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We consider M theory in the presence of M parallel M5-branes probing a transverse Ay_; singularity.
This leads to a superconformal theory with (1,0) supersymmetry in six dimensions. We compute the
supersymmetric partition function of this theory on a two-torus, with arbitrary supersymmetry preserving
twists, using the topological vertex formalism. Alternatively, we show that this can also be obtained by
computing the elliptic genus of an orbifold of recently studied M-strings. The resulting two-dimensional
theory is a (4,0) supersymmetric quiver gauge theory whose Higgs branch corresponds to strings
propagating on the moduli space of SU(N)M~! instantons on R*, where the right-moving fermions are

coupled to a particular bundle.
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I. INTRODUCTION

The study of six-dimensional superconformal theories
is still in its infancy. We know of the existence of (2,0)
and (1,0) superconformal theories, and we believe we
have a full list of the (2,0) theories, classified by ADE
type. The classification of (1,0) theories remains more
mysterious. There are some examples known [1-3]. In
particular the paper [3] considers 5-branes in various
theories probing transverse ADE-type singularities and
argues that this leads to (1,0) superconformal theories in
six dimensions. In this paper we study the partition
function of (1,0) superconformal theories corresponding
to M Mb5-branes probing transverse ADE singularities.
More specifically, in this paper we focus on the case of
transverse Ay_; singularities. This system is known to be
dual to type IIB strings with N DS5-branes probing
transverse A,,_; singularity.

This theory has a deformation away from the conformal
fixed point, where the M5-branes are separated in the extra
transverse direction. The separation between adjacent
branes correspond to VEVs of scalars in the M — 1 (1,0)
tensor multiplets. The presence of tensor multiplets sug-
gests the existence of strings charged under the 2-form
fields. The main question of interest in this paper is to
investigate to what extent these strings capture the super-
symmetric partition function of this theory, along the lines
recently investigated in [4] for the (2,0) theory. We shall see
that indeed they capture the full supersymmetric partition
function of the theory on 7?2 with arbitrary twists preserving
supersymmetry. In fact these strings support a (4,0) super-
symmetric quiver gauge theory, whose elliptic genus
captures the partition function of the bulk theory. This
result also applies to the case studied in [4] as a special case
(setting N = 1).
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The presence of transverse A y_; singularity suggests that
we have, in addition, an SU(N) gauge symmetry. This
would be the case if there were no M5-branes. However in
the presence of M MS5-branes, the gauge symmetry turns
out to enhance to SU(N)M~! of an affine A,_; quiver
gauge theory with bifundamental matter fields with an extra
SU(N) being a global symmetry [3]. The easiest way to see
this fact is to go to a dual type IIB description where this
corresponds to having N D5-branes probing a transverse
Ay_y singularity.1 In the M-theory setup we have
M2-branes stretched between parallel MS5-branes which
lead to M-strings (see [4] for detailed discussion). From the
viewpoint of M-strings, placing the MS5-branes in the
presence of Ay_; singularity can be interpreted as follows:
it corresponds to placing N copies of M-strings and
modding out by a Z, action, which permutes them but
at the same time acts by a Zy subgroup of the global
SO(4), symmetry, which the strings enjoy. The main goal
of this paper is to study how this orbifold action is
perceived by the M-strings.

To this end we study further compactification of this
theory on S' and S'x S'. As we go down to five
dimensions on an S', we can turn on (N —1)(M —1)
Wilson lines of SU(N)”~! and the N — 1 fugacities from
the global SU(N) symmetry, giving a total of (N —1)M
parameters. In addition, the theory depends on the six-
dimensional VEV of the M — 1 tensor multiplets as well as
the radius of the circle. Moreover, as we go around the
circle we can act by a supersymmetry-preserving transverse
rotation, leading to a mass parameter for the bifundamental

"The absence of U (1)M=1"5 in the gauge factor is because they
are anomalous and are Higgsed by the hypermultiplets corre-
sponding to the A,,_; hyperKéhler moduli.
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fields. Altogether, this gives NM + 1 parameters. In other
words, we end up with an A/ = 1 supersymmetric gauge
theory in five dimensions, which depends on these param-
eters (which partly specify the Coulomb branch of the
theory and partly the coupling parameters). One can then
compute the supersymmetric partition function of these
theories, either using the topological vertex formalism or
the instanton calculus (which corresponds to the twisted
partition function on a further compactification on S'). As
is well known [5-7], these capture Bogomol'nyi-Prasad-
Sommerfield (BPS) degeneracies of the theory, which can
be interpreted as arising from the M-strings [4]. In
particular the computation of the partition function of
the resulting five-dimensional theory is equivalent to
computation of the elliptic genus of the corresponding
strings, which in turn can be interpreted as the elliptic genus
of the Zy orbifold of N M-strings, which ends up being
given by a (4,0) supersymmetric quiver gauge theory.

The organization of this paper is as follows: in Sec. II, we
introduce the basic setup of M5-branes and M-strings in the
presence of Ay_; singularities, and we discuss the further
compactifications on S' and S' x S! and the interpretation
of this system in various duality frames. We also present the
quiver description of such M-strings using the type IIB
setup. In Sec. III we show how refined topological strings
can be used to compute the partition function of this theory.
We find that the basic building block of this computation
can be interpreted in terms of the amplitudes of a collection
of M2-branes which end on two sides of M5-branes, in the
presence of Ay_; singularity. In other words, the presence
of M5-branes can be viewed as a domain wall which acts as
an operator on the states of the M2-branes on the left, to
give the states of M2-branes on the right. We also discuss
the modular properties of the partition functions of the
theory with respect to the elliptic modulus of the 72
compactification. We also show how these results can also
be directly obtained from the quiver (4,0) gauge theory. In
Sec. IV we end with some concluding remarks.

We understand that related results have been obtained
independently in [8]. We thank the authors for communi-
cating this to us.

II. GEOMETRY OF M, -STRINGS

M -strings arise from M2-branes ending on parallel
M5-branes in the presence of Ay_; singularities. In this
section we clarify the details of the geometry behind this
construction and discuss twisted compactifications on S!
and S' x S'. We then proceed to describe various dual
descriptions of this system. In particular, by compactifying
the M5-branes on S! with twisted boundary conditions we
end up with a theory in five dimensions with the same
degrees of freedom as a quiver version of A/ = 2*. This
theory has further realizations in terms of a (p, g)-fivebrane
web in type IIB string theory as well as compactifications
of M theory on certain noncompact Calabi-Yau manifolds.
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In Sec. I A we present the basic geometry and setup of
our notation, including how the M-strings fit in this picture,
and what their global symmetries are. In Sec. II B we
discuss compactification on a circle and twisting around the
circle to introduce a mass parameter. In Sec. II C we discuss
the various duality frames: In Sec. I C 1 we provide a dual
type IIA description involving D4-branes probing Ay_;
singularities and its T-dual IIB description involving a web
of (p,q)-fivebranes as well as the corresponding toric
description characterizing M theory on local Calabi-Yau
three-folds. In Sec. I C 2 we provide yet another dual type
IIB description involving DS5-branes probing A, ; singu-
larities. In Sec. IT D we consider further compactification
on S' which allows us to introduce the omega background.
We also recall the refined topological string description of
the partition function and its connection with BPS degen-
eracies. In Sec. II E we provide the quiver description for
the orbifold of M-strings (i.e. M,-strings) giving a (4,0)
supersymmetric system which is deduced from the type IIB
dual description discussed in Sec. I C 2. In that section we
point out the interpretation of the quiver theory as a gauge
system whose Higgs branch describes the moduli space of
instantons on SU(N)~!, where the fermions are coupled
to suitable bundles.

A. Basics of the setup

Consider M parallel and coincident M5-branes in the
presence of an Ay_; singularity in the transverse directions.
That is, the M5-branes fill a subspace R® of R!!°, whereas
the transverse space is of the form

R x AN*]’ with AN*] = CZ/FN,

o0
Iy = {(‘30 e_%>]i: 1,...,N—1}.

The space on which M theory is compactified is then
[Rﬁ x R x (Ay_1) ., where the subscripts are used to dis-
tinguish directions parallel or transverse to the worldvo-
lume of the M5-branes. The resulting theory living on the
M5-branes then has (1,0) supersymmetry. The massless
representations of this supersymmetry are then labeled by
their Spin(4) ~ SU (2)|L| x SU (2)'}e representations. Scalars
arise from hypermultiplets as well as from the tensor
multiplets.

