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We consider M theory in the presence of M parallel M5-branes probing a transverse AN−1 singularity.
This leads to a superconformal theory with (1,0) supersymmetry in six dimensions. We compute the
supersymmetric partition function of this theory on a two-torus, with arbitrary supersymmetry preserving
twists, using the topological vertex formalism. Alternatively, we show that this can also be obtained by
computing the elliptic genus of an orbifold of recently studied M-strings. The resulting two-dimensional
theory is a (4,0) supersymmetric quiver gauge theory whose Higgs branch corresponds to strings
propagating on the moduli space of SUðNÞM−1 instantons on R4, where the right-moving fermions are
coupled to a particular bundle.
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I. INTRODUCTION

The study of six-dimensional superconformal theories
is still in its infancy. We know of the existence of (2,0)
and (1,0) superconformal theories, and we believe we
have a full list of the (2,0) theories, classified by ADE
type. The classification of (1,0) theories remains more
mysterious. There are some examples known [1–3]. In
particular the paper [3] considers 5-branes in various
theories probing transverse ADE-type singularities and
argues that this leads to (1,0) superconformal theories in
six dimensions. In this paper we study the partition
function of (1,0) superconformal theories corresponding
to M M5-branes probing transverse ADE singularities.
More specifically, in this paper we focus on the case of
transverse AN−1 singularities. This system is known to be
dual to type IIB strings with N D5-branes probing
transverse AM−1 singularity.
This theory has a deformation away from the conformal

fixed point, where the M5-branes are separated in the extra
transverse direction. The separation between adjacent
branes correspond to VEVs of scalars in the M − 1 (1,0)
tensor multiplets. The presence of tensor multiplets sug-
gests the existence of strings charged under the 2-form
fields. The main question of interest in this paper is to
investigate to what extent these strings capture the super-
symmetric partition function of this theory, along the lines
recently investigated in [4] for the (2,0) theory. We shall see
that indeed they capture the full supersymmetric partition
function of the theory on T2 with arbitrary twists preserving
supersymmetry. In fact these strings support a (4,0) super-
symmetric quiver gauge theory, whose elliptic genus
captures the partition function of the bulk theory. This
result also applies to the case studied in [4] as a special case
(setting N ¼ 1).

The presence of transverse AN−1 singularity suggests that
we have, in addition, an SUðNÞ gauge symmetry. This
would be the case if there were no M5-branes. However in
the presence of M M5-branes, the gauge symmetry turns
out to enhance to SUðNÞM−1 of an affine AM−1 quiver
gauge theory with bifundamental matter fields with an extra
SUðNÞ being a global symmetry [3]. The easiest way to see
this fact is to go to a dual type IIB description where this
corresponds to having N D5-branes probing a transverse
AM−1 singularity.1 In the M-theory setup we have
M2-branes stretched between parallel M5-branes which
lead to M-strings (see [4] for detailed discussion). From the
viewpoint of M-strings, placing the M5-branes in the
presence of AN−1 singularity can be interpreted as follows:
it corresponds to placing N copies of M-strings and
modding out by a ZN action, which permutes them but
at the same time acts by a ZN subgroup of the global
SOð4Þ⊥ symmetry, which the strings enjoy. The main goal
of this paper is to study how this orbifold action is
perceived by the M-strings.
To this end we study further compactification of this

theory on S1 and S1 × S1. As we go down to five
dimensions on an S1, we can turn on ðN − 1ÞðM − 1Þ
Wilson lines of SUðNÞM−1 and the N − 1 fugacities from
the global SUðNÞ symmetry, giving a total of ðN − 1ÞM
parameters. In addition, the theory depends on the six-
dimensional VEVof the M − 1 tensor multiplets as well as
the radius of the circle. Moreover, as we go around the
circle we can act by a supersymmetry-preserving transverse
rotation, leading to a mass parameter for the bifundamental

1The absence of Uð1ÞM−1 ’s in the gauge factor is because they
are anomalous and are Higgsed by the hypermultiplets corre-
sponding to the AM−1 hyperKähler moduli.
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fields. Altogether, this gives NM þ 1 parameters. In other
words, we end up with an N ¼ 1 supersymmetric gauge
theory in five dimensions, which depends on these param-
eters (which partly specify the Coulomb branch of the
theory and partly the coupling parameters). One can then
compute the supersymmetric partition function of these
theories, either using the topological vertex formalism or
the instanton calculus (which corresponds to the twisted
partition function on a further compactification on S1). As
is well known [5–7], these capture Bogomol'nyi-Prasad-
Sommerfield (BPS) degeneracies of the theory, which can
be interpreted as arising from the M-strings [4]. In
particular the computation of the partition function of
the resulting five-dimensional theory is equivalent to
computation of the elliptic genus of the corresponding
strings, which in turn can be interpreted as the elliptic genus
of the ZN orbifold of N M-strings, which ends up being
given by a (4,0) supersymmetric quiver gauge theory.
The organization of this paper is as follows: in Sec. II, we

introduce the basic setup of M5-branes and M-strings in the
presence of AN−1 singularities, and we discuss the further
compactifications on S1 and S1 × S1 and the interpretation
of this system in various duality frames. We also present the
quiver description of such M-strings using the type IIB
setup. In Sec. III we show how refined topological strings
can be used to compute the partition function of this theory.
We find that the basic building block of this computation
can be interpreted in terms of the amplitudes of a collection
of M2-branes which end on two sides of M5-branes, in the
presence of AN−1 singularity. In other words, the presence
of M5-branes can be viewed as a domain wall which acts as
an operator on the states of the M2-branes on the left, to
give the states of M2-branes on the right. We also discuss
the modular properties of the partition functions of the
theory with respect to the elliptic modulus of the T2

compactification. We also show how these results can also
be directly obtained from the quiver (4,0) gauge theory. In
Sec. IV we end with some concluding remarks.
We understand that related results have been obtained

independently in [8]. We thank the authors for communi-
cating this to us.

II. GEOMETRY OF MA-STRINGS

MA-strings arise from M2-branes ending on parallel
M5-branes in the presence of AN−1 singularities. In this
section we clarify the details of the geometry behind this
construction and discuss twisted compactifications on S1

and S1 × S1. We then proceed to describe various dual
descriptions of this system. In particular, by compactifying
the M5-branes on S1 with twisted boundary conditions we
end up with a theory in five dimensions with the same
degrees of freedom as a quiver version of N ¼ 2�. This
theory has further realizations in terms of a ðp; qÞ-fivebrane
web in type IIB string theory as well as compactifications
of M theory on certain noncompact Calabi-Yau manifolds.

In Sec. II A we present the basic geometry and setup of
our notation, including how the M-strings fit in this picture,
and what their global symmetries are. In Sec. II B we
discuss compactification on a circle and twisting around the
circle to introduce a mass parameter. In Sec. II C we discuss
the various duality frames: In Sec. II C 1 we provide a dual
type IIA description involving D4-branes probing AN−1
singularities and its T-dual IIB description involving a web
of ðp; qÞ-fivebranes as well as the corresponding toric
description characterizing M theory on local Calabi-Yau
three-folds. In Sec. II C 2 we provide yet another dual type
IIB description involving D5-branes probing AM−1 singu-
larities. In Sec. II D we consider further compactification
on S1 which allows us to introduce the omega background.
We also recall the refined topological string description of
the partition function and its connection with BPS degen-
eracies. In Sec. II E we provide the quiver description for
the orbifold of M-strings (i.e. MA-strings) giving a (4,0)
supersymmetric system which is deduced from the type IIB
dual description discussed in Sec. II C 2. In that section we
point out the interpretation of the quiver theory as a gauge
system whose Higgs branch describes the moduli space of
instantons on SUðNÞM−1, where the fermions are coupled
to suitable bundles.

A. Basics of the setup

Consider M parallel and coincident M5-branes in the
presence of an AN−1 singularity in the transverse directions.
That is, the M5-branes fill a subspace R6 of R1;10, whereas
the transverse space is of the form

R × AN−1; with AN−1 ≡ C2=ΓN;

ΓN ¼
��

e
2πi
N 0

0 e−2πi
N

�
ji ¼ 1;…; N − 1

�
:

(2.1)

The space on which M theory is compactified is then
R6

jj × R × ðAN−1Þ⊥, where the subscripts are used to dis-
tinguish directions parallel or transverse to the worldvo-
lume of the M5-branes. The resulting theory living on the
M5-branes then has (1,0) supersymmetry. The massless
representations of this supersymmetry are then labeled by
their Spinð4Þ ∼ SUð2Þ∥L × SUð2Þ∥R representations. Scalars
arise from hypermultiplets as well as from the tensor
multiplets.
We choose coordinates XI , I ¼ 0; 1; 2;…; 10, and para-

metrize the world volume of the M5-branes by X0, X1, X2,
X3, X4, X5. We take the transverse R4, which we mod out
by the orbifold group ΓN , to be parametrized by X7, X8, X9,
X10 which we also sometimes denote by R4⊥. Next, we
separate the M5-branes along the X6 directions and denote
their position in the X6 direction by ai; i ¼ 1; 2;…;M.
Thus, before orbifolding, rotations of R4⊥ will lead to a
SpinRð4Þ ∼ SUð2Þ⊥L × SUð2Þ⊥R R-symmetry on the M5-
brane world volume theory. Following [4], one can
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introduce M2-branes ending on M5-branes with boundary coupling to the antisymmetric 2-form field, whose world volume
is along the X0, X1, X6 directions. Altogether we have the following setup:

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

C2=ΓN − − − − − − − × × × ×
M5 × × × × × × faig − − − −
M2 × × − − − − × − − − −

: (2.2)

The boundary of an M2-brane inside an M5-brane is
spanned by ðX0; X1Þ and is a string inside the M5-brane,
which following the terminology of [4] we now call a
MA-string as there is an AN−1 singularity transverse to the
fivebrane. The presence of the string breaks the
Spin(1,5) Lorentz symmetry of the M5-brane to
Spinð1; 1Þ × Spinð4Þ, Spin(1,1) being the Lorentz group
on the string. As shown in [4] the chiralities of the
preserved supersymmetries on the M-string under Spin
(1,1), SpinRð4Þ and Spinð4Þ ⊂ Spinð1; 5Þ are equal. Thus
before the ΓN orbifold action the preserved supersymme-
tries organize themselves into four left-moving and four
right-moving supercharges whose eigenvalues are under

Spinð4Þ ∼ SUð2ÞjjL × SUð2ÞjjR;
SpinRð4Þ ∼ SUð2Þ⊥L × SUð2Þ⊥R ; (2.3)

and are given in Table I.
Note that these supercharges form a positive chirality

spinor of Spin(8), namely 8s. It is now easy to include the
action of the orbifold group. For this we note that super-
charges transform under the action of the orbifold group as

Qs↦ expð2πis · ζ⃗ÞQs; (2.4)

where ζ⃗ ¼ ð0; 0; ζ1; ζ2Þ parametrizes the orbifold action
which in our case is given by

ðw1; w2Þ ∈ C2 ≃ R4⊥
⇒ ΓN∶ðw1; w2Þ↦ðe2πiζ1w1; e2πiζ2w2Þ; (2.5)

with ζ1 ¼ 1
N and ζ2 ¼ − 1

N. Therefore, we see that only the
left-moving supercharges survive as they are the only ones
which are invariant under the action (2.5). This shows that
the world volume supersymmetry is reduced from (4,4) to
(4,0) by the orbifolding.

