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We study the scattering amplitudes of mass-deformed Chern-Simons theories and Yang-Mills-Chern-
Simons theories with N ¼ 2 supersymmetry in three dimensions. In particular, we derive the on-shell
supersymmetry algebras which underlie the scattering matrices of these theories. We then compute various
3 and 4-point on-shell tree-level amplitudes in these theories. For the mass-deformed Chern-Simons theory,
odd-point amplitudes vanish and we find that all of the 4-point amplitudes can be encoded elegantly in
superamplitudes. For the Yang-Mills-Chern-Simons theory, we obtain all of the 4-point tree-level
amplitudes using a combination of perturbative techniques and algebraic constraints and we comment
on difficulties related to computing amplitudes with external gauge fields using Feynman diagrams.
Finally, we propose a Britto-Cachazo-Feng-Witten recursion relation for mass-deformed theories in three
dimensions and discuss the applicability of this proposal to mass-deformed N ¼ 2 theories.
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I. INTRODUCTION

Over the past few years, there has been a great deal of
progress in understanding the scattering amplitudes of
three-dimensional gauge theories. The study of scattering
amplitudes of Chern-Simons-Matter theories with N ≥ 4
supersymmetry and supersymmetric Yang-Mills theories
(SYM) with N ≥ 2 supersymmetry (initiated in [1] and
[2–4], respectively) shows that the S-matrices of three-
dimensional supersymmetric gauge theories contain fasci-
nating simplifying aspects that are not manifest in their
traditional Lagrangian descriptions. For instance, it was
shown in [1] that the four-particle amplitudes of a large
family of Chern-Simons-Matter theories have the same
formal structure as the scattering matrix of the spin chain
that is the large-N dilatation operator of N ¼ 4 SYM in
d ¼ 4. Furthermore, amplitudes of the N ¼ 8 supercon-
formal Chern-Simons theory known as the Bagger-
Lambert-Gustavsson theory [5,6] were studied in [7].
More recently, a BCFW recursion relation [8,9] for

three-dimensional gauge theories with massless fields
was developed in [10], and used to show that a N ¼ 6
superconformal Chern-Simons theory known as the
Aharony-Bergman-Jafferis-Maldacena (ABJM) theory
[11] has dual superconformal symmetry both at tree
[12,13] and loop-level. Dual superconformal symmetry
[14–16] is inequivalent to ordinary superconformal sym-
metry and generates Yangian symmetry when combined

with ordinary superconformal symmetry [17]. In 4dN ¼ 4
SYM, dual superconformal symmetry corresponds to the
ordinary superconformal symmetry of null-polygonal
Wilson loops that are dual to the amplitudes [18–22].
The Yangian symmetry of N ¼ 4 SYM can be made
manifest using a Grassmannian integral formula developed
in [23]. An analogous formula for the ABJM theory was
proposed in [24]. This formula involves an integral over the
orthogonal Grassmannian. Some evidence for an ampli-
tude/Wilson loop duality in the ABJM theory was found in
[25–27]. Recently, 1-loop amplitudes were computed in the
ABJM theory and shown to exhibit new structures which
do not appear in 4d N ¼ 4 SYM theory, notably sign
functions of the kinematic variables [28–30].
The recursion relation proposed in [10] was also used to

show that three-dimensional maximal SYM amplitudes
have dual conformal covariance [4]. Note that three-
dimensional SYM theories do not have ordinary super-
conformal symmetry because the Yang-Mills coupling
constant is dimensionful in three dimensions. Three-
dimensional SYM theories exhibit a number of other
surprising properties. In particular, Refs. [3,4] showed that
they have helicity structure and Ref. [3] showed that their
4-point amplitudes have enhanced R-symmetry which
originates from the duality between scalars and vectors
in three dimensions. Furthermore, the loop amplitudes of
three-dimensional maximal SYM theory have a similar
structure to those of the ABJM theory. In particular, 1-loop
corrections are finite or vanish in both theories [4].
Furthermore, the 2-loop 4-point amplitudes of both theories
can be matched in the Regge-limit [31]. It was recently
shown that three-dimensional supergravity amplitudes can
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be obtained as double copies of both three-dimensional
supersymmetric Chern-Simons theories and three-
dimensional SYM theories [32,33]. All these remarkable
developments provide ample motivation for further inves-
tigation into the scattering amplitudes of gauge theories in
three spacetime dimensions.
It may be fair to say that most of the investigations

mentioned above are largely confined to the studies of
massless theories with high degrees of supersymmetry. In
this paper, we explore a complementary part of the landscape
of d ¼ 3 gauge theories from the point of view of scattering
amplitudes. Specifically, we investigate mass-deformed
N ¼ 2 gauge theories with adjoint matter fields. The two
theories that span this category are mass-deformed Chern-
Simons theory (hereafter referred to as CSM theory) and
Yang-Mills-Chern-Simons theory with N ¼ 2 supersym-
metry (YMCS), and we investigate their tree-level color-
ordered scattering amplitudes in this paper. Whereas the
gauge field has no propagating degrees of freedom in the
Chern-Simons theory, in the Yang-Mills-Chern-Simons
theory the gauge field has one propagating degree of
freedom, which is massive. In particular, the Chern-
Simons term provides a topological mass for the gauge
field without breaking gauge invariance or locality [34,35].
From the point of view of scattering amplitudes, these

theories are interesting for a number of reasons. We find
that there are two different on-shell N ¼ 2 superalgebras
that can potentially arise as symmetries of these theories.
The first of these is the standard N ¼ 2 superalgebra
with the schematic structure fQI;QJg∼δIJP; ðI;JÞ¼ð1;2Þ.
In the case of a flavor SOð2Þ R symmetry, one can also have
a “mass-deformed” algebra where the supercharges close
on the momentum as well as the R symmetry generator. Or,
schematically, fQI;QJg ∼ δIJPþmϵIJR. Such mass-
deformed algebras—though rare in the list of all possible
superalgebras—have been shown to arise as symmetries of
three-dimensional gauge theories in a number of previous
investigations [1,36,37]. In the present work we find that
the mass-deformed N ¼ 2 algebra is the underlying
symmetry algebra for the CSM theory. We find a conven-
ient single particle representation of this algebra and find
that all of the 4-point tree-level amplitudes can be encoded
in superamplitudes (note that the odd-point amplitudes in
the Chern-Simons theory have external legs which are
gauge fields and therefore vanish on-shell). While compo-
nent amplitudes ofN ≥ 4massive CSM theories have been
studied in great detail (for example in [1]) theN ¼ 2 CSM
theory studied in this paper is distinguished from the class
of models investigated in [1] by virtue of allowing the
matter fields to be in the adjoint representation (which is
typically not possible for higher supersymmetry). The
component amplitudes obtained in this paper are not known
to be obtained by a trivial truncation of the N ≥ 4
amplitudes either. Furthermore, to the best of our knowl-
edge the superamplitude presented in this paper for the