We choose coordinates X', I =0, 1,2, ..., 10, and para-
metrize the world volume of the M5-branes by X°, X!, X2,
X3, X*, X°. We take the transverse R*, which we mod out
by the orbifold group I'y, to be parametrized by X, X3, X°,
X'% which we also sometimes denote by R%. Next, we
separate the M5-branes along the X¢ directions and denote
their position in the X% direction by a;,i =1,2,...,M.
Thus, before orbifolding, rotations of [R{‘i will lead to a
Sping(4) ~ SU(2){ x SU(2)x R-symmetry on the M5-
brane world volume theory. Following [4], one can

Q2.1
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introduce M2-branes ending on M5-branes with boundary coupling to the antisymmetric 2-form field, whose world volume
is along the X°, X', X® directions. Altogether we have the following setup:

| XO Xl X2 X3 X4 XS X6 X7 XS X9 X 10

C?/Ty - - - =
M5 X X X X
M2 X X - -

The boundary of an M2-brane inside an M5-brane is
spanned by (X°, X!) and is a string inside the M5-brane,
which following the terminology of [4] we now call a
M -string as there is an Ay_; singularity transverse to the
fivebrane. The presence of the string breaks the
Spin(1,5) Lorentz symmetry of the MS5-brane to
Spin(1, 1) x Spin(4), Spin(1,1) being the Lorentz group
on the string. As shown in [4] the chiralities of the
preserved supersymmetries on the M-string under Spin
(1,1), Sping(4) and Spin(4) C Spin(1,5) are equal. Thus
before the 'y orbifold action the preserved supersymme-
tries organize themselves into four left-moving and four
right-moving supercharges whose eigenvalues are under

Spin(4) ~ SU(2)! x sU(2)l.

Sping(4) ~ SU(2); x SU(2)%, (2.3)
and are given in Table I.

Note that these supercharges form a positive chirality
spinor of Spin(8), namely 8§;. It is now easy to include the
action of the orbifold group. For this we note that super-
charges transform under the action of the orbifold group as

-

Qs> exp(2zis - £) Oy, (2.4)

where Z_,j =(0,0,¢;,{,) parametrizes the orbifold action
which in our case is given by

TABLE I. Preserved supersymmetries on the string before Z
orbifold action. The table shows the Cartan eigenvalues of SO(8)
where it is implicit that all signs are multiplied by % The two
columns of the table correspond to the left-moving and right-
moving supercharges on the world sheet of the M-string.

— — X X X X

L R
J!L J! R J%LL J%R J!L J!R J%LL J%LR
- - - - - - - +
- - + + - + 4+ -
— — — — + — + —
- + o+ + - + - +

. 2.2)
x {a} - - - -
J— X J— J— J— J—
(wi,wy) €C2=RY
= [y (wy, wy)=> (2w, e ow,),  (2.5)
with {; = % and {, = — % Therefore, we see that only the

left-moving supercharges survive as they are the only ones
which are invariant under the action (2.5). This shows that
the world volume supersymmetry is reduced from (4,4) to
(4,0) by the orbifolding.

B. Compactification on S' and mass rotation

Next, we consider compactifying X! to a circle of radius
R,. Recall that the transverse R* is parametrized by X”, X8,
X?, X'° and is modded out by the orbifold group I'y to give
an Ay_, singularity. Resolving this singularity gives rise to
an ALE space with metric

ds®* = V7' (dt + A - dX)* + Vdx?

N
v=S
;‘X—xﬂ
_VV =V xA. (2.6)

The second homology of this space is generated by two-
cycles C;, i=1,...,N—1 whose intersection numbers
produce the Cartan matrix of Ay_;. This space can be
equivalently viewed as a specific limit of the multicentered
Taub-Nut space TNy defined by the same equations as
above with the modification that V gets replaced by

1 1
V = — —.
PR

i=1

2.7)

The underlying geometry is then a circle fibration over R3
such that the circle shrinks to zero size at the points X; € R3
and approaches an asymptotic value at infinity, namely A. In
the limit A — oo, one then regains the ALE space (2.6).
However, for our purposes, when we talk about the Ay_;
singularity we will always keep the circle at infinity finite
and therefore will consider TNy in this paper.
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Let us next come to the isometries of the space TNy.
Generically, the isometry group is just U(1) #» correspond-
ing to rotation of the circle fiber. Furthermore, for con-
figurations where all centers are aligned along a line there is
another U(1) isometry which corresponds to rotations
preserving this axis, denoted by U(1) ,,2. The situation is
analogous to the isometries of Ay_; ALE space discussed
in [9]. We want to describe both U(1)’s explicitly by
choosing complex coordinates. To this end, we recall that
the singular limit of this space corresponds locally around
the origin to the algebraic equation

XN +yYZ=0 2.8)

in C’. We can parametrize solutions by ¥ = w, Z = w
and X = wy;w,. Note that these equations are preserved
when blowing up the singularity and are therefore a valid
description of TNy around the origin. The two isometries
discussed above then have the following representations in
this picture:

U(1) 1 (wy, wa)i> (e wy, €72 w,)

U(1),: (wy, wy ) (e, e2%i%y,). (2.9)
Having identified the isometries of the space transverse
to the M5-branes we next consider compactification of the
coordinate X' on a circle with radius R;. We can fiber TN,
nontrivially over this S' as follows: as we go around the
circle we use the isometry U(1), to rotate (wy,w,),

U(1),, = U(1) ;1 (wi, wy) = (€7 wy, e 2" wy). (2.10)

Note that the supercharges that are invariant under this
rotation are precisely the left-moving supercharges that
survive the orbifold action (2.5). For N = 1, the resulting
theory in five dimensions is an N = 2* theory with SU(M)
gauge group and adjoint hypermultiplet with mass m which
was studied in [4]. For general N the theory is an affine
Ay_; quiver gauge theory with an SU(M) gauge group at
each node and with bi-fundamental matter between adja-
cent nodes. We depict this in Fig. 1. There are N different
gauge couplings, one for each node in the quiver, and their
sum is related to the radius of the circle along the X!
direction through

@2.11)

where we take the z; to be the couplings of the individual
nodes. Furthermore, the hypermultiplets which form the bi-
fundamental matter fields will each have mass m. To

*For N = 1 this isometry gets enhanced to SU(2) and thus the
full isometry group of TN; is U(1), x SU(2),,.
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FIG. 1. Compactification of the M5-brane theory on a circle in
the presence of an A,_; singularity leads to the five-dimensional
quiver gauge theory depicted here.

complete the count of parameters note that there are also
N(M — 1) Coulomb branch parameters. Together with the
mass parameter and the couplings we thus see that the
gauge theory depends altogetheron N(M — 1) + N + 1 =
NM +- 1 parameters.

C. Different duality frames

In this section we present different realizations within
type Il string theory of the M-theory setup discussed above.
The goal will be to derive on the one hand a type IIB (p, q)-
brane web construction for the five-dimensional gauge
theory which will allow us to lift the brane setup to a
M-theory compactification on a noncompact Calabi-Yau
threefold. On the other hand we will derive another type 1IB
description in terms of D5-branes in the presence of A;,_;
singularity which will serve two purposes. First of all, it
will give rise to a dual six-dimensional gauge theory
description of the original M-theory setup, and secondly
it will allow us to give a two-dimensional quiver gauge
theory description for the My -strings.

1. Type IIB (p.q)-brane web and M theory on toric
Calabi-Yau

Let us start with the derivation of the type IIB
(p, q)-fivebrane web setup through a chain of dualities.
As a first step we compactify the original M-theory
geometry along the X! circle. We obtain type IIA theory
with the following brane setup:

R RY R TNy
XO X2 XS X4 XS X6 X7 XS X9 XlO
M D4 X

x x x x A} - - - -
X

kFl x - - - - - - - =

046003-4
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That is, we have k fundamental strings stretching
between D4-branes, in a transverse Taub-NUT background
of charge N. We denote the separations between the
D4-branes by t, while 7 is now related to the gauge
coupling of the D4-brane world volume theory by

2

9ym _ 1
—5 =71
Az

The presence of transverse Ay_;-singularity leads to a Zy
orbifold [10] and this gives rise to the five-dimensional
quiver gauge theory described in the previous section. Let
us next discuss the reduction of the M-theory 3-form A®),
Before the circle-reduction it can be given an expectation
value along the three-cycles S' x C; where S! is the M-
theory circle. These particular expectation values will
reduce in the type IIA setup to nonzero B-field flux on
the C; cycles:

N—1
B:E ri‘coi—>/B—ri,
i=1 Ci

where we take the w; to be elements of H'!(TNy, Z) and
Poincare dual to the C;.

Let us next assume that m is turned off.’> Now we
perform T-duality along the Taub-NUT circle. The
Taub-NUT geometry turns into a collection of type IIB
NS5-branes on transverse S' x R3> [11], while the
D4-branes become D5-branes and the fundamental strings
of type IIA turn into type IIB fundamental strings. We end
up with the following picture:

R Rj R S R}
XO XZ X3 X4 XS X6 X7 X8 X9 XlO

k F1 D S —
NNS5 x X X X X

MD5 x x x x x {a} x - - =
X
X

Now the X7 radius is 1/4, the inverse of the asymptotic
radius of the TNy, circle. It is argued in [12] that the integral
of the B-field on C;,

/ B = T;s
Ci

translates after T-duality to the separation between the
NS5-branes along the X7 direction. This is still valid in the
singular limit we are considering where the centers of TNy

The mass parameter, which had entered as a twist along X' of
the transverse TNy, now has the following interpretation: upon
compactifying on X', we get a new gauge field A,, from the
metric: A,, = g19 = md0, where 6 parametrizes the Taub-NUT
fiber. Thus we find that there is a nonzero Wilson line along the
Taub-Nut fiber: §,A,, = 2zim.

