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Correspondences between black holes and fluids have been discussed in two different frameworks, the
fluid/gravity correspondence and membrane paradigm. Recently, it has been discussed that these two
theories can be understood as the same theory if the cutoff surface is placed slightly outside the horizon.
The bulk viscosity is different for these two theories, but it does not contribute to physics since the fluid
becomes incompressible in the near horizon limit. In the AdS/CFT correspondence, it is known that the
fluid becomes compressible and the bulk viscosity is zero, apart from the near horizon limit. In this paper,
we consider the fluid/gravity correspondence in asymptotically non-AdS geometries. We put the cutoff
surface near but at a finite distance from the horizon. Then, the model becomes the membrane paradigm
with compressible fluid. We show that the bulk viscosity is not negative at least within the linear response
regime. We also discuss the higher derivative corrections in the stress-energy tensor.
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I. INTRODUCTION

According to the AdS/CFT correspondence [1–4], the
anti–de Sitter (AdS) spacetime corresponds to the con-
formal field theory on the asymptotic boundary. At finite
temperature and in the low-frequency and long-wavelength
regime, a fluid appears in the conformal field theory and it
can be seen in a black hole in the AdS spacetime [5–8].
This correspondence is known as the holographic hydro-
dynamics or the fluid/gravity correspondence. But before
the discovery of the AdS/CFT correspondence, it had been
discussed that a black hole can be described as a fictitious
fluid surrounding the horizon. The earlier studies are
known as the membrane paradigm [9–12].
In the membrane paradigm, the stretched horizon, which

is located slightly outside the horizon, is considered
[11,12]. From the viewpoint of an observer outside the
black hole, the effects of the black hole are reproduced by
matters on the stretched horizon. The fluid structure which
corresponds to the black hole can be seen in the matters on
the stretched horizon. A significant property of the fluid
is the negative bulk viscosity, which was expected to
indicate the instability of the black hole.
In the AdS/CFT correspondence, the fluid appears in the

boundary of the AdS spacetime. According to the Gubser-
Klebanov-Polyakov-Witten (GKPW) relations [2,3], the
boundary condition at the AdS boundary, r → ∞, corre-
sponds to the source term in the dual field theory side. In
this sense, the fluid lives on the AdS boundary. In the AdS/
CFT correspondence, the boundary of the AdS spacetime

can be placed at a finite radius. The position of the
boundary corresponds to the UV cutoff in the field theory
side [13–15]. We call the boundary at the finite radius as the
“cutoff surface” and take the Dirichlet boundary condition
on the surface. The transport coefficients can be calculated
by using the Kubo formula in the linear response theory
[6,7]. Generally, the transport coefficients are obtained as
functions of the position of the surface, and it can be
interpreted as their scale dependence [16–18]. The bulk
viscosity in the case of the Schwarzschild-AdS black hole
is zero, which is independent of the position of the cutoff
surface [19,20]. The fluid/gravity correspondences for
black branes are also studied in [21,22], in which the bulk
viscosity is not zero but positive.
Although the fluid/gravity correspondence and mem-

brane paradigm are proposed in the different frameworks,
it is expected that they are related to each other
[17,18,20,22,23]. In fact, the stress-energy tensor is given
by the Brown-York tensor [24] in both theories. It has been
shown that some transport coefficients agree when the
cutoff surface approaches to the horizon [17]. Since
the near horizon geometry of black holes is given by the
Rindler space, it is sufficient to consider the Rindler space
if the cutoff surface is at an infinitesimal distance from the
horizon. The fluid/gravity correspondence in the Rindler
space is studied in [18]. The relation between the sound
modes in the Schwarzschild-AdS and Rindler space is
discussed in detail in [20,23]. The fluid becomes incom-
pressible for the fluid/gravity correspondence in the Rindler
space. The bulk viscosity does not contribute to physics and
can be arbitrary in the Rindler space, or equivalently, if the
cutoff surface is very near the horizon. In fact, the bulk
viscosity takes different values if the Rindler limit is taken
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in different geometries. In [25], it has been proposed that it
is not inconsistent because of this incompressibility that the
bulk viscosity in the AdS/CFT correspondence does not
agree with that in the membrane paradigm. In order to
calculate the bulk viscosity, the cutoff surface must be
sufficiently separated from the horizon, and we need to
consider outside of the Rindler limit. Then, the fluid
becomes compressible and the bulk viscosity contributes
to physics of the fluid. In this sense, the zero bulk viscosity
in the fluid/gravity correspondence is more physically
meaningful than the negative bulk viscosity in the mem-
brane paradigm. It should be noticed that the black holes do
not have universal structure outside the Rindler limit, and
hence we need to calculate the bulk viscosity for each black
hole individually.
The counter terms in the fluid/gravity correspondence

corresponds to the effects of the geometry inside the
stretched horizon in the membrane paradigm. They do
not equal in general, but can be understood as the scheme
dependence of the renormalization in the holographic
renormalization group. Here, we consider only the cutoff
surface near the horizon, and treat these two theories in the
same framework.
Since the negative bulk viscosity which was calculated in

the membrane paradigm does not contribute to physics due
to the incompressibility, it is interesting to consider what is
the bulk viscosity which contribute to the physics. In the
case of the Schwarzschild-AdS spacetime, the bulk vis-
cosity was calculated on the cutoff surface at arbitrary
radius, and is know to be zero. It was also calculated in the
black brane solutions [21,22]. However, the fluid structure
does not appear at arbitrary radius for the most of the black
holes. Even in this case, as has been discussed in the
membrane paradigm, the black holes correspond to fluids
as long as the cutoff surface is near the horizon. In
particular, the membrane paradigm can be applied to the
black holes which is not asymptotically AdS nor based on
string theory.
In this paper, we generalize the previous studies and

consider the sound modes in black holes which are not
asymptotically AdS and have compact horizons. Since the
fluid becomes incompressible in the Rindler limit, we put
the cutoff surface near but at a finite distance from the
horizon. Since the black holes do not have universal
characteristics here, we focus on the simplest cases, with
the (asymptotically flat) Schwarzschild black hole in mind.
We show that the fluid structure can be seen even outside
the Rindler limit. We calculate the transport coefficients
within the linear response regime, and show that the bulk
viscosity is not negative.
This paper is organized as follows. In Sec. II, we

consider a fluid on a maximally symmetric space and
describe the expression of the linear response of the stress-
energy tensor for the sound modes. In Sec. III, we describe
the linear response of the Brown-York tensor in a

maximally symmetric black hole and compare it with that
of the stress-energy tensor of the fluid on the maximally
symmetric space. In Sec. IIIA, we briefly review the fluid/
gravity correspondence and membrane paradigm. In
Sec. IIIB, we consider the metric perturbations of the
maximally symmetric black holes. In Sec. IIIC, we calcu-
late the Brown-York tensor on the cut-off surface at r ¼ rc,
and compare it with the fluid stress-energy tensor. In
Sec. IV, we consider possible corrections in the fluid
stress-energy tensor which reproduce the higher derivative
terms in the Brown-York tensor in the gravity side. In
Sec. V, we make a few comments on the counter terms and
contribution from the inside geometry to the junction
condition. Section VI is devoted to the conclusion and
discussions. In the Appendix, we write down the detailed
expressions which are used in our calculation.