massiveN ¼ 2 theory is the first concrete formulation of a
superamplitude for a massive gauge theory in d ¼ 3.
In the case of the YMCS theory, we find that the

underlying supersymmetry algebra is the undeformed
one where the supercharges close on momenta alone.
This is to be expected as there is no flavor symmetry in
the bosonic sector of the theory, since the Lagrangian has
only one scalar field. We derive an on-shell representation
of this algebra and use it to obtain constraints on 4-point
amplitudes (the on-shell algebra does not constrain the
3-point amplitudes). We find that that the relations among
the 4-point amplitudes of the YMCS theory are consid-
erably more complicated than those in the CSM theory. The
root of the complication has to do with the absence of the
extra SOð2Þ symmetry in the bosonic sector. Nevertheless
we are able to compute a number of these amplitudes and
verify that the computed amplitudes are consistent with the
on-shell algebra. Although we do not compute amplitudes
with external gauge fields using Feynman diagrams, we are
nevertheless able to deduce the 4-point amplitudes with
external gauge fields using the on-shell algebra.
We also propose a BCFW recursion relation for mass-

deformed three-dimensional theories which reduces to the
proposal in [10] when the mass goes to zero. This recursion
relation involves deforming two external legs of an on-shell
amplitude by a complex parameter z. In order for the
recursion relation to be applicable, the amplitudes must
vanish as z → ∞. We show that 4-point superamplitudes of
the CSM theory have good large-z behavior, so our
proposed recursion relation may be applicable to this
theory. However, the proposed relations do not seem to
apply to the YMCS theory and we comment on the relevant
issues in the corresponding section of the paper.
Three-dimensional N ¼ 2 gauge theories are also inter-

esting from various other points of view. In particular, they
exhibit Seiberg duality [38–40], F-maximization [41], and a
F-theorem [42]. The gravity duals of these theories are also
known and have been studied in [42–44]. Finally, three-
dimensional N ¼ 2 superconformal gauge theories arise
from compactifications of the 6d (2, 0) CFT compactified
on 3-manifolds [45–47]. It would be very interesting to
make contact with these results from the point of view of
scattering amplitudes.
The structure of this paper is as follows. In Sec. II we

describe some general aspects of the CSM and YMCS
theorieswhose amplitudeswe compute in this paper.We pay
special attention to the derivation of the on-shell supersym-
metry algebras in this section. In particular, we derive the on-
shell representation of the algebra for the YMCS system in
some detail following canonical quantization. This deriva-
tion relies on a careful analysis of the implementation of the
Gauss-law constraints on the physical Hilbert space, which
is described in some detail. In Sec. III, we compute the
4-point amplitudes of the CSM theory and show that they
can be encoded in superamplitudes. We also describe the
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symmetries of the 4-point superamplitudes which we expect
to hold for higher-point superamplitudes. In Sec. IV, we
compute various 3- and 4-point amplitudes of the YMCS
theory at tree level and use the on-shell superalgebra to
deduce the remaining 4-point amplitudes.We also comment
on the complications that arise when trying to compute
amplitudes with external gauge fields in the YMCS theory
using perturbative techniques. In Sec. V, we propose a
BCFWrecursion relation formass-deformed 3d theories and
discuss its applicability to the theories studied in this paper.
In Sec. VI, we present our conclusions and describe some
future directions. In Appendix A, we describe our con-
ventions, Feynman rules, and various other useful formulas.
InAppendixBwe providemore details about the calculation
of various 4-point amplitudes.

II. MASS-DEFORMED N ¼ 2 GAUGE THEORIES

In this section we review some general aspects of the
mass-deformed three-dimensional supersymmetric theories
whose scattering amplitudes we study in this paper. The
gauge field which appears in these theories has a Chern-
Simons term

SCS ¼ κ

Z
ϵμνρtr

�
Aμ∂νAρ þ

2i
3
AμAνAρ

�
: (1)

As is well known, a Chern-Simons gauge field is not parity
invariant and does not have any propagating degrees of
freedom. On the other hand, a Yang-Mills gauge field
respects parity and has one massless degree of freedom in
three dimensions. When taken in conjunction with the
Yang-Mills action, the Chern-Simons term breaks parity
and gives rise to a mass for the three-dimensional gluon
[34,35]. There are alternate Lorentz invariant mass-terms
for gluons that one can consider in three dimensions (see
[48,49] for examples). But they typically lead to nonlocal
terms in the action. A quadratic mass term for the gauge
field could also arise via the Higgs mechanism, but this
would break gauge invariance. In the present paper we
consider the only known mass-term for a gauge field which
is Lorentz invariant, gauge invariant, and local in three
dimensions, namely SCS. Note that SCS admits two different
supersymmetric completions leading to supersymmetric
Chern-Simons and Yang-Mills-Chern-Simons theories. In
the first case, the gauge field does not have propagating
degrees of freedom and the physical on-shell degrees of
freedom consist of matter hypermultiplets. In the latter case
there are Yang-Mills kinetic terms and the Chern-Simons
term provides a topological mass for the gauge field (which
contributes to the on-shell degrees of freedom). We will
study scattering processes in both the theories while
restricting ourselves to the case of N ¼ 2 supersymmetry.
Before discussing mass-deformedN ¼ 2 gauge theories

in greater detail, we briefly review the 3d spinor formalism.
The three-dimensional spinor formalism can be obtained by

dimensional reduction of the four-dimensional spinor
formalism [4]. We begin by writing a 4d null momentum
in bispinor form

pαβ
:

¼ λαλ̄β
:

; (2)

where α ¼ 1, 2 and β
:
¼ 1, 2 are SUð2Þ indices which arise

from the fact that the Lorentz group is SOð4Þ∼
SUð2ÞL × SUð2ÞR. When reducing to three dimensions,
the distinction between dotted and undotted indices
disappears because the Lorentz group is SUð2Þ ¼
½SUð2ÞL × SUð2ÞR�diagonal. Alternatively, we can reduce
to three dimensions by modding out by translations along
a vector field Tαβ

:

, as described in [4]. Using the vector field
to change dotted indices to undotted indices in (2) and
symmetrizing the indices then gives

pαβ ¼ λðαλ̄βÞ: (3)

We symmetrize the indices in order to remove the compo-
nent of the momentum along the direction Tαβ

:

. The
resulting momentum is a 2 × 2 symmetric object, which
has three components.
We denote inner products of the spinors using bracket

notation

hλiλji ¼ ϵβαλ
α
i λ

β
j :

If we square (3), we find that

hλλ̄i2 ¼ −4m2: (4)

Hence, if the particle is massless, then λ ∝ λ̄ and the
momentum can be written in bispinor form as
pαβ ¼ λαλβ. More generally, for a massive particle in three
dimensions, the momentum is given by (3). Equations (3)
and (4) can be summarized as follows

λαλ̄β ¼ pαβ − imϵαβ:

In particular, hλλ̄i ¼ −2im.
For later convenience, we will denote λ ¼ u and λ̄ ¼ −v.

