ¼ ð−ggrrÞ−1=4ϕ≃ r−2ϕ, we
arrive at ψ̄ψ j∂M ∝ r−4ϕ̄ϕ. Notice Γτ in ϕ̄ϕ coupling the 1st
to the 3rd component of ϕ, meanwhile coupling the 2nd to
the 4th component of ϕ. With the leading piece in ϕ is
S1rνþþ

1
2. This couples to the leading order of the 2nd

component of ϕ, which is S1rνþ−
1
2a2. Neglecting other

factors and coefficients,Z
∂M

dtdξd2x
ffiffiffiffiffiffiffiffiffiffiffiffi−ggrrp

ψ̄ψ ∝ ϕ̄ϕ ∝ r2νþ : (D2)

One can obtain the scaling form of two-point correlator
hψMðx; tÞψ̄Mð0; 0Þi at the leading order r2νþ. The scaling
r2νþ matches for Refs. [27] and [28] and our works,

17In [27], their ϵ coordinates are inverse of our r, also their
d ¼ 3 is our d ¼ 2 case.
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however the precise form of our correlator is not identical
with Ref. [27]. We should note that both Ref. [28] and our
work contain higher order terms in the fermion field source/
response, thus both works contain r2νþ , r2ν− scaling, while
Ref. [27] only contains r2νþ scaling. In the next subsection,
we will delve further into our Green’s function and its
similarity with that of Ref. [28].

2. Pure Schrödinger Green’s function
from response over source

Solve the Dirac’s equation in zero T zero density
Schrödinger spacetime ds2 ¼ −r4dt2 þ 2r2dtdξþ
r2dx⃗2 þ dr2=r2, the bulk fields have the following form:

ψþ ¼ r−dþ3
2 Kνþðk=rÞVþ þ gþðk; rÞΓξUþ

þ r−dþ3
2 K−νþðk=rÞV− þ g−ðk; rÞΓξU−; (D3)

ψ− ¼ fþðk; rÞΓξVþ þ r−dþ3
2 Kν−ðk=rÞUþþf−ðk; rÞΓξV−

þ r−dþ3
2 K−ν−ðk=rÞU−; (D4)

where d is the spatial dimension of x⃗, and the quantity

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2lωþ k2

p
is a coordinate-invariant form of momentum. We denote
Uþ, Vþ as two components spinor bases for ν� series
(the first two columns), and denote U−, V− as two
components spinor bases for −ν� series (the last
two columns), Kνðk=rÞ is modified Bessel function,
solution of r2∂2

rKνðk=rÞ þ r∂rKνðk=rÞ − ððk=rÞ2þ
ν2ÞKνðk=rÞ ¼ 0. The expansions of Kν�ðk=rÞ, f�ðk; rÞ,
g�ðk; rÞ, ψþ, ψ− near r → ∞ are

Kν�ðk=rÞ ¼ 2−1þν�ðk=rÞ−ν�Γðν�Þð1þOðr−2ÞÞ; (D5)

f�ðk; rÞ ¼ i
2�νþ−2lΓð�νþÞ
�νþ þmþ 1

2

k∓νþr−dþ1
2
�νþð1þOðr−2ÞÞ;

(D6)

g�ðk; rÞ ¼ −i 2
�ν−−2lΓð�ν−Þ
�ν− −mþ 1

2

k∓ν−r−dþ1
2
�ν−ð1þOðr−2ÞÞ;

(D7)

ψþ ¼ Arνþ−dþ3
2 ð1þOðr−2ÞÞ þ Brν−−dþ1

2 ð1þOðr−2ÞÞ
þ αr−νþ−dþ3

2 ð1þOðr−2ÞÞ þ βr−ν−−dþ1
2 ð1þOðr−2ÞÞ;

(D8)

ψ− ¼ Crνþ−dþ1
2 ð1þOðr−2ÞÞ þDrν−−dþ3

2 ð1þOðr−2ÞÞ
þ γr−νþ−dþ1

2 ð1þOðr−2ÞÞ þ δr−ν−−dþ3
2 ð1þOðr−2ÞÞ:

(D9)

Notice ψþ ¼ ð−ggrrÞ−1
4ϕþ and ψ− ¼ ð−ggrrÞ−1

4ϕ−, we
can compare this expansion with respect to Eqs. (3.7) and
(3.8). The expansion matches, with the projection con-
strains on the spinors:

C ¼ −l
2βðνþ þmþ 1

2
ÞP−A;

B ¼ −l
2βðν− −mþ 1

2
ÞPþD;

(D10)

γ ¼ −l
2βð−νþ þmþ 1

2
ÞP−α;

β ¼ −l
2βð−ν− −mþ 1

2
ÞPþδ:

(D11)