PHYSICAL REVIEW D 89, 046003 (2014)
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FIG. 2 (color online). Type IIB brane web.

are brought together while leaving the B-flux finite. The
D4-branes translate on the type IIB side to D5-branes
wrapping the X’ circle and sitting at the origin of R*. The
resulting brane picture is depicted in Fig. 2. This brane
picture describes the subset of parameters in the
gauge theory where the Cartan expectation values for all
SU(M) gauge factors are the same and the mass is set to
zero. This corresponds to a N + M — 1 dimensional sub-
space of the full parameter space. To get the full picture
after turning on nonzero mass one has to introduce (1,1)
branes. These will connect D5-branes which end on NS5-
branes from different sides as shown in Fig. 3. The most
general setup of (p, g)-branes now depends on NM + 1
parameters and thus reproduces correctly the gauge theory
counting.

We complete this chain of dualities by simply recalling
the picture of [13]: type IIB theory on S' (which we later
take to be the X circle) is the same as M theory on 72,
namely a (p, g)-brane corresponds to the (p, g)-cycle of
the M-theory 72 shrinking over the (X°, X7) base. This way
the brane picture uplifts in M theory to a noncompact
Calabi-Yau which is elliptically fibered. For our specific
brane setup it turns out that the elliptic fiber is singular and
of type I in the Kodaira classification of elliptic fibrations
[14]. The Kihler class ¥ of the elliptic fiber is identified
with the overall gauge coupling of the five-dimensional
quiver gauge theory and is thus the inverse of the radius of
the X! circle. That is we have

1
M =— 2.12
. (2.12)
Resolving the singularities of the elliptic fiber leads to
various moduli which are identified with the Coulomb
branch and mass parameters of the gauge theory.
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FIG. 3 (color online).
deformation.

Type IIB brane web with mass

2. Dual gauge theory description

Here we will derive a dual six dimensional gauge theory
description of our original M-theory setup. To this end we
start by compactifying on the Taub-NUT circle and pass to
the following type ITA description:

R S R R R3
X0 xt x> x xt x x¢ X xtXx

M NS5 x x x x x x A} - - -
k D2 X X - = = = X - -
N D6 X X X X X X X - - =

SU(N)

FIG. 4. Dual six-dimensional quiver gauge theory.
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The centers of Taub-NUT have become D6-branes,
the MS5-branes have become NS5-branes, and the
M2-branes have become D2-branes. The separation
between M5-branes simply becomes separation between
the NS5-branes. The 7 parameter is the inverse of the size of
the X! circle, multiplied by the radius A of the Taub-NUT
circle.

Now we can find out what happens if we perform T-
duality along X® (which from now on we must assume to be
a circle). The configuration of the branes is as follows:

R S R* TNy,
X0 xt x2 x3 xt x> x¢ x xt x°
k D1 x X — — — — _ _ _ _

N D5 x X X X X X — — — —

In other words, the M NS5-branes of type IIA in this
picture have become TN,, geometry and the D6-branes
have become D5-branes.

The theory living on the D5-branes has again an
interpretation of a quiver gauge theory. This time, however,
each node of the quiver is an SU(N) gauge group with
bifundamental matter between adjacent nodes [3,10]. This
is depicted in Fig. 4. As explained in [3] this gauge theory
comes with M — 1 tensor multiplets and a global SU(N)
symmetry. Counting parameters we find M(N —1)
Coulomb branch parameters and fugacities which together
with the tensor multiplet scalars, the mass parameter and
the radius of compactification from six dimensionals to
five give M(N —1)+M —1+ 141 = MN + 1 parame-
ters. This matches with the countings from the dual five-
dimensional gauge theory and the toric diagram.

D. Compactification on S! x S' and relation with
topological strings

Going back to our original M-theory setup, we can also
further compactify X° on S'. While doing this we can
introduce the Q-background by fibering the space Rﬁ over
this circle. In order to preserve supersymmetry we then also
have to fiber TNy around this circle. Altogether we twist
TNy X Rﬁ by the action of U(1) x U(1) as we go around
the circle parametrized by X°:

U(1)., x U(1),,: (21, 22)r> (¥ 2y, €225,

€1tey €1+ey

:(wl,w2)i—><e_ T W, e 2 w2> (2.13)

The second U(1) is nothing else than the isometry U(1),
of TNN

We can now ask what the theory of the suspended M2-
branes is when wrapped around the X and X! directions. A
sigma model description can be deduced as follows. The
M2-branes as well as the MS5-branes will be sitting at
the fixed point of the orbifold action in R4 and as in the

046003-6
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R} R}

(b)

M-strings versus M, -strings. In (a) the gauge group is U(1) and the corresponding instantons originating from stretched M2-

branes have zero size in the [Rﬁ directions. In (b) we see a thickening of the M2-brane ending on the M5-brane in the case of transverse

Apy_; singularity, because instantons can now acquire a finite size.

M-string setup the M5-branes are extended along 72 x Rﬁ.
Also, the M2-branes will appear pointlike in R?. However,
this time their moduli space will not be the one of U(1)
instantons but rather that of SU(N) instantons. One way
to see this is from the dual type IIB setup described in
Sec. I C 2. From the type IIB brane setup one can see that
the D1-branes are instantons from the point of view of the
theory living on the D5-branes. As the Dl-branes are
connected to the M-strings through a chain of dualities we
thus see that the moduli space of kK M4-strings is that of k
SU(N) instantons. Furthermore, as the real dimension of
this moduli space is 4kN we thus see that the M -string has
gained more degrees of freedom compared to the M-string
whose moduli were the coordinates of [R“‘. From another
point of view one can say that while the M-string was a
pointlike object on [R{‘*‘ the M ,-string now fills an extended
region in Rﬁ because, unlike the U(1) case, the instantons
can now acquire a finite size. Yet from another viewpoint
one can say that in the presence of transversal Ay_;
singularity M2-branes suspended between MS5-branes gain
thickness (see Fig. 5).

The task of the following sections will be to compute
these degeneracies and obtain a closed formula for them
in terms of the refined topological string partition
function. Again, the partition function of M theory in
this background is by definition the partition function of
the refined topological string on the corresponding
Calabi-Yau threefold which now takes the following
form:

Il
MM5

= Z{Sg“ed (e1, 52)(CYN.M.m,t},T}')-

ZM—theory((An_l X IR4>I><T§1 £y.m X R)
S
(2.14)

As a main tool we will use the topological vertex and its
refinement [5-7,15,16], to compute the degeneracy of BPS
states. This correspondence will be used to further extract

the elliptic genus of M,-strings. These will arise from
M2-branes which wrap the torus 72 and are extended along
the X° direction. Having compactified on the second S all
M-theory parameters get rescaled by the radius R, and also
get complexified due to Wilson lines along the second circle.
In particular, by abuse of notation we will now denote the
complex structure of T2 by 7. An My-string which has
Kaluza-Klein momentum k along the M-theory circle then
gives rise to BPS degeneracies which will appear as the
coefficient of the kth power of Q, = ¢>** in the topological
string partition function of the elliptic Calabi-Yau.
Furthermore, such strings can have nontrivial charge under
all remaining gauge theory parameters. Their degeneracies
appear in the free energy of the topological string as
computed in Sec. III.

E. Quiver theory for the M, -strings

A two-dimensional quiver description for the M -strings
can be deduced from the type IIB brane setup of N
D5-branes probing an A,,_; singularity described in
Sec. II C 2. Following [17] the quiver can be constructed
from an orbifold of the theory on the D1-branes. Before the
orbifolding the theory living on the D1-branes is a N =
(4,4) U(k) gauge theory with one adjoint and N funda-
mental hypermultiplets. The adjoint hypermultiplet arises
from the the 1-1 strings and the N hypermultiplets come
from the 1-5 strings. To be more specific we have,
following [18], the following massless modes on the world
volume:

bosons fermions
bA’f/ yh li
A ph (2.15)
A——v:}++ ‘l/ij: ) ‘lg?ry
H X—=> )(Jr’

where A, = Ay 4 A,. Furthermore, the indices (A’,A’)
represent the fundamental representations of the two SU(2)
groups rotating the directions X2, X3, X*, X> while (A, Y)
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are indices for the SU(2)’s rotating X°, X7, X%, X°. The
scalars in the adjoint N' = (4,4) hypermultiplet are para-
metrized by b4 while those of the vector multiplet are
bAY. The scalars of the fundamental hypermultiplets, H*',
are doublets under SU(2)z = SU(2),. The multiplet
structure is then obtained by the action of the left-moving
and right-moving supercharges:

QAA’bY — l//, , QA YpA — AA"

(2.16)
These fields can equally well be described in the language
of N'=(2,2) chiral and twisted chiral superfields. In
particular, the vector multiplet is given by the pair of
superfields (£, ®) where X is a twisted chiral superfield and
® is a chiral superfield. Furthermore, the adjoint hyper-
multiplet is given by the pair of chiral superfields (B, B)
whereas the fundamental hypermultiplets are (Q, Q). That
is, we have the following correspondence:

VW (2, @), Y

(B, B), Y5 (0,0).