The two spinors u and v are solutions of the free massive
Dirac equation and are given in (A4))1. They satisfy

vαuβ ¼ −pαβ − imϵαβ; (5)

where Pαβ ¼ −ðpμγ
μC−1Þβα is given explicitly by

Pαβ ¼ Pβα ¼
�−p0 − p1 p2

p2 −p0 þ p1

�
: (6)

1An exhaustive list of the properties of these spinors can be
found in [1].
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A.N ¼ 2 massive Chern-Simons-Matter (CSM) theory

The CSM theory is described by the action

SCSM ¼ κ

Z
ϵμνρtr

�
Aμ∂νAρ þ

2i
3
AμAνAρ

�

− 2

Z
trjDμΦj2 þ 2i

Z
trΨ̄ðDμγ

μΨþmΨÞ

−
2

κ2

Z
trðj½Φ; ½Φ†;Φ�� þ e2Φj2Þ

þ 2i
κ

Z
trð½Φ†;Φ�½Ψ̄;Ψ� þ 2½Ψ̄;Φ�½Φ†;Ψ�Þ; (7)

where,

κ ¼ k
4π

; m ¼ e2=κ: (8)

Note that the Chern-Simons term is odd under parity, so the
theory is not parity invariant. The parameter k is the Chern-
Simons level. The matter couples to the gauge field with
coupling constant 1=

ffiffiffi
k

p
. The parameter e sets the mass-

scale in the superpotential. Even though it is a dimensionful
number, it does not run in the superrenormalizable theory
and can be regarded as a parameter of the theory. Taking the
mass to zero or infinity while holding the coupling 1=

ffiffiffi
k

p
constant corresponds to taking e to zero or infinity. In the
massless limit this theory reduces to a conformal N ¼ 2
Chern-Simons-matter theory. In the infinitely massive limit,
the theory reduces to a pure Chern-Simons theory with no
propagating degrees of freedom. The conventions under-
lying the above action assume that all the fields are in the
adjoint representation of the gauge group. Furthermore, we
assume the generators of the gauge group ta [which we can
take to be SUðNÞ] to be Hermitian. We then have

A¼ Aata; Φ¼Φata; Ψ¼Ψata; trðtatbÞ ¼ 1

2
δab;

½ta; tb� ¼ ifabctc; Dμ ¼ ∂μ− i½Aμ; �: (9)

In terms of real variables,

Φ ¼ 1ffiffiffi
2

p ðΦ1 þ iΦ2Þ; Ψ ¼ 1ffiffiffi
2

p ðΨ1 þ iΨ2Þ; (10)

where Φi and Ψi are real and Majorana, respectively.
We can immediately see that the free (Abelian) part of

the action is invariant under

δϵ̄Φ ¼ ϵ̄Ψ; δϵΦ† ¼ Ψ̄ϵ; δϵΨ ¼ þið∂μγμ −mÞΦϵ;
δϵ̄Ψ̄ ¼ −iϵ̄ð∂μγμ þmÞΦ†; (11)

where δϵ ¼ ½Q̄ϵ; �, δϵ̄ ¼ ½ϵ̄Q; �. All other supersymmetry
variations vanish. In the non-Abelian/interacting theory, the
SUSY variation of the scalar fields remains as above, but the
variations of the fermions and the gauge fields are given by

δϵΨ ¼
�
ið∂μγμ −mÞΦ − i

κ
½Φ; ½Φ†;Φ��

�
ϵ;

δϵAμ ¼ − i
κ
½Φ; Ψ̄γμϵ�: (12)

The δϵ̄ variations in the non-Abelian case can be
obtained from the ones given above by conjugation. The
fundamental anticommutation relation between the super-
charges is

fQβJ; QαIg ¼ 1

2
ðPαβδIJ þmϵβαϵJIRÞ; (13)

where R is the SOð2Þ ¼ Uð1Þ symmetry generator which
rotates ðΦ1;Φ2Þ and ðΨ1;Ψ2Þ.
For the mass-deformed Chern-Simons theory, the on-

shell asymptotic states are those of the complex scalar Φ
and fermionΨ. In our notation, the asymptotic momentum-
space states of Φ and Ψ are denoted jaþi and jχþi,
respectively. Using the mode expansions for these fields,
which are given by (A3), in the supersymmetry algebra
(11), we see that the supersymmetry variations of the on-
shell states are given by

QIjΦ1i ¼
1

2
vjχIi;

QIjΦ2i ¼
1

2
vϵIJjχJi;

QIjχJi ¼
1

2
δIJujΦ1i þ

1

2
ϵIJujΦ2i; (14)

where u and v are spinors defined in (A4)2.
We can express these transformations in a way that

makes the Uð1Þ R-symmetry of the theory manifest by
forming complex combinations of the fields and super-
charges

a� ¼ 1ffiffiffi
2

p ðΦ1 � iΦ2Þ; χ� ¼ 1ffiffiffi
2

p ðΨ1 � iΨ2Þ;

Q� ¼ 1ffiffiffi
2

p ðQ1 � iQ2Þ:
(15)

We then obtain

Qþjaþi ¼
1ffiffiffi
2

p vjχþi; Qþjχ−i ¼
1ffiffiffi
2

p uja−i;

Q−ja−i ¼
1ffiffiffi
2

p vjχ−i; Q−jχþi ¼
1ffiffiffi
2

p ujaþi;

Q−jaþi ¼ Qþjχþi ¼ Qþja−i ¼ Q−jχ−i ¼ 0: (16)

2For a detailed discussion of the on-shell representation of
three-dimensional massive N ≥ 4 superalgebras, we refer to [1].
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It is important to emphasize that the superalgebra (13) is
a noncentral extension of the standardN ¼ 2 superalgebra.
In particular, the anticommutator of the charges does not
close onto the momentum generator alone, as it also
involves the R symmetry generator as part of the funda-
mental supersymmetry algebra. Such mass-deformed alge-
bras frequently arise in the context of three-dimensional
gauge theories with mass-gaps; in particular in N ≥ 4
Chern-Simons-Matter theories [1]. It is instructive to see
how the algebra described above is embedded in the
supersymmetry algebra of the massive N ¼ 6 theory. In
the notation of [1], the matter content of N ¼ 5, 6 CSM
theories is given by scalars ϕa, ~ϕa