II. LINEAR RESPONSE OF FLUID ON
MAXIMALLY SYMMETRIC SPACE

We consider a fluid on a n-dimensional maximally
symmetric space Kn. We take the background metric as

ds2 ¼ −dt2 þ dσ2n; (2.1)

where

dσ2n ¼ γ̂ijðzÞdzidzj; ði; j ¼ 1;…; nÞ; (2.2)

is the metric on Kn. We denote the sectional curvature and
covariant derivative on Kn as K and D̂i, respectively.
To obtain the expressions of the linear response of the

stress-energy tensor, we apply the metric perturbations to
the fluid. We denote the metric perturbations as

gμν ¼ ḡμν þ δgμν; (2.3)

where ḡμν is the background metric (2.1). In general,
tensors with at most rank two on the maximally symmetric
space can be decomposed into scalar, vector, and tensor
types and can be expanded in terms of the harmonic
functions on Kn. In this paper, we focus on the scalar
type. The metric perturbations can be expanded as

δg00 ¼ −f00e−iωtS; (2.4a)

δg0i ¼ f0e−iωtSi; (2.4b)

δgij ¼ 2e−iωtðHLγ̂ijSþHTSijÞ; (2.4c)

where the coefficients f00, f0, HL, and HT are functions of
ω and k, and S, Si, and Sij are the harmonic functions of
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the scalar type which are characterized by the momentum k.
Hereafter, we will omit k and ω dependences in the
harmonic functions and the coefficients. The harmonic
functions obey the following formulas:

D̂iD̂iS ¼ −k2S; (2.5)

for the scalar harmonics S,

Si ¼ − 1

k
D̂iS; (2.6)

D̂iSi ¼ kS; (2.7)

D̂iSj ¼ D̂jSi; (2.8)

D̂iD̂iSj ¼ ððn − 1ÞK − k2ÞSj; (2.9)

for the vector harmonics Si, and

Sij ¼
1

k2
D̂iD̂jSþ 1

n
γ̂ijS;

¼ − 1

k
D̂iSj þ

1

n
γ̂ijS; (2.10)

Si
i ¼ 0; Sij ¼ Sji; (2.11)

D̂iSi
j ¼

n − 1

n
k2 − nK

k
Sj; (2.12)

D̂iD̂iSjk ¼ ð2nK − k2ÞSjk; (2.13)

for the tensor harmonics Sij. For K ¼ 1, k2 takes discrete
values,

k2 ¼ lðlþ n − 1Þ; l ¼ 0; 1; 2; :::::; (2.14)

while for K ≤ 0, k2 takes any non-negative real value.
In general, the stress-energy tensor for a fluid is

expressed as

Tμν ¼ ðεþ PÞuμuν þ Pgμν þ τμν; (2.15)

where ε, P, and uμ are the energy density, pressure, and
velocity field, respectively. The velocity field satisfies the
normalization condition uμuμ ¼ −1. In the first-order
formalism of fluid mechanics, the viscous stress tensor
τμν is given by

τμν ¼ −2ησμν − ζθΔμν; (2.16)

where η and ζ are the shear viscosity and bulk viscosity,
respectively, and

Δμν ¼ uμuν þ gμν; (2.17)

σμν ¼ 1

2
ΔμαΔνβ

�
∇αuβ þ∇βuα − 2

n
gαβ∇γuγ

�
; (2.18)

θ ¼ ∇αuα: (2.19)

By introducing the metric perturbations (2.4) in the fluid,
the energy density, pressure, and velocity field receive the
linear responses as

ε ¼ ε̄þ δεe−iωtS; (2.20)

P ¼ P̄þ δPe−iωtS; (2.21)

uμ ¼ ūμ þ δuμ; (2.22)

where δε and δP are functions of ω and k. Now, we
consider the response of the fluid at rest and hence we take

ūμ ¼ δμ0: (2.23)

Then, the response of the velocity field takes the form of

δu0 ¼ − 1

2
f00e

−iωtS; (2.24)

δui ¼ ue−iωtSi; (2.25)

at the linear order of the metric perturbations. Here, u is a
function of ω and k. Thus, the responses of the stress-
energy tensor are expressed as

δT0
0 ¼ −δεe−iωtS; (2.26)

δTi
0 ¼ −ðε̄þ P̄Þue−iωtSi; (2.27)

δTL ¼ ½δP − ζðku − iωnHLÞ�; (2.28)

δTT ¼ 2ηðkuþ iωHTÞ; (2.29)

where δTL and δTT are the trace part and traceless part of
the spatial components δTi

j:
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δTi
j ¼ δTLe−iωtδij þ δTTe−iωtSi

j: (2.30)

From the conservation law ∇μTμ
ν ¼ 0, we obtain

0 ¼ iωδε − ðε̄þ P̄Þðku − inωHLÞ; (2.31)

0 ¼ −kc2sδε − iωðε̄þ P̄Þuþ 2η
n − 1

n
ðk2 − nKÞuþ ζk2u − 1

2
kðε̄þ P̄Þf00 − iωðε̄þ P̄Þf0 − iζnωkHL

þ 2iη
n − 1

n
k2 − nK

k
ωHT; (2.32)

where we have used

δP ¼ c2sδε; (2.33)

and c2s is the velocity of sound. Solving (2.31) and (2.32) for u and δε, we find

u ¼ iω
k

− 1
2
k2f00 − iωkf0 þ 2ðn−1Þ

n ðk2 − nKÞiωη̂HT þ nk2ðc2s − iωζ̂ÞHL

−ω2 þ c2sk2 − iωðΓsk2 − 2ðn − 1ÞKη̂Þ ; (2.34)

δε ¼ ðε̄þ P̄Þ
�
k
iω

u − nHL

�
¼ ðε̄þ P̄Þ−

1
2
k2f00 − iωkf0 þ 2ðn−1Þ

n ðk2 − nKÞiωη̂HT þ nð2ðn−1Þn ðk2 − nKÞiωη̂þ ω2ÞHL

−ω2 þ c2sk2 − iωðΓsk2 − 2ðn − 1ÞKη̂Þ ;

(2.35)

where

η̂ ¼ η

ε̄þ P̄
; (2.36)

ζ̂ ¼ ζ

ε̄þ P̄
; (2.37)

Γs ¼
2ðn − 1Þ

n
η̂þ ζ̂: (2.38)

The sound pole

Δs ¼ −ω2 þ c2sk2 − iωðΓsk2 − 2ðn − 1ÞKη̂Þ ¼ 0 (2.39)

can be read off from the denominator of (2.34) or (2.35).
Substituting the solutions of the conservation law (2.34)

and (2.35) into (2.26)–(2.29), the stress-energy tensor takes
the form of

δTI ¼
N I

Δs
; (2.40)

where the numerators N I ¼ ðN 0
0;N 0;N L;N TÞ of the

components of the stress-energy tensor δTI ¼

ðT0
0; T0; TL; TTÞ are obtained as

N 0
0 ¼

k2

2
ðε̄þ P̄Þf00 þ ikωðε̄þ P̄Þf0

þ ωðε̄þ P̄Þ½−nωþ 2iη̂ðn − 1ÞðKn − k2Þ�HL

− 2iηω
n − 1

n
ðk2 − nKÞHT; (2.41a)

N 0 ¼
1

2
ikωðε̄þ P̄Þf00 − ω2ðε̄þ P̄Þf0

− inωkðε̄þ P̄Þðc2s − iωζ̂ÞHL

þ 2ηω2
n − 1

n
k2 − nK

k
HT; (2.41b)

NL ¼ − 1

2
k2ðε̄þ P̄Þðc2s − iωζ̂Þf00

− ikωðε̄þ P̄Þðc2s − iωζ̂Þf0
þ ωðε̄þ P̄Þðc2s − iζ̂ωÞ½nω
þ 2iη̂ðn − 1Þðk2 − KnÞ�HL

þ 2ηω
n − 1

n
ðk2 − nKÞðζ̂ωþ ic2sÞHT; (2.41c)
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N T ¼ −iηk2ωf00 þ 2ηkω2f0 þ 2ηk2nωðζ̂ωþ ic2sÞHL

þ 2iηωð−ω2 þ c2sk2 − iζ̂ωk2ÞHT: (2.41d)

III. LINEAR RESPONSE OF MAXIMALLY
SYMMETRIC BLACK HOLES

In this section, we consider the linear response theory in
the gravity side. We consider the black hole geometries
whose boundary is the geometry which we have discussed
in the previous section. Then, we introduce the scalar type
perturbations to the metric and calculate the linear response
in the energy-momentum tensor on the boundary. The
transport coefficients are calculated at the leading order of
the near horizon expansion. Since the corresponding fluid
becomes incompressible in the Rindler space, the leading
order contributions for the sound modes give the correc-
tions to the Rindler limit.

