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We consider a brane configuration consisting of a D5-brane, D1-branes and D3-branes. According to the
anti-de Sitter/conformal field theory (AdS/CFT) correspondence this system realizes a 't Hooft operator
embedded in the interface in the gauge theory side. In the gravity side the near-horizon geometry is
AdSs x §°. The D5-brane is treated as a probe in the AdSs x S° and the D1-branes become the gauge flux
on the D5-brane. We examine the condition for preserving an appropriate amount of supersymmetry and
derive a set of differential equations which is the sufficient and necessary condition. This supersymmetric
configuration shows bubbling behavior. We try to derive the relation between the probe D5-brane and the
Young diagram which labels the corresponding ’t Hooft operator. We propose the dictionary of the
correspondence between the Young diagram and the probe D5-brane configuration.
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I. INTRODUCTION

Nonlocal operators play an important role in studying the
anti-de Sitter/conformal field theory (AdS/CFT) correspon-
dence [1]. These operators are classified by the dimension-
alities of the operators. There must be a string theory
counterpart of each operator according to the AdS/CFT
correspondence. For example, a Wilson loop operator [2] is
a 1-dimensional nonlocal operator and corresponds to a
fundamental string [3,4] or a probe D-brane [3,5-8]. A
surface operator is a 2-dimensional nonlocal operator and
corresponds to a D3-brane [9-12]. An example of a 3-
dimensional nonlocal operator is “an interface” [13-26].

The Wilson loop operator has a bubbling geometry
description in the gravity side [27-30] which is an analogue
of the bubbling AdS geometry for local operators [31]. In
this case the total geometry is described as a fiber bundle
over 2-dimensional base space. This base space with the
boundary carries the information of the representation of
the Wilson loop, or the Young diagram.

On the other hand, the interface is a 3-dimensional
nonlocal operator in the gauge theory. It is known that in the
AdS/CFT scenario this operator is introduced by adding a
probe D5-brane to the original multiple D3-brane system
[16]. As a result, some of the D3-branes can end on the
D5-brane. The gauge theory realized from this system
consists of two gauge theories with different gauge groups
divided by a wall—the interface.

In this paper we consider another type of 1-dimensional
nonlocal operators—’t Hooft operators [32-35] on the
interface. They have magnetic charges while the Wilson
operators have electric charges. The ’t Hooft operators
correspond to D1-branes in the string theory. So we can
construct the system consisting of D3-branes, a D5-brane
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and D1-branes so that the supersymmetry is preserved as
shown later. The expected correspondence is as follows. In
the previous bubbling geometry scenario the boundary of
the bubbling structure is related to the Young diagram
which classifies the Wilson operators. In the same way we
expect the boundary of the bubbling D5-brane is related to
the Young diagram which classifies the 't Hooft operators.
We note that the world volume of the probe D5-brane has
the bubbling structure while in the bubbling geometries the
spacetime geometries have the bubbling structure. Our goal
is to relate the DI1-brane system corresponding to the ’t
Hooft operator to the Young diagram using the probe
D5-brane.

We examine the supersymmetry condition of the D1-D5
bound state in the AdSs x S° and obtain a set of differential
equations which determines the configuration of the D5-
brane world volume embedding and the gauge flux on it. To
solve these equations we require the boundary condition.
This condition determines the shape of the Young diagram.

The outline of this paper is as follows. In Sec. II we
introduce the brane configuration used in our investigation.
In Sec. III, we study that the structure of the D-branes is
restricted by the condition for preserving supersymmetry
and derive a set of differential equations. In Sec. IV we
carefully look at the equations determining the brane
structure and find the independent smaller set of equations.
In Sec. V we investigate the boundary of the bound state of
the multiple brane system in order to see how to relate the
brane system to the Young diagram. In Sec. VI we
summarize the result of this paper and propose
future works.

II. BRANE CONFIGURATION

The AdS/CFT correspondence with a probe D5-brane
has been studied in [16]. Let us first briefly review this
correspondence. This system consists of N D3-branes and a

© 2014 American Physical Society
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TABLE 1. The brane system. In this table “o
directions along which branes extend.

denotes the

0 1 2 3 4 5 6 7 8 9

D3 o] o] o) (e}
D5 o o ) o o o
D1 o o

D5-brane. The D3-branes extend along the directions 0123
in 10-dimensional spacetime and the D5-brane extends
012456 (see Table I). The D5-brane does not extend in the
direction 3, so D3-branes can end on the D5-brane in this
direction. Let k D3-branes out of N end on this D5-branes,
and suppose k << N. This system can be seen from two
different points of view: the gravity side and the gauge
theory side. These two theories are conjectured to be
equivalent.