: and fermions ψa
: , ~ψa

where a, a
:
are two different SUð2Þ indices. The fields

denoted by tildes are part of the twisted hypermultiplets,
while those without the tildes form the untwisted hyper-
multiplets. In the case ofN ¼ 6 supersymmetry, one has—
as part of the full supersymmetry algebra—supercharges
Q�

α that transform scalars and fermions belonging to the
twisted and untwisted hypermultiplets to each other, while
acting trivially on the SUð2Þ indices (see the discussion in
Sec. 2.4 of [1]). These supercharges (for a fixed value of the
SUð2Þ index) generate the massive N ¼ 2 algebra con-
sidered here3. It should be noted, however, that the theory
considered here is distinguished from the class of models
studied in [1] by virtue of all the matter fields being in the
adjoint representation, which, typically is not possible for
N ¼ 4 and higher supersymmetry.
We also note that just as the supersymmetric Chern-

Simons theories are not known to be obtained as the
dimensional reduction of higher dimensional gauge theo-
ries, this massive superalgebra is not what one obtains by
the dimensional reduction of the free N ¼ 1 theory in four
dimensions. In fact, if one takes the massive N ¼ 1 d ¼ 4
free action given by

Sd¼4¼−1

2

Z
R4

ð∂μΦI∂μΦIþm2ΦIΦIþ iΨ̄Γμ∂μΨþ imΨ̄ΨÞ;
(17)

which is invariant under

δαΨ ¼ 1

2
ðΓμ∂μ −mÞΦ1αþ i

2
ðΓ5Γμ∂μ þmΓ5ÞΦ2α;

δαΦ1 ¼
i
2
ᾱΨ; δαΦ2 ¼

1

2
ᾱΓ5Ψ; (18)

it is easy to see that the algebra closes on only the
momentum generators without any extensions

½δβ; δα�ΦI ¼
i
2
ðᾱΓμβÞ∂μΦI: (19)

The algebra retains this standard form even after dimen-
sional reduction to d ¼ 3, however the fermion mass-term
in d ¼ 3 derived from the SOð1; 3Þ-invariant four-
dimensional mass-term would be given in the three-
dimensional notation by

R ðΨ̄1Ψ1 − Ψ̄2Ψ2Þ. This is
different from the term we have in (7) where the mass
terms for both the fermions have the same sign.
In other words, in d ¼ 3 we can choose between two

different fermion mass-terms

M1 ¼
Z

ðΨ̄1Ψ1 − Ψ̄2Ψ2Þ; or M2 ¼
Z

Ψ̄IΨI: (20)

The choiceM1—the parity conserving option—leads to the
standardN ¼ 2 algebra without extensions whileM2 leads
to a mass-deformed algebra and violates parity. However
the Chern-Simons term, which is present in the gauge
theories we study, violates parity. Thus it is natural that the
fermionic mass terms resulting from the supersymmetric
completion of the Chern-Simons term violate parity as
well. It is apparently this interplay between the parity
invariance of the theory and the fermionic mass term that
leads to the massive nature of the on-shell algebra in
this case.

B. N ¼ 2 Yang-Mills-Chern-Simons (YMCS) theory

The second theory of relevance to this paper is the well-
known N ¼ 2 YMCS theory described off shell by the
action SYMCS ¼ SYM þ SCS where 4

SYM ¼ 1

e2

Z �
− 1

4
Fa
μνFaμν − 1

2
DμΦaDμΦa þ 1

2
FaFa

þ i
2
Ψ̄a

I γ
μDμΨa

I þ
i
2
fabcϵABΨ̄a

AΦ
bΨc

B

�
;

SCS ¼
m
2e2

Z �
ϵμνρAa

μ∂νAa
ρ − 1

3
fabcϵμνρAa

μAb
νAc

ρ

þ iΨ̄a
IΨ

a
I þ 2FaΦa

�
: (21)

Here m ¼ ke2
4π where k is the Chern-Simons level, A ¼ 1, 2

is an SOð2Þ index, the scalar field Φ and auxiliary field F
are real, and the fermions are Majorana, so that
Ψ̄A ≡Ψ†

Aγ
0 ¼ ΨT

AC, where the charge conjugation matrix
C ¼ γ0. For further details about our conventions, see
Appendix A. Note that the matter fields Φ andΨ have mass
dimension 1 and 3=2. If they are rescaled by a factor of e,
i.e. if ðΦ;ΨÞ → eðΦ;ΨÞ, then they will have mass dimen-
sions 1=2 and 1. F is an auxiliary field whose elimination
generates the standard quadratic mass term of the real scalar
Φ, while the Chern-Simons term gives a topological mass

3There are presumably other distinct embeddings of theN ¼ 2
superalgebra in the larger N ¼ 6 superalgebra as well.

4We have taken the trace using (9) and also have chosen to
rescale the fields by the coupling constant, in comparison to (7).
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to the gauge field. Both the Chern-Simons term and the
fermionic mass term are odd under parity, so the theory is
not parity invariant when the mass is nonzero. Taking the
mass to zero or infinity while holding the Yang-Mills
coupling constant corresponds to taking k to zero or
infinity. In the massless limit, the theory reduces to N ¼
2 Yang-Mills theory and parity is restored. In the infinitely
massive limit, the theory reduces to a pure Chern-Simons
theory. What is not transparent from the action given above,
but is nevertheless true, is that the asymptotic physical
states also involve a second massive scalar with the same
mass. This scalar is nothing but the physical gauge
invariant degree of freedom encoded in the gauge field.
Note that for the free theory, the supersymmetry trans-

formation laws are

δηAμ ¼ − i
2
ðη̄IγμΨIÞ; δηΦ ¼ 1

2
η̄IΨJϵIJ;

δηΨI ¼
1

4
γμνFμνηI − i

2
ðγμ∂μ −mÞϵIJηJΦ: (22)

The anticommutator of the supercharges in these off-shell
transformation laws closes onto the momentum operator
alone

fQα
I ; Q

β
Jg ¼ − 1

2
δIJPαβ: (23)

Note that there is no Uð1Þ extension as there was for the
superalgebra in the mass-deformed Chern-Simons theory.
This is a consequence of the fact that the YMCS theory,
while enjoying a SOð2Þ R-symmetry which rotates the two
fermionic fields in the theory, does not have a correspond-
ing symmetry acting on the two bosonic fields, i.e. the
scalar and gauge field. Indeed, we will find that the on-shell
amplitudes of the YMCS theory exhibit SOð2Þ R-sym-
metry in the fermionic sector. We do note, however, that
both the algebras collapse to the same massless algebra
when k in the YMCS theory and e in the CSMmodel are set
to zero, which is consistent with the 4-point amplitudes of
undeformed three-dimensional SYM exhibiting an
enhanced SOð2Þ symmetry [3,4].
We now focus on the on-shell superalgebra for this

theory. Assuming that the on-shell degree of freedom
associated with the YMCS gauge field corresponds to a
massive scalar field (which we will justify shortly) and that
the superalgebra in (22) is realized on the single particle
asymptotic states, the transformation laws for the scattering
states can be taken to be

QIja1i ¼
1

2
ujχIi; QIja2i ¼

1

2
ϵIJvjχJi;

QJjχIi ¼
1

2
δIJvja1i − 1

2
ϵIJuja2i: (24)

We denote the massive scalar corresponding to the gauge
field by a1.