A. Fluid/gravity correspondence and
membrane paradigm

The correspondence between the black holes and fluids
have been discussed in two different frameworks, the Fluid/
Gravity correspondence and membrane paradigm. These
two theories are related to each other by using the holo-
graphic renormalization group. The stress-energy tensor is
given by the same formula in both theories up to terms
which can be interpreted as the scheme dependence of
renormalization. We first explain the fluid/gravity corre-
spondence, in particular focusing on the stress-energy
tensor of the fluid. Then, we discuss the relation between
the fluid/gravity correspondence and membrane paradigm.
In the AdS/CFT correspondence, the energy-momentum

tensor on the boundary is given by the Brown-York tensor,
which is introduced to define a quasi-local energy. By using
the Brown-York tensor, the quasi-local charge Qξ associ-
ated to a Killing vector ξ is expressed as

Qξ ¼
Z

ddx
ffiffiffiffiffiffi−γp

T0μξμ: (3.1)

The Brown-York tensor is defined by

Tμν ¼ 2ffiffiffiffiffiffi−γp δSgrav
δγμν

; (3.2)

where Sgrav is the gravitational action and γμν is the induced
metric on the boundary. The action is evaluated at the
classical configuration of the metric. The induced metric on
the boundary plays the role of the boundary condition of the
metric. The definition of the Brown-York tensor (3.2) is
consistent to the GKPW relation for the energy-momentum
tensor [26].
We consider the (dþ 1)-dimensional Einstein-Hilbert

action for the gravity theory:

Sgrav ¼
1

16πG

Z
ddþ1x

ffiffiffiffiffiffi−gp ðR − 2ΛÞ

þ 1

8πG

Z
r¼rc

ddx
ffiffiffiffiffiffi−γp

K; (3.3)

where R and Λ are the scalar curvature and cosmological
constant in the bulk and K is the trace of the extrinsic
curvature Kμν on the cutoff surface r ¼ rc. Although the
ordinary AdS boundary is located at r → ∞, we consider
only inside of the cutoff surface and impose the boundary
conditions there. Then, the Brown-York tensor is expressed
in terms of the extrinsic curvature as

Tμν ¼ 1

8πG
ðKμν − γμνKÞ: (3.4)

In order to obtain well-defined charges, we should further
define the reference geometry and subtract its effect from
the above definition, or add appropriate counter terms
instead. In the AdS/CFT correspondence, the counter terms
are determined such that they are written in terms of
covariant quantities, and become proportional to the
induced metric or Einstein tensor on the boundary [26].
In the membrane paradigm, a black hole is replaced by a

fictitious fluid on the stretched horizon, which is a timelike
hypersurface slightly outside the event horizon [11,12].
Classically, an observer who remains outside the black hole
are not affected by the dynamics inside the black hole.
Then, the domain of integration of the action can be
restricted to the external of the black hole, but the
appropriate surface terms on the horizon must be added
into the action. These surface terms can be interpreted as
the effects of the matter on the stretched horizon. Since this
matter behaves as a fluid, the black hole can be replaced by
the fluid on the stretched horizon.
The stress-energy tensor of the fluid is derived by using

the Israel junction condition [27] and expressed in terms of
the extrinsic curvature as

Tμν ¼ 1

8πG
ðKμν

þ − γμνKþÞ − 1

8πG
ðKμν− − γμνK−Þ; (3.5)

where Kμν
þ and Kμν− are the extrinsic curvatures of the

geometry outside and inside the stretched horizon, respec-
tively. In order to describe all effects of black hole by the
matters on the stretched horizon, the geometry inside the
black hole is usually taken to be flat spacetime. Then,
the stress-energy tensor in the membrane paradigm takes
the same form as (3.4).
Although both the fluid/gravity correspondence and

membrane paradigm describe the physics of black holes
in terms of fluids, there are some differences between them.
Firstly, in the fluid/gravity correspondence, the fluid lives
on the boundary of AdS spacetime while in the membrane
paradigm, the fluid is placed on the stretched horizon. This
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discrepancy can be resolved by using the holographic
renormalization group. In the AdS/CFT correspondence,
the boundary of the AdS spacetime is originally placed at
r ¼ rc → ∞. A finite but large rc can be interpreted as an
UV cutoff in the CFT side. Lowering rc corresponds to the
renormalization group flow in CFT. Therefore, the mem-
brane paradigm can be understood as the IR limit of the
fluid/gravity correspondence.
Secondly, the AdS/CFT correspondence deals with the

black hole geometry inside the cutoff surface, while
the geometry inside the stretched horizon is replaced by
the flat spacetime in the membrane paradigm. However,
the membrane paradigm can also be interpreted as the
correspondence between two different geometries; one is
the black hole geometry all over the spacetime, and the
other is given by connecting black hole geometry and flat
space at the stretched horizon. Since the outside is given
by the black hole geometry in both sides, the membrane
paradigm is the correspondence between two models
inside the stretched horizon; one is the black hole
geometry and the other is the flat spacetime with fictitious
fluid. In this sense, the membrane paradigm also deals
with the black hole geometry inside the cutoff surface.
Therefore, the fluid/gravity correspondence and membrane
paradigm is equivalent when the cutoff surface is near the
horizon.
It should be also noticed that the identification of the

fluid variables is different for the fluid/gravity correspon-
dence and membrane paradigm. In the membrane para-
digm, the normal vector of the horizon becomes tangent to
the horizon and is the only vector which is pointing in the
causal direction on the horizon. Therefore, the normal
vector is identified to the velocity field of the fluid.
However, this is valid only in the limit in which the cutoff
surface agrees with the true horizon, and cannot be applied
to the AdS/CFT correspondence in which the cutoff surface
can be placed at an arbitrary radius. However, the Einstein
equation contains the constraints which corresponds to the
continuity equation and Navier-Stokes equation. Then, the
fluid variables can be solved by using the constraints and
they are expressed in terms of the induced metric on the
surface, as we have seen in the previous section. After
imposing the constraints, the stress-energy tensor of the
fluid in the fluid/gravity correspondence becomes the same
as that of the membrane paradigm as long as the corre-
sponding solution of gravity theory is the same. In order to
solve the Einstein equation, we have to impose the ingoing
boundary condition at the horizon for the propagating
modes. The other boundary conditions are arbitrary. As we
will see later, the Dirichlet conditions on the cutoff surface
give the most general solutions for the linear perturbations.
Therefore, fluids which correspond to solutions of the
Einstein equation can always be parametrized by the
induced metric on the cutoff surface, at least in the linear
response regime.