In the gravity side, these multiple D3-branes warp the
spacetime and give rise to AdSs x S° spacetime in the near
horizon limit. Meanwhile, the backreaction of the D5-brane
is negligible, and therefore the D5-brane is treated as a
probe brane. Consequently, this system describes the
superstring theory with the probe D5-brane in
the AdSs x S°.

In the gauge theory side, the D5-brane is regarded as a
wall between gauge theories with different gauge groups
SU(N) and SU(N — k) where N is the total number of the
D3-branes and k is the number of D3-branes which end on
the D5-brane. This wall gives the boundary condition of
each gauge theory and is called “an interface.”

In this paper we would like to insert a 't Hooft operator
on the interface in the gauge theory. This corresponds to
adding D1-branes ending on the D3-branes in string theory.
The total system is then made of N D3-branes, a D5-brane
and D1-branes as shown in Table 1.

Similar to the previous case, the D3-branes forming the
spacetime give AdSs x S° geometry, while the D5-brane
and the D1-branes are treated as probes. The D1-branes are
embedded as a world volume flux in the D5-brane and there
is a symmetry U(1) x U(1) x SO(3) related to the rota-
tions in the directions 12, 56 and 789, respectively. This
configuration preserves 1/4 of original supersymmetry in
the near-horizon.

III. CONDITION FOR SUSY

In this section we study the supersymmetric embedding
of the D5-brane. First, we investigate the supersymmetry
(SUSY) of the bulk spacetime AdSs x S°. Second, a part of
the bulk supersymmetry is broken when a D-brane is
added. The remaining supersymmetry is analyzed by the
kappa symmetry projection. Finally, this condition gives
the restriction to the embedding of the D5-brane in the bulk
spacetime.
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A. Supersymmetry in the bulk spacetime

We first consider the supersymmetry of the bulk space-
time AdSs x S°. We concentrate on the S? part of the S°.
The metric is

1
= (—d* + dy* + dr* + rPdy?* + dx3) + d6*
y

+ sin%0dg’.

ds? =
3.1)

The Ramond-Ramond five-form flux F©) takes nonzero
value:

FB) = 4(vol(AdSs) + vol(S?)), (3.2)
where vol(AdSs) and vol(S®) are volume forms of AdSs
and S, respectively. Here we use the unit where the radius
of the AdS spacetime equals unity. The condition for
preserving supersymmetry is that the supersymmetry trans-
formations of the fermions are zero. The dilatino condition
is trivially satisfied in the above background, while the

gravitino condition for the SUSY parameter ¢ can be
written as

i
Ve g DM s F3) v, . Twe = 0. (3.3)
Here the covariant derivative is defined as
1 AB

where Q,,4® are the spin connections which are related to
the vielbein EM, M =0, 1, ...9 of the metric (3.1) as

dEA = —QABEB, QAB — _QBA’ 3s
QAB = Q ABEM. 3.5)
We choose the vielbein as
Eozﬂ Elzﬂ EZZrd_W E3:@
; Y Y Y36
=2 B —do, ES=sinodg.
y

For the detailed calculation of Eq. (3.3), see Appendix A.
Here we only show the result. The bulk space preserves the
SUSY generated by the parameter

0, I 1 1+ 1+, 1+ ¥
€ = e 95 5156 =3 N V7 o151 pX3 5 T34 15T e 2ey, (3.7)

where y = —ilg1,3 and ¢, is a constant spinor as we
calculated in Appendix A.
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B. Ansatz for D5-brane

We consider a bound state of a D5-brane and D1-branes
in the AdSs x S° spacetime. The D1-branes are realized as
the world volume gauge flux on the D5-brane. Thus we
consider a probe D5-brane with the world volume gauge
flux. We define the world volume coordinates of the
D5-brane as (t,y,y,¢,u;,u,) where the coordinates
(t,y,w, ) are identified with the coordinates of the bulk
spacetime. According to the symmetry U(1)? x SO(3) we
put the ansatz on the embedding as:
0=0(u), (3.8)

r=ys(u), x3 = yz(u),

where s(u), z(u) and O(u) are unknown functions of
coordinates u’, i = 1, 2. Since (u',u?) are not fixed yet,
there remains the general coordinate transformation
symmetry of (u',u?). Some of the D3-branes end on the
D5-brane. Thus the ansatz for the world volume gauge flux
is written as

F =dPANdy +dOANdp, (3.9)
where potentials P and Q are functions of u. Then we have
unknown functions of u
O(u),

P(u), O(u). (3.10)

Our goal is to determine these functions.