One can give an argument in favor of the algebra above
being the appropriate one for the YMCS theory as follows.
If one starts with the part of the algebra involving the
variation of a2, namely QIja2i ¼ 1

2
ϵIJτjχJi, there is an

ambiguity about what the spinor τ is. This ambiguity can be
resolved by applying the oscillator expansion of the fields
to the off-shell transformation δΦ ¼ 1

2
η̄IΨJϵIJ. In our

convention, this fixes τ ¼ v. Once this is fixed, the closure
of the algebra on a2 fixes the transformation properties
Q1jχ2i ¼ þu=2ja2i and Q2jχ1i ¼ −u=2ja2i. With this
part of the on-shell supersymmetry algebra determined,
one can make the following ansatz for the supersymmetry
algebra

QIja1i ¼
1

2
ωjχIi; QIja2i ¼

1

2
ϵIJvjχJi;

QJjχIi ¼
1

2
δIJ ~ωja1i − 1

2
ϵIJuja2i; (25)

assuming that the realization is linear in the fields and that
the SOð2Þ covariance of the fermionic degrees of freedom
is respected. The unknown quantities are the spinors ω and
~ω. Closure of the algebra on a1 requires ωfα ~ωβg ¼ −2Pαβ.
The solution to this equation is given by fω; ~ωg ¼ fu; vg
or fω; ~ωg ¼ fv; ug. Furthermore, requiring that there be no
Uð1Þ extension to the algebra requires ω ¼ u and ~ω ¼ v.
Thus, given a convention of the oscillator expansion of the
fermion fields, the on-shell algebra is unambiguously
determined.
Comparing this with (14), we see that the main differ-

ence between the two sets of transformations is that the
spinors appearing on the right-hand side of the trans-
formation laws of the scalars above are conjugates of each
other. The two spinors were the same in the transformation
laws for the CSM theory. The differences in the two
realizations have to do with whether or not the algebra
is mass-deformed.
Rather than rely on the argument above alone, it is

instructive to derive (24) using the methods of canonical
quantization. To this end we revert to a Hamiltonian
framework and set A0 ¼ 0. We define the complex combi-
nation A ¼ 1

2
ðA1 þ iA2Þ (and its conjugate relation) for the

gauge potentials. Due to the noncommutativity induced by
the Chern-Simons term on the components of the electric
field, the Gauss law constraints can be shown to be satisfied
by wave functions of the form [50]

Ω ¼ exp

�
k
2
ðSWZWðM†Þ − SWZWðMÞÞ

�
Λ; (26)

whereM is a complex matrix related to the gauge potential
as A ¼ −∂MM−1 that transforms under time-independent
local gauge transformations as M → UM, where U is an
element of the gauge group. SWZW is a Wess-Zumino-
Witten functional defined over the spatial manifold [50].
The Gauss law constraint can be translated into the
following condition on Λ
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�
D

δ

δA
þ D̄

δ

δĀ

�
a
þ famn

�
−iΨ̄m

I Ψ
n
I þ Φm δ

δΦn

�
Λ ¼ 0:

(27)

Clearly any wave functional Λ that is a gauge invariant
combination of the gauge and matter fields satisfies this
constraint.
Now, to derive the on-shell supersymmetry transforma-

tion law, our strategy would be to express the quadratic part
of the supercharges in terms of the canonical variables
followed by a dualization of the gauge field into a scalar.
We can then read off the on-shell supersymmetry trans-
formation by looking at the action of the dualized super-
charge on the dynamical fields in momentum space. To
avoid the ambiguity associated with the fermionic fields
and their canonical momenta in a real representation for the
three-dimensional Dirac matrices, we take the gamma
matrices to be γμ ¼ fiσ3; σ1; σ2g for the purposes of this
discussion (everywhere else in the paper we shall continue
to use the real γ matrices mentioned previously). The

fermions can be taken to beΨ ¼ ð ψ
ψ� Þwith ψ and ψ� being

canonically conjugate. The quadratic part of the top
component of the N ¼ 2 supercharge in this notation
(the bottom component can simply be obtained by
Hermitian conjugation) can be written as

qI ¼ ie
Z

ψa†
I

δ

δAa−
1

e

Z
ψa
I B

aþeϵIJ

Z
ψa
J

�
Πa

Φþ
im
e2

Φa

�

−2i
e
ϵIJ

Z
ψa†
J ðD̄ΦÞa: (28)

This charge, derived from the action, acts on the wave
function Ω. Ω and Λ differ by a pure phase, so their norms
are the same. However, the physical observables acting on
Λ differ from those acting onΩ by a unitary transformation.
The charge acting on Λ ¼ q0I ¼ Ω†qΩ [50]. The effect of
this unitary transformation is to replace

δ

δAa →
δ

δAa þ
m
e2

ðĀa − āaÞ; ā ¼ ∂̄MM−1: (29)

This extra term generated by the unitary transformation is
what generates an effective mass-term for the gauge field in
the Hamiltonian obtained from the supercharge above [50].
We can now dualize the gauge field by expressing

M ¼ eθ and retaining terms to linear order in θ. This gives
(after dropping the color indices, as we are only interested
in the Abelian theory) A ¼ −∂θ, Ā ¼ þ∂̄ θ̄, a ¼ ∂θ̄ and
ā ¼ −∂̄θ. The real part of θ is related to the physical gauge-
invariant on-shell degree of freedom ΦH as [34,50,51]

θ þ θ̄ ¼ 1ffiffiffiffiffiffiffiffiffi−∂∂̄p ΦH: (30)

On gauge invariant wave functionals, the dualized super-
charge can now be written as

q0I ¼ ieωI

�
δ

δΦH
þ im

e2
ΦH

�
þ 2i

e
ω†
I ∂̄ΦH

þ eϵIJ

Z
ψJ

�
ΠΦ þ im

e2
Φ

�
− 2i

e
ϵIJ

Z
ψ†
Jð∂̄ΦÞ;