B. Metric perturbations of the black hole

The metric of the maximally symmetric black hole in
(nþ 2)-dimensional spacetime is given by [28],

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dσ2n; (3.6)

where

fðrÞ ¼ K − 2M
rn−1

− λr2: (3.7)

Here,M is related to the black hole mass, and λ is related to
the cosmological constant Λ by

λ ¼ 2Λ
nðnþ 1Þ : (3.8)

The spatial metric dσ2n is that ofKn, which is given by (2.2),
and K is the sectional curvature on it.
At the horizon r ¼ rH, fðrÞ satisfies fðrHÞ ¼ 0. The

Hawking temperature is given by

TH ¼ 1

4π
f0ðrHÞ: (3.9)

We introduce scalar type perturbations to the metric
(3.6). As in the previous section, the metric perturbations
can be expanded in terms of the harmonic functions
on Kn. We choose the gauge such that the perturbations
with r-component vanish:

δgμr ¼ 0: (3.10)

Then, the metric perturbations can be expressed as [28]

δg00 ¼ −fðrÞf00ðrÞe−iωtS; (3.11a)

δg0i ¼ rf0ðrÞe−iωtSi; (3.11b)

δgij ¼ 2r2e−iωtðHLðrÞγ̂ijSþHTðrÞSijÞ: (3.11c)

Since the Einstein tensor GMN has the same structure as the
metric perturbations under the expansion in terms of the
harmonic functions, the relevant equations are the follow-
ing seven components of the Einstein tensor:

Ett ¼ 0; Etr ¼ 0; Err ¼ 0; (3.12)

Et ¼ 0; Er ¼ 0; EL ¼ 0; ET ¼ 0; (3.13)
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where

Eμν ¼ Gμν þ Λgμν; (3.14)

and it can be expanded in terms of the spherical harmonics
as

Eti ¼ EtSi; Eri ¼ ErSi; Eij ¼ ELγ̂ijSþ ETSij:

(3.15)

These seven equations can be separated into four second-
order differential equations with respect to r, and three first-
order differential equations. Since the Einstein tensor
satisfies the Bianchi identity, these equations are related
to each other. The independent equations are one second-
order differential equation and three first-order differential
equations. The first-order differential equations, which are
constraint equations, give constraints on the boundary
conditions of the metric perturbations and the second-order
differential equation describes the propagation of the
sound mode.
These differential equations provide in total five inte-

gration constants in the solution. One of them is fixed by
imposing the incoming wave boundary condition at the
horizon for the propagating mode. For the remaining four
integration constants, we impose the Dirichlet boundary
conditions at the cutoff surface r ¼ rc on the metric
perturbations f00, f0, HL, and HT . Then, all integration
constants are determined.

By taking a specific combination of the metric pertur-
bations, we obtain a second-order differential equation only
in terms of the combination [28,29]. This combination and
the equation are referred to as the master field and master
equation, respectively. The combination for the master
equation is not unique. Here, we take the master field as

ΦðrÞ ¼ 2rn=2
�
HTðrÞ

− in½fðrÞf00ðrÞ − rðfðrÞ=rÞ0f0ðrÞ þ 2iωHLðrÞ�
ωð2k2 þ nrf0ðrÞ − 2nfðrÞÞ

�
:

(3.16)

Then, the master equation is

d
dr

�
fðrÞ dΦðrÞ

dr

�
þ ω2

fðrÞΦðrÞ − VðrÞΦðrÞ ¼ 0; (3.17)

where the potential VðrÞ is

VðrÞ ¼ QðrÞ
16r2H2ðrÞ ; (3.18)

and

HðrÞ ¼ k2 − nfðrÞ þ 1

2
nrf0ðrÞ; (3.19)

QðrÞ ¼ 4M2nðnþ 1Þr2−2n½4k2ð2n2− 3nþ 4ÞþKnðn3− 13n2þ 14n− 8Þ�

þ λr2
�
24Mðn− 2Þn2ðnþ 1Þr1−nðk2−KnÞ− 4ðn− 4Þðn− 2Þðk2−KnÞ2− 4M2n3ðnþ 1Þ2ðnþ 2Þr2−2n

�

− 24Mnr1−nðk2−KnÞ½k2ðn− 4ÞþKnðn2− 2nþ 2Þ�þ 16ðk2−KnÞ3þ 4Knðnþ 2Þðk2−KnÞ2
þ 8M3n4ðnþ 1Þ2r3−3n: (3.20)

The solution of Φ generally takes the following form
near the horizon:

Φ ∼ C0ðr − rHÞ−iω=f0ðrHÞ þ C̄0ðr − rHÞiω=f0ðrHÞ; (3.21)

where C0 and C̄0 are the integration constants. The first
term of (3.21) corresponds to the ingoing mode and the
second term corresponds to the outgoing mode. We take the
ingoing boundary condition C̄0 ¼ 0.
In the case of the AdS spacetime, the structure of fluid

appears in the hydrodynamic regime, ω, k → 0, on the
cutoff surface with an arbitrary rc. The master equation can
be solved by expanding the master field for small ω and k.
However, k takes only discrete values for K > 0, and we
cannot take k → 0 limit. Generally, the fluid structure
appears when the wavelength is much longer than the

inverse of temperature. Since we consider the matters on
the cutoff surface, we should take the blueshift into
account. By using the local quantities, the condition is
given by

k
rH

≪
THffiffiffi
f

p ;
ωffiffiffi
f

p ≪
THffiffiffi
f

p : (3.22)

ForK > 0, the wavelength is bounded above by the horizon
radius, and hence, k cannot be arbitrarily small. However,
the fluid structure appears near the horizon since the
blueshift factor, 1=

ffiffiffi
f

p
, becomes very large. Since

the wavelength can be same order to the horizon radius,
the condition can be expressed in terms of lengths in the
black hole geometries as
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rc − rH ≪ rH; (3.23)

for Λ ¼ 0. For a nonzero cosmological constant, the
condition becomes stronger but can be satisfied by putting
the cutoff surface sufficiently near the horizon. Thus, for
example, in the case of asymptotically flat spacetime, the
fluid structure appears only near the horizon. Here, we
focus on the cutoff surface near the horizon, and calculate
the Brown-York tensor in expansion around the hori-
zon r ¼ rH.

Near the horizon, the master field Φ can be expanded in
terms of (r − rH) as

ΦðrÞ ¼ C0fðrÞ−iω=f0ðrHÞð1þ C1fðrÞ þOððr − rHÞ2ÞÞ:
(3.24)

By solving the master equation, C1 is obtained as

C1 ¼
1

2r2f04ð2k2 þ nrf0Þ
× fþf02½−4rf0ðk2ðn − 2Þ − Kðn − 1ÞnÞ þ n2r2f02 þ 4k2ðk2 − 2Kðn − 1ÞÞ�
þ 4iωf0½rf0ðKðn − 1Þn − 3k2ðn − 2ÞÞ þ nr2f02 þ 2k2½k2 − 3Kðn − 1ÞÞ�
þ 4ω2½4rf0ðk2ðn − 2Þ − Kðn − 1ÞnÞ − n2r2f02 − 4k2ðk2 − 2Kðn − 1ÞÞ�gjr¼rH : (3.25)

It is straightforward to calculate the higher order
corrections of the near horizon expansion. It should be
noticed that we have not imposed the condition of k ≪ 1 or
ω ≪ 1.