C. Condition for SUSY

In this subsection we try to obtain the condition for
preserving supersymmetry. When a D p-brane exists, a part
of the original supersymmetry is broken. The remaining
supersymmetry parameters are spinors of the form (3.7)
which satisfy the relation [36-42]

e =e. 3.1

This is called “the kappa symmetry projection” where the
operator I" is determined for a Dp-brane as

dp_H'f L= <_e_¢’ (_ det(Gind + f))_1/2ef)()|(p+1)—formv
(3.12)

! fa fa n( s
Jr::En:(zn)!E . EYT, K'(—i), (3.13)

where &, i =0, ..., p, are world volume coordinates, ® is
the dilaton, Gj,q is the induced metric of the Dp-brane and

E* is the pullback of E* defined as E* := Eyy 25 d&'. We

calculated examples for a D5-brane and for a D1-brane in
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Appendix B and we use the relations obtained in these
examples in the following calculation.

We calculate the kappa symmetry projection operator I"
defined above under our ansatz given in Sec. III B. Here we
only show the result

1
I'= W {S sin QAF()QK(—I)F(M =+ sin 98(—Z)F60

For the detailed calculation, see Appendix C. Here we
defined a y independent function W as

Wi=y2\/=det(Ging + F). (3.15)
The induced metric for the D5-brane is
ds*> = —izdt2 + s2dy? + sin*0d¢p? + ﬁza'y2
y y
+ h;;du'du’ + 3;ﬂ du‘dy,
pr=l+s>+22 b= 0,40 (3.16)

A=s,z2,0

In the expression (3.14), A,B,C,D are the following
matrices.

A= — {S,Z}Fn - {S, H}Fls - {Z, 9}F35
+ Sz{i»e}rma

z
Bi= — {P,;}FB +{P.s}T 1y + {P.2}T3y — s{P.O}T5

(3.17a)

- Z{P, 9}F35 — {P, 9}F45, (317b)

Ci= — {Q,E}FB + {Q, S}F14 + {Q, Z}F34 — S{Q7 9}F15

—2{Q, 055 — {Q. 0}Tys, (3.17¢)

Di= —{P. Q}(1 + 5Ty + 2l'34), (3.17d)

where C is obtained from B by replacing all P’s by Q’s. We
use the notation of “Poisson bracket”

DA OB 9A OB 0A OB

A, B) = _ A op 979
{A.B}=e¢ ou®oub  Ou' Ou?  Ou? Ou'

(3.18)
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Under our ansatz the parameter € in Eq. (3.7) is decomposed by the dependence of y and #:

1

— YTy I ,—iIn yy Py, ey, AT, v
e =e W5 62 MY o3 14 X33 34 ol 04 03 ‘260

= g ?Mseanyy <1 + s

I+y I+y L4y
2 F14>(1+YZ > F34)<1+t 5 Lo )¢S

e Masp—1In YI(E 4 ysT4é_ + yalsé + Tué )

0 1 1
=e s <~f+ + Ve A+ —=(ysT e + yalsué + tl“o4‘f))

VY VY
1 t
= \/y€ +—=6 +—=¢€3,
\/_1 \/yz \/§3

¢ v . .
where we define £:=e2'50e3 12¢, in the second line

and &, := %f. The explicit forms of e,e,,e;3 are
written as

ey = e sl 450y +203)E.,  (3.20a)
€ = e Mg, (3.20b)

9T
€3 = ¢ o 451_‘045,. (320C)

Since the kappa symmetry operator of Eq. (3.14) is

independent of y and ¢, we can impose the projection

condition (3.11) for each ¢; :

I'e;, = ¢, i=1,2,3. (3.21)

The kappa symmetry projections for the D5-brane and

the D1-brane give the conditions (B13) and (B18), respec-
tively, which are obtained in Appendix B.

D5 condition<> (K56 +7)E =0,  (3.22)

D1 condition< (iKT gy — 1)& = 0. (3.23)
We want to obtain the condition for the functions (3.10)
such that all spinors restricted by the Egs. (3.22) and (3.23)
satisfy the projection condition (3.21). The condition (3.21)
is equivalent to

s {5 sin AT, K (—i)Toy + sin OB(—i)Tgp — sC(—i)Tag

Y DK(—i)Tos — W)e, =0,  i=1,23. (3.24)
For ¢, (3.20Db),
(3.24)& {ssin0A - T's; + sinOBCs3es — sC - T3,
+Des — WIE, =0, (3.25)

(3.19)

[
where we used relations obtained from (3.22), (3.23) and

vér = —ilg123és = £&4,

Fepée =518, (3.26a)
Feoés = £il's3¢, (3.26b)
e = £il3,8-. (3.26¢)