B. Compactification on S1 and mass rotation

Next, we consider compactifying X1 to a circle of radius
R1. Recall that the transverse R4 is parametrized by X7, X8,
X9, X10 and is modded out by the orbifold group ΓN to give
an AN−1 singularity. Resolving this singularity gives rise to
an ALE space with metric

ds2 ¼ V−1ðdtþ A⃗ · dx⃗Þ2 þ Vdx⃗ 2

V ¼
XN
i¼1

1

jx⃗ − x⃗ij
−∇⃗V ¼ ∇⃗ × A⃗: (2.6)

The second homology of this space is generated by two-
cycles Ci, i ¼ 1;…; N − 1 whose intersection numbers
produce the Cartan matrix of AN−1. This space can be
equivalently viewed as a specific limit of the multicentered
Taub-Nut space TNN defined by the same equations as
above with the modification that V gets replaced by

V ¼
XN
i¼1

1

jx⃗ − x⃗ij
þ 1

λ2
: (2.7)

The underlying geometry is then a circle fibration over R3

such that the circle shrinks to zero size at the points x⃗i ∈ R3

and approaches an asymptotic value at infinity, namely λ. In
the limit λ → ∞, one then regains the ALE space (2.6).
However, for our purposes, when we talk about the AN−1
singularity we will always keep the circle at infinity finite
and therefore will consider TNN in this paper.

TABLE I. Preserved supersymmetries on the string before ZN
orbifold action. The table shows the Cartan eigenvalues of SOð8Þ
where it is implicit that all signs are multiplied by 1

2
. The two

columns of the table correspond to the left-moving and right-
moving supercharges on the world sheet of the M-string.

L R
Jjj;L3 Jjj;R3

J⊥;L
3 J⊥;R

3 Jjj;L3 Jjj;R3
J⊥;L
3 J⊥;R

3

þ þ – – þ – – þ
– – þ þ – þ þ –
– – – – þ – þ –
þ þ þ þ – þ – þ
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Let us next come to the isometries of the space TNN .
Generically, the isometry group is just Uð1Þf, correspond-
ing to rotation of the circle fiber. Furthermore, for con-
figurations where all centers are aligned along a line there is
another Uð1Þ isometry which corresponds to rotations
preserving this axis, denoted by Uð1Þb2. The situation is
analogous to the isometries of AN−1 ALE space discussed
in [9]. We want to describe both Uð1Þ’s explicitly by
choosing complex coordinates. To this end, we recall that
the singular limit of this space corresponds locally around
the origin to the algebraic equation

XN þ YZ ¼ 0 (2.8)

in C3. We can parametrize solutions by Y ¼ wN
1 , Z ¼ wN

2

and X ¼ w1w2. Note that these equations are preserved
when blowing up the singularity and are therefore a valid
description of TNN around the origin. The two isometries
discussed above then have the following representations in
this picture:

Uð1Þf∶ðw1; w2Þ↦ðe2πiαw1; e−2πiαw2Þ
Uð1Þb∶ðw1; w2Þ↦ðe2πiαw1; e2πiαw2Þ: (2.9)

Having identified the isometries of the space transverse
to the M5-branes we next consider compactification of the
coordinate X1 on a circle with radius R1. We can fiber TNN
nontrivially over this S1 as follows: as we go around the
circle we use the isometry Uð1Þf to rotate ðw1; w2Þ,

Uð1Þm ≡Uð1Þf∶ðw1; w2Þ → ðe2πimw1; e−2πimw2Þ: (2.10)

Note that the supercharges that are invariant under this
rotation are precisely the left-moving supercharges that
survive the orbifold action (2.5). For N ¼ 1, the resulting
theory in five dimensions is anN ¼ 2� theory with SUðMÞ
gauge group and adjoint hypermultiplet with massm which
was studied in [4]. For general N the theory is an affine
ÂN−1 quiver gauge theory with an SUðMÞ gauge group at
each node and with bi-fundamental matter between adja-
cent nodes. We depict this in Fig. 1. There are N different
gauge couplings, one for each node in the quiver, and their
sum is related to the radius of the circle along the X1

direction through

τ ¼
XN
i¼1

τi ¼
XN
i¼1

4π2

g2YM;i
¼ 1

R1

; (2.11)

where we take the τi to be the couplings of the individual
nodes. Furthermore, the hypermultiplets which form the bi-
fundamental matter fields will each have mass m. To

complete the count of parameters note that there are also
NðM − 1Þ Coulomb branch parameters. Together with the
mass parameter and the couplings we thus see that the
gauge theory depends altogether on NðM − 1Þ þ N þ 1 ¼
NM þ 1 parameters.

C. Different duality frames

In this section we present different realizations within
type II string theory of the M-theory setup discussed above.
The goal will be to derive on the one hand a type IIB ðp; qÞ-
brane web construction for the five-dimensional gauge
theory which will allow us to lift the brane setup to a
M-theory compactification on a noncompact Calabi-Yau
threefold. On the other hand wewill derive another type IIB
description in terms of D5-branes in the presence of AM−1
singularity which will serve two purposes. First of all, it
will give rise to a dual six-dimensional gauge theory
description of the original M-theory setup, and secondly
it will allow us to give a two-dimensional quiver gauge
theory description for the MA-strings.

1. Type IIB ðp;qÞ-brane web and M theory on toric
Calabi-Yau

Let us start with the derivation of the type IIB
ðp; qÞ-fivebrane web setup through a chain of dualities.
As a first step we compactify the original M-theory
geometry along the X1 circle. We obtain type IIA theory
with the following brane setup:

R R4
∥ R TNN

X0 X2 X3 X4 X5 X6 X7 X8 X9 X10

M D4 × × × × × faig – – – –
k F1 × – – – – × – – – –

FIG. 1. Compactification of the M5-brane theory on a circle in
the presence of an An−1 singularity leads to the five-dimensional
quiver gauge theory depicted here.

2For N ¼ 1 this isometry gets enhanced to SUð2Þ and thus the
full isometry group of TN1 is Uð1Þf × SUð2Þb.
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That is, we have k fundamental strings stretching
between D4-branes, in a transverse Taub-NUT background
of charge N. We denote the separations between the
D4-branes by tif, while τ is now related to the gauge
coupling of the D4-brane world volume theory by

g2YM
4π2

¼ τ−1:

The presence of transverse AN−1-singularity leads to a ZN
orbifold [10] and this gives rise to the five-dimensional
quiver gauge theory described in the previous section. Let
us next discuss the reduction of the M-theory 3-form Að3Þ.
Before the circle-reduction it can be given an expectation
value along the three-cycles S1 × Ci where S1 is the M-
theory circle. These particular expectation values will
reduce in the type IIA setup to nonzero B-field flux on
the Ci cycles:

B ¼
XN−1

i¼1

τi · ωi →
Z
Ci

B ¼ τi;

where we take the ωi to be elements of H1;1ðTNN;ZÞ and
Poincare dual to the Ci.
Let us next assume that m is turned off.3 Now we

perform T-duality along the Taub-NUT circle. The
Taub-NUT geometry turns into a collection of type IIB
NS5-branes on transverse S1 ×R3 [11], while the
D4-branes become D5-branes and the fundamental strings
of type IIA turn into type IIB fundamental strings. We end
up with the following picture:

R R4
∥ R S1 R3⊥

X0 X2 X3 X4 X5 X6 X7 X8 X9 X10

M D5 × × × × × faig × – – –
k F1 × – – – – × – – – –
N NS5 × × × × × × – – – –

Now the X7 radius is 1=λ, the inverse of the asymptotic
radius of the TNN circle. It is argued in [12] that the integral
of the B-field on Ci, Z

Ci

B ¼ τi;

translates after T-duality to the separation between the
NS5-branes along the X7 direction. This is still valid in the
singular limit we are considering where the centers of TNN

are brought together while leaving the B-flux finite. The
D4-branes translate on the type IIB side to D5-branes
wrapping the X7 circle and sitting at the origin of R3. The
resulting brane picture is depicted in Fig. 2. This brane
picture describes the subset of parameters in the
gauge theory where the Cartan expectation values for all
SUðMÞ gauge factors are the same and the mass is set to
zero. This corresponds to a N þM − 1 dimensional sub-
space of the full parameter space. To get the full picture
after turning on nonzero mass one has to introduce (1,1)
branes. These will connect D5-branes which end on NS5-
branes from different sides as shown in Fig. 3. The most
general setup of ðp; qÞ-branes now depends on NM þ 1
parameters and thus reproduces correctly the gauge theory
counting.
We complete this chain of dualities by simply recalling

the picture of [13]: type IIB theory on S1 (which we later
take to be the X0 circle) is the same as M theory on T2,
namely a ðp; qÞ-brane corresponds to the ðp; qÞ-cycle of
the M-theory T2 shrinking over the ðX6; X7Þ base. This way
the brane picture uplifts in M theory to a noncompact
Calabi-Yau which is elliptically fibered. For our specific
brane setup it turns out that the elliptic fiber is singular and
of type IN in the Kodaira classification of elliptic fibrations
[14]. The Kähler class tMe of the elliptic fiber is identified
with the overall gauge coupling of the five-dimensional
quiver gauge theory and is thus the inverse of the radius of
the X1 circle. That is we have

tMe ¼ 1

R1

: (2.12)

Resolving the singularities of the elliptic fiber leads to
various moduli which are identified with the Coulomb
branch and mass parameters of the gauge theory.

FIG. 2 (color online). Type IIB brane web.

3The mass parameter, which had entered as a twist along X1 of
the transverse TNN , now has the following interpretation: upon
compactifying on X1, we get a new gauge field Am from the
metric: Am ¼ g1θ ¼ mdθ, where θ parametrizes the Taub-NUT
fiber. Thus we find that there is a nonzero Wilson line along the
Taub-Nut fiber:

H
θ Am ¼ 2πim.
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2. Dual gauge theory description

Here we will derive a dual six dimensional gauge theory
description of our original M-theory setup. To this end we
start by compactifying on the Taub-NUT circle and pass to
the following type IIA description:

R S1 R4
∥ R R3⊥

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9

M NS5 × × × × × × faig – – –
k D2 × × – – – – × – – –
N D6 × × × × × × × – – –

The centers of Taub-NUT have become D6-branes,
the M5-branes have become NS5-branes, and the
M2-branes have become D2-branes. The separation
between M5-branes simply becomes separation between
the NS5-branes. The τ parameter is the inverse of the size of
the X1 circle, multiplied by the radius λ of the Taub-NUT
circle.
Now we can find out what happens if we perform T-

duality along X6 (which from now on we must assume to be
a circle). The configuration of the branes is as follows:

R S1 R4 TNM
X0 X1 X2 X3 X4 X5 X6 X7 X8 X9

k D1 × × – – – – – – – –
N D5 × × × × × × – – – –

In other words, the M NS5-branes of type IIA in this
picture have become TNM geometry and the D6-branes
have become D5-branes.
The theory living on the D5-branes has again an

interpretation of a quiver gauge theory. This time, however,
each node of the quiver is an SUðNÞ gauge group with
bifundamental matter between adjacent nodes [3,10]. This
is depicted in Fig. 4. As explained in [3] this gauge theory
comes with M − 1 tensor multiplets and a global SUðNÞ
symmetry. Counting parameters we find MðN − 1Þ
Coulomb branch parameters and fugacities which together
with the tensor multiplet scalars, the mass parameter and
the radius of compactification from six dimensionals to
five give MðN − 1Þ þM − 1þ 1þ 1 ¼ MN þ 1 parame-
ters. This matches with the countings from the dual five-
dimensional gauge theory and the toric diagram.