(2.17)

We next consider orbifolding this theory by Z,,. To
preserve the left-moving supersymmetry and break the
right-moving one we embed the orbifold group Z,, in
SU(2)y giving the following action on fields with Y index,

(CYbAY éY éY’ Y Z: )
(2.18)

Byt oyl ) e

where ¢ = ¢ and Y = +. Note that the remaining fields
are invariant under the orbifold action. The resulting theory
has N = (4,0) supersymmetry and its field content can
equally well be described in the language of A" = (2,0)
superfields by decomposing the A" = (2, 2) superfields as

follows,
»(0F.07) ~Z - V20T,
2(07.07) ~ D+ V207 A,
B2 (07,07) ~ B + V20+ AP,
B(r2)(6%.87) ~ B+ V20" AP,
2(07,07) ~ Q0+ V201 A°,
2 (07,07) ~ 0+ V207 AQ, (2.19)

where X~ and P, B, B, 0, Q are (2,0) chiral superfields, T is
the (2,0) gauge superfield, and A’ is the Fermi superfield.

The orbifolding gives rise to a quiver gauge theory with
an inner quiver and an outer one. The inner quiver is the
affine AM_I Dynkin diagram with nodes corresponding to
gauge group factors U(k;) for i = 1, ..., M which live on
the ith copy of D1-branes and are linked by bifundamentals
between adjacent nodes. Moreover, there is also an outer

PHYSICAL REVIEW D 89, 046003 (2014)

Ay quiver with SU(N) nodes which corresponds to the
orbifold of the D5-branes. Its nodes are not connected as
those modes are not visible from the viewpoint of the D1-
branes. However, there are links connecting the outer with
the inner quiver. In particular, there are links which connect
SU(N); nodes of the outer quiver with U(k;) nodes of the
inner one. These links are (4,0) hypermultiplets which are
invariant under the Z,;; orbifold action. Matter fields which
are not invariant under this action still survive the orbifold-
ing but now reach from SU(N); nodes to U(k;_;) and
U(k;,) nodes. The result is the quiver depicted in Fig. 6.

In order to connect this picture to M, -strings we need to
turn off D1-brane charge and instead introduce D3-branes
wrapped around blow-up cycles of the resolved A, _;
singularity. As explained in [4] in type IIB the tension
of strings arising from D3-branes wrapping blow-up cycle
C; is given by t; = u;/g, where y; is the size of the two-
cycle C;. Taking the limit y; — 0 with g, — O decouples
the D1-branes and one is left with the D3-branes. In the
language of the above quiver this limit corresponds to
removing the last node of the inner quiver (i.e. setting its
rank to zero) and also all links ending on it.

One of the goals of this paper is to make a prediction for
the elliptic genus of this quiver using the refined topologi-
cal vertex which we will put to work in Sec. III. For this we
need to connect the global U(1) symmetries of the quiver to
the ones of the original M-theory picture. In particular, we
need to identify the mass-rotation U(1),, as well as the
symmetries of the Q-background, namely U(1), and
U(1),,, as a subset of the symmetries of the quiver theory.
To this end, it turns out to be useful to study a yet another
dual brane setup which captures the field content of the

FIG. 6 (color online).

The quiver for the D1-D5 system. In
order to obtain the M, -strings one has to remove the last node in
the inner quiver and all links ending on it. We have also included
a representative set of (2,0) fields corresponding to the links
connecting the nodes of the quiver.
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quiver in a very intuitive manner. We start by recalling the
type IIA brane setup of Sec. II C 2:
stost R} R R}
X0 xt x> x3 xt x x¢ X x* X
MNS5 x x x x x x Aa} - - =
X

kD2 x x - - - - - - -
ND6 x x X X X X X — = =

Now perform T-duality along the circle in the X'
direction. The result is the type IIB brane setup shown
in the table below and is presented pictorially in Fig. 7.

stos R} R R}
X0 x' x2 x xtx xt x xtXx
MNS5 x x x x x x {a} - - -
X

k D1 x - - - - = - - -
N D5 X - X X X X X - - -

Note that we have mapped the M-strings to D1-branes
which are extended along the X® direction and wrap the
circle parametrized by X° inside the NS5- and D5-branes.
Taking the size of this circle to be very small we can reduce
the theory living on the D1-branes along it and the resulting
theory is a quantum mechanics living on the segments
parametrized by X° It is now easy to show that the
corresponding quiver diagram for this quantum mechanics
is exactly the same as the one obtained from the orbifold of
the D1-D5 system, depicted in Fig. 6. To see this consider
taking all D5-branes to be lying on top of each other so that
the strings living on the D1-branes enjoy a full U(k) gauge
symmetry and SU(N) flavor symmetry. Furthermore,
deform the system by introducing (N, 1)-branes connecting

Xl
1 2 M
NS5 NS5 NS5

X(’)

DI I
1 D5

DI
2 D5

DI
3 D5

L ]

L] [ ] L] [ ]

L ]

D1 ]
N D5

FIG. 7. Type IIB brane setup with M NS5-branes and N D5-
branes. The D1-branes are parallel to the D5-branes but drawn
shorter to distinguish them from the latter ones.

PHYSICAL REVIEW D 89, 046003 (2014)

1 2 3 M
NS5 NS5 NS5 NS5

PN G

FIG. 8 (color online). Type IIB brane setup after putting all D5-
branes on top of each other. The theory living on the D1-branes
corresponds to the quiver gauge theory discussed above.

the D5-branes ending from different sides on the same
NS5-brane. The result is depicted in Fig. 8. Now one just
has to look at the fundamental strings stretching between
the D1-branes and also the ones ending on the D5-branes.
One easily sees that they correspond to the links of the
quiver diagram where for ease of identification we have
colored the links as well as the strings.

Let us next come to the identification of the global U(1)
symmetries. Looking at Fig. 8 we can identify the length
of the (N, 1)-branes with the mass parameter m of the
M-theory setup. We can also see that the only strings
acquiring mass are the ones reaching from one set of D1-
branes to the neighboring set of either D1- or D5-branes.
That is, in the original quiver language the only fields
getting massive by turning on nontrivial m are the ones
coming from the links connecting nodes of the inner quiver
and from links connecting an outer node with adjacent
inner nodes. In (2,0) superfield language the first class
consists of the twisted chiral multiplets X, the chiral
multiplets ® and the Fermi superfields A? as well as
AB. The second class is formed by the Fermi superfields AC
and A2. As it is not possible to write down a scalar mass
term for these fields in the Lagrangian the mass m has to
correspond to the conserved charge of a U(1) current which
is a symmetry of the theory. On the other hand, from the
supersymmetry transformations (2.16) and the field iden-
tifications (2.17), one can see that the fields B, B, A%, Q
and Q carry either an A’ or a A’ index which shows that they
transform nontrivially under rotations of IR4‘. They will thus
carry U(1),, charge. As a clarifying examp&e and also to set
our conventions, we give here the charges of the fields
under the various U(1)’s for the case where M = 2, which
is when the D3-quiver contains only one inner node:

A® B B 0 0O A2 AC

U(k) adj adj adj O O O O
u), -1 1 0 : : 0 0
v, -1 0 1 ! ! 0 0
U(1) 0 0 0 0 0 1 1

m
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Let us next comment on the Higgs branch of the quiver
gauge theory. As the (4,0) theory contains superpotential
terms coming from the faces of the quiver we have to
restrict the parameters of this superpotential in order to
make contact with the M-theory setup. We claim that the
answer for the elliptic genus of this quiver gauge theory
computed along the lines of [19-21] matches the
topological vertex result of Sec. IIl, where m controls
the “mass-rotation” of the M-theory setup. We will return to
this point in Sec. III D, where we will be able to perform an
explicit check in the case of M =2, N = 1. Indeed as
argued in [17] the Higgs branch moduli space of the quiver
consists of M — 1 copies of the moduli space of k SU(N)
instantons and hence the quiver also contains the sigma
model description for the My-strings. The bosons of the
sigma model will arise from the 4kN bosonic zero modes in
the k SU(N) instanton background and are thus sections of
the tangent bundle. Left-moving fermions are again sec-
tions of the tangent bundle whereas right-moving fermions
transform as sections of a different bundle breaking
supersymmetry in the right-moving sector. In the case
where the inner quiver contains only one node, that is
where there are only two M5-branes in the M-theory setup,
this bundle is formed by the 2kN fermionic zero modes of
the Dirac equation for an adjoint fermion in the instanton
background together with their complex conjugates. For
more details on this bundle and its Chern characters we
refer to [22].

For the general quiver with M — 1 nodes the picture is
more complicated. The bosons are sections of the tangent
bundle of the moduli space,

MY oy, =Mk, N) x M(ky, N)

X - X M(kpy—1,N). (2.20)
The right-moving fermions are sections of a bundle V
which is of same dimensionality as the tangent bundle. It
admits a decomposition,

M—1
V=@ V. 2.21)
where the V are bundles over M(k;,N) x M(ky . N)
and it is understood that M ko, N) and M(ky,N) are
empty spaces. The moduli space of k, instantons in
SU(N) gauge theory admits fixed points under the
U(l),, xU(1),, x U(1)N action on ADHM data which
are themselves labeled by ADHM data for an N-tuple of
U(1) instantons: (k! kZ,....,kY) with the property
SN k¢ = k,. The moduli space of U(1) instantons is
the Hilbert scheme of points on C? and fixed points on
Hilb% (C?) are labeled by codimension k¢. Ideals in C|x, y]
denoted by ¢ Thus the fixed points on Mk, N) x
M(kg, 1, N) can be identified by pairs of ideals and in
this language the bundle V| restricted to these fixed points
is of the form

PHYSICAL REVIEW D 89, 046003 (2014)

Vs|ﬁxed points = (®y:l,b:lEth (Ig’ Ilngrl)) ® Li%? (222)

where L is the canonical line bundle on C? and I,
and [,; are codimension zero Ideals. In Sec. III D we will
explain how an explicit description of these bundles gives
another way of computing the elliptic genus of
M -strings.