(31)

where

ωI ¼ −ieiαψ†; eiα ¼
ffiffiffiffiffiffiffiffi
∂̄=∂

q
≡ ffiffiffiffiffiffiffiffiffi

p̄=p
p

: (32)

The momenta p and p̄ appearing in the last term above are
the complex combinations of the spatial components of the
three-momentum. It is important to note that the fermionic
variable multiplying the momentum for the dual scalar has
to be identified as the top component of a fermionic field (in
our case ω) so that the SUSY variation ofΦH can be written
in a Lorentz invariant form in the two component notation
i.e. δΦH ∼ ϵ̄ρ for some Majorana fermion ρ. In our case the
dualization dictates that the top component of ρ is ω.
Crucially for our purposes, it can be readily seen from the
Hamiltonian obtained from q0I that the Hamiltonian for ω
has the opposite sign for the mass term as that of ψ . Or in
other words, the spinors appearing with the positive
(negative) frequency parts of the mode expansion of ψ
can be identified with those associated with the negative
(positive) parts of ω. Since the SUSY variations involving
the on-shell fields a1 ≡ ΦH and a2 ≡ Φ involve fermions
with the opposite mass terms, the spinors appearing in the
momentum space realization of these transformations are
conjugate to each other. Reverting back to our real con-
ventions for the γ matrices, we see that (24) can now be
justified based on the grounds of canonical quantization.

III. MASS-DEFORMED CHERN-SIMONS
AMPLITUDES

In this section, we will describe the scattering amplitudes
of the CSM theory (7). Since the Chern-Simons gauge field
has no propagating degrees of freedom, scattering ampli-
tudes with at least one external gauge field vanish. This
implies that all odd-point amplitudes vanish, so the first
nontrivial amplitudes occur at four point. In the next two
subsections, we will compute the 4-point amplitudes and
show that they can be encoded in superamplitudes. We also
describe the symmetries of these superamplitudes.

A. 4-point amplitudes

All of the 4-point amplitudes of the CSM theory are
related to each other by the supersymmetry algebra in (16).
Hence, there are only two independent amplitudes involv-
ing four legs. With the definitions of the complex combi-
nations of the real degrees of freedom described in (15), we
get the following relations between the color ordered four
particle amplitudes
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hχþχ−aþa−i ¼ þ h4̄1i
h2̄ 4̄i haþa−aþa−i; hχþχ−a−aþi ¼ þ h3̄1i

h2̄ 3̄i haþa−a−aþi;

haþχ−χþa−i ¼ þ h34̄i
h2̄ 4̄i haþa−aþa−i; haþχ−a−χþi ¼ þ h3̄4i

h3̄ 2̄i haþa−a−aþi;

hχþaþχ−a−i ¼ þ h4̄1i
h3̄ 4̄i haþaþa−a−i; haþχþχ−a−i ¼ þ h4̄2i

h3̄ 4̄i haþaþa−a−i;

hχþa−χ−aþi ¼ þ h12̄i
h2̄ 3̄i haþa−a−aþi; haþa−χ−χþi ¼ þ h2̄4i

h2̄ 3̄i haþa−a−aþi;

haþa−χþχ−i ¼ þ h32̄i
h2̄ 4̄i haþa−aþa−i; hχþa−aþχ−i ¼ þ h12̄i

h2̄ 4̄i haþa−aþa−i;

haþχþa−χ−i ¼ þ h23̄i
h3̄ 4̄i haþaþa−a−i; hχþaþa−χ−i ¼ þ h13̄i

h3̄ 4̄i haþaþa−a−i: (33)

The three independent four-fermion amplitudes are related
to the other amplitudes as

hχþχþχ−χ−i¼þh21i
h4̄2ihaþχþχ−a−i¼þh21i

h3̄ 4̄ihaþaþa−a−i;

hχþχ−χþχ−i¼þh13i
h32̄ihaþa−χþχ−i¼þh13i

h2̄ 4̄ihaþa−aþa−i;

hχþχ−χ−χþi¼þh41i
h2̄4ihaþa−χ−χþi¼þh41i

h2̄ 3̄ihaþa−a−aþi:

(34)

In Appendix B we compute 4-fermion amplitudes and
find

hχþχþχ−χ−iCSM ¼ 2i
h43ih42i
h41̄i ; hχþχ−χþχ−iCSM

¼ 2ih24i
�h41ih41̄i − h43ih43̄i

h41̄ih43̄i
�
: (35)

Using these amplitudes, all the other 4-point amplitudes
are determined from the above relations and cyclic
permutations.

B. Superamplitudes

The natural question to ask is if these relations among the
4-point amplitudes obtained in the previous subsection can
be derived from superamplitudes. To the best of our
knowledge no superamplitude is known for any massive
CSMmodel so far. However, since the superalgebra and the
kinematics constraining the S-matrix of the massive three-
dimensional theories can be thought of as dimensional
reductions of the four-dimensional quantities, it is natural to
expect that some of the known results for four-dimensional
SYM theories can be reduced to get massive three-
dimensional superamplitudes. In fact, one can define two
types of superamplitudes,which are analogous to the “Φ −Ψ”

formalism and the “Φ − Φ†” formalisms used to obtain
superamplitudes for 4d super-Yang-Mills theories with
N < 4 supersymmetry [52]. In the “Φ −Ψ” formalism,
the superamplitudes can be expressed in terms of super-
charges so one can in principle apply super-BCFW
recursion relations to these amplitudes. On the other hand,
the SOð2Þ R-symmetry of the theory is not manifest in the
“Φ −Ψ” formalism, so the on-shell superalgebra obtained
from the supercharges which act on the superamplitudes
does not have a central extension. In the “Φ − Φ†”
formalism, the superamplitudes are not expressed in terms
of supercharges, but the superamplitudes and superfields
transform covariantly under the Uð1Þ R-symmetry. We
describe the “Φ −Ψ” and “Φ − Φ†” formalisms in greater
detail below, and we describe super-BCFW for 3d mass-
deformed theories in Sec. V.