C. Fluid stress-energy tensor from gravity

For the background geometry (3.6), the Brown-York
tensor is obtained as

T̄0
0 ¼ nf1=2r−1; (3.26a)

T̄i
0 ¼ 0; (3.26b)

T̄L ¼ 1

2
f−1=2ðf0 þ 2ðn − 1Þfr−1Þ: (3.26c)

where

T̄i
j ¼ T̄Lδ

i
j: (3.27)

Hereafter, we take 8πG ¼ 1. By introducing the perturba-
tions of the metric (3.11), the linear responses of the
Brown-York tensor are

δT0
0 ¼ nf1=2H0

Le
−iωtS; (3.28)

δTi
0 ¼ − 1

2
f1=2r−1ðr−1ft − f−1f0ft þ ft0Þe−iωtSi;

(3.29)

δTL ¼ 1

2
f1=2ðft0t þ 2ðn − 1ÞH0

LÞ; (3.30)

δTT ¼ −f1=2H0
L; (3.31)

where

δTi
j ¼ δTLe−iωtδij þ δTTe−iωtSi

j: (3.32)

The solution for the metric perturbations can be obtained
by using the solution of the master equation (3.24) and
solving constraint equation. However, in order to calculate
the Brown-York tensor, the full solution of the metric
perturbations is not necessary but it is only needed to
rewrite the first derivatives of the metric perturbations in
terms of their boundary conditions on the cutoff surface. By
using three constraint equations and the definition of the
master field (3.16), we obtain the following relation:

h0I ¼ AIJhJ þ BIΦ; (3.33)

where hI stands for the metric perturbations f00, f0,HL, and
HT . Since these relations are complicated, we write the
detailed expressions in the Appendix A. We rewrite the
master field (3.24) as

ΦðrÞ ¼ CFðrÞ; (3.34)

where FðrÞ is normalized as
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FðrcÞ ¼ 1: (3.35)

The constant C can be fixed by imposing the Dirichlet
boundary conditions on the metric perturbations (3.11)
at r ¼ rc.
Since the definition of the master field (3.16) contains a

first derivative of the metric perturbations, the master
equation is the third order differential equation when it
is expressed in terms of the original variables. There is an
additional integration constant in the constraint equations
and the master equations. It can be fixed by the original

second order differential equation, which can be expressed
in terms of hI, h0I , Φ and Φ0. Then, by using (3.24) and
(3.33), we obtain a relation between the integration con-
stant C and Dirichlet boundary conditions as

C ¼ CN

F0ðrÞ − CD

����
r¼rc

; (3.36)

where

CD ¼ − k2

nrfðrÞ þ
ð2k2 þ nrf0ðrÞ − nðnþ 1ÞfðrÞÞ½k2ððn − 1ÞfðrÞ − rf0ðrÞÞ þ 2nr2ω2�

4ðn − 1ÞnrfðrÞ2ðk2 − nKÞ

þ 2k2ðn − 2Þn − ð4n − 4ÞK þ n2½ðnþ 1ÞfðrÞ − rf0ðrÞ�
2rð2k2 þ nrf0ðrÞ − nðnþ 1ÞfðrÞÞ ; (3.37)

CN ¼ − rn=2−1ð2k2 þ nrf0ðrÞ − nðnþ 1ÞfðrÞÞ
2ðn − 1ÞnfðrÞ2k2ðk2 − nKÞ

× fnk2fðrÞf00 þ 2inrkωf0

þ nk2ððn − 1ÞfðrÞ − rf0ðrÞÞHL

þ ð−k2rf0ðrÞ þ k2ðn − 1ÞfðrÞ þ 2nr2ω2ÞHTg;
(3.38)

FðrÞ ¼ 1þ C1fðrÞ
1þ C1fðrcÞ

�
fðrÞ
fðrcÞ

�−iω=f0ðrcÞ
: (3.39)

Substituting ΦðrcÞ ¼ C with these expressions into (3.33),
we obtain the expressions of the first derivatives of the
metric perturbations in terms of their boundary conditions.
The Brown-York tensor is given in the form of

δTI ¼
N I

Δs

����
r¼rc

: (3.40)

Since the constraint equations in the Einstein equation give
the conservation law on the cutoff surface, the Brown-York
tensor gives the energy-momentum tensor to which the
solution of the conservation law has already been sub-
stituted. In order to compare to the stress-energy tensor of
fluid on Kn, the Brown-York tensor should be rewritten in
terms of the local quantities. We use the proper frequency
ωc ¼ f−1=2ðrÞω, and take the redshift factor into account as

f0ðproperÞ ¼
1ffiffiffiffiffiffiffiffiffi
fðrÞp f0; Ti

0
ðproperÞ ¼ rffiffiffiffiffiffiffiffiffi

fðrÞp Ti
0:

(3.41)

In what follows, we will use these proper quantities for the
expressions of the Brown-York tensor. Since the Brown-
York tensor has a complicated expression, we do not write
down the full expression, here. As we have done for the
master field, we consider the cutoff surface near the
horizon and expand the Brown-York tensor in terms of
(r − rH) In the near horizon expansion, the sound pole Δs
is expressed as

Δs ∼
�
−ω2

c þ
k2f0ðrÞ
2nrfðrÞ

�
AðkÞ

− 2iðn − 1Þ ffiffiffiffiffiffiffiffiffi
fðrÞp ðk2 − KnÞωc

nr2f0ðrÞ ;

(3.42)

where

AðkÞ ¼ 1þ 2k2

nrf0ðrÞ ∼ 1þ k2

2πnrHTH
; (3.43)

and we have extracted only the leading order terms of the
near horizon expansion for each order term in k and ωc.
This expression is consistent with the sound pole of fluid
(2.39) except for the factor of AðkÞ, which gives a higher
derivative correction. The fluid structure generally appears
in long wavelength limit of k → 0, and the higher deriva-
tive correction can usually be neglected in this limit. In this
sense, (3.42) is consistent to the pole of fluids. It should be
noticed that the angular momentum takes only discrete
values for K > 0. In this case, the first order hydrody-
namics gives an approximative description if k satisfies the
condition:

k2 < 2πnrHTH: (3.44)

Although we can take the long wavelength limit by taking
the radius of the surface to be large, it is also related to the
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Hawking temperature. In the case of the Schwarzschild
black holes, for example, AðkÞ becomes

AðkÞ ∼ 1þ 2k2

nðn − 1Þ ; (3.45)

and hence the higher derivative terms cannot be neglected
for small n. It would be expected that this additional factor
is reproduced if the higher derivative terms in fluid
mechanics are taken into account. We will discuss it
in Sec. IV.
The transport coefficients can be read off by comparing

(3.42) and (2.39). The background energy density and
pressure are calculated from the background Brown-York
tensor (3.26). In the near horizon expansion, we have

ε̄þ P̄ ¼ f0ðrÞ
2

ffiffiffiffiffiffiffiffiffi
fðrÞp þOððr − rHÞ1=2Þ: (3.46)

Then, the speed of sound cs, shear viscosity η, and bulk
viscosity ζ are obtained as

c2s ¼
rf0ðrÞ
2nfðrÞ ; η ¼ 1

16πG
; ζ ¼ 0: (3.47)

Here, we wrote the Newton constant G, explicitly.
The numerators N I are calculated as

N 0
0 ∼

f0k2

4r2
ffiffiffi
f

p ðAðkÞÞ2f00 þ
if0ωck
2r

ffiffiffi
f

p ðAðkÞÞ2f0

þ
�
− nf0ω2

c

2
ffiffiffi
f

p AðkÞ þ k2ðn − 1Þðk2 − KnÞ
nr3

ffiffiffi
f

p

þ iðn − 1Þωcðk2 − KnÞ
r2

�
AðkÞHL

þ
�
k2ðn − 1Þðk2 − KnÞ

nr3
ffiffiffi
f

p þ iðn − 1Þωcðk2 − KnÞ
nr2

�

× AðkÞHT; (3.48a)

N 0 ∼
if0ωck
4r

ffiffiffi
f

p ðAðkÞÞ2f00 − f0ω2
c

2
ffiffiffi
f

p ðAðkÞÞ2f0

− if02ωck

4f3=2
AðkÞHL −

�
iðn − 1Þωckðk2 − nKÞ

n2r2
ffiffiffi
f

p

þ ðn − 1Þω2
cðk2 − nKÞ
nrk

�
AðkÞHT; (3.48b)