The left-hand side of (3.25) can be written only by using
I, 5,14, and 1 (identity matrix) and their products.
Each coefficient of independent matrices gives the
conditions:

s{s,cos @} —sinO{P,zsinO} + s3{Q, E}
s

—cosO{P,Q} —W =0, (3.27a)

s{z,0} — {P.ssin0} =0, (3.27b)
ssinze{P,E} +{0.z} +cos0{P, 0} =0, (3.27¢c)

52 sin 6 cos H{P,E} +52{Q,0} — ssin@{P, Q} = 0,
s
(3.27d)

1
53{E , oS 9} +3 {P,cos’0} — s{Q, s} + zcosO{P, Q}
s

=0, (3.27¢)
{P.zcos@} — {P,Q} =0, (3.27f)
sin@{P, scos O} — s{Q,0} = 0. (3.27g)
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In this equation (3.27d) is not independent and can
be lead from (3.27f) and (3.27g). For e;, a similar
calculation gives the same conditions. For ¢, the
calculation is a bit complicated, but we can do it in the
same way.

2 2
=0, (3.28a)

4 3ein?
_s_{s’%,cosé’} +Z s H{P,g} —pcosO{P,Q} — W

sz (B s3sin’@ B s
;{Zz,cose}+ {P,s2}+2{Q,ﬂ}:0,

2
(3.28b)
1 z B B
5{‘8’ cosf} — 5 {Q, Zz} —W =0, (3.28¢)
1 . 5 s* s -
3 {P, psin“6} — 5 {Q,s—z} +zW =0, (3.28d)
cos 0{s%, z} + {P, fcos’0} = 0, (3.28e)

73 cos

%{sz,zz}Jr 5 {P,Z’%}+ﬂ{P,Q}:0, (3.28f)

2sinfcos @
ssinQ{s,z}—l——s P eos {P,ﬁ

> s—z} + {0,060} =0.
(3.28g)

Consequently, we obtain the 14 equations (3.27a)—(3.27g)
and (3.28a)—(3.28g). We find an independent set of these
equations in the next section.

IV. SOLVING SUSY CONDITION

One can check the last seven equations (3.282)—(3.28g),
are derived from Egs. (3.27a)-(3.27g). So we only
have to consider Egs. (3.27a)-(3.27g) which are
rewritten as

PHYSICAL REVIEW D 89, 046002 (2014)

{s,2} = — {P, fcos?6},

4.1
scos @ (4.12)

2

1 . s z 1
{s,0} = —;{P,zsm@} +E{Q5} - cotf{P,Q}
1
 ssin 6 . (4.16)
{z,0} = %{P ssinf}, 4.1c)
{0,s5} = sz{i,cos 6’} +2LS{P, cos?0}
+2LS{P, 7%cos?}, (4.1d)
{0.2} = —ssinZH{P,E} —cosO{P,zcosB}, (4.1e)
{0.0} = g{P,scose}, 4.11)
{P,Q} = {P,zcosb}. (4.1g)

By the definition of the Poisson bracket (3.18), the bracket
can be rewritten in terms of differential forms as

{A, Bydu' A du* = 9;A0;Be'du' du* = dA A dB

= d(A A dB) (4.2)

Then Eqgs. (4.1a)—(4.1g) are expressed in terms of differ-
ential forms as follows.

d(\/B(dz — cos 0dP)) = 0, (4.32)

sds A d(cos @) —sin@dP A d(zcos0) + s3dQ A d<§>
s

—cosO@dP AdQ — Wdu' A du* = 0, (4.3b)

sdz A d(cos0) + sin@dP Ad(ssinf) =0, (4.3¢c)

: 2
d(P+Q)/\%—Sm0

dP Nds —sin@dP A d(sinf) = 0,
s

(4.3d)
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1
sdQ Nds —EdP/\d((z2 +1)cos?0) —sd <E> Ad(cos6)
s

0. (4.3¢)
sdQ A d(cos 0) + sin’0dP Ad(scos0) =0, (4.3
d(dP(Q — zcos#)) = 0. (4.3g)

Since Eq. (4.3f) can be written as a total derivative, it is
expressed as the derivative of a appropriate function @
according to Poincaré’s lemma:

d(—(Q 4 sinop) 20 P@) =0

sinf cos & s
do ds
— inP) ——— + P— = dw.
(Q +sin°0P) sin 6 cos 6 s @
4.4)
Egs. (4.3¢), (4.3g) lead to the relation
zcosd = P+ Q. 4.5)

Furthermore, Eqgs. (4.3d) and (4.3e) are equivalent to
Egs. (4.3g) and (4.3a), respectively. We also substitute
the explicit form of W into Eq. (4.1b). Then our equations
are simplified as follows.

d(\/p(dz — cos 0dP)) = (4.62)
) do ds\ _
( (Q +sin QP)—anCOSG+P s) =0, (4.6b)
zcos® =P+ Q, (4.6¢)
2
<cos i 1) {P, cosG}2
SQ{S,COSQ}({P,Q}—Z{P,COSH})
+z{P,cosO}{P, Q}—I—Z o320 {P,cos0}{QcosO}
—0. (4.6d)

This is one of the main results of this paper.