1. Φ − Ψ formalism

We introduce the on-shell superfields

Φ ¼ aþ þ η̄χþ; Ψ ¼ χ− þ ηa−; (36)

where η is a complex Grassmann variable. The 4-point
superamplitudes can then be written in terms of a super-
momentum delta function

A4 ¼ Ωδ3ðPÞδ2ðQÞ; (37)

where Ω is a prefactor and

Pαβ ¼
X4
i¼1

λðαi λ̄
βÞ
i ; Qα ¼

X4
i¼1

�
λαi η̄i þ λ̄αi ηi

�
;

δ2ðQÞ ¼ QαQα: (38)

The 4-point superamplitudes of the CSM theory are
given by
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AΦΦΨΨ ¼ h24i
h3̄2i δ

3ðPÞδ2ðQÞ;

AΦΨΦΨ ¼ h41ih41̄i − h43ih43̄i
h12̄ih41̄i δ3ðPÞδ2ðQÞ; (39)

where we have ignored the numerical prefactor 2i. Note that
the superamplitudes encode the scattering of all component
fields. In particular, the component amplitudes correspond
to the coefficients of the Taylor expansions of the super-
amplitudes in the fermionic variables. For example, the
coefficient of η̄1η̄2 in the Taylor expansion of AΦΦΨΨ is

h12i h24ih3̄2i ¼ h12i h34ih24ih34ih3̄2i ¼
h34ih42i
h1̄4i

where we noted that h34ih3̄2i ¼ −h1̄4ih12i. This indeed
matches our result for the hχþχþχ−χ−i amplitude in (35).
Using a similar analysis, one sees that the hχþχ−χþχ−i
amplitude in (35) corresponds to the η̄1η̄3 component of
AΦΨΦΨ. Furthermore, it is easy to reproduce the relations in
(33) and (34). Hence, the superamplitudes AΦΦΨΨ and
AΦΨΦΨ encode all the 4-point component amplitudes in the
mass-deformed Chern-Simons theory.
In addition to the supercharge defined in (38), we can

also define the following supercharge which annihilates the
4-point superamplitudes

Q̄α ¼
Xn
i¼1

�
λ̄αi

∂
∂η̄i þ λαi

∂
∂ηi

�
: (40)

The superalgebra which acts on the superamplitudes of the
CSM theory is given by

fQ̄α; Qβg ∝ Pαβ:

Note that the superalgebra does not have a central exten-
sion, like the one in (13). This is because the SOð2Þ ∼Uð1Þ
R-symmetry of the theory is not manifest in the “Φ −Ψ”
formalism. The charges acting on the superamplitude and
superfields can be regarded as the subset of charges in (13)
that carry the same SOð2Þ index, and thus do not have the
central term in their anti-commutator. In particular, the
Uð1Þ R-symmetry acts on the on the ðλ; ηÞ variables as
follows:

ðλ; ηÞ → αðλ; ηÞ; ðλ̄; η̄Þ → α−1ðλ̄; η̄Þ;

where α ∈ Uð1Þ. Under this symmetry, fields of helicity h
should be multiplied by α2h, however the superfields in (36)
do not respect this symmetry. Hence, in the “Φ −Ψ”
formalism, the Uð1Þ R-symmetry is broken to Z2, which
corresponds to the little group in three dimensions. This
corresponds to multiplying bosons by þ1 and fermions
by −1.

The SOð2Þ R-symmetry of the theory is realized by the
superamplitudes as follows. It is easy to see that the 4-point
superamplitude is an eigenfunction of the R-symmetry
generator

R ¼
Xn
i¼1

�
ηi

∂
∂ηi þ η̄i

∂
∂η̄i

�
;

with eigenvalue 2. Hence, R − 2 is a symmetry of the 4-
point superamplitude. This corresponds to aUð1Þ ¼ SOð2Þ
R-symmetry. We expect this symmetry to persist for higher
point amplitudes. In particular, we expect that the n-point
amplitude will be annihilated by R − n=2.

2. Φ − Φ† formalism

To make contact with the Φ − Φ† formalism for four-
dimensional SYM theories, we first recall that in the
notation of [52] four-dimensional mhv amplitudes (with
negative helicity particles in the i and j slots of the color
ordered amplitude) correspond to

Amhv
i;j ¼ h…Φ†

i…Φ†
j…i (41)

where the other entries correspond to Φ. For 4-point
amplitudes

Amhv
i;j ¼ ~Ωði;jÞ

�
hijiþhikiη̄jηk−hjkiη̄iηk−1

2
hkliη̄iη̄kηkηl

�

(42)

where for the four-dimensional theory—as well as the
massless three-dimensional SYM theory—the prefactor Ω
is given by the famous Parke-Taylor relation:

~Ωði; jÞ ¼ hiji3
h12ih23ih34ih41i : (43)

Even though the massive SCS theory is not known to be
obtainable as a dimensional reduction of a higher dimen-
sional gauge theory the massive supersymmetry algebra
(16) can be regarded as a dimensional reduction of the four-
dimensional massless supersymmetry algebra [where the
two SUð2Þ’s of the d ¼ 4 Lorentz group are identified and
fourth components of all the physical momenta are fixed to
be m]. It is thus expected that the kinematic constraints
relating the different components of the superamplitudes
for the massive CSM theory can be cast in aΦ − Φ† form as
in d ¼ 4. Indeed, after defining the adjoint superfield Φ† ¼
a− þ ηχ− in our notation, it is readily seen that

ACSM
i;j ¼ Ωði; jÞ

�
hī j̄i þ hīkiηjη̄k − hj̄kiηiη̄k

− 1

2
hkliηiηkη̄kη̄l

�
(44)
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correctly reproduces all the relations between the massive
amplitudes given above. The prefactor Ω can be read off
once any of the known 4-point component amplitudes are
known. For our present purposes, they can be determined in
terms of the four-fermion amplitudes computed in
Appendix B.

IV. YANG-MILLS-CHERN-SIMONS AMPLITUDES

In this section, we will describe various 3- and 4-point
tree-level color-ordered amplitudes of the N ¼ 2 YMCS
theory. In particular, we compute all of the 3- and 4-point
amplitudes without external gauge fields, and obtain the
remaining 4-point amplitudes using the on-shell super-
algebra (24)5. In the end of this section, we describe the
difficulties associated with computing on-shell YMCS
amplitudes with external gauge fields using Feynman
diagrams.

A. 3-point amplitudes

The color ordered 3-point amplitudes are defined for
completely general fields ϕAi

by the expression

hϕa1
A1

†ðp1Þϕa2
A2

†ðp2Þϕa3
A3

†ðp3Þi
¼ 2iehϕA1

ϕA2
ϕA3

iTr½Ta1Ta2Ta3 � þ…; (45)

where the momenta are all ingoing and ϕa
A
†ðpÞ is the

creation operator for the associated field.
The only 3-point amplitude which does not have external

gauge fields is

hΨA1
ΨA2

Φi ¼ −ϵA1A2
v̄ðp2Þuðp1Þ ¼ −ϵA1A2

h12i: (46)

Rearrangement of the fields is achieved using

hϕA1
ϕA2

ϕA3
i ¼ −hϕA2

ϕA1
ϕA3

i
hϕA1

ϕA2
ϕA3

i ¼ hϕA2
ϕA3

ϕA1
i: (47)

The SUSY algebra does not help us determine the remain-
ing 3-point amplitudes from (46).
Note that the amplitude in (46) has SOð2Þ R-symmetry

which rotates the two fermions. This symmetry follows
from the SOð2Þ R-symmetry in the fermionic sector of the
Lagrangian and should therefore hold for higher-point
amplitudes, as we will demonstrate at 4-point. The form
of this amplitude will be useful for deducing whether or not
the BCFW recursion relations are applicable to this massive
gauge theory. We shall return to this issue later.