III. TOPOLOGICAL STRING COMPUTATION OF
THE PARTITION FUNCTION

The goal of this section is to compute the topological
partition function of M5-branes on the geometry Rjj x 72 x
R x Ay_; presented in Sec. II. To this end we compute the
refined topological string partition function of the non-
compact Calabi-Yau given by the toric diagram in Fig. 3. In
computing such a partition function we have to specify a
choice of preferred direction, which can be taken either to
be the vertical axis or the horizontal axis. Choosing the
vertical axis as preferred direction will lead to the Nekrasov
partition function for the five-dimensional gauge theory
given by the quiver of Fig. 1 (in line with the duality frame
of type IIA with D4-branes probing Ay_; singularity),
whereas the choice of the horizontal axis leads to the
Nekrasov partition function for the dual six-dimensional
gauge theory of Fig. 4 (corresponding to the duality frame
involving N D5-branes of type IIB probing A;,_; singu-
larity). In order to extract the elliptic genus of M 4-strings
we have to compute the latter partition function. We do this
in steps. First, in Sec. III A we study the holomorphic
curves contributing to the open topological string partition
function for a certain periodic strip geometry (illustrated in
Fig. 11 in the of case N = 2). In Sec. [II B we normalize the
open topological string partition function for this periodic
strip by the contributions of closed topological strings (that
is, by the partition function of a single MS5-brane on
transverse Ay_; singularity). The resulting expression,
Eq. (3.22), is given an interpretation as a domain wall
for the theory of M2-branes on R x 72 in presence of a
transverse Ay_; singularity. In Sec. III C we glue together
the contributions from the M different strips geometries
that the toric Calabi-Yau is built out of to obtain the
partition function of our system of M MS5-branes on
transverse Ay_ singularities, normalized by the Mth power
of the partition function of a single M5-brane, expressed as
a sum of M,-string contributions. This is the main
computational result of our paper, and is given in
Eq. (3.51). We also comment on the manifest modular
properties of the partition function. Finally, in Sec. III D we
discuss other approaches for directly computing the elliptic
genus of M ,-strings: either by studying the appropriate
bundles over the moduli space of instantons (2.20), or by
computing the two-dimensional index of the (4,0) quiver
gauge theory of Sec. II E.
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() (b)

FIG. 9. (a) The Newton polygon for the resolved conifold, and
(b) the cover of the Newton polygon after partially compactifi-
cation of the resolved conifold along the horizontal edges.

A. Periodic strip partition function from
curve counting

The relevant geometry to compute the topological string
partition function for M-strings at Ay_; singularities is the
partial compactification of the so-called strip geometry,
replacing the resolved conifold geometry of the original
M-stings setup. The length of the strip is determined by N;
more specifically, N is the number of external legs on each
side of the strip. In [4], the refined topological vertex is
adapted to compute the topological string amplitudes. The
recursive method used there can be employed in the present
case as well; however, the computations get very cumber-
some, even for the A; singularity. Instead we follow a more
intuitive approach based on an observation of [23].

Let us briefly review the observation of [23]: the
topological partition function for the partial compactifica-
tion of the resolved conifold can be computed by counting
the holomorphic maps in an infinite, but periodic, strip

12 12
N 1214 |

2 2
+ ~
Zﬂmz . leq 1=+l
121%) q -
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geometry. The Newton polygon of the resolved conifold is
depicted in Fig. 9(a) and is obviously planar. However, the
Newton polygon of the partial compactification of the
resolved conifold is nonplanar and lives on a cylinder. In
the covering space of the cylinder it can be represented as a
periodic configuration. The holomorphic curves wrap the
compact part of the geometry which consist of an infinite
chain of P!’s.

A holomorphic curve C satisfies C-C =2g—2 for
g >0, where g is the genus of the curve C. Two rational
curves C and C, with vanishing intersection, C; - C, = 0,do
not form a holomorphic curve C;+ C,, since
(Cy 4+ C,) - (Cy + Cy) = —4. In other words, if C; and C,
are not connected C; + C, is not holomorphic. However, if C,
and C, have the intersection number 1, C; +C, is a
holomorphic curve of genus zero, since then
(Cy + Cy) - (Cy + C,) = —2. From this discussion we can
conclude that the individual P'’s and any connected chain of
them contribute to the A-model topological string partition
function. We need to identify all possible such curves.

In our case, the conifold is replaced with the so-called strip
geometry and we need to consider this simple building block
as one of the periods of the Newton polygon. In contrast to
[23], all the external legs are labeled by Young diagrams; we
are interested in constructing the “domain walls” for M,
strings. It turns out that the detailed understanding of the
strip geometry with two external legs is enough to construct
the partition function for the infinite strip. The partition
function for such a strip, Fig. 10, is given by

Zy (g N2y a2, (a7 )2, (g7 )

1-— QAtﬂ2.f—j+1/2 I/z,j—i+1/2)(1 _ QBt”z-f_j+1/2q”11..f_i+1/2)

« 11(

(1 =04 QBt”Z"'quﬂr""_iH)
1 — 1 i—j+1/2 y’l,j7i+]/2 1 —
% ( Oct q )(

04 QpQct—IH1/2g" 712

(1- QBchyz’i_jJrqu[]"'_i)

where we have used ||u|? = 3.7, u? and the specialization
of the Macdonald polynomial

Zl,(l‘il,qil) — H (1 o qj—yiti—u}—l)—l‘

(i.j)ev

The contributions coming from O(—1) @ O(—1)—P!
curves are easy to determine and all have the same form.
We can easily distinguish between the curves
O(=2)® O(0)—P! (labeled by pu; and p,) and
0(0) ® O(=2)~P! (labeled by v, and v,), which is
reflected by the different exponents of ¢ and ¢ in the
factors above. Before spelling out the partition function
relevant for the Ay_; singularity, let us demonstrate our

: (3.1

derivation for the A; singularity, depicted in Fig. 11; the
generalization will be obvious.

1. O(-1)® O(-1)~P!

The curves which belong to this class are labeled by
(arvp) OF (v, pp)". We need to take into account all
holomorphic curves from a partition p,(v,) to another
partition v, (u;). Its contribution to the partition function
has the following form for (u,,v,),

“The first partition is always taken to be lower than the second
partition in the toric diagram.
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Q;

T

Q

FIG. 10 (color online). The basic building block to compute the
topological string partition function for the periodic strip. The
small double lines (blue) denote the choice of the preferred
direction of the refined topological vertex.

[Se]
H (1 - Qabtﬂd'i_'i+l/2q%'jii+l/2)7
ij=1
where Q,;, denotes the corresponding Kihler parameter of
the class spanned between the two partitions; we will later
give explicit expressions for them. Note that we get infinitely
many contributions since the strip is periodic for each pair

(3.2)

PHYSICAL REVIEW D 89, 046003 (2014)

FIG. 11 (color online). The (periodic) toric diagram with a basic
strip of “length” N = 2 used in computing the M5-brane partition
function in the presence of a transverse A; singularity. The small
double lines (blue) denote the choice of the preferred direction of
the refined topological vertex.

partitions (u,,v,) and (v, pp). In the case of the A;

singularity, we have the following curves contributing
|

(1,115 01), (11,12 010,,)s (2,115 020;)). (2,125 Os), (V1,113 07" Q).
(2 13 07'0,), (2125051 0,),
withQ,. =0, 0, . the Kihler parameter associated to the elliptic fiber. Therefore we have the following infinite products,
o
X (1= Qo QK 12 2) (1 — Q! Q=12 12) (1 — 010, Q4 i1 /215~ 12,
x (1

— - —i r—it+1/2 — —j Lo—i+1/2
= 0710, O IR (1 - 03 Qb g ),

(v1.12: 05" 0,,),
(3.3)

(1= 0,017 112 =12 (1 - 0,0, 01 112~ H12) (1 = 0,0, Q4 12112
1

0

(3.4)

where we have included the factors Q%! reflecting the periodicity of the Newton polygon, i.e., all the other curves in
addition to the initial ones listed in Eq. (3.3).

2. 0(-2) ® O(0)~P!