A. Special case

Let us check the consistency of these equations in the
well-known case [16] where

PHYSICAL REVIEW D 89, 046002 (2014)

P =0, O =kcos 0, Z=K. 4.7)
We can easily check that this configuration satisfies
Eqs. (4.6a2)—(4.6d).

This configuration contains no DI-brane and corre-
sponds to the 't Hooft operator with the trivial Young
diagram.

V. BOUNDARY BEHAVIOR

We have to give boundary conditions to solve
Egs. (4.6a)—(4.6d). The boundary of the u-plane [the base
2-dimensional space coordinated by (u',u?)] is given by
s = 0 or sin @ = 0. The boundary condition is not arbitrary
and it contains the detailed information of the associated
operators in the gauge theory as in [27-31]. We explain the
relation between the boundary behavior of our system and
Young diagrams which label the ’t Hooft operators.

The structure of the D5-brane world volume is a fiber
bundle over the u-plane with the fiber S' x S! coordinated
by ¢ and y. Each point of the boundary is distinguished by
whether s = 0 or sin # = 0 and the boundary is divided into
segments as shown in Fig. 1. Let [;,i = 1, ..., Z denote the
ith s =0 segment and J;, j = 1,....,Z — 1 denote the jth
i ‘ and P is a
constant P; on /; for smoothness since dy is singular at /;
and dP A dy must vanish. The pullback dQ| s, also van-
ishes and Q is a constant Q; on J; in the same way. Thus
the gauge flux reduces to F = dQ/\d¢ at [; and F =
dP A dy at J;. At each internal point on /; the flber reduces
to S! coordlnated by ¢ and at both endpoints of /; the radius
of this S fiber vanishes. Therefore these S' ﬁbers make a
noncontractible S? cycle denoted by S2. There is also a
noncontractible S? cycle (denoted by S2) on J; in the
same way.

The charge is defined as the integration of the flux on
each noncontractible S and we define these quantities as

v Vif. V
n; = (2ﬂ)2/S§dQ/\d(p—E/]idQ—E(Qi—QH%

(5.1)

VA
mj:= —(2”)2 /g? dP N dy =

Here Q, is defined as the value of Q on the first § = 0 half
line J,. The normalization is determined so that n; and m;
are integers as follows. In a general D5-brane with world
volume flux the number of the D3-branes and the number
of the DI-branes are calculated by the integration of
the gauge flux as seen from the Wess-Zumino term of
the D5-brane action.

VA Vi
(5.2)
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‘ L]

\ '
I .
7, 5282 g7
N& | >0)
Ji1 I; J;
Qi1 P, Qi

Fig. 1 (color online). The boundary line and 2-spheres com-
posed of y and ¢-cycles.

T
(number of D3-branes) = — = F,

T 1
(number of D1-branes) = —5 —FANF
M4 2

=3 ,2/ FAF, (54

where the integral over M, or M, denotes the integral over
the perpendicular directions to D3-branes or D1-branes on
the D5-brane world volume. We also use the Dp-brane
tension T,

1
Ty = Qr)PdPH12g -5

and o = 1/+/2 in our unit. Here g, is the string coupling
constant.

Since the quantities n; and m; are integers, these can be
related to the number of boxes in the Young diagram as
follows. First we deform the boundary as stepwise by
bending it at the edges of each segment. After that
deformation this boundary line can be interpreted as the
right down edge of the Young diagram as shown in Fig. 2.
The integers n; and m; correspond to each length of the
edge of the Young diagram.

Let us consider the relation between the number of
branes and the Young diagram for a consistency check. The
number of the D3-branes ending on the D5-brane, denoted
by £, is related to the vertical length of the Young diagram
as follows.

- €HEHE—

mip Mo M3

Fig. 2 (color online). The relation between a deformed boun-
dary line and the Young diagram.

PHYSICAL REVIEW D 89, 046002 (2014)

Fig. 3 (color online). M, is a 2-dimensional manifold located
sufficiently far from the center. It can be deformed into 2-spheres
located in the boundary without changing the value of the

integral.
A
471' M,

A
:EZAZdQ/\d(ﬁ

A
=523 [ a0
= Z”i,

(5.6)

where M, is a 2-cycle shown in Fig. 3.