D. Compactification on S1 × S1 and relation with
topological strings

Going back to our original M-theory setup, we can also
further compactify X0 on S1. While doing this we can
introduce the Ω-background by fibering the space R4

jj over
this circle. In order to preserve supersymmetry we then also
have to fiber TNN around this circle. Altogether we twist
TNN ×R4

jj by the action of Uð1Þ ×Uð1Þ as we go around
the circle parametrized by X0:

Uð1Þϵ1 ×Uð1Þϵ2∶ðz1; z2Þ↦ðe2πiϵ1z1; e2πiϵ2z2Þ;

∶ðw1; w2Þ↦
�
e−

ϵ1þϵ2
2 w1; e−

ϵ1þϵ2
2 w2

�
(2.13)

The second Uð1Þ is nothing else than the isometry Uð1Þb
of TNN .
We can now ask what the theory of the suspended M2-

branes is when wrapped around the X0 and X1 directions. A
sigma model description can be deduced as follows. The
M2-branes as well as the M5-branes will be sitting at
the fixed point of the orbifold action in R4⊥ and as in the

FIG. 3 (color online). Type IIB brane web with mass
deformation.

FIG. 4. Dual six-dimensional quiver gauge theory.
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M-string setup the M5-branes are extended along T2 × R4
jj.

Also, the M2-branes will appear pointlike in R4
jj. However,

this time their moduli space will not be the one of Uð1Þ
instantons but rather that of SUðNÞ instantons. One way
to see this is from the dual type IIB setup described in
Sec. II C 2. From the type IIB brane setup one can see that
the D1-branes are instantons from the point of view of the
theory living on the D5-branes. As the D1-branes are
connected to the M-strings through a chain of dualities we
thus see that the moduli space of k MA-strings is that of k
SUðNÞ instantons. Furthermore, as the real dimension of
this moduli space is 4kN we thus see that the MA-string has
gained more degrees of freedom compared to the M-string
whose moduli were the coordinates of R4

jj. From another
point of view one can say that while the M-string was a
pointlike object on R4

jj the MA-string now fills an extended
region in R4

jj because, unlike the Uð1Þ case, the instantons
can now acquire a finite size. Yet from another viewpoint
one can say that in the presence of transversal AN−1
singularity M2-branes suspended between M5-branes gain
thickness (see Fig. 5).
The task of the following sections will be to compute

these degeneracies and obtain a closed formula for them
in terms of the refined topological string partition
function. Again, the partition function of M theory in
this background is by definition the partition function of
the refined topological string on the corresponding
Calabi-Yau threefold which now takes the following
form:

ZM−theoryððAn−1 × R4
jjÞ⋉T2

ε1;ε2;m|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
MM5

×RÞ

¼ Zrefined
top ðϵ1; ϵ2ÞðCYN;M;m;tif;τ

i
j
Þ: (2.14)

As a main tool we will use the topological vertex and its
refinement [5–7,15,16], to compute the degeneracy of BPS
states. This correspondence will be used to further extract

the elliptic genus of MA-strings. These will arise from
M2-branes which wrap the torus T2 and are extended along
the X6 direction. Having compactified on the second S1 all
M-theory parameters get rescaled by the radius R0 and also
get complexified due toWilson lines along the second circle.
In particular, by abuse of notation we will now denote the
complex structure of T2 by τ. An MA-string which has
Kaluza-Klein momentum k along the M-theory circle then
gives rise to BPS degeneracies which will appear as the
coefficient of the kth power ofQτ ¼ e2πiτ in the topological
string partition function of the elliptic Calabi-Yau.
Furthermore, such strings can have nontrivial charge under
all remaining gauge theory parameters. Their degeneracies
appear in the free energy of the topological string as
computed in Sec. III.

E. Quiver theory for the MA-strings

A two-dimensional quiver description for the MA-strings
can be deduced from the type IIB brane setup of N
D5-branes probing an AM−1 singularity described in
Sec. II C 2. Following [17] the quiver can be constructed
from an orbifold of the theory on the D1-branes. Before the
orbifolding the theory living on the D1-branes is a N ¼
ð4; 4Þ UðkÞ gauge theory with one adjoint and N funda-
mental hypermultiplets. The adjoint hypermultiplet arises
from the the 1–1 strings and the N hypermultiplets come
from the 1–5 strings. To be more specific we have,
following [18], the following massless modes on the world
volume:

bosons fermions
bAY ψA0Y−
bA

0 ~A0
ψA ~A0
−

A−−; Aþþ ψAA0
þ ;ψ ~A0Yþ

HA0
χA−; χYþ;

; (2.15)

where A�� ¼ A0 � A1. Furthermore, the indices ðA0; ~A0Þ
represent the fundamental representations of the two SUð2Þ
groups rotating the directions X2, X3, X4, X5 while ðA; YÞ

FIG. 5. M-strings versus MA-strings. In (a) the gauge group is Uð1Þ and the corresponding instantons originating from stretched M2-
branes have zero size in the R4

∥ directions. In (b) we see a thickening of the M2-brane ending on the M5-brane in the case of transverse
AN−1 singularity, because instantons can now acquire a finite size.
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are indices for the SUð2Þ’s rotating X6, X7, X8, X9. The
scalars in the adjoint N ¼ ð4; 4Þ hypermultiplet are para-
metrized by bA

0 ~A0
while those of the vector multiplet are

bAY . The scalars of the fundamental hypermultiplets, HA0
,

are doublets under SUð2ÞR ≡ SUð2ÞA0. The multiplet
structure is then obtained by the action of the left-moving
and right-moving supercharges:

QAA0
− bYA ¼ ψA0Y− ; QA0Yþ bAY ¼ ψAA0

þ : (2.16)

These fields can equally well be described in the language
of N ¼ ð2; 2Þ chiral and twisted chiral superfields. In
particular, the vector multiplet is given by the pair of
superfields ðΣ;ΦÞwhere Σ is a twisted chiral superfield and
Φ is a chiral superfield. Furthermore, the adjoint hyper-
multiplet is given by the pair of chiral superfields ðB; ~BÞ
whereas the fundamental hypermultiplets are ðQ; ~QÞ. That
is, we have the following correspondence:

bAY↔ðΣ;ΦÞ; bA
0 ~A0
↔ðB; ~BÞ; HA0

↔ðQ; ~QÞ:
(2.17)

We next consider orbifolding this theory by ZM. To
preserve the left-moving supersymmetry and break the
right-moving one we embed the orbifold group ZM in
SUð2ÞY giving the following action on fields with Y index,

ðbAY;ψ ~A0Y− ;ψ ~A0Yþ ; χYþÞ↦ ðζYbAY; ζYψA0Y− ; ζYψ ~A0Yþ ; ζYχYþÞ;
(2.18)

where ζ ¼ e
2πi
M and Y ¼ �. Note that the remaining fields

are invariant under the orbifold action. The resulting theory
has N ¼ ð4; 0Þ supersymmetry and its field content can
equally well be described in the language of N ¼ ð2; 0Þ
superfields by decomposing the N ¼ ð2; 2Þ superfields as
follows,

Σð2;2Þðθþ; θ̄−Þ ∼ Σ − ffiffiffi
2

p
θ̄þϒ;

Φð2;2Þðθþ; θ̄−Þ ∼ Φþ
ffiffiffi
2

p
θþΛΦ;

Bð2;2Þðθþ; θ̄−Þ ∼ Bþ
ffiffiffi
2

p
θþΛB;

~Bð2;2Þðθþ; θ̄−Þ ∼ ~Bþ
ffiffiffi
2

p
θþΛ ~B;

Qð2;2Þðθþ; θ̄−Þ ∼Qþ
ffiffiffi
2

p
θþΛQ;

~Qð2;2Þðθþ; θ̄−Þ ∼Qþ
ffiffiffi
2

p
θþΛ ~Q; (2.19)

where Σ and Φ, B, ~B,Q, ~Q are (2,0) chiral superfields,ϒ is
the (2,0) gauge superfield, and Λi is the Fermi superfield.
The orbifolding gives rise to a quiver gauge theory with

an inner quiver and an outer one. The inner quiver is the
affine ÂM−1 Dynkin diagram with nodes corresponding to
gauge group factors UðkiÞ for i ¼ 1;…;M which live on
the ith copy of D1-branes and are linked by bifundamentals
between adjacent nodes. Moreover, there is also an outer

ÂM−1 quiver with SUðNÞ nodes which corresponds to the
orbifold of the D5-branes. Its nodes are not connected as
those modes are not visible from the viewpoint of the D1-
branes. However, there are links connecting the outer with
the inner quiver. In particular, there are links which connect
SUðNÞi nodes of the outer quiver with UðkiÞ nodes of the
inner one. These links are (4,0) hypermultiplets which are
invariant under the ZM orbifold action. Matter fields which
are not invariant under this action still survive the orbifold-
ing but now reach from SUðNÞi nodes to Uðki−1Þ and
Uðkiþ1Þ nodes. The result is the quiver depicted in Fig. 6.
In order to connect this picture to MA-strings we need to

turn off D1-brane charge and instead introduce D3-branes
wrapped around blow-up cycles of the resolved AM−1
singularity. As explained in [4] in type IIB the tension
of strings arising from D3-branes wrapping blow-up cycle
Ci is given by ti ¼ μi=gs where μi is the size of the two-
cycle Ci. Taking the limit μi → 0 with gs → 0 decouples
the D1-branes and one is left with the D3-branes. In the
language of the above quiver this limit corresponds to
removing the last node of the inner quiver (i.e. setting its
rank to zero) and also all links ending on it.
One of the goals of this paper is to make a prediction for

the elliptic genus of this quiver using the refined topologi-
cal vertex which we will put to work in Sec. III. For this we
need to connect the globalUð1Þ symmetries of the quiver to
the ones of the original M-theory picture. In particular, we
need to identify the mass-rotation Uð1Þm as well as the
symmetries of the Ω-background, namely Uð1Þϵ1 and
Uð1Þϵ2 , as a subset of the symmetries of the quiver theory.
To this end, it turns out to be useful to study a yet another
dual brane setup which captures the field content of the

FIG. 6 (color online). The quiver for the D1-D5 system. In
order to obtain the MA-strings one has to remove the last node in
the inner quiver and all links ending on it. We have also included
a representative set of (2,0) fields corresponding to the links
connecting the nodes of the quiver.
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quiver in a very intuitive manner. We start by recalling the
type IIA brane setup of Sec. II C 2:

S1 S1 R4
∥ R R3⊥

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9

M NS5 × × × × × × faig – – –
k D2 × × – – – – × – – –
N D6 × × × × × × × – – –

Now perform T-duality along the circle in the X1

direction. The result is the type IIB brane setup shown
in the table below and is presented pictorially in Fig. 7.