N L ∼ − f02k2

8nrf3=2
AðkÞf00 − if02ωck

4nf3=2
AðkÞf0

þ
�
rf02ω2

c

4f3=2
− iðn − 1Þf0ωcðk2 − nKÞ

2nrf

�
AðkÞHL

− iðn − 1Þf0ωcðk2 − nKÞ
2n2rf

AðkÞHT; (3.48c)

N T∼
�

k4

2nr3
ffiffiffi
f

p −iωck2

2r2

�
AðkÞf00þ

�
iωck3

nr2
ffiffiffi
f

p þω2
ck
r

�
AðkÞf0

þif0ωck2

2rf
AðkÞHLþ

�
−iω3

cþ
if0ωck2

2nrf

�
AðkÞHT:

(3.48d)

Here, we have written only leading order terms in the near
horizon expansion for each coefficients of the metric
perturbations but also included some Oððrc − rHÞ1=2Þ
corrections which are relevant to comparison with
(2.41). By using the transport coefficients (3.47), these
expressions agree with (2.41) except for the factor of AðkÞ
and some higher order terms in k and ωc. Therefore, up to
the higher derivative terms, the Brown-York tensor on the
cutoff surface near the horizon is consistent to the energy-
momentum tensor of fluid. In the next section, we will
discuss the higher derivative corrections, and then, the extra
factor of AðkÞ and other higher derivative terms (3.48) are
reproduced by the stress-energy tensor of the fluid.

IV. HIGHER DERIVATIVE CORRECTIONS

In this section, we comment on the higher derivative
terms in the Brown-York tensor. The Brown-York tensor
has the structure of the stress-energy tensor of fluid in the
hydrodynamic regime. However, the higher order terms in
(3.42) and (3.48) are absent from the linear response of the
fluid stress-energy tensor, (2.39) and (2.41) because the
viscous stress tensor (2.16) is composed of only the first
order derivative terms. Here, we show that the higher
derivative terms in the Brown-York tensor can be repro-
duced by adding suitable higher derivative terms to the
constituent relation (or equivalently to the viscous stress
tensor).
In order to reproduce the sound pole in the Brown-York

tensor, we introduce an vector field ~uμ as

uμ ¼ ~uμ − c1Δμν∇ν∇ρ ~uρ: (4.1)

Then, we keep (2.15), (2.16) and (2.17) unchanged but
replace the velocity vector uμ in (2.18) and (2.19) by ~uμ:

τμν ¼ −2η ~σμν − ζ ~θΔμν; (4.2a)
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~σμν ¼ 1

2
ΔμαΔνβ

�
∇α ~uβ þ∇β ~uα − 2

n
gαβ∇γ ~uγ

�
; (4.2b)

~θ ¼ ∇α ~uα: (4.2c)

Here, we have defined the projection Δμν with the original
velocity vector uμ. It should be noticed that the result is not
affected even if we defineΔμν with ~uμ. Then, by solving the
conservation law, we obtain,

~u ¼ 1

Δs

iω
k

�
− 1

2
k2f00 − iωkf0

þ 2ðn − 1Þ
n

ðk2 − nKÞiωη̂HT

þ nk2ðc2sð1þ c1k2Þ − c1ω2 − iωζ̂ÞHL

�
; (4.3)

δε ¼ ðε̄þ P̄Þð1þ c1k2Þ
Δs

�
− 1

2
k2f00 − iωkf0

þ 2ðn − 1Þ
n

ðk2 − nKÞiωη̂HT

þ n

�
2ðn − 1Þ

n
ðk2 − nKÞiωη̂þ ω2

�
HL

�
; (4.4)

Δs ¼ ð−ω2 þ c2sk2Þð1þ c1k2Þ − iωðΓsk2 − 2ðn − 1ÞKη̂Þ:
(4.5)

By taking

c1 ¼
2

nrf0ðrÞ ; (4.6)

the pole in the Brown-York tensor (3.42) is reproduced.
Since ~uμ can be expressed in terms of uμ as

~uμ ¼ ð1 − c1Δμν∇ν∇ρÞ−1uρ

¼ uμ þ
X∞
n¼0

cnþ1
1 Δμν∇νð∇αΔαβ∇βÞn∇ρuρ; (4.7)

(4.2) can be interpreted as the shear and expansion with
higher derivative corrections.
In order to reproduce the higher order corrections in the

numerators of the Brown-York tensor (3.48), we further
introduce correction terms which is related to the curvature.
For the Riemann tensor, two indices must be contracted
by projection tensor Δμν, or equivalently, uμ. Since the
correction terms appear only in the viscous stress, the other

indices must be projected by Δμν. Then the possible
correction terms are expressed in terms of uρuσRiρj

σ or
Rij.

1 In the linear response theory, we have

δRj
i ¼ −δðuρuσRiρ

jσÞ

¼
�
− k2

2
f00 − iωkf0 − ω2nHT

�
Sj
i

þ 1

n

�
k2

2
f00 þ iωkf0 − ω2nHL

�
δjiS; (4.8)

δRi
j − δRi

j ¼ δRil
jl

¼ −ðn − 2Þk2
�
HL þ 1

n
HT

�
Sj
i

þ 2
n − 1

n
ðk2 − nKÞ

�
HL þ 1

n
HT

�
δjiS:

(4.9)

Then the viscous stress tensor is

τμν ¼ −2η ~σμν − ζ ~θΔμν þ c2RLΔμν

þ c3R
μν
T þ c4RLΔμν þ c5R

μν
T (4.10)

where

RL ¼ 1

n
δRi

i (4.11)

Rμν
T ¼ ΔμαΔνβðδRαβ − gαβRLÞ; (4.12)

RL ¼ 1

n
δRi

i (4.13)

Rμν
T ¼ ΔμαΔνβðδRαβ − gαβRLÞ: (4.14)

Then, by taking the coefficients c2, c3, c4 and c5 as

c2 ¼
rffiffiffi
f

p ; c3 ¼ − 2
ffiffiffi
f

p
f0

;

c4 ¼
r

2
ffiffiffi
f

p ; c5 ¼ −
ffiffiffi
f

p
f0

; (4.15)

1Similar correction terms are considered in the framework of
the relativistic hydrodynamics and its relation to the AdS/CFT
correspondence [30].
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the stress-energy tensor agrees with the Brown-York tensor
for the leading terms in the near horizon expansion (3.48)
but including the higher order terms of k and ω.

V. COUNTER TERMS AND
JUNCTION CONDITION

In the preceding sections, we have seen that the Brown-
York tensor on the cutoff surface near the horizon provides
the stress-energy tensor of fluid. In order to define the
energy-momentum tensor on the surface by using the
Brown-York tensor, we need to introduce additional counter
terms on the surface. These terms are called as the counter
terms in the framework of the holographic renormalization.
These boundary terms corresponds to taking an appropriate
boundary condition, and hence they are equivalent to fixing
the reference geometry. In the framework of the membrane
paradigm, the energy-momentum tensor is defined by the
Israel junction condition and is given by the difference of
the Brown-York tensors which are calculated in each sides
of the surface. The energy-momentum tensor of the fluid
comes from the Brown-York tensor in the black hole
geometry. The effects of the geometry inside the surface
correspond to the counter terms in the holographic
renormalization.
The counter terms, or equivalently, contributions from

the geometry inside the stretched horizon, give additional
contributions to the fluid. We do not consider the details of
this effect, but nonetheless make a few comments on it in
this section.
In the case of the AdS/CFT correspondence, the counter

terms are determined by assuming that they are local
covariant functions of the intrinsic geometry. The most
simple counter term for the action is the cosmological
constant,

Sct ¼ Cct

Z
dnþ1x

ffiffiffiffiffiffi−γp
; (5.1)

where C is a coefficient which depends on rc. This counter
term gives an additional term to the energy-momentum
tensor:

Tμν
ct ¼ Cctγ

μν (5.2)

and the coefficient is fixed by requiring cancellation of
divergences. This term gives corrections to the energy
density and pressure as

δε ¼ −Cct; δP ¼ Cct: (5.3)

The linear response of the stress-energy tensor depends
only on the combination of (ε̄þ P̄). Therefore, the

counter term (5.1) does not affect the fluid on the
surface.
Another simple counter term is the intrinsic curvature on

the surface. This term gives only the higher derivative
terms, and hence, does not contribute to the fluid in the first
order formalism, which we have mostly discussed in this
paper. For finite rc, we can also modify the fluid theory by
adding the curvature term.
The pole structure in the Brown-York tensor comes from

the term proportional to the master field. Since the master
field represents the propagating mode in the bulk, the
counter terms do not affect the pole structure as long as they
are defined by local functions on the intrinsic geometry on
the surface. Therefore, the counter terms basically are not
important for the fluid.
In the membrane paradigm, there are additional contri-

butions from the geometry inside the stretched horizon. The
inside geometry is given by the geometry with M ¼ 0. For
example, in the case of Λ ¼ 0, the metric is

ds2 ¼ −d~t2 þ d~r2 þ ~r2d ~σ2n; (5.4a)

d ~σ2n ¼ γ̂ijd~zid~zj (5.4b)

The relation between the coordinates inside and outside the
surface is determined by requiring that the induced metrics
calculated in each side agrees. For the background metric,
we obtain

~t ¼
ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p
t; ~r ¼ r; ~zi ¼ zi: (5.5)

The energy-momentum tensor on the surface is obtained by
subtracting the Brown-York tensor in the inside geometry
from that in the outside geometry. Then, the corrections to
the energy density and pressure are

δε̄ ¼ n
r
; δP̄ ¼ − nðn − 1Þ

r
: (5.6)

The linear response of the stress-energy tensor depends
only on the combination of ðε̄þ P̄Þ ∼Oððrc − rHÞ−1=2Þ.
Therefore, the contributions from the inside geometry does
not contribute to the leading order terms of the near horizon
expansion. It should also noticed that this correction is
necessary to obtain positive energy density although it is
not important for the linear responses.
If we introduce the perturbations of the metric directly to

(5.4) with (5.6), the contributions from the inside geometry
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give similar contributions to those from the outside
geometry. We can calculate the Brown-York tensor in
the same fashion to that in the black hole geometry, but
the ingoing boundary condition at the horizon should be
replaced by the regularity condition at r ¼ 0. The
Brown-York tensor in inside geometry is calculated sep-
arately from that in outside geometry, and does not affect
the fluid stress-energy tensor, but gives simply additional
terms. These terms do not have pole at k → 0 and ω → 0
and do not give additional poles of a fluid at least for
K ≠ 0. They can be interpreted as higher order corrections
of the derivative expansion. This effect appears because the
inside geometry is not empty but there is an propagat-
ing mode.
In order to take the geometry inside the surface to be

completely flat, the effect of the metric perturbation should
be absorbed into the junction condition. By taking the
coordinates inside the surface as

~t ¼
ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p
tþ Y0e−iωtS; (5.7)

~r ¼ rþ Yre−iωtS; (5.8)

~z ¼ zi þ 1

r
Le−iωtSi; (5.9)

the metric of the flat space (5.4) is expressed as

ds2 ¼ −fðrcÞdt2 þ dr2 þ r2dσ2n þ hμνdxμdxν; (5.10)

where the perturbations are

h00 ¼ 2iωY0e−iωtS; (5.11)

h0i ¼ ðiωrLþ kY0Þe−iωtSi; (5.12)

hij ¼ 2re−iωt
��

− k
n
L − Yr

�
γ̂ijSþ kLSij

�
: (5.13)

Although we have taken the gauge hrμ ¼ 0 on the outside
geometry, the gauge condition on the inside geometry can
be different, and in fact hrμ is nonzero in (5.10). Since these
coordinates have only three free parameters, it cannot
reproduce arbitrary metric perturbations. However, they
can provide nonvanishing master field Φ in the outside
geometry, and the energy-momentum tensor has the struc-
ture of fluid. The corrections from the inside geometry do

not have any pole, and can be treated in a similar fashion to
the counter terms.

VI. CONCLUSION AND DISCUSSIONS

In this paper, we have studied the correspondence
between black holes and fluids. Our analysis is based
on the fluid/gravity correspondence, but can also be
interpreted as the membrane paradigm. Since the bulk
viscosity cannot be calculated in the Rindler limit due to
the incompressibility, we have put the cutoff surface at a
finite distance from the horizon. Then, the geometries are
no longer universal, and hence, we have focused on
simplest cases. We have considered maximally symmetric
black holes, which contain asymptotically non-AdS geom-
etries with compact horizons. For these black holes, it is
expected that the correspondence appears only near the
horizon. In order to avoid the incompressibility, we have
put the cutoff surface near the horizon but have kept a
finite distance from the horizon, and then, considered the
near horizon expansion. Generally, the leading order terms
of the near horizon expansion gives the Rindler limit.
However, due to the incompressibility, the leading order
contributions give the corrections to the Rindler limit for
the sound modes. We have considered the correspondence
of the sound modes in the framework of the linear
response theory. The energy-momentum tensor on the
surface is given by the Brown-York tensor in both
frameworks of the fluid/gravity correspondence and mem-
brane paradigm. Since the Einstein equation contains the
constraint equations which correspond to the conservation
law of the energy-momentum tensor on the surface, the
equation of continuity and the linearized Navier-Stokes
equation are imposed on the stress-tensor of the fluid.
Then, we have shown that the linear responses of the
Brown-York tensor and fluid stress-energy tensor agree, at
the leading order of near horizon expansion. Since these
contributions contain the corrections to the Rindler limit,
the fluid becomes compressible. There are additional
contributions from the counter terms in the fluid/gravity
correspondence or the Brown-York tensor on the geometry
inside the stretched horizon in the membrane paradigm.
These contributions give additional terms but do not
modify the pole structure of the Brown-York tensor in
the black hole geometry. Therefore, the counter terms or
the effects of the inside geometry do not modify the fluid
structure on the surface.
We have calculated the transport coefficients in the near

horizon expansion. At the leading order, the bulk viscosity
vanishes: ζ ¼ 0. This result is different from the previous
result in the membrane paradigm. In the membrane
paradigm, the energy-momentum tensor on the stretched
horizon was calculated and the limit in which the stretched
horizon becomes the true horizon was taken. In this limit,
the surface becomes null and the normal vector becomes
the only vector which is pointing the causal direction on the
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surface. Then, in the previous studies of the membrane
paradigm, the normal vector nμ to the horizon was
identified to the velocity vector of fluid. Since the stress-
energy tensor is given by (3.4), the energy ε, pressure P,
viscous stress τμν, shear σμν, and expansion θ were
identified as

ε ¼ θ; (6.1a)

P ¼ −uμuνKμν; (6.1b)

τμν ¼ −σμν þ n − 1

n
Δμνθ; (6.1c)

σμν ¼ ΔμρΔνσKρσ; (6.1d)

θ ¼ ΔρσKρσ: (6.1e)