On the other hand, the number of the D1-branes k'
can be interpreted as the total number of boxes in
the Young diagram which characterize the boundary
condition as expected. This relation is derived as
follows.

K :?;#1[\442dP/\dw/\dQAd¢
= —i/ dP ANdQ
47 Ju—plane
A / d(P AdQ)
47 Ju—plane

= A PAdQ
47[ O(u—plane)

:—4—7122}),.[(@
-2

) ()

i>2 \j<i 1
_ ¥ ( ) m,> "
i>2 \j<i—1
_ _<ij> . (Zm,) My 5)
j<1 =2
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Here M, is a 4-cycle coordinated by u', u?,y, ¢. In the 5th
line we used the fact that P is a constant at each /;. Then in
the next line the integral can be rewritten by (5.1) and the
potential functions P; can be translated by adding a
constant to all P;. Using this ambiguity we set P; = 0.
The first term of the final expression (5.7) (i = 2) is equal
to the number of the boxes in the lowest set of columns of
the corresponding Young diagram. The second term is
equal to the number of the boxes in the second lowest set of
columns, and so forth (Fig. 2).

From the above calculations (5.6), (5.7), we see a
correspondence between the brane configuration and the
number of the boxes in the Young diagram. Namely, k, the
number of the D3-branes ending on the D5-brane, corre-
sponds to the vertical length of the Young diagram, and k',
the number of the D1-branes embedded on the D5-brane, is
the total number of the boxes in the Young diagram. These
are consistent with our conjectured relation.

VI. CONCLUSION

In this paper we propose the relation between the Young
diagram and the brane configuration, and find the method
to determine the brane configuration from the Young
diagram. This relates the shape of the Young diagram,
described by integers (5.1) and (5.2), and the brane
configuration as follows. These numbers are the number
of boxes in the Young diagram. The correspondence is that
k, the number of the D3-branes ending on the D5-brane,
corresponds to the vertical length of the Young diagram
(5.6) and k', the number of the D1-branes embedded on the
D5-brane corresponds to the total number of the boxes in
the Young diagram. Once we are given a certain 't Hooft
operator, we obtain a Young diagram describing that
operator. This information about the Young diagram
directly requires the boundary condition via n; and m;
(5.1) and (5.2). Then we relate this operator to a brane
configuration according to Egs. (4.6a)—(4.6d).

We can propose some interesting future works. First, we
can try to confirm this correspondence by a concrete
calculation as in Sec. IV A for the simplest case.

Second, it is also an interesting future work to calculate
physical quantities, such as expectation values of these
’t Hooft operators and correlation functions with other
operators in the string theory side and the gauge theory
side. In the gauge theory side, we can make use of
localization technique [43,44]. In the string theory side
we can compute these quantities from the classical action of
the D5-brane. It will be very interesting to compare these
two results and check the AdS/CFT correspondence.

Finally, another interesting application is to consider a
deformed ’t Hooft operator. In this paper we only consider
the simplest path—straight line for the ’t Hooft operator.
When this path is deformed into a knotted configuration,
the brane configuration becomes much more complicated.

PHYSICAL REVIEW D 89, 046002 (2014)

This topic is related to the knot homology as recently
studied in [45,46].
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APPENDIX A: SUSY IN BULK SPACE

We investigate supersymmetry in AdSs x S° spacetime
with metric
1
¥?

+ sin20dg?.

ds® = = (—di?* + dy? + dr* + rPdy?® + dx3) + do?
(A1)

In order to preserve supersymmetry, the gravitino trans-
formation must give zero,

i
V€ + ?FMIMZWMSF;,SI?MZ_“MSFMe -0, (A2
1 AB

Vi =0y + ZQM 4, (A3)

where gamma matrices with indices M = ¢, r,y, x3,y,0, ¢
are I',:=EM, :%FO and so on. I'y, A=0,...,9, are
constant gamma matrices in 10-dimensional spacetime.
They  satisfy  {[4,['g} =2n4p  Where a5 =
diag(—1,+1, ..., +1). We use the notation for antisymme-
trized products of gamma matrices as

1 .
FAIAZ---An = ﬁ Z Slgn(G)FA,,(l)FAg@) .. .FAU("). (A4)

' 0€e®,

The SUSY parameter € is a complex Weyl spinor which
satisfies I'°!~%¢ = ¢. In this paper we choose vielbein as