S1 S1 R4
∥ R R3⊥

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9

M NS5 × × × × × × faig – – –
k D1 × – – – – – × – – –
N D5 × – × × × × × – – –

Note that we have mapped the M-strings to D1-branes
which are extended along the X6 direction and wrap the
circle parametrized by X0 inside the NS5- and D5-branes.
Taking the size of this circle to be very small we can reduce
the theory living on the D1-branes along it and the resulting
theory is a quantum mechanics living on the segments
parametrized by X6. It is now easy to show that the
corresponding quiver diagram for this quantum mechanics
is exactly the same as the one obtained from the orbifold of
the D1-D5 system, depicted in Fig. 6. To see this consider
taking all D5-branes to be lying on top of each other so that
the strings living on the D1-branes enjoy a full UðkÞ gauge
symmetry and SUðNÞ flavor symmetry. Furthermore,
deform the system by introducing ðN; 1Þ-branes connecting

the D5-branes ending from different sides on the same
NS5-brane. The result is depicted in Fig. 8. Now one just
has to look at the fundamental strings stretching between
the D1-branes and also the ones ending on the D5-branes.
One easily sees that they correspond to the links of the
quiver diagram where for ease of identification we have
colored the links as well as the strings.
Let us next come to the identification of the global Uð1Þ

symmetries. Looking at Fig. 8 we can identify the length
of the ðN; 1Þ-branes with the mass parameter m of the
M-theory setup. We can also see that the only strings
acquiring mass are the ones reaching from one set of D1-
branes to the neighboring set of either D1- or D5-branes.
That is, in the original quiver language the only fields
getting massive by turning on nontrivial m are the ones
coming from the links connecting nodes of the inner quiver
and from links connecting an outer node with adjacent
inner nodes. In (2,0) superfield language the first class
consists of the twisted chiral multiplets Σ, the chiral
multiplets Φ and the Fermi superfields ΛB as well as
Λ ~B. The second class is formed by the Fermi superfields ΛQ

and Λ ~Q. As it is not possible to write down a scalar mass
term for these fields in the Lagrangian the mass m has to
correspond to the conserved charge of aUð1Þ current which
is a symmetry of the theory. On the other hand, from the
supersymmetry transformations (2.16) and the field iden-
tifications (2.17), one can see that the fields B, ~B, ΛΦ, Q
and ~Q carry either an A0 or a ~A0 index which shows that they
transform nontrivially under rotations ofR4

jj. They will thus
carry Uð1Þϵi charge. As a clarifying example and also to set
our conventions, we give here the charges of the fields
under the various Uð1Þ’s for the case where M ¼ 2, which
is when the D3-quiver contains only one inner node:

ΛΦ B ~B Q ~Q ΛQ Λ ~Q

UðkÞ adj adj adj □ □̄ □ □̄

Uð1Þε1 −1 1 0 1
2

1
2

0 0

Uð1Þε2 −1 0 1 1
2

1
2

0 0
Uð1Þm 0 0 0 0 0 1 1

FIG. 7. Type IIB brane setup with M NS5-branes and N D5-
branes. The D1-branes are parallel to the D5-branes but drawn
shorter to distinguish them from the latter ones.

FIG. 8 (color online). Type IIB brane setup after putting all D5-
branes on top of each other. The theory living on the D1-branes
corresponds to the quiver gauge theory discussed above.
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Let us next comment on the Higgs branch of the quiver
gauge theory. As the (4,0) theory contains superpotential
terms coming from the faces of the quiver we have to
restrict the parameters of this superpotential in order to
make contact with the M-theory setup. We claim that the
answer for the elliptic genus of this quiver gauge theory
computed along the lines of [19–21] matches the
topological vertex result of Sec. III, where m controls
the “mass-rotation” of the M-theory setup. We will return to
this point in Sec. III D, where we will be able to perform an
explicit check in the case of M ¼ 2, N ¼ 1. Indeed as
argued in [17] the Higgs branch moduli space of the quiver
consists of M − 1 copies of the moduli space of k SUðNÞ
instantons and hence the quiver also contains the sigma
model description for the MA-strings. The bosons of the
sigma model will arise from the 4kN bosonic zero modes in
the k SUðNÞ instanton background and are thus sections of
the tangent bundle. Left-moving fermions are again sec-
tions of the tangent bundle whereas right-moving fermions
transform as sections of a different bundle breaking
supersymmetry in the right-moving sector. In the case
where the inner quiver contains only one node, that is
where there are only two M5-branes in the M-theory setup,
this bundle is formed by the 2kN fermionic zero modes of
the Dirac equation for an adjoint fermion in the instanton
background together with their complex conjugates. For
more details on this bundle and its Chern characters we
refer to [22].
For the general quiver with M − 1 nodes the picture is

more complicated. The bosons are sections of the tangent
bundle of the moduli space,

MN
k1;k2;…;kM−1 ≡Mðk1; NÞ ×Mðk2; NÞ

× � � � ×MðkM−1; NÞ: (2.20)

The right-moving fermions are sections of a bundle V
which is of same dimensionality as the tangent bundle. It
admits a decomposition,

V ¼ ⊕
M−1
s¼0

Vs; (2.21)

where the Vs are bundles over Mðks; NÞ ×Mðksþ1; NÞ
and it is understood that Mðk0; NÞ and MðkM;NÞ are
empty spaces. The moduli space of ks instantons in
SUðNÞ gauge theory admits fixed points under the
Uð1Þε1 ×Uð1Þε2 ×Uð1ÞN action on ADHM data which
are themselves labeled by ADHM data for an N-tuple of
Uð1Þ instantons: ðk1s ; k2s ;…; kN2 Þ with the propertyP

N
a¼1 k

a
s ¼ ks. The moduli space of Uð1Þ instantons is

the Hilbert scheme of points on C2 and fixed points on
Hilbk

i
sðC2Þ are labeled by codimension kas . Ideals in C½x; y�

denoted by Ias. Thus the fixed points on Mðks; NÞ ×
Mðksþ1; NÞ can be identified by pairs of ideals and in
this language the bundle Vs restricted to these fixed points
is of the form

Vsjfixed points ¼ ð⊕ N
a¼1;b¼1Ext

1ðIas ; Ibsþ1ÞÞ ⊗ L−1
2; (2.22)

where L is the canonical line bundle on C2 and I0
and IM are codimension zero Ideals. In Sec. III D we will
explain how an explicit description of these bundles gives
another way of computing the elliptic genus of
MA-strings.

III. TOPOLOGICAL STRING COMPUTATION OF
THE PARTITION FUNCTION

The goal of this section is to compute the topological
partition function of M5-branes on the geometryR4

‖ × T2 ×
R × AN−1 presented in Sec. II. To this end we compute the
refined topological string partition function of the non-
compact Calabi-Yau given by the toric diagram in Fig. 3. In
computing such a partition function we have to specify a
choice of preferred direction, which can be taken either to
be the vertical axis or the horizontal axis. Choosing the
vertical axis as preferred direction will lead to the Nekrasov
partition function for the five-dimensional gauge theory
given by the quiver of Fig. 1 (in line with the duality frame
of type IIA with D4-branes probing AN−1 singularity),
whereas the choice of the horizontal axis leads to the
Nekrasov partition function for the dual six-dimensional
gauge theory of Fig. 4 (corresponding to the duality frame
involving N D5-branes of type IIB probing AM−1 singu-
larity). In order to extract the elliptic genus of MA-strings
we have to compute the latter partition function. We do this
in steps. First, in Sec. III A we study the holomorphic
curves contributing to the open topological string partition
function for a certain periodic strip geometry (illustrated in
Fig. 11 in the of caseN ¼ 2). In Sec. III B we normalize the
open topological string partition function for this periodic
strip by the contributions of closed topological strings (that
is, by the partition function of a single M5-brane on
transverse AN−1 singularity). The resulting expression,
Eq. (3.22), is given an interpretation as a domain wall
for the theory of M2-branes on R × T2 in presence of a
transverse AN−1 singularity. In Sec. III C we glue together
the contributions from the M different strips geometries
that the toric Calabi-Yau is built out of to obtain the
partition function of our system of M M5-branes on
transverse AN−1 singularities, normalized by theMth power
of the partition function of a singleM5-brane, expressed as
a sum of MA-string contributions. This is the main
computational result of our paper, and is given in
Eq. (3.51). We also comment on the manifest modular
properties of the partition function. Finally, in Sec. III D we
discuss other approaches for directly computing the elliptic
genus of MA-strings: either by studying the appropriate
bundles over the moduli space of instantons (2.20), or by
computing the two-dimensional index of the (4,0) quiver
gauge theory of Sec. II E.
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A. Periodic strip partition function from
curve counting

The relevant geometry to compute the topological string
partition function for M-strings at AN−1 singularities is the
partial compactification of the so-called strip geometry,
replacing the resolved conifold geometry of the original
M-stings setup. The length of the strip is determined by N;
more specifically, N is the number of external legs on each
side of the strip. In [4], the refined topological vertex is
adapted to compute the topological string amplitudes. The
recursive method used there can be employed in the present
case as well; however, the computations get very cumber-
some, even for the A1 singularity. Instead we follow a more
intuitive approach based on an observation of [23].
Let us briefly review the observation of [23]: the

topological partition function for the partial compactifica-
tion of the resolved conifold can be computed by counting
the holomorphic maps in an infinite, but periodic, strip

geometry. The Newton polygon of the resolved conifold is
depicted in Fig. 9(a) and is obviously planar. However, the
Newton polygon of the partial compactification of the
resolved conifold is nonplanar and lives on a cylinder. In
the covering space of the cylinder it can be represented as a
periodic configuration. The holomorphic curves wrap the
compact part of the geometry which consist of an infinite
chain of P1 ’s.
A holomorphic curve C satisfies C · C ¼ 2g − 2 for

g ≥ 0, where g is the genus of the curve C. Two rational
curvesC1 andC2with vanishing intersection,C1 · C2 ¼ 0, do
not form a holomorphic curve C1 þ C2, since
ðC1 þ C2Þ · ðC1 þ C2Þ ¼ −4. In other words, if C1 and C2

are not connectedC1 þ C2 is not holomorphic.However, ifC1

and C2 have the intersection number 1, C1 þ C2 is a
holomorphic curve of genus zero, since then
ðC1 þ C2Þ · ðC1 þ C2Þ ¼ −2. From this discussion we can
conclude that the individual P1’s and any connected chain of
them contribute to the A-model topological string partition
function. We need to identify all possible such curves.
In our case, the conifold is replaced with the so-called strip

geometry and we need to consider this simple building block
as one of the periods of the Newton polygon. In contrast to
[23], all the external legs are labeled by Young diagrams; we
are interested in constructing the “domain walls” for MA
strings. It turns out that the detailed understanding of the
strip geometry with two external legs is enough to construct
the partition function for the infinite strip. The partition
function for such a strip, Fig. 10, is given by

Zμ1μ2
ν1ν2 ¼ q−

‖μt
1
‖2þ‖μt

2
‖2

2 t−
‖ν1‖2þ‖ν2‖2

2 ~Zμt
1
ðt−1; q−1Þ ~Zμt

2
ðt−1; q−1Þ ~Zν1ðq−1; t−1Þ ~Zν2ðq−1; t−1Þ

×
Y∞
i;j¼1

ð1 −QAtμ2;i−jþ1=2qν
t
2;j−iþ1=2Þð1 −QBtν2;i−jþ1=2qμ

t
1;j−iþ1=2Þ

ð1 −QAQBtμ2;i−jqμ
t
1;j−iþ1Þ

×
ð1 −QCtμ1;i−jþ1=2qν

t
1;j−iþ1=2Þð1 −QAQBQCtμ2;i−jþ1=2qν

t
1;j−iþ1=2Þ

ð1 −QBQCtν2;i−jþ1qν
t
1;j−iÞ ; (3.1)

where we have used ‖μ‖2 ¼ Plμ
i¼1 μ

2
i and the specialization

of the Macdonald polynomial

~Zνðt−1; q−1Þ ¼
Y

ði;jÞ∈ν
ð1 − qj−νi ti−νtj−1Þ−1:

The contributions coming from Oð−1Þ⊕Oð−1Þ↦P1

curves are easy to determine and all have the same form.
We can easily distinguish between the curves
Oð−2Þ⊕Oð0Þ↦P1 (labeled by μ1 and μ2) and
Oð0Þ⊕Oð−2Þ↦P1 (labeled by ν1 and ν2), which is
reflected by the different exponents of q and t in the
factors above. Before spelling out the partition function
relevant for the AN−1 singularity, let us demonstrate our

derivation for the A1 singularity, depicted in Fig. 11; the
generalization will be obvious.