However, this identification is correct only when the
stretched horizon becomes the true horizon. Since the
stretched horizon is defined as an timelike surface,
the normal vector is not tangent to it. Then, the above
identification must be modified. For the shear modes, (6.1)
gives the correct result at the leading order of the near
horizon expansion. For the sound modes, however, the
fluid becomes incompressible as has been discussed in the
fluid/gravity correspondence, and hence, the next-to-
leading order corrections become important. In fact, the
leading order contributions in this paper should be inter-
preted as the next-to-leading order correction to the
vanishing leading terms in comparison with the shear
modes. Therefore, we cannot use the above identification
for the sound modes, and hence, obtained the different
result, ζ ¼ 0.
It should also be noticed that there is an ambiguity in the

identification of the pressure and extension, in (6.1). Since
both of them come from the trace part of the spatial
components of the stress tensor, they cannot easily be
distinguished. For the sound modes of fluid, the speed of
sound is calculated from the ratio of the variations of the
energy density and pressure, and expected to be constant.
This implies that the pressure also has a term proportional
to the expansion since the energy density equals to the
expansion in (6.1). Then, the coefficient of the expansion in
τμν in (6.1) should not simply be identified to the bulk
viscosity but might contain a contribution which should be
identified as a part of the pressure. This fact gives addi-
tional correction to the negative bulk viscosity. By taking
into account the difference between the normal vector and

velocity vector on the timelike stretched horizon, the
energy density is no longer proportional to the expansion.
Then, in our analysis, the pressure and bulk viscosity can be
uniquely identified.
It is interesting that the bulk viscosity vanishes even for

the asymptotically non-AdS geometries. In the case of
AdS, it could be a consequence of the conformal symmetry.
However, in this paper, we have considered the geometries
which are not asymptotically AdS. Then, the zero bulk
viscosity does not come from the conformal symmetry. It is
natural to expect that the bulk viscosity vanishes in more
general geometries. Since in order to calculate the bulk
viscosity, the cutoff surface must be at a finite distance from
the horizon, the fluid cannot be universal in these cases. It is
interesting to consider the case of other geometries. It
should be noticed that the nonzero bulk viscosity can easily
be obtained by considering the dimensional reduction of
the zero bulk viscosity cases. This implies that the bulk
viscosity becomes nonzero if there is a dilation in the
gravity side.
In this paper, we have considered only the linear

responses of the fluid. There remains a possibility that
there are other modes which give the negative bulk
viscosity. However, the sound modes which has been
analyzed in this paper are present independently from such
modes. We have also discussed possible higher derivative
corrections for the fluid stress-energy tensor. It would be
also interesting how they can be understood in the
framework of the relativistic fluid [31,32].2 It is also
straightforward to calculate the higher order corrections
in the near horizon expansion. Although the higher order
corrections in k appear in this paper, there are no higher
order corrections in ω. They appear with factor of f and can
be calculated by considering the higher order corrections of
the near horizon expansion. For example, the relaxation
time which appears as a coefficient of uρDρσ

μν will appear
in the higher order corrections. These are left for future
studies.
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APPENDIX: FULL EXPRESSIONS

By using the Einstein equation and the definition of the
master field, the first derivatives of the metric perturbations
can be expressed in terms of the metric perturbations and
master field without derivatives. Here, we define f̂0 ¼ f0=k
and ĤT ¼ HT=k2. The full expression of the relation is the
following:

2Higher derivative corrections in the AdS/CFT correspondence
are discussed in [8,30,33,34].
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f000 ¼ k2

nrfðrÞ f
0
0 þ

2ik2ω

nfðrÞ3=2 f̂0

þ
�ðn − 1ÞfðrÞðk2 − 2KnÞ − k2rf0ðrÞ

nrfðrÞ2 − r2f0ðrÞ2 − 2rfðrÞf0ðrÞ − ðn2 − 1ÞfðrÞ2
2rfðrÞ2 − 2rω2

fðrÞ
�
HL

þ
�
k2ððn − 1ÞfðrÞðk2 − 2KnÞ − k2rf0ðrÞÞ

n2rfðrÞ2 − k2ðr2f0ðrÞ2 − 2rfðrÞf0ðrÞ − ðn2 − 1ÞfðrÞ2Þ
2nrfðrÞ2

�
ĤT

þ
�
k2r−n

2
−1ð−rf0ðrÞ − nfðrÞ þ fðrÞÞððnþ 1ÞfðrÞ − rf0ðrÞÞ

4nfðrÞ2 − k4r−n
2
−1ð−rf0ðrÞ − nfðrÞ þ fðrÞÞ

2n2fðrÞ2
�
Φ; (A1)

f00 ¼ −nfðrÞ − rf0ðrÞ
rfðrÞ f̂0 − 2iωffiffiffiffiffiffiffiffiffi

fðrÞp HL þ
�
iωððnþ 1ÞfðrÞ − rf0ðrÞÞffiffiffiffiffiffiffiffiffi

fðrÞp − 2ik2ω

n
ffiffiffiffiffiffiffiffiffi
fðrÞp

�
ĤT

þ
�
ik2ωr−n=2

n
ffiffiffiffiffiffiffiffiffi
fðrÞp − iωr−n=2ððnþ 1ÞfðrÞ − rf0ðrÞÞ

2
ffiffiffiffiffiffiffiffiffi
fðrÞp

�
Φ; (A2)

H0
L ¼

�
k2

nrfðrÞ −
−rf0ðrÞ þ nfðrÞ þ fðrÞ

2rfðrÞ
�
HL þ

�
k4

n2rfðrÞ −
k2ððnþ 1ÞfðrÞ − rf0ðrÞÞ

2nrfðrÞ
�
ĤT

þ
�
k2r−n

2
−1ððnþ 1ÞfðrÞ − rf0ðrÞÞ

4nfðrÞ − k4r−n
2
−1

2n2fðrÞ
�
Φ; (A3)

H0
T ¼

�
k2

2ðn − 1ÞrfðrÞðKn − k2Þ −
nððnþ 1ÞfðrÞ − rf0ðrÞÞ
4ðn − 1ÞrfðrÞðKn − k2Þ

�
f00

þ
�

ik2ω

ðn − 1ÞfðrÞ3=2ðKn − k2Þ −
inωððnþ 1ÞfðrÞ − rf0ðrÞÞ
2ðn − 1ÞfðrÞ3=2ðKn − k2Þ

�
f̂0

þ
�ðn − 1ÞfðrÞð3k2 − 2KnÞ − k2rf0ðrÞ

2ðn − 1ÞrfðrÞ2ðKn − k2Þ − nð−2nrfðrÞf0ðrÞ þ r2f0ðrÞ2 þ ðn2 − 1ÞfðrÞ2Þ
4ðn − 1ÞrfðrÞ2ðKn − k2Þ

�
HL

þ
�
− k2ð−2nrfðrÞf0ðrÞ þ r2f0ðrÞ2 þ ðn2 − 1ÞfðrÞ2Þ

4ðn − 1ÞrfðrÞ2ðKn − k2Þ − nrω2ððnþ 1ÞfðrÞ − rf0ðrÞÞ
2ðn − 1ÞfðrÞðKn − k2Þ

þ k2ððn − 1ÞfðrÞð3k2 − 2KnÞ − k2rf0ðrÞÞ
2ðn − 1ÞnrfðrÞ2ðKn − k2Þ þ k2rω2

ðn − 1ÞfðrÞðKn − k2Þ
�
ĤT

þ
�
nω2r1−n

2ððnþ 1ÞfðrÞ − rf0ðrÞÞ
4ðn − 1ÞfðrÞðKn − k2Þ − k2r−n

2
−1ððn − 1ÞfðrÞ − rf0ðrÞÞððnþ 1ÞfðrÞ − rf0ðrÞÞ

8ðn − 1ÞfðrÞ2ðk2 − KnÞ

þ k4r−n
2
−1ððn − 1ÞfðrÞ − rf0ðrÞÞ

4ðn − 1ÞnfðrÞ2ðk2 − KnÞ þ k2ω2r1−n
2

2ðn − 1ÞfðrÞðk2 − KnÞ
�
Φ: (A4)
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