In the case of the charged Schrödinger black hole
for Eqs. (3.7) and (3.8), the projection relation
Eq. (D10), Eq. (D11)’s l is replaced by lþ qQβ for
Eq. (3.10), Eq. (3.11).
There are extra constraints on two-component spinors

V�, U�:

V� ¼ −i
2l

ðikμΓμÞΓξV�; U� ¼ −i
2l

ðikμΓμÞΓξU�;

(D12)

or equivalently,

ΓξV� ¼ 2lðkμΓμÞ
k2

V�; ΓξU� ¼ 2lðkμΓμÞ
k2

U�;

(D13)

where kμΓμ ¼ lΓt − ωΓξ þ kxΓx. By identifying source
and response based on our holographic dictionary, we have
the response and source matrix,

R ¼
�
R1

1 R2
1

R1
2 R2

2

�

¼
"
2−νþ−1Γð−νþÞkνþðV−Þð1;2Þ2

2−ν−−1Γð−ν−Þkν−ðU−Þð1;2Þ3

#

¼
"
2−νþ−2Γð−νþÞkνþ −i

l ðikμΓμΓξV−Þð1;2Þ2

2−ν−−2Γð−ν−Þkν− −i
l ðikμΓμΓξU−Þð1;2Þ3

#
; (D14)
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S ¼
�
S1
1 S2

1
S1
2 S2

2

�
¼

2
4 i 2

νþ−2lΓðνþÞ
νþþmþ1

2

k−νþðΓξVþÞð1;2Þ4

−i 2ν−−2lΓðν−Þ
ν−−mþ1

2

k−ν−ðΓξUþÞð1;2Þ1

3
5:
(D15)

Here we follow the notation in Sec. III C, introducing
upper indices (1, 2) to distinguish the first and the
second sets of two independent boundary conditions for
spinors. We also introduce lower indices j ¼ 1, 2, 3, 4,
implying the jth component of 4-spinor. For example,
ðVþÞð2Þ4 means reading the fourth component of the
spinor ðVþÞ from the second (2) type of boundary
condition.
For the notation convenience, we define

V−ð1;2Þ ¼ ðkμΓμΓξV−Þð1;2Þ2 ;

U−ð1;2Þ ¼ ðkμΓμΓξU−Þð1;2Þ3 ;
(D16)

Vþð1;2Þ ¼ ðΓξVþÞð1;2Þ4 ; Uþð1;2Þ ¼ ðΓξUþÞð1;2Þ1 :

(D17)

Again, the upper indices (1,2) are choices for the first or the
second independent boundary conditions. The lower indi-
ces 1, 2, 3, 4 are indices for spinor components. Green’s
function is

G ¼
�
G1

1 G2
1

G1
2 G2

2

�
(D18)

with each component

G1
1 ¼

−i
l2

�
k
2

�
2νþ Γð−νþÞ

ΓðνþÞ

×

�
νþ þmþ 1

2

� ðV−ð1ÞUþð2Þ − V−ð2ÞUþð1ÞÞ
ðVþð1ÞUþð2Þ − Vþð2ÞUþð1ÞÞ ;

(D19)

G2
1 ¼

i
l2

�
k
2

�
νþþν− Γð−νþÞ

Γðν−Þ
�
ν− −mþ 1

2

�

×
ð−V−ð1ÞVþð2Þ þ V−ð2ÞVþð1ÞÞ
ðVþð1ÞUþð2Þ − Vþð2ÞUþð1ÞÞ ; (D20)

G2
2 ¼

i
l2

�
k
2

�
2ν− Γð−ν−Þ

Γðν−Þ
�
ν− −mþ 1

2

�

×
ð−U−ð1ÞVþð2Þ þ U−ð2ÞVþð1ÞÞ
ðVþð1ÞUþð2Þ − Vþð2ÞUþð1ÞÞ : (D21)

G1
2 ¼

−i
l2

�
k
2

�
νþþν− Γð−ν−Þ

ΓðνþÞ
�
νþ þmþ 1

2

�

×
U−ð1ÞUþð2Þ −U−ð2ÞUþð1Þ

ðVþð1ÞUþð2Þ − Vþð2ÞUþð1ÞÞ ; (D22)

We know that Green’s function in [27] contains only the
r2νþ contribution. Our two-point Green’s function closely
resembles that of Ref. [28] with subleading structure, r2νþ ,
r2ν− . A quick way to check this is comparing to Eq. (79) of
[28], their hO†

þOþi≃ ðk2 − 2lωÞνþ scales identically as
G1

1 ∼ k2νþ ¼ ðk2 − 2lωÞνþ of ours, and their hO†−O−i≃
ðk2 − 2lωÞν− scales identically as G2

2 ∼ k2ν− ¼
ðk2 − 2lωÞν− of ours.
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