1. Oð−1Þ⊕Oð−1Þ↦P1

The curves which belong to this class are labeled by
ðμa; νbÞ or ðνa; μbÞ4. We need to take into account all
holomorphic curves from a partition μaðνaÞ to another
partition νbðμbÞ. Its contribution to the partition function
has the following form for ðμa; νbÞ,

(b)(a)

FIG. 9. (a) The Newton polygon for the resolved conifold, and
(b) the cover of the Newton polygon after partially compactifi-
cation of the resolved conifold along the horizontal edges.

4The first partition is always taken to be lower than the second
partition in the toric diagram.
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Y∞
i;j¼1

ð1 −Qabtμa;i−jþ1=2qν
t
b;j−iþ1=2Þ; (3.2)

where Qab denotes the corresponding Kähler parameter of
the class spanned between the two partitions; we will later
give explicit expressions for them.Note thatweget infinitely
many contributions since the strip is periodic for each pair
partitions ðμa; νbÞ and ðνa; μbÞ. In the case of the A1

singularity, we have the following curves contributing

ðμ1; ν1;Q1Þ; ðμ1; ν2;Q1Qτ2Þ; ðμ2; ν1;Q2Qτ1Þ; ðμ2; ν2;Q2Þ; ðν1; μ1;Q−1
1 QτÞ; ðν1; μ2;Q−1

2 Qτ2Þ;
ðν2; μ1;Q−1

1 Qτ1Þ; ðμ2; ν2;Q−1
2 QτÞ; (3.3)

withQτ ≡Qτ1Qτ2 ,
5 the Kähler parameter associated to the elliptic fiber. Therefore we have the following infinite products,

Y∞
k¼1

Y∞
i;j¼1

ð1 −Q1Qk−1
τ tμ1;i−jþ1=2qν

t
1;j−iþ1=2Þð1 −Q1Qτ2Q

k−1
τ tμ1;i−jþ1=2qν

t
2;j−iþ1=2Þð1 −Q2Qτ1Q

k−1
τ tμ2;i−jþ1=2qν

t
1;j−iþ1=2Þ

× ð1 −Q2Qk−1
τ tμ2;i−jþ1=2qν

t
2;j−iþ1=2Þð1 −Q−1

1 Qk
τ tν1;i−jþ1=2qμ

t
1;j−iþ1=2Þð1 −Q−1

2 Qτ2Q
k−1
τ tν1;i−jþ1=2qμ

t
2;j−iþ1=2Þ

× ð1 −Q−1
1 Qτ1Q

k−1
τ tν2;i−jþ1=2qμ

t
1;j−iþ1=2Þð1 −Q−1

2 Qk
τ tν2;i−jþ1=2qμ

t
2;j−iþ1=2Þ; (3.4)

where we have included the factors Qk−1
τ reflecting the periodicity of the Newton polygon, i.e., all the other curves in

addition to the initial ones listed in Eq. (3.3).

2. Oð−2Þ⊕ Oð0Þ↦P1

As mentioned before these are the curves labeled by ðμa; μbÞ and their contributions to the partition function can be
obtained from Eq. (3.1),

FIG. 10 (color online). The basic building block to compute the
topological string partition function for the periodic strip. The
small double lines (blue) denote the choice of the preferred
direction of the refined topological vertex.

FIG. 11 (color online). The (periodic) toric diagram with a basic
strip of “length” N ¼ 2 used in computing the M5-brane partition
function in the presence of a transverse A1 singularity. The small
double lines (blue) denote the choice of the preferred direction of
the refined topological vertex.

5Let us make a remark about our notation. In the present case, the geometry possesses more Kähler parameters than in the case
considered in [4]. In that case (where N ¼ 1) we have Q1 ≡Qm, which corresponds to the adjoint mass of the five-dimensional N ¼ 2�
theory. WhenN ≠ 1, theQi’s are indirectly related to the bifundamental hypermultiplet masses. We also haveN parametersQτ1 ;…; QτN
which are related to the gauge theory coupling constants of the corresponding nodes of the quiver; they satisfy Qτ1 ·… ·QτN ¼ Qτ:
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Y∞
i;j¼1

1

ð1 −Qabtμa;i−jqμ
t
b;j−iþ1Þ

; (3.5)

with the appropriate Kähler factorsQab. This class includes
the following curves:

ðμ1; μ1;QτÞ; ðμ1; μ2;Q0
τ2Þ; ðμ2; μ1;Q0

τ1Þ;
ðμ2; μ2;QτÞ:

(3.6)

We can immediately determine the corresponding ampli-
tudes for these curves,

Y∞
k¼1

ð1−Qk
τ tμ1;i−jqμ

t
1;j−iþ1Þ−1ð1−Q0

τ2Q
k−1
τ tμ1;i−jqμ

t
2;j−iþ1Þ−1

× ð1−Q0
τ1Q

k−1
τ tμ2;i−jqμ

t
1;j−iþ1Þ−1ð1−Qk

τ tμ2;i−jqμ
t
2;j−iþ1Þ−1;

(3.7)

where the inclusion of the Qτ again reflects the periodicity.

3. Oð0Þ⊕Oð−2Þ↦P1

These curves are labeled by ðνa; νbÞ and their contribu-
tion is close to the ones coming from Oð−2Þ⊕Oð0Þ↦P1

except the changes in the exponents,

Y∞
i;j¼1

1

ð1 −Qabtνa;i−jþ1qν
t
b;j−iÞ

: (3.8)

Let us again list the curves in the present case,

ðν1; ν1;QτÞ; ðν1; ν2;Qτ2Þ; ðν2; ν1;Qτ1Þ;
ðν2; ν2;QτÞ:

(3.9)

The partition function will also include the following
factors:

Y∞
k¼1

ð1−Qk
τ tν1;i−jþ1qν

t
1;j−iÞ−1ð1−Qτ2Q

k−1
τ tν1;i−jþ1qν

t
2;j−iÞ−1

× ð1−Qτ1Q
k−1
τ tν2;i−jþ1qν

t
1;j−iÞ−1ð1−Qk

τ tν2;i−jþ1qν
t
2;j−iÞ−1:
(3.10)

All these factors we obtain using the above approach match
the explicit calculation we performed following the meth-
ods of [4] up to a factor of ηðτÞ−1.

4. AN−1 Singularity

From the above discussion, the generalization for the
AN−1 singularity is immediate. The numerator will have the
form

YN
a;b¼1

Y∞
i;j;k¼1

ð1 −Qk−1
τ Qabtμa;i−jþ1=2qν

t
b;j−iþ1=2Þ

× ð1 −Qk−1
τ Q̄batνb;i−jþ1=2qμ

t
a;j−iþ1=2Þ; (3.11)

such that

QabQ̄ba ¼ Qτ; (3.12)

where we define Qτ ≡Q
N
i¼1Qτi for the AN−1 singularity.

The last equality has a simple explanation:Qab and Q̄ba are
defined on the basic strip, c.f. Fig. 11. The geometry we are
interested in is the partial compactification of this basic
geometry. The parameter Qab measures the distance
between partitions μa and νb), and Q̄ba measures the
distance between partitions νb and μa). Together they
add up to the circumference of the cylinder the Newton
polygon is wrapped on. We will label the Kähler classes for
the ðνaþ1; νaÞ and ðμaþ1; μaÞ curves by Qτa, for
a ¼ 1;…; N − 1. The class for curves ðν1; νNÞ and
ðμ1; μNÞ is denoted by QτN (depicted in Fig. 12). With
this definition, Qab’s can be written as

Qab ¼
�
Qa

Q
N
j¼b Qτj ; ðmodQτÞ for a ¼ 1;

Qa
Q

a−1
i¼1 Qτi

Q
N
j¼b Qτj ; ðmodQτÞ for a ≠ 1;

(3.13)

where (modQτ) means that any Qτ appearing in the
definition of Qab is set to 1. As an example, we put
Qab’s for N ¼ 4 in a matrix:

Qab ¼

0
BBB@

Q1 Q1Qτ2Qτ3Qτ4 Q1Qτ3Qτ4 Q1Qτ4
Q2Qτ1 Q2 Q2Qτ1Qτ3Qτ4 Q2Qτ1Qτ4
Q3Qτ1Qτ2 Q3Qτ2 Q3 Q3Qτ1Qτ2Qτ4
Q4Qτ1Qτ2Qτ3 Q4Qτ2Qτ3 Q4Qτ3 Q4

1
CCCA: (3.14)

Using Eq. (3.12), the numerator can be written only in terms of Qab.
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YN
a;b¼1

Y∞
i;j;k¼1

ð1 −Qk−1
τ Qabtμa;i−jþ1=2qν

t
b;j−iþ1=2Þ

× ð1 −Qk
τQ−1

ab t
νb;i−jþ1=2qμ

t
a;j−iþ1=2Þ: (3.15)

The denominator of the partition function for the AN−1
singularity has the form

YN
a;b¼1

Y∞
i;j;k¼1

ð1 −Qk−1
τ

~Q0
abtμa;i−jqμ

t
b;j−iþ1Þ−1

× ð1 −Qk−1
τ

~Qabtνa;i−jþ1qν
t
b;j−iÞ−1; (3.16)

where the Kähler parameters ~Qab are defined as
follows:

~Qab ¼

8>><
>>:

Q
a−1
i¼b Qτi ; for a > b;

Qτ; for a ¼ b;

Qτ=
Q

b−1
i¼a Qτi ; for a < b;

(3.17)

and ~Q0
ab’s are defined by replacing Qτi ’s by Q0

τi. There is a
simple relation between ~Qab and ~Q0

ab:

~Q0
ab ¼

Qa

Qb

~Qab: (3.18)

We prefer to use this somewhat redundant notation, since it will prove convenient later in our discussion. The constraints we
need to impose on the Kähler parameters of different strips will be more transparent in this convention. Combining the
contributions from numerator and denominator, we see that the partition function for MA-strings is constructed out of the
following infinite products:

YN
a;b¼1

Y∞
i;j;k¼1

ð1 −Qk−1
τ Qabtμa;i−jþ1=2qν

t
b;j−iþ1=2Þð1 −Qk

τQ−1
ab t

νb;i−jþ1=2qμ
t
a;j−iþ1=2Þ

ð1 −Qk−1
τ

~Q0
abtμa;i−jqμ

t
b;j−iþ1Þð1 −Qk−1

τ
~Qabtνa;i−jþ1qν

t
b;j−iÞ

: (3.19)

The partition function of the Uð1Þ partition function that lives on a single M5-brane can be computed from the above
expression by setting all the Young diagrams to be trivial, in other words, considering the closed amplitude,

ZUð1Þ ¼
YN
a;b¼1

Y∞
i;j;k¼1

ð1 −Qk−1
τ Qabt−jþ1=2q−iþ1=2Þð1 −Qk

τQ−1
ab t

−jþ1=2q−iþ1=2Þ
ð1 −Qk−1

τ
~Q0
abt−jq−iþ1Þð1 −Qk−1

τ
~Qabt−jþ1q−iÞ ; (3.20)

where the all the prefactors are trivial.