Eozﬂ’ El:ﬂ, Ezzrd_w, E3:%,
y y y y

4 dy 5 6 1

E*=—, E° =do, E® = sin Od¢. (AS)
y

The spin connections Q48 = QABEM are related to
vielbein as dE* = —Q4E®, and calculated using this
relation as follows.
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dt d
904:_;’ Q2 — _dy, 914:_7”’
924:_rd_l//, 934:_@, Q% = —cosOdgp,

y y

(A6)

and the other components are zero. The equations (A2) for
7 components, M = t, r,y, x3,y,0, ¢, are

1
D — e =0, (A7a)
2y
1
De— 1T e=0. (A7b)
2y
1 147y
81,,6 - §F12€ - 2y F24€ = 0, (A7C)
1+7y
Oy, I3 =0, (A7d)
1
Oye + 5)/6 =0, (ATe)
1
896' + 5}/1—‘456' =0, (A7f)
1
8¢€ - Ee_7r45r566 = O, (A7g)
where we used the matrix y:= —ily;53. Solving

Egs. (A7a)—(A7g) we obtain the supersymmetry parameter
in the bulk spacetime.

0, ¢ 1 1+, 1+ 1+,
€ = e 5356 g3 I y'}’erTyFm ex3TVF34 efTYFM e%l"lzeo, (A8)

where €, is an arbitrary constant complex Weyl spinor.

. Qr Zr .
For convenience, we define &:=e2 s6e> 12¢5. Then € is
rewritten as

14
¢ = e Tas p=3nyy pr"Tu ex3¥1"34 ef#rmg‘

(A9)
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APPENDIX B: KAPPA SYMMETRY
PROJECTION FOR D5-BRANES
AND D1-BRANES

The kappa symmetry projection [36—42] plays a crucial
role in our research. The supersymmetry with the param-
eters (A9) which satisfy

l'e=e¢€ (B1)
survives in the presence of a D-brane. Here the projection
operator I' is defined for a Dp-brane in type IIB string
theory as

dp+1§ Ie= (_e_é(_ det(Gind + f))_l/zefX)|(p+l)—form’
(B2)

PO s
X::ZME%..E Ty, K"(=0),  (B3)

where &, i =0, ..., p, are world volume coordinates, ® is

the dilaton which is zero now, G, is the induced metric of

the Dp-brane and E* is the pull back of E4 defined
S M i

as E* = Ej %5 dé'.

In this section we calculate the two cases of them—a
D5-brane and a D1-brane. We now consider the situation in
AdSs x §° spacetime formed by multiple D3-branes with
metric
1
7 (—dt* + dy* 4+ dr* + r*dy? + dx3) + do*

+ sin’0dg¢?,

ds? =
(B4)

where we concentrate on the S? part of the $° and the AdS
radius is set to unity.

1. D5-brane
First, let us consider the D5-brane with ansatz [16,42]

F = fsin@dO A d, (k, f :constant).

(BS)

X3 = KY,

The induced metric of the D5-brane with coordinates
(t,rop,y = %x3,9,¢) is

1
32

dsps = = (—di* + dr* + r*dy* + (k* + 1)dy*) + d6*

+ sin?0dg>. (B6)

We need to calculate the determinant of
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—1/y?
1/y?
r/y?
Gind +F = (1 + %) /y2 ’ (B7)

1 fsind
—fsin@  sin’@

where all empty components denote zeros. The result is

V= det(Gyg + F) = ”if‘g\/l + 1/K2\/1 s (B8)

y
Since e/ = 1 + fsin’0dO A dep,
6 1 y4 .
1 y .
=T TR /i T 72 rsing oo +/Sn0AON D Zlotom) ®9)
|
Xlo—torm and ¥|4_form are Since the dilaton ® is zero and there is no flux, 7 =0,
in 6 1 6T = =’ torm- BI5
Xl6—form = dfd”dllfddedqbKirSlizl <F012356 + KF012456>7 ¢ L (B13)
Y @1o)  Subsituing
N
ZlZ—form = _dtdrK(_l) ?F04v (B16)
. | we obtain
Xla—torm = dtdrdydy(—i) 7 <F0123 + ;F0124>- (BI1) Ty = DouK(—i). (B17)

The necessary and sufficient condition for satisfying
We obtain the following result by putting them together. [pie =eis

1 (iKTpy — 1)& = 0. (B18)
Ups = —= 3 7(KTss + f)(F3g + k). (B12) _ _ _
(K +1)(f*+1) Both the conditions (B13) and (B18) are satisfied in our
bound state of a D5-brane and D1-branes.