As mentioned before these are the curves labeled by (u,, 4;) and their contributions to the partition function can be
obtained from Eq. (3.1),

*Let us make a remark about our notation. In the present case, the geometry possesses more Kihler parameters than in the case
considered in [4]. In that case (where N = 1) we have Q| = Q,,, which corresponds to the adjoint mass of the five-dimensional N = 2*
theory. When N # 1, the Q,’s are indirectly related to the bifundamental hypermultiplet masses. We also have N parameters Q. , ..., Q.
which are related to the gauge theory coupling constants of the corresponding nodes of the quiver; they satisty O, -...- O, = O,.
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s 1
— (3.5)
iﬂl (1 = Qgpthai=l gl I+1>

with the appropriate Kéhler factors Q. This class includes
the following curves:

(/’tlvﬂl; Q‘r)y
(ﬂ27ﬂ2;Qr)'

(1,125 O1,). (2. 13 O%,),

(3.6)

We can immediately determine the corresponding ampli-
tudes for these curves,

1 k=1 gy i—j i1
‘err il Jq 2 )

H (1 — Q’;t/‘l,iqu”)i,jilLF] )71 (] —
k=1
x(1-Q. Ok paimi gy~ T () — Qkgraimi gt 7Y L

(3.7)

where the inclusion of the Q, again reflects the periodicity.

3. O(0) ® O(=2)P!

These curves are labeled by (v,,v,) and their contribu-
tion is close to the ones coming from O(—2) @ O(0)—P!
except the changes in the exponents,

= 1
H (3.8)
=1 (1= Qgpttei™ g
Let us again list the curves in the present case,
(Vl’yl;Qr)v (VI’D2;Q12)7 (y2v’/l;er)’ (39)
<V23V2; Q‘L’)

The partition function will also include the following
factors:

Ql Ql Qrz Q73 Q14
Q _ Q2 QT] Q2
ab Q3 QTI Qrz Q3 QTZ

Q4 Qr, Qrz QT3 Q4 Qrz QT3

PHYSICAL REVIEW D 89, 046003 (2014)
H 1 — thl/l i—Jj+1 ’/1/ i) (1 _ Qrz !r(_l[l’l»i_j+lqylz./_i)_1
k=1

X (1= 0, Q4 g7 (11— Qb )™
(3.10)

All these factors we obtain using the above approach match
the explicit calculation we performed following the meth-
ods of [4] up to a factor of 7(z)~".

4. An_q Singularity

From the above discussion, the generalization for the
Ap_; singularity is immediate. The numerator will have the
form

N 0
H H 1_Qk IQ tHai —j+1/2 ”b —l+1/2)

a,b=11i,j,k=1
< (1= 01D, IR ) 3
such that
Qabea =0, (.12)

where we define Q. = [[Y, Q,, for the Ay_; singularity.
The last equality has a simple explanation: Q,,, and Q,, are
defined on the basic strip, c.f. Fig. 11. The geometry we are
interested in is the partial compactification of this basic
geometry. The parameter Q,, measures the distance
between partitions u, and v,), and Q,, measures the
distance between partitions v, and u,). Together they
add up to the circumference of the cylinder the Newton
polygon is wrapped on. We will label the Kahler classes for
the <Va+1aya> and (ﬂa-&-l»/‘a) curves by Q‘ra’ for
a=1,...,N—1. The class for curves (v;,vy) and
(1. py) is denoted by Q, (depicted in Fig. 12). With
this definition, Q,;’s can be written as

0, HN 1, 0. (modQ,) fora=1,
Qu = { 0, Qr, ﬁ,\’:b QT/_, (modQ,) for a# 1,
(3.13)

where (mod Q,) means that any Q. appearing in the
definition of Q,, is set to 1. As an example, we put
Q,’s for N =4 in a matrix:

Ql Q‘r3 QT4 Ql Qu

Q2 Qr, Q7:3 Q14 Q2 Q‘r, QT4

Q3 Q3 er Q12 Q74 (3 14)
040, 0,

Using Eq. (3.12), the numerator can be written only in terms of Q.

046003-13



HAGHIGHAT, KOZ PHYSICAL REVIEW D 89, 046003 (2014)

N =] L
[T 1T 0~ tgurregico)
a,b=11i,jk=1
I ; T Tt x (1= QLQ i1/ gt +1/2) (3.15)
a
T % Uy x Q, The denominator of the partition function for the Ay_;
T singularity has the form
Qs L 22
l s N 00 |
o R~ ol i N—
L Ap— IT I (- @&'Qupreigh
ab=11ijk=I
Qi Qu x (1= QF1Q et g™ 7 (3.16)

where the Kihler parameters Qab are defined as
follows:

)0, for a > b,
Qu =1 0. fora=b, (3.17)
- 0./112) 0., fora<b,

and Q’ab’s are defined by replacing Q. ’s by Q. There is a
simple relation between Q,, and Q';:

FIG. 12 (color online). The pictorial representation of the Q' _ Qa Q - (3.18)
Kihler parameters used in the partition function. ab 0,

We prefer to use this somewhat redundant notation, since it will prove convenient later in our discussion. The constraints we
need to impose on the Kéhler parameters of different strips will be more transparent in this convention. Combining the
contributions from numerator and denominator, we see that the partition function for M 4-strings is constructed out of the
following infinite products:

M B (1= Ok Qe T2 T2 (1 — QR Q] pnii T2 g 12

k=1 A/ o —i+1 k—1 7 R
ab=11ijk=1 (1= Q7 ' Oyt g!vi™ ) (1 = Q7' Qa1 g™ ™)

(3.19)

The partition function of the U(1) partition function that lives on a single M5-brane can be computed from the above
expression by setting all the Young diagrams to be trivial, in other words, considering the closed amplitude,

N k-l —H1/2g=1/2)( = QkQ=1~iH1/2gi+1/2
(1— Q1 Q7 )(1 — QLQ 7+ /2gi+1/2)
Zow =11 11 * ‘

4 - , , (3.20)
a,b=11i,j k=1 1 - Qch lQaht jqilJrl)( - ngilQabti'lJrlqﬂ)

where the all the prefactors are trivial.

B. Domain wall partition function

We are interested in the partition functions of M-strings on Ay_; singularity. Therefore, the contributions from single M5-
branes, Zy(1)’s, need to be factored out. We normalize the open topological partition function by the closed one using the
following identity:
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ﬁ 1—Qgv !

s Yy
o 1=0gq7r (ij)ev

= H (1 — Qg™ H (1 — Qg rti=1Fvth,
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(3.21)

(i.j)en

As in [4], we can define the partition function of a domain wall from the normalized topological string partition

function:

\I# H ~

N
Dﬂ] ”N<QT’Qab’Qab’Qab’€17€2 EH ’q l)

a=1

]Q tﬂa:*JJrl/qub] l+l/2)(

“Z, (¢

Ay, i j— -l +i—1/2
R A B

QI; lQ e Vit j— l/2q—uaj+1 1/2)(1

. 1Q tﬂa.lquﬂh.jik‘rl)(l

_ QI;*I Q;m fHaiti—1 qil‘;;ﬁ’i)

— QLTI

Note that in this expression we have restored the factors of
Z,(r, ¢g™!) that were left out of the previous discussion.
The domain wall defined in [4] is just the special case of the
new domain wall for N = 1. For general N, we give the
following interpretation for the quantity defined in (3.22):
The ground states of the theory of k M2-branes on flat
transverse space on 7 taking the size of 72 to be much
smaller than the length between the M5-branes (when the
scalars are massed up) are labeled by a single Young
diagram of size k [24-27]. Here we have a situation where
the transverse space to the M2-branes has an Ay_;
singularity. To describe the M2-branes in this geometry
we need to place N copies of them before orbifolding the
flat transverse space. In particular this implies that the
configuration of ground states of M2-branes is character-
ized by N Young diagrams with total number of boxes
being k. From this viewpoint the low energy modes of this
system are given by a quantum mechanical system, where
the Hilbert space is formed by an N-tuple of Young
diagrams

(3.23)

/7: (ﬂl’ ""ﬂN)’

with the identity operator [ = ) |i) (4’| and Hamiltonian
H = |ji]. The Hamiltonian can again be interpreted as M2-
brane mass where the size of T2 times the tension of the
M2-brane have been normalized to 1 and |g] is their
number. The domain wall arises by having the M2-branes
ending on M5-branes on either side of it. Thus we can view
the M5-brane as an operator acting from the left vacua,
labeled by N partitions to right vacua, again labeled by N
partitions. In other words, Eq. (3.22) gives the matrix
elements of this operator for this quantum mechanical
system.

Qi grai™ )(1—QlflQabf”’”"'ﬂqiyz"jﬂil)

(3.22)

C. Partition function of M5-branes on
transverse Ay_; singularity

In this section we assemble the contributions from the
different strips that compose the toric geometry derived
from Fig. 3, and we arrive at an expression for the refined
topological string partition function corresponding to it
[Eq. (3.51)]. As discussed in Sec. II D., this is also the
partition function of the system of M MS5-branes on
transverse Ay_; singularity. More precisely, the partition
function we compute is normalized by the contributions
of the BPS states that do not arise from M2-branes
stretching between the M5-branes (although these factors
can be easily restored); our final expression is organized
as a sum of contributions from different numbers of
M 4-strings wrapping the torus in the world volume of
the M5-branes.

In [4], the normalized topological string partition
function is recast in terms of the normalized Jacobi 0
function

o0

_l'eim/4eirrz H(l —e

k=1
X (1 _ eZm'(k—l)re—2m'z)_

0)(5:2) = ik (1 —

eZn’ikreZn’iZ)

(3.24)

We will show that in the present, more general setup, the
partition function can still be expressed in terms of 6
functions. We first need to glue the building blocks
together, Fig. 13.