B. Domain wall partition function

We are interested in the partition functions of M-strings on AN−1 singularity. Therefore, the contributions from single M5-
branes, ZUð1Þ’s, need to be factored out. We normalize the open topological partition function by the closed one using the
following identity:

FIG. 12 (color online). The pictorial representation of the
Kähler parameters used in the partition function.
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Y∞
i;j¼1

1 −Qqνi−jtμtj−iþ1

1 −Qq−jt−iþ1
¼

Y
ði;jÞ∈ν

ð1 −Qqνi−jtμtj−iþ1Þ
Y

ði;jÞ∈μ
ð1 −Qq−μiþj−1t−νtjþiÞ: (3.21)

As in [4], we can define the partition function of a domain wall from the normalized topological string partition
function:

Dμ1…μN
ν1…νN ðQτ;Qab; ~Qab; ~Q

0
ab;ε1;ε2Þ≡

YN
a¼1

q−
‖μta‖

2

2 ~Zμtaðt−1;q−1Þt−
‖νa‖2

2 ~Zνaðq−1; t−1Þ

×
YN
a;b¼1

Y∞
k¼1

Y
ði;jÞ∈μa

ð1−Qk−1
τ Qabtμa;i−jþ1=2qν

t
b;j−iþ1=2Þð1−Qk

τQ−1
ab t

−μa;iþj−1=2q−ν
t
b;jþi−1=2Þ

ð1−Qk−1
τ

~Q0
abtμa;i−jqμ

t
b;j−iþ1Þð1−Qk−1

τ
~Q0
bat−μa;iþj−1q−μ

t
b;jþiÞ

×
Y

ði;jÞ∈νb

ð1−Qk−1
τ Qabt−νb;iþj−1=2q−μta;jþi−1=2Þð1−Qk

τQ−1
ab t

νb;i−jþ1=2qμ
t
a;j−iþ1=2Þ

ð1−Qk−1
τ

~Qbatνb;i−jþ1qν
t
a;j−iÞð1−Qk−1

τ
~Qabt−νb;iþjq−νta;jþi−1Þ : (3.22)

Note that in this expression we have restored the factors of
~Zμðt−1; q−1Þ that were left out of the previous discussion.
The domain wall defined in [4] is just the special case of the
new domain wall for N ¼ 1. For general N, we give the
following interpretation for the quantity defined in (3.22):
The ground states of the theory of k M2-branes on flat
transverse space on T2 taking the size of T2 to be much
smaller than the length between the M5-branes (when the
scalars are massed up) are labeled by a single Young
diagram of size k [24–27]. Here we have a situation where
the transverse space to the M2-branes has an AN−1
singularity. To describe the M2-branes in this geometry
we need to place N copies of them before orbifolding the
flat transverse space. In particular this implies that the
configuration of ground states of M2-branes is character-
ized by N Young diagrams with total number of boxes
being k. From this viewpoint the low energy modes of this
system are given by a quantum mechanical system, where
the Hilbert space is formed by an N-tuple of Young
diagrams

μ⃗ ¼ ðμ1;…; μNÞ; (3.23)

with the identity operator I ¼ P
μjμ⃗ihμ⃗tj and Hamiltonian

H ¼ jμ⃗j. The Hamiltonian can again be interpreted as M2-
brane mass where the size of T2 times the tension of the
M2-brane have been normalized to 1 and jμ⃗j is their
number. The domain wall arises by having the M2-branes
ending on M5-branes on either side of it. Thus we can view
the M5-brane as an operator acting from the left vacua,
labeled by N partitions to right vacua, again labeled by N
partitions. In other words, Eq. (3.22) gives the matrix
elements of this operator for this quantum mechanical
system.

C. Partition function of M5-branes on
transverse AN−1 singularity

In this section we assemble the contributions from the
different strips that compose the toric geometry derived
from Fig. 3, and we arrive at an expression for the refined
topological string partition function corresponding to it
[Eq. (3.51)]. As discussed in Sec. II D., this is also the
partition function of the system of M M5-branes on
transverse AN−1 singularity. More precisely, the partition
function we compute is normalized by the contributions
of the BPS states that do not arise from M2-branes
stretching between the M5-branes (although these factors
can be easily restored); our final expression is organized
as a sum of contributions from different numbers of
MA-strings wrapping the torus in the world volume of
the M5-branes.
In [4], the normalized topological string partition

function is recast in terms of the normalized Jacobi θ
function

θ1ðτ; zÞ ¼ −ieiπτ=4eiπzY∞
k¼1

ð1 − e2πikτÞð1 − e2πikτe2πizÞ

× ð1 − e2πiðk−1Þτe−2πizÞ: (3.24)

We will show that in the present, more general setup, the
partition function can still be expressed in terms of θ
functions. We first need to glue the building blocks
together, Fig. 13.
The topological string partition functions in the presence

ofM parallel M5-branes can be computed using the domain
walls:
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ZAN−1
M ¼

X
fμ⃗ðpÞgM−1

p¼1

�YM−1

s¼1

YN
a¼1

ð−QðsÞ
f;aÞjμ

ðsÞ
a j
�
D∅…∅

μð1Þ
1
…μð1ÞN

ðQτ; Q
ð1Þ
ab ; ~Q

ð1Þ
ab ; ~Q

0ð1Þ
ab ; ε1; ε2Þ

×D
μð1Þ
1
…μð1ÞN

μð2Þ
1
…μð2ÞN

ðQτ; Q
ð2Þ
ab ; ~Q

ð2Þ
ab ; ~Q

0ð2Þ
ab ; ε1; ε2Þ � � �D

μðM−1Þ
1

…μðM−1Þ
N∅…∅ ðQτ; Q

ðMÞ
ab ; ~QðMÞ

ab ; ~Q0ðMÞ
ab ; ε1; ε2Þ; (3.25)

where fμ⃗ðpÞg denotes N-tuples of Young diagrams associated with gluing of the pth and ðpþ 1Þst domain walls. The
Kähler parametersQðpÞ

ab , ~Q
ðpÞ
ab and ~Q0ðpÞ

ab belong to the pth domain wall whereasQðpÞ
f;a denote the Kähler parameters along the

fiber directions between pth and ðpþ 1Þst domain walls. Let us focus the contributions from the holomorphic maps which
involve factors depending on μ⃗ðpÞ. These are

Q
N
a;b¼1

Q∞
k¼1

Q
ði;jÞ∈μðpÞb

ð1−Qk−1
τ QðpÞ

ab t
−μðpÞ

b;i
þj−1=2

q
−μðp−1Þ;t

a;j
þi−1=2Þ

ð1−Qk−1
τ

~QðpÞ
ba t

μ
ðpÞ
b;i

−jþ1
q
μ
ðpÞ;t
a;j

−iÞ

×
ð1−Qk

τ ðQðpÞ
ab Þ

−1tμ
ðpÞ
b;i

−jþ1=2
q
μ
ðp−1Þ;t
a;j

−iþ1=2Þ

ð1−Qk−1
τ

~QðpÞ
ab t

−μðpÞ
b;i

þj
q
−μðpÞ;t

a;j
þi−1Þ

9>>>>>=
>>>>>;
from thepth domainwall

Q
N
a;b¼1

Q∞
k¼1

Q
ði;jÞ∈μðpÞa

ð1−Qk−1
τ Qðpþ1Þ

ab t
μ
ðpÞ
a;i

−jþ1=2
q
μ
ðpþ1Þ;t
b;j

−iþ1=2Þ

ð1−Qk−1
τ

~Q0ðpþ1Þ
ab t

μ
ðpÞ
a;i

−j
q
μ
ðpÞ;t
b;j

−iþ1Þ

×
ð1−Qk

τ ðQðpþ1Þ
ab Þ−1t−μ

ðpÞ
a;i

þj−1=2
q
−μðpþ1Þ;t

b;j
þi−1=2Þ

ð1−Qk−1
τ

~Q0ðpþ1Þ
ba t

−μðpÞ
a;i

þj−1
q
−μðpÞ;t

b;j
þiÞ

9>>>>>=
>>>>>;
from the ðpþ 1Þst domainwall (3.26)

and arise from the factors of

FIG. 13 (color online). Several domain walls are glued together. The small single (red) lines indicate that one has to glue along the
vertical direction. This geometry depicts the A2 singularity.
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D
μðp−1Þ
1

…μðp−1ÞN

μðpÞ
1

…μðpÞN

×D
μðpÞ
1

…μðpÞN

μðpþ1Þ
1

…μðpþ1Þ
N

appearing in (3.25).
To compute the topological string partition function of the toric geometry we are required to glue together theM vertical

strips along the horizontal edges. This imposes the constraint

~Q0ðpþ1Þ
ab ¼ ~QðpÞ

ab (3.27)

which is easy to see from the toric diagrams. This is equivalent to imposing

Q0ðpþ1Þ
τa ¼ QðpÞ

τa : (3.28)

After imposing the gluing restrictions, using the fact that a and b are dummy variables, we see that the μ⃗ðpÞ-dependent terms
can be written as

YN
a;b¼1

Y∞
k¼1

Y
ði;jÞ∈μðpÞa

ð1 −Qk−1
τ QðpÞ

ba t
−μðpÞa;i þj−1=2q−μ

ðp−1Þ;t
b;j þi−1=2Þð1 −Qk

τðQðpÞ
ba Þ−1tμ

ðpÞ
a;i −jþ1=2qμ

ðp−1Þ;t
b;j −iþ1=2Þ

ð1 −Qk−1
τ

~QðpÞ
ab t

μðpÞa;i −jþ1qμ
ðpÞ;t
b;j −iÞð1 −Qk−1

τ
~QðpÞ
ba t

−μðpÞa;i þjq−μ
ðpÞ;t
b;j þi−1Þ

×
ð1 −Qk−1

τ Qðpþ1Þ
ab tμ

ðpÞ
a;i −jþ1=2qμ

ðpþ1Þ;t
b;j −iþ1=2Þð1 −Qk

τðQðpþ1Þ
ab Þ−1t−μðpÞa;i þj−1=2q−μ

ðpþ1Þ;t
b;j þi−1=2Þ

ð1 −Qk−1
τ

~QðpÞ
ab t

μðpÞa;i −jqμ
ðpÞ;t
b;j −iþ1Þð1 −Qk−1

τ
~QðpÞ
ba t

−μðpÞa;i þj−1q−μ
ðpÞ;t
b;j þiÞ

: (3.29)