The necessary and sufficient condition for e to satisfy
['pse =€ is k = —f and Appendix C: DERIVATION OF I'

_ We calculate I" defined in (B2) and (B3) for a D5-brane
KT =0. B13
(KT3as6 +7)¢ ( ) with world volume coordinates (7, y, ¢, y, ul, uz). There is

a flux on the D5-brane,
2. D1-brane

Next, let us calculate the D1-brane case. The induced
metric for the D1-brane with world volume coordinates

(t,y) is

F =dP(u) Ndy + dO(u) A de. (C1)
In our situation, the dilation is zero, and

e =14 0,Pdu’ A dy + 0,Qdu’ A d¢p
—0,P0,Qedy A dep A du' A du?, (C2)

1
dsp, = — (—dt* +dr?). (B14)
y
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(ef)()|67fr0m = )(‘67form +)(|47form : aanua A dl// +X|47f0rm : aanua A d¢
F ¥l torm * (—0a PO Q™) dy A dep A du A du®. (C3)

Here the first y|,_;,m in the expression (C3) is proportional to dt A d¢p A dy A du®, (b # a), while the second is proportional
to dt Ady Ady Adub, (b # a) and we use the notation

0A OB 0A OB

A, B} :=€"0,A0,B = — —— — ——, C4
{A, B} 1=e0,40, ou' Ou?  Ou? Oul €4
in the following. Each term of Eq. (C3) is calculated as follows.
6. Ssind )2 .
Xlo—form = d°& - " {2,035 + {s,0}'15s — s ;,9 Uia4s + {5, 2013 | Toal 2 K (=), (C5a)
B sinf [ Z
Xa—form * O Pdu’dy = Vo s P’E Ly —{P.s}Ty — {P, 2}T34 + s{P,0}T';5
+z{P.0}I'3s + {P, 9}F45)F60(—i)d6§7 (C5b)
s Z
Xa—torm - 0, Qdu’dy = 7 <—S2{Q,E}F13 +{Q. s}y +{Q. 2}
- s{0Q,0}I';s — z{ Q. 0}I'3s — {0, 9}F45>F20(—i)d6§, (C5¢)
1
Xr—torm - (=0, P, Qe ) dydpdrdy = }j(SabaaPabQ)(Srm + 234 4+ 4K (=) - d%, (C5d)
where d®¢ = dt Ady Adp A dy A du' A du?.
In the definition (B2), Lppg; is
w
‘CDBI =\ — det(Gind + F) = y—2 . (C6)
Under our ansatz, see Eq. (3.8) in Sec. III B, the induced metric Gj,q is
2 Voo 2ga g PBoo i 9B o,
dsiy = —?dt + s7dy* + sin“0d¢ —l—?dy + h;jdu'du —|—7du dy, (C7)

A=s.z.0

We define a convenient variable f:=1 + s> + z2. W is calculated as the following determinant.
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1)y -
S2 —J1 —J2
Sin29 _Ll —L2
2 _ A
Ji Ly L0158 hy hya
i Jy L giyazﬁ ha hy |
S2 Jl —.12
sin’0 -L, -L,
— det P30 301 (C9)
Ji L ﬁalﬁ hy hip
S L %Vazﬂ ha ha,
where J,:=0P/0u® and L,:=0Q/0u”. To calculate this determinant the following formula is convenient.
det[é g} = detA - det(B — CA™'D). (C10)

We use this formula for We use this formula for

S2 _Jl _J2 J L laﬂ h h
A= sin%0 , D=|-L, -L,]|, C— {Jl Ll ial } B— {hll hlz]‘
i 1o 10,8 2 Ly 30,0 21 N

Then W is written explicitly as

W2 = s%sin?0{s, z}*
+ s2sin?0((z% + 1){s, 0} + (s*> + 1){z,0}* — 252{s,0}{z,6})
+sin?0((z% + 1){s, P}*> + (s> + 1){z, P}*> — 2sz{s, P}{z, P})
+52((22 + D{s. 0F + (s* + D{z. 0} — 252{s, 0}{z. 0})
+p{P. 0}, (C11)

Summarizing the above, the operator I' is

1
I'= W {S sin HAF62K(—Z)F04 + sin 98(—Z>F60 — SC(—i)FZO + DK(—I)F04}, (C12)
where
A= — {5, 2}T13 — {5,060} 15 — {2.0}T35 + SZ{E,Q}Fms’ (C13a)
Bi= — {P’E}FIS +{P, s}y + {P, 2} T34 — s{P,0}';s — z{P,0}'3s — { P, 0}Tys, (C13b)
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C=— {Q»E}FB +{0.5}14 + {0, 2354 — s{0.0}T'15 — 2{Q, 0}T 35 — {0, O}T 45,

Di= —{P,0}(1 + sy + 2['3),

PHYSICAL REVIEW D 89, 046002 (2014)

(Cl13c)

(C13d)

C is obtained by replacing all P’s in B by Q’s, and W is given by Eq. (C11).
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