The topological string partition functions in the presence
of M parallel M5-branes can be computed using the domain
walls:
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(p+1)
M

P

(p-1)
Q Thi (P+1)

e —

«— 00—
5
S

l«—q® >|

FIG. 13 (color online). Several domain walls are glued together. The small single (red) lines indicate that one has to glue along the
vertical direction. This geometry depicts the A, singularity.

N )\ ) N =) =1
zi = 5 (TTTL-Q™ )08 (000000 ierer)
{,;’(p }M 1 \g=1 a=1 L

(M-1)  (M-1) = (M)

XD/;l (Q-n Qab7Q£12b>7 Q/Efb);gl’gZ) Dgl@ i (Qra Qab ’QEIZZI)’Qab ;81,82), (325)

where {ji(")} denotes N- tuples of Young diagrams associated with gluing of the pth and (p + 1)* domain walls. The
Kiéhler parameters Qa i Qa b ) and Q belong to the pth domain wall whereas Q ‘. a) denote the Kihler parameters along the
fiber directions between pth and (p —l— 1)st domain walls. Let us focus the contributions from the holomorphic maps which
involve factors depending on ji(?). These are

) (”.’1)"+571/2

)

FRrave e
q

[, TI T (oo
ab— >

) 1
e -0EOr

[ p(”) i
q“

)
from the p™" domain wall

) _ji1/2 u(” D i1y
q“

(p
o U= k(D) i
(1-05 10

WP _;
1 1/2/4
(el q°

u(’ Lr/q*gi»],)' +[—l)

(FH)t
[ﬂl

(1-0< 1o’
[, TI I “ B <J« o

(ijeny (= 01 i gty )

—it+1/2

fromthe (p + 1)* domain wall (3.26)

(p+1).t

j—1/2 —n +i=1/2
g bi

(1 )
o = Q4@ ) 1 ai
W)y P

(1-Qk=1 QP Hai W g™y T

and arise from the factors of
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—1 1
ﬂ(lp )..Aﬂx) ) X D'u(lp) /«lx))
4 +1 p+l1
<II> ﬂx)) ”<Ip k U E\’ )

appearing in (3.25).
To compute the topological string partition function of the toric geometry we are required to glue together the M vertical
strips along the horizontal edges. This imposes the constraint

Q'lrt) — gln) (3.27)
which is easy to see from the toric diagrams. This is equivalent to imposing

D) = glP), (3.28)

After imposing the gluing restrictions, using the fact that ¢ and b are dummy variables, we see that the i(?)-dependent terms
can be written as

_ _ (p_) i Pt g —1 P _; (=1t _iv 172
k ]ngé)t W+ 1/2q p M i=1/ )( _ Qk(QE,,;)) o /+1/2q/4bj i+1/ )
(p).t (p).t

i m ¢

ab=1 k:I (i])enl ) ( Qk IQ *j+]q/4b] - )( Qk lQ t F‘M*Jq_”b/ +i— l)
(1-0k1ol” (p+1) tﬂlll_]+1/2q”hp+ —l+1/2)( — ok(o (p+1) )_lt—ﬂf.,ﬂ 12 g7#, i 1/2)
T T 3.29
(1— QU1 QU Pl gty =41 (1 — QA1 Qi) w1 g4 +") o
It is clear that numerator can be rewritten in terms of two 6 functions,
N
Numerator = A® - TT T 61(m2) (0. 7)ey(mwll) (i ). (3.30)
a,b=1 (i.,j)EﬂEf’)
where we have defined the arguments of the 6 functions zg’;)(i, Jj) and wi';)(i, J) as
o2z (0)) = (Qg[’?+1>)_lt—/4( +i- I/Zqﬂtbp+1 +i=1/2. (3.31)
eme( (i) — = (ngl;)) tﬂ —j+1/2qﬂbpj Y 71+1/2 (3.32)
and
|: erit/2 H 2mk1 :| H H efm( D (i) +w (i, ])) (3.33)
a=1 k=1 b=1 (i.j)Eﬂap)

Let us now turn to the factors in the denominator of Eq. (3.29). First of all, the factors for which a = b combine with the
prefactors

(p)
|
(P)t)2 (P))2 a
g 12l I ~ w1\ 2 1 1
_— a4 -1 -1 =1 —1\ — (1| [ 2 I I
q Tt 4 (1’)J<t ,q )Z (ﬂ)(q N )*( 1) ( ) ) ) ») | - (p)i | - (334)
H Ha q ( ) P) 1 - “pl _lt'uat _]+1 1 _”al.i +]q_ﬂlfj +i-1

I

to give
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P N oo
t) Zu‘”” | 1
A, o) (@)1
( 1 ‘Hg@,]‘g (1= Qketal =T g =1 (1 — Qly i1 gl )
1
x P)_iq i DI DITEN (3.35)
(1 — @k tai =i ghai =Y (1 — QKT Hai T gHay 17T
When a # b, we will need the following identity which follows from the definition of Qab:
ooy = o.. (3.36)
This allows us to write the denominator terms for a # b as
ﬂﬁ kAN P i P iy 1 ks AN P i1 P
a#b k=1 (; he, (1 — Q7 (Qp, ) i~ g"i Y1 = QF(Qg ) tHai g )
1
X 3.37
1— o1 ) ") —j+1 ,ub 1— /,t“l)—‘rj P i1 ( )
( 1O e )( Qb )t q " )
If we now define a new variable Qi’l’) by
A _ )L fora=1>b
Qab - { Q((lll?’ for a ?é b’ (338)
|
we can write the product of Eqgs. (3.35) and (3.37) as M- N
AR VN VO (T
N | {—>ulp }MJ s=1 a=1
B . , (3.39) N g (1 (s)/+ 0 (s)/+
W it < 1 110" Z‘z?f’.’ DPEvg 1)),
(i.))eu) b=1 01 (751, (1. 7))01 (750,45 (0, )
where It remains to simplify the prefactor
A _ () N gl’)
o2 (0,]) = (ng)) 1tﬂf,,—/qﬂ it (340) ) — H <_\/Z> el
a=1 q
% H H —mz z] —w, )(1 ])emu( )(l j)+Lih>(z ])
)t o b=V (i e
2 (1) = (0. I lq—ub, + (3.41) (3.42)
and First of all, we have
N
N | 2 et N H H o=z (1.) - (0.))
S (RE R R TRy i 1S
]7+1 /4 (p+1).t _M(P_*l)-’ 12
X H H emum7 (i.j) +m1)( )(z ]) = H H Q b.j b.j .
=1 (i jyewy” = et
(3.43)

Therefore Eq. (3.25) simplifies to the following expression:

We can simplify this expression by noting that
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p+l

Q , for a = b,
QP-H Q a _ { b (3‘44)
’ 0.0y 0. fora#b,
so that
N 1/2
1
(II I o4el)
ll,bZI (l’j)eﬂaw
T O I TT (o) orh S
=[Ie" " 'T[ ey "oy (3.45)

Furthermore, it turns out that the g-dependent terms in
Eq. (3.45) all cancel. To see this, let us isolate the factors
associated to the pth and (p + 1)* four-cycles:

(p+1). (72)r
[T a0 I 70 cae
(ij)en!” (ij)eu™"
Using the identity > e ) =D (ijeut  this

simplifies to

(i.j)eul "

1"

(i.j)end

(3.47)

By applying this identity at each four-cycle, we can cancel
all g-dependent factors in Eq. (3.45) against each other.
Likewise, one can show that

(1’)‘

N _N"‘u Ml (/))l
| | | | emu z] +/m l] | | 7 IHa
9

a,b=1 (l~j>€/t< P) a=1

(3.48)

and therefore

N W N |
(M_H<<> [Ty o W).
a=1 b=1

Finally, we define

(3.49)

where we have set

0, = e¥im = <ﬁ Q,(f’)>ﬁ.

b=1

(3.50)

PHYSICAL REVIEW D 89, 046003 (2014)

Here we note that m corresponds to the physical mass
parameter introduced in Sec. I A., and that its definition is
in fact independent of the label p. We obtain a very
compact final expression for the partition function of M
MS5-branes on transverse Ay_; singularity:

An-1 _
Zy =

N

ey
(225 10)01 (55 w5 (0, )
(7 ' )

% H 0 (h)(l’ a )
e v O (w5 (1, )01 (3305 )

Remember that the partition function ZAMN*] is normalized
by the partition functions of single M5-branes, Z%). The
Kéhler parameters of each domain wall are different,
therefore the overall normalization is by Hﬁ‘le Zg.’()l). For

convenience, let us collect here the following definitions
which were given in the previous discussion:

2mz] ij) E( ap+1 )—1 _ﬂ<p>+j 1/2q ﬂbpjﬂ Yie1)2
2mw E(QE; >—1 u)—j1/2 uh] M_it1)2
eZmu = ( gm) l”’“ijq ( M it

2mb E( fzb))_l —H, )+j 1q—ﬂ(b!) +1

The Kihler parameters appearing here can all be expressed

in terms of the parameters Q,, = >, Qg” ) = o277 and
0, = €*™ which have the interpretation of mass-rotation,
SU(N) fugacities and elliptic parameter of the two-dimen-
sional quiver theory discussed in Sec. II E. Finally, we
define the parameters

N l
A(P) _ 2mt ~(P)
Qf (H Qf a) ’

which we identify with the tension of the M-strings, or
equivalently the distances between the MS5-branes. From

_ (s)
the factor [V, (Q(f” 3)‘” *in the partition function (3.51)
we can extract an overall factor

(3.52)

N (p)
(Q;P)) a=1 |na I, (353)
which in the quantum mechanical framework introduced in
Sec. III B is associated to the propagator between the pth

and (p + 1)-st domain wall. The remaining factor will

depend on the individual sizes of partitions ,u<1p ), ,ul(f).