It is clear that numerator can be rewritten in terms of two θ functions,

Numerator ¼ AðpÞ ·
YN
a;b¼1

Y
ði;jÞ∈μðpÞa

θ1ðτ; zðpÞab ði; jÞÞθ1ðτ;wðpÞ
ab ði; jÞÞ; (3.30)

where we have defined the arguments of the θ functions zðpÞab ði; jÞ and wðpÞ
ab ði; jÞ as

e2πiz
ðpÞ
ab ði;jÞ ≡ ðQðpþ1Þ

ab Þ−1t−μðpÞa;i þj−1=2q−μ
ðpþ1Þ;t
b;j þi−1=2; (3.31)

e2πiw
ðpÞ
ab ði;jÞ ≡ ðQðpÞ

ba Þ−1tμ
ðpÞ
a;i −jþ1=2qμ

ðp−1Þ;t
b;j −iþ1=2; (3.32)

and

AðpÞ ¼
YN
a¼1

�
−eπiτ=2 Y∞

k¼1

ð1 − e2πikτÞ2
�−NjμðpÞa j YN

b¼1

Y
ði;jÞ∈μðpÞa

e−πiðz
ðpÞ
ab ði;jÞþwðpÞ

ab ði;jÞÞ: (3.33)

Let us now turn to the factors in the denominator of Eq. (3.29). First of all, the factors for which a ¼ b combine with the
prefactors

q−
jjμðpÞ;ta jj2

2 t−
jjμðpÞa jj2

2 ~Z
μðpÞ;ta

ðt−1;q−1Þ ~Z
μðpÞa

ðq−1;t−1Þ¼ð−1ÞjμðpÞa j
�
t
q

�jμðpÞa j
2

Y
ði;jÞ∈μðpÞa

1

1−qμ
ðpÞ;t
a;j −itμ

ðpÞ
a;i −jþ1

1

1− t−μ
ðpÞ
a;i þjq−μ

ðpÞ;t
a;j þi−1 (3.34)

to give
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�
−

ffiffiffi
t
q

r �P
a
jμðpÞa j YN

a¼1

Y∞
k¼1

Y
ði;jÞ∈μðpÞa

1

ð1 −Qk
τ t

μðpÞa;i −jqμ
ðpÞ;t
a;j −iþ1Þð1 −Qk

τ t
−μðpÞa;i þj−1q−μ

ðpÞ;t
a;j þiÞ

×
1

ð1 −Qk−1
τ tμ

ðpÞ
a;i −jþ1qμ

ðpÞ;t
a;j −iÞð1 −Qk−1

τ t−μ
ðpÞ
a;i þjq−μ

ðpÞ;t
a;j þi−1Þ

: (3.35)

When a ≠ b, we will need the following identity which follows from the definition of ~Qab:

~QðpÞ
ab

~QðpÞ
ba ¼ Qτ: (3.36)

This allows us to write the denominator terms for a ≠ b as

YN
a≠b

Y∞
k¼1

Y
ði;jÞ∈μðpÞa

1

ð1 −Qk
τð ~QðpÞ

ba Þ−1tμ
ðpÞ
a;i −jqμ

ðpÞ;t
b;j −iþ1Þð1 −Qk

τð ~QðpÞ
ab Þ−1t−μ

ðpÞ
a;i þj−1q−μ

ðpÞ;t
b;j þiÞ

×
1

ð1 −Qk−1
τ

~QðpÞ
ab t

μðpÞa;i −jþ1qμ
ðpÞ;t
b;j −iÞð1 −Qk−1

τ
~QðpÞ
ba t

−μðpÞa;i þjq−μ
ðpÞ;t
b;j þi−1Þ

: (3.37)

If we now define a new variable Q̂ðpÞ
ab by

Q̂ðpÞ
ab ¼

�
1; for a ¼ b
~QðpÞ
ab ; for a ≠ b

; (3.38)

we can write the product of Eqs. (3.35) and (3.37) as

BðpÞ ·
YN
a;b¼1

Y
ði;jÞ∈μðpÞa

1

θ1ðτ; uðsÞab ði; jÞÞθ1ðτ; vðsÞab ði; jÞÞ
; (3.39)

where

e2πiu
ðpÞ
ab ði;jÞ ≡ ðQ̂ðpÞ

ba Þ−1tμ
ðpÞ
a;i −jqμ

ðpÞ;t
b;j −iþ1 (3.40)

e2πiv
ðpÞ
ab ði;jÞ ≡ ðQ̂ðpÞ

ab Þ−1t−μ
ðpÞ
a;i þj−1q−μ

ðpÞ;t
b;j þi (3.41)

and

BðpÞ ¼
YN
a¼1

�
−

ffiffiffi
t
q

r �jμðpÞa j�
−eπiτ=2Y∞

k¼1

ð1 − e2πikτÞ2
�NjμðpÞa j

×
YN
b¼1

Y
ði;jÞ∈μðpÞa

eπiu
ðpÞ
ab ði;jÞþπivðpÞab ði;jÞ:

Therefore Eq. (3.25) simplifies to the following expression:

ZAN−1
M ¼

X
f→μðpÞgM−1

p¼1

YM−1

s¼1

CðsÞYN
a¼1

ð−QðsÞ
f;aÞjμ

ðsÞ
a j

×
Y

ði;jÞ∈μðsÞa

YN
b¼1

θ1ðτ; zðsÞab ði; jÞÞθ1ðτ;wðsÞ
ab ði; jÞÞ

θ1ðτ; uðsÞab ði; jÞÞθ1ðτ; vðsÞab ði; jÞÞ
:

It remains to simplify the prefactor

CðpÞ ¼
YN
a¼1

�
−

ffiffiffi
t
q

r �jμðpÞa j

×
YN
b¼1

Y
ði;jÞ∈μðpÞa

e−πiz
ðpÞ
ab ði;jÞ−wðpÞ

ab ði;jÞeπiu
ðpÞ
ab ði;jÞþvðpÞab ði;jÞ:

(3.42)

First of all, we have

YN
a;b¼1

Y
ði;jÞ∈μðpÞa

e−πiz
ðpÞ
ab ði;jÞ−wðpÞ

ab ði;jÞ

¼
� YN

a;b¼1

Y
ði;jÞ∈μðpÞa

Qðpþ1Þ
ab QðpÞ

ba q
μðpþ1Þ;t
b;j −μðp−1Þ;tb;j

�1=2

:

(3.43)

We can simplify this expression by noting that
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Qðpþ1Þ
ab QðpÞ

ba ¼
�
QðpÞ

b Qðpþ1Þ
b ; for a ¼ b;

QτQ
ðpÞ
b Qðpþ1Þ

b ; for a ≠ b;
(3.44)

so that

� YN
a;b¼1

Y
ði;jÞ∈μðpÞa

Qðpþ1Þ
ab QðpÞ

ba

�1=2

¼
YN
a¼1

Q
N−1
2
jμðpÞa j

τ

YN
b¼1

ðQðpþ1Þ
b QðpÞ

b Þ12jμ
ðpÞ
a j: (3.45)

Furthermore, it turns out that the q-dependent terms in
Eq. (3.45) all cancel. To see this, let us isolate the factors
associated to the pth and ðpþ 1Þst four-cycles:

Y
ði;jÞ∈μðpÞa

qμ
ðpþ1Þ;t
b;j −μðp−1Þ;tb;j

Y
ði;jÞ∈μðpþ1Þ

a

qμ
ðpþ2Þ;t
b;j −μðpÞ;tb;j : (3.46)

Using the identity
P

ði;jÞ∈νμtj ¼
P

ði;jÞ∈μνtj, this
simplifies to

Y
ði;jÞ∈μðpÞa

q−μ
ðp−1Þ;t
b;j

Y
ði;jÞ∈μðpþ1Þ

a

qμ
ðpþ2Þ;t
b;j : (3.47)

By applying this identity at each four-cycle, we can cancel
all q-dependent factors in Eq. (3.45) against each other.
Likewise, one can show that

YN
a;b¼1

Y
ði;jÞ∈μðpÞa

eπiu
ðpÞ
ab ði;jÞþπivðpÞab ði;jÞ ¼

YN
a¼1

�
t
q

�−NjμðpÞa j
2

Q
−N−1

2
jμðpÞa j

τ ;

(3.48)

and therefore

CðpÞ ¼
YN
a¼1

�
−
�
q
t

�ðN−1Þ
2 YN

b¼1

ðQðpþ1Þ
b QðpÞ

b Þ1=2
�jμðpÞa j

:

Finally, we define

Q̄ðpÞ
f;a ≔ e2πit̄

ðpÞ
f;a ≡

�
q
t

�ðN−1Þ
2

QðpÞ
f;a

YN
b¼1

ðQðpþ1Þ
b QðpÞ

b Þ1=2

¼
�
q
t

�ðN−1Þ
2

QðpÞ
f;aQ

N
m;

(3.49)

where we have set

Qm ¼ e2πim ¼
�Yn

b¼1

QðpÞ
b

�1
N

: (3.50)

Here we note that m corresponds to the physical mass
parameter introduced in Sec. II A., and that its definition is
in fact independent of the label p. We obtain a very
compact final expression for the partition function of M
M5-branes on transverse AN−1 singularity:

ZAN−1
M ¼

X
fμ⃗ðpÞgM−1

p¼1

YM−1

s¼1

YN
a¼1

ðQ̄ðsÞ
f;aÞjμ

ðsÞ
a j

×
Y

ði;jÞ∈μðsÞa

YN
b¼1

θ1ðτ; zðsÞab ði; jÞÞθ1ðτ;wðsÞ
ab ði; jÞÞ

θ1ðτ; uðsÞab ði; jÞÞθ1ðτ; vðsÞab ði; jÞÞ
:

(3.51)

Remember that the partition function ZAN−1
M is normalized

by the partition functions of single M5-branes, ZðpÞ
Uð1Þ. The

Kähler parameters of each domain wall are different,

therefore the overall normalization is by
Q

M
p¼1 Z

ðpÞ
Uð1Þ. For

convenience, let us collect here the following definitions
which were given in the previous discussion:

e2πiz
ðpÞ
ab ði;jÞ ≡ ðQðpþ1Þ

ab Þ−1t−μðpÞa;i þj−1=2q−μ
ðpþ1Þ;t
b;j þi−1=2

e2πiw
ðpÞ
ab ði;jÞ ≡ ðQðpÞ

ba Þ−1tμ
ðpÞ
a;i −jþ1=2qμ

ðp−1Þ;t
b;j −iþ1=2

e2πiu
ðpÞ
ab ði;jÞ ≡ ðQ̂ðpÞ

ba Þ−1tμ
ðpÞ
a;i −jqμ

ðpÞ;t
b;j −iþ1

e2πiv
ðpÞ
ab ði;jÞ ≡ ðQ̂ðsÞ

ab Þ−1t−μ
ðpÞ
a;i þj−1q−μ

ðpÞ;t
b;j þi:

The Kähler parameters appearing here can all be expressed

in terms of the parameters Qm ¼ e2πim, QðpÞ
τa ¼ e2πiτ

a
p , and

Qτ ¼ e2πiτ which have the interpretation of mass-rotation,
SUðNÞ fugacities and elliptic parameter of the two-dimen-
sional quiver theory discussed in Sec. II E. Finally, we
define the parameters

Q̄ðpÞ
f ¼ e2πit

ðpÞ
f ¼

�YN
a¼1

Q̄ðpÞ
f;a

�1
N

; (3.52)

which we identify with the tension of the M-strings, or
equivalently the distances between the M5-branes. From

the factor
Q

N
a¼1 ðQ̄ðpÞ

f;aÞjμ
ðsÞ
a j in the partition function (3.51)

we can extract an overall factor

ðQ̄ðpÞ
f Þ

P
N
a¼1

jμðpÞa j; (3.53)

which in the quantum mechanical framework introduced in
Sec. III B is associated to the propagator between the pth
and ðpþ 1Þ-st domain wall. The remaining factor will

depend on the individual sizes of partitions μðpÞ1 ;…; μðpÞN .
These factors, which we henceforth denote by Rμ⃗ðpÞ, should
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combine with the product over Jacobi θ functions in such a
way that the partition function (3.51) displays the expected
modular properties. Let us discuss this in more detail.
The Jacobi θ function acquires a nontrivial phase under

the modular transformation

θ1ð−1=τ; z=τÞ ¼ −ið−iτÞ1=2 expðπiz2=τÞθ1ðτ; zÞ: (3.54)

This modular anomaly can be traced back to the appearance
of the second Eisenstein series E2ðτÞ in the following
expression for θ1ðτ; zÞ:

θ1ðτ; zÞ ¼ ηðτÞ3z exp

�X
k≥1

B2k

ð2kÞð2k!ÞE2kðτÞz2k
�
: (3.55)

As discussed in [4], the modular anomaly can be traded
for a holomorphic anomaly: this is achieved by replacing
E2ðτÞ by its modular completion Ê2ðτ; τ̄Þ ¼ E2ðτÞ − 3

πImðτÞ
in each occurrence of the θ function, at the cost of
introducing a mild dependence of the partition function
on the antiholomorphic parameter τ̄. This leads to a
modified partition function which has the following modu-
lar behavior,

ZAN−1
M ðτ; τ̄; tðpÞf ;m; τap; ε1; ε2Þ

¼ ZAN−1
M ð−1=τ;−1=τ̄; tðpÞf ;m=τ; τap=τ; ε1=τ; ε2=τÞ;

and satisfies a holomorphic anomaly equation. This equa-
tion relates derivatives of the partition function with respect

to τ̄ to derivatives with respect to tðpÞf . For this to be true it is
critical that for each summand corresponding to a choice of

partitions fμðpÞa g the coefficient of τ̄ is a function of the

combinations
P

N
a¼1 jμðpÞa j only. For this highly nontrivial

statement to hold the residual factors Rμ⃗ðpÞ must combine
with the product over the thetafunctions appropriately.

D. Direct computation of the MA-string elliptic genus

From formula (3.51) we can extract the elliptic genus for
MA-strings arising from suspended M2-branes between M
M5-branes in the presence of AN−1 singularity,

EllðN; k⃗Þ ¼
X

P
a

jμðpÞa j¼kp

YM−1

s¼1

Rμ⃗ðsÞ
YN
a;b¼1

Y
ði;jÞ∈μðsÞa

×
θ1ðτ; zðsÞab ði; jÞÞθ1ðτ;wðsÞ

ab ði; jÞÞ
θ1ðτ; uðsÞab ði; jÞÞθ1ðτ; vðsÞab ði; jÞÞ

; (3.56)

where kp, for p ¼ 1;…;M − 1, is the number of
M2-branes suspended between the pth and ðpþ 1Þ-st
M5-brane. An alternative method to computing this elliptic

genus would be through a detailed understanding of the
bundles over the instanton moduli space (2.20) of the two-
dimensional quiver gauge theory in which the fermions and
bosons transform [4,28]. In the present paper, we will
content ourself with sketching this approach. The bosons
are sections of the tangent bundle of Mk1;…;kM−1 , whereas
the fermions are sections of the bundle V discussed in
Sec. II E. The weights of these bundles at the fixed points
were worked out in [29], and following [28] one can use
them to compute the elliptic genus by employing the
Hirzebruch-Riemann-Roch theorem as follows,

EllðN; k⃗Þ ¼
Z
Mk1 ;…;kM−1

chðEQτ
ÞTdðTMk1;…;kM−1Þ; (3.57)

where T M is the tangent bundle, and the bundle EQτ
is

given by

EQτ
¼ ⊗

∞

l¼0
⋀
Ql−1

τ

V ⊗
∞

l¼1
⋀
Ql

τ

V� ⊗ ⊗
∞

l¼1
SQl

τ
T M� ⊗ ⊗

∞

l¼1
SQl

τ
T M;

(3.58)

where for brevity we have suppressed the dependence of
the bundle EQτ

on the different parameters. The fugacities
on which the elliptic genus depends can be obtained from
the quiver description of Sec. II E. as follows. For each
node of the inner quiver we get 4N fugacities from the
bifundamental fields ~Q, Q, ΛQ and Λ ~Q, which are multi-
plied by M − 1 as there are M − 1 inner nodes.
Furthermore, we have 3ðM − 1Þ parameters from the fields
ΛΦ, B, ~B associated to each inner node, and 4ðM − 2Þ
fugacities from the bifundamentals Σ, ΛB, Λ ~B and ΛΦ of
the inner quiver. Thus we have a total of 4NðM − 1Þ þ
3ðM − 1Þ þ 4ðM − 2Þ parameters. However, there will be
constraints from superpotentials and gauge anomalies.
Including all these constraints should reduce the number
of independent parameters to

#fugacities ¼ NM −M þ 3. (3.59)

Having directly computed the elliptic genus then makes it
possible to reconstruct the partition function of M5-branes
in the presence of AN−1 singularity as follows,

ZM5 ¼
�YN

p¼1

ZðpÞ
Uð1Þ

�
ZAN−1
M

¼
�YN

p¼1

ZðpÞ
Uð1Þ

��X
k⃗

YM−1

s¼1

ðQ̄ðsÞ
f ÞksEllðN; k⃗Þ

�
; (3.60)

where ZUð1Þ is the contribution of a single M5-brane to the
partition function and does not contain any contributions
from BPS string states. Yet another way to compute the
elliptic genus of MA-strings would be by directly applying
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the techniques developed in [19–21] to the two-dimensional quiver gauge theory described in Sec. II E. Here we will
illustrate how this works in the case of kM2-branes suspended between two M5-branes on transverse TN1 space, that is for
M ¼ 2, N ¼ 1. This generalizes the result of [4] to arbitrary mass. On the one hand, the partition function for kM-strings is
given by

Zk
M−stringsðτ; m; ϵ1; ϵ2Þ ¼

X
jνj¼k

Y
ði;jÞ∈ν

θ1ðτ;Q−1
m qνi−jþ1=2t−iþ1=2Þθ1ðτ;Q−1

m q−νiþj−1=2ti−1=2Þ
θ1ðτ; qνi−jþ1tν

t
j−iÞθ1ðτ; qνi−jtν

t
j−iþ1Þ : (3.61)

On the other hand, the elliptic genus of the two-dimensional affine A1 quiver gauge theory with one node removed andUðkÞ
gauge group (see Fig. 14) is given by6

Ellðk; τ; m; ϵ1; ϵ2Þ ¼
1

k!

I
dzα
2πizα

Yk
α;β¼1

�
θ1ðτ; zα=zβÞθ1ðτ;Qτtq−1zα=zβÞ
θ1ðτ; qzα=zβÞθ1ðτ; t−1zα=zβÞ

�Yk
α¼1

�
θ1ðτ;QmzαÞθ1ðτ;Qmz−1α Þ

θ1ðτ;
ffiffiffiffiffiffiffi
q=t

p
zαÞθ1ðτ;

ffiffiffiffiffiffiffi
q=t

p
zαÞ

�

¼
X
ν

� Y
ði1;j1Þ∈ν ði2;j2Þ∈ν

θ1ðτ; qj1−j2þ1t−ði1−i2þ1ÞÞθ1ðτ; qj1−j2t−ði1−i2ÞÞ
θ1ðτ; qj1−j2t−ði1−i2þ1ÞÞθ1ðτ; qj1−j2þ1t−ði1−i2ÞÞ

×
Y

ði;jÞ∈ν

θ1ðτ;Q−1
m qj−1=2t−iþ1=2Þθ1ðτ;Q−1

m q−jþ1=2ti−1=2Þ
θ1ðτ; qjt−iÞθ1ðτ; q−j−1ti−1Þ

�
; (3.62)

where it is understood that each occurrence of θ1ðτ; 1Þ in
the previous equation is to be replaced by −∂zθ1ðτ; zÞjz¼1.
The two expressions are superficially different, but one can
show that for each Young diagram the product over pairs of
boxes of Eq. (3.62) simplifies to the product over individual
boxes of the same Young diagram in Eq. (3.61).
Analogously, we predict that the elliptic genus of two-
dimensional affine AM−1 quiver theories with N flavors will
coincide with the partition function of M-strings for a
system of M parallel M5-branes on transverse TNN space.

IV. CONCLUDING REMARKS

In this paper we have shown that the partition function of
M parallel M5-branes in the presence of transverse AN−1
singularity compactified on T2, can be computed for
arbitrary supersymmetry-preserving twists using the cor-
responding strings, obtained by stretched M2-branes sus-
pended between M5-branes and wrapping T2. Moreover
we have shown that their world volume theory is given by
two-dimensional quiver gauge theory and that can be used
to effectively compute the partition function of this theory.
In a way, this is similar in spirit to quantum field theories
where the partition functions can be computed using the
particle contributions to amplitudes. Here the analog of
the particles are the strings and they indeed do yield the
partition function for the (1,0) superconformal theory at
least when compactified on T2. Note that as a special case
of our computation we can also compute in this way the

partition function of six-dimensional (2,0) A-type theory.
Furthermore, since we can use this building block to
compute the superconformal index of the six-dimensional
theory [30,31], we have thus effectively related the super-
conformal index in six dimensions to the computation of
elliptic genera on the collection of two-dimensional theo-
ries living on the resulting strings. This reinforces the
picture that these six-dimensional theories are indeed a
theory of interacting strings.
In this paper we focused on A-type six-dimensional (2,0)

theory. It is natural to ask what one can say about the more
general D- or E-type (2,0) theory. Even before putting this
in the presence of AN−1-type singularity, the computation of
their supersymmetric amplitudes is much more difficult. In
principle one can do this using geometric engineering of the
corresponding theories, or by developing suitable instanton
calculus techniques to compute the partition function of
five-dimensional lift of N ¼ 2� theory for D- or E-type
gauge theory. On the other hand, it is straightforward to
extend the analysis of this paper to these cases by placing
them in the presence of transverse AN−1 singularity and
obtain the associated two-dimensional quiver theory. The
computation of partition functions of the associated (2,0)
and (1,0) superconformal theories in six dimensions

6We are grateful to A. Gadde for communicating this result to us.
FIG. 14. The quiver for two M5-branes in presence of trans-
verse TN1.

6We are grateful to A. Gadde for communicating this result to
us.
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reduces to the computation of elliptic genera of the
associated two-dimensional quiver theories. We are cur-
rently pursuing this idea.7
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