These factors, which we henceforth denote by R ) should
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combine with the product over Jacobi 6 functions in such a
way that the partition function (3.51) displays the expected
modular properties. Let us discuss this in more detail.

The Jacobi € function acquires a nontrivial phase under
the modular transformation

0,(=1/z;z/7) = —i(—

This modular anomaly can be traced back to the appearance
of the second Eisenstein series FE,(z) in the following
expression for 0, (z, 7):

it)'/? exp(wiz?/7)0,(7;z). (3.54)

01(5.2) = n(e)z exp | 2 B 659

k>1

As discussed in [4], the modular anomaly can be traded
for a holomorphic anomaly: this is achieved by replacing
E,(7) by its modular completion E,(z,7) = E»(z) — M%m
in each occurrence of the € function, at the cost of
introducing a mild dependence of the partition function
on the antiholomorphic parameter 7. This leads to a
modified partition function which has the following modu-
lar behavior,

Z (7, 7 t;),m 75, €1, €)
:Z’:}*‘(—l/r,—l/%; t(fp);m/r,rﬁ’,/r,sl/r,ez/r),

and satisfies a holomorphic anomaly equation. This equa-

tion relates derivatives of the partition function with respect

to 7 to derivatives with respect to tgf’ )

critical that for each summand corresponding to a choice of

. For this to be true it is

partitions {,uép )} the coefficient of 7 is a function of the
combinations » V_, 1”| only. For this highly nontrivial
statement to hold the residual factors Rﬁm must combine
with the product over the thetafunctions appropriately.

D. Direct computation of the M, -string elliptic genus

From formula (3.51) we can extract the elliptic genus for
M, -strings arising from suspended M2-branes between M
M5-branes in the presence of Ay_; singularity,

M—1 N
Ennv.k = > J[Re I 1]
Sl =k, =1 ab=1 (i peu)

O (5201 )01 (w5 W) (0, ))
01 (v u3) (i, )0y (73 05 (i, )

where k,, for p=1,...M—1, is the number of
M2-branes suspended between the pth and (p + 1)-st
M5-brane. An alternative method to computing this elliptic

PHYSICAL REVIEW D 89, 046003 (2014)

genus would be through a detailed understanding of the
bundles over the instanton moduli space (2.20) of the two-
dimensional quiver gauge theory in which the fermions and
bosons transform [4,28]. In the present paper, we will
content ourself with sketching this approach. The bosons
are sections of the tangent bundle of M, whereas
the fermions are sections of the bundle V discussed in
Sec. II E. The weights of these bundles at the fixed points
were worked out in [29], and following [28] one can use
them to compute the elliptic genus by employing the
Hirzebruch-Riemann-Roch theorem as follows,

Ch(EQT>Td(TMk1 !!!!! Ky ), (357)

..... M—1

where 7 M is the tangent bundle, and the bundle Ey. 18
given by

EQ=§/\

T =0 V®/\V*®®SQITM ®®SQITM
=0 -1

I=1 gt
(3.58)

where for brevity we have suppressed the dependence of
the bundle E,_on the different parameters. The fugacities
on which the elliptic genus depends can be obtained from
the quiver description of Sec. II E. as follows. For each
node of the inner quiver we get 4N fugacities from the
bifundamental fields 0, Q, A2 and A2, which are multi-
plied by M —1 as there are M — 1 inner nodes.
Furthermore, we have 3(M — 1) parameters from the fields
A%, B, B associated to each inner node, and 4(M —2)
fugacities from the bifundamentals X, A8, A® and A® of
the inner quiver. Thus we have a total of 4N(M — 1) +
3(M — 1) + 4(M — 2) parameters. However, there will be
constraints from superpotentials and gauge anomalies.
Including all these constraints should reduce the number
of independent parameters to

#fugacities = NM — M + 3. (3.59)
Having directly computed the elliptic genus then makes it
possible to reconstruct the partition function of M5-branes
in the presence of Ay_; singularity as follows,

AEll N, k)), (3.60)

where Z () is the contribution of a single MS5-brane to the
partition function and does not contain any contributions
from BPS string states. Yet another way to compute the
elliptic genus of M -strings would be by directly applying
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the techniques developed in [19-21] to the two-dimensional quiver gauge theory described in Sec. II E. Here we will
illustrate how this works in the case of kK M2-branes suspended between two MS5-branes on transverse TN, space, that is for
M =2, N = 1. This generalizes the result of [4] to arbitrary mass. On the one hand, the partition function for kK M-strings is

given by

0,(; Q—lqui—j+1/2t—i+l/2)91 (7: Q—lq—vi+j—l/2ti—1/2>
Zliiflfstrings(f’m’el’GZ) = Z H - il i m_ U —it1 :
01 (77170 (1,47 )

lv|=k (i,j)ev

(3.61)

On the other hand, the elliptic genus of the two-dimensional affine A; quiver gauge theory with one node removed and U (k)

gauge group (see Fig. 14) is given by6

Ell(k;z,m. €, €;) = k' | 2riz
. X q.p=1

1 % dzg T <91(r;za/zﬂ)91(r;Q,tq“za/zﬂ)> "<
a=1

01(7: 424/ 25)01 (731 20/ 2)
0, (z; g~ (=t ))g, (g; gh =iz~ (1=02))

91 (T; sza>91 (T; szgl) >
01(7:7/4/124)01 (v 1/ 4/ 12,)

->( 1

v NMinj)er  (ipj))ev

0,(z; g f<i,—i2+1>)91 (1 g+l t,(,-l,,»z))

< 11 0,(: 05" ¢/ P 12)0, (z; 03 g7 211 2)
0,(z; qjt—i>g1 (z; q—j—lti—l)

(i.j)ev

where it is understood that each occurrence of 0,(z; 1) in
the previous equation is to be replaced by —9,0(7; ).,
The two expressions are superficially different, but one can
show that for each Young diagram the product over pairs of
boxes of Eq. (3.62) simplifies to the product over individual
boxes of the same Young diagram in Eq. (3.61).
Analogously, we predict that the elliptic genus of two-
dimensional affine A,,_; quiver theories with N flavors will
coincide with the partition function of M-strings for a
system of M parallel M5-branes on transverse TNy space.

IV. CONCLUDING REMARKS

In this paper we have shown that the partition function of
M parallel M5-branes in the presence of transverse Ay_;
singularity compactified on 72, can be computed for
arbitrary supersymmetry-preserving twists using the cor-
responding strings, obtained by stretched M2-branes sus-
pended between MS5-branes and wrapping 7°. Moreover
we have shown that their world volume theory is given by
two-dimensional quiver gauge theory and that can be used
to effectively compute the partition function of this theory.
In a way, this is similar in spirit to quantum field theories
where the partition functions can be computed using the
particle contributions to amplitudes. Here the analog of
the particles are the strings and they indeed do yield the
partition function for the (1,0) superconformal theory at
least when compactified on 7. Note that as a special case
of our computation we can also compute in this way the

*We are grateful to A. Gadde for communicating this result to
{iwe are grateful to A. Gadde for communicating this result to us.

) , (3.62)

partition function of six-dimensional (2,0) A-type theory.
Furthermore, since we can use this building block to
compute the superconformal index of the six-dimensional
theory [30,31], we have thus effectively related the super-
conformal index in six dimensions to the computation of
elliptic genera on the collection of two-dimensional theo-
ries living on the resulting strings. This reinforces the
picture that these six-dimensional theories are indeed a
theory of interacting strings.

In this paper we focused on A-type six-dimensional (2,0)
theory. It is natural to ask what one can say about the more
general D- or E-type (2,0) theory. Even before putting this
in the presence of A y_;-type singularity, the computation of
their supersymmetric amplitudes is much more difficult. In
principle one can do this using geometric engineering of the
corresponding theories, or by developing suitable instanton
calculus techniques to compute the partition function of
five-dimensional lift of N' = 2* theory for D- or E-type
gauge theory. On the other hand, it is straightforward to
extend the analysis of this paper to these cases by placing
them in the presence of transverse Ay_; singularity and
obtain the associated two-dimensional quiver theory. The
computation of partition functions of the associated (2,0)
and (1,0) superconformal theories in six dimensions

A7

o
o

AS

FIG. 14. The quiver for two M5-branes in presence of trans-
verse TN;.
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reduces to the computation of elliptic genera of the
associated two-dimensional quiver theories. We are cur-
rently pursuing this idea.”
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