B. 4-point amplitudes

In this section, we compute various tree-level 4-point
amplitudes of the YMCS theory. One may determine the
remaining amplitudes using the following rearrangement
rules

hϕDϕCϕBϕAi ¼ ð−1Þf:e:hϕAϕBϕCϕDi with

p1↔p4; p2↔p3;

hϕBϕCϕDϕAi ¼ ð−1Þf:e:hϕAϕBϕCϕDi with

p1 → p4; p2 → p1; p3 → p2; p4 → p3;

hϕAϕCϕBϕDi ¼ −ð−1Þf:e:hϕAϕBϕCϕDi with

p2↔p3 − ð−1Þf:e:hϕAϕCϕDϕBi with

p3↔p4; (48)

where ϕA indicates a general field and “f.e.” means the
number of times fermions (if present) are exchanged in the
reordering.
We begin by computing the 4-fermion amplitudes. Then

we compute two fermion–two boson amplitudes, followed
by 4-boson amplitudes.

1. Four fermion amplitudes

The calculation of the 4-fermion amplitudes of the
YMCS theory is described in Appendix B. We obtain

hχþχþχ−χ−i¼ hχ−χ−χþχþi¼− 2h34i
uþm2

�
h12iþ im

h42i
h41̄i

�
;

hχþχ−χ−χþi¼ hχ−χþχþχ−i¼
2h41i
sþm2

�
h23iþ im

h13i
h12̄i

�
;

hχþχ−χþχ−i¼ hχ−χþχ−χþi¼
2h13i
sþm2

�
h42i− im

h14i
h12̄i

�

−
2h42i
uþm2

�
h31i− im

h43i
h41̄i

�
; (49)

where s ¼ ðp1 þ p2Þ2, t ¼ ðp1 þ p3Þ2, u ¼ ðp1 þ p4Þ2.
It is interesting to consider the massless limit of the four-

fermion amplitude. In the strict m ¼ 0 limit, we should
recover theN ¼ 2 SYM amplitude computed in Eq. (3.20)
of [3], and indeed that is what is found here. At the next
order, OðmÞ, we find that the massive spinor products may
not be expressed using massless spinor products. Using the
first amplitude above as an example, we find that the
massless limit is

hχþχþχ−χ−i ¼ −2 h12i2
h23ih41i þOðmÞ; (50)

where the spinor brackets are massless.

5Note that the on-shell superalgebra implies constraints on the
4-point amplitudes but not on the 3-point amplitudes. This has to
do with the fact that the algebra is only valid when the external
momenta are real. In the case of 3-point amplitudes one
necessarily needs to continue the amplitudes to complex mo-
menta.
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2. Two fermion–two boson amplitudes

We continue with the two fermion–two boson ampli-
tudes. In what follows, the subscripts appearing on the
spinors u and v refer to particle (i.e. leg) number. Note that

perturbation theory using the mode expansions (A3) is
consistent with the on-shell algebra for amplitudes without
external gauge fields and can therefore be used to compute
hχþχ−ΦΦi. In particular, we obtain

hχþχ−ΦΦi ¼ hχ−χþΦΦi

¼ v̄1p4u2
uþm2

− 1

sðsþm2Þ
�
−2sv̄1p4u2 þ 2imϵμνρp

μ
4p

ν
3v̄1γ

ρu2

�

¼ − 1

2ðuþm2Þ ðh14ih4̄2i þ h14̄ih42iÞ − 2ð2m2 þ sÞ
sþm2

h23̄ih31̄i
h1̄ 2̄ih1̄2i þ

im
sþm2

h13̄ih1̄3i − h23̄ih2̄3i
h1̄ 2̄i : (51)

The two fermion–two boson amplitudes with an external gauge field may be determined using the algebra (24).
Specifically one finds

hΦχþAχ−i¼ i
h4̄ 1̄i
h4̄ 3̄ihΨ2Ψ2Ψ1Ψ1iþ i

h24̄i
h4̄ 3̄ihΦΦχþχ−i

¼ i
h4̄ 1̄i
h4̄ 3̄i

�h41ih23i
uþm2

þ 1

sþm2

�
2h23ih41i− h12ih34i−2im

h13ih14i
h12̄i

��

þ i
h24̄i
h4̄ 3̄i

�
− 1

2ðuþm2Þðh32ih2̄4iþh32̄ih24iÞ−2ð2m2þ sÞ
sþm2

h41̄ih13̄i
h3̄ 4̄ih3̄4iþ

im
sþm2

h31̄ih3̄1i− h41̄ih4̄1i
h3̄ 4̄i

�
: (52)

hχþAAχ−i ¼ − h41ih4̄ 1̄i
h2̄4ih4̄ 3̄i hΨ2Ψ2Ψ1Ψ1i þ

h43i
h2̄4i hΨ1Ψ2Ψ2Ψ1i − h41ih24̄i

h2̄4ih4̄ 3̄i hΦΦχþχ−i

¼ 1

h2̄ 1̄i
�
−2 h41ih23ih3̄1i ðsþ 2m2Þ þ 2

h12ih34i
h3̄1i ðsþ 4m2Þ − im

�
h32ih34i − 2

h42ih34i
h3̄1ih41̄i ðsþ 4m2Þ

��
1

uþm2

þ 1

h4̄ 3̄i
�h12ih34i

h2̄4i ðs − uÞ − 2
h23ih41i
h2̄4i ðtþ sÞ − 2

h23ih41̄ih13̄i
h1̄ 2̄ih3̄4i ðsþ 2m2Þ þ 2im

h13ih14i
h2̄4ih12̄i ðtþ sÞ

þ im
h23i
h1̄ 2̄i ðu − tÞ

�
1

sþm2
: (53)

3. Four boson amplitudes

The four Φ amplitude may be computed using perturbation theory and one finds

hΦΦΦΦi ¼ ðt − uÞs − 4imϵμνρp
μ
1p

ν
2p

ρ
3

sðsþm2Þ þ ðt − sÞuþ 4imϵμνρp
μ
1p

ν
2p

ρ
3

uðuþm2Þ

¼ h14̄ih1̄4i − h13̄ih1̄3i
sþm2

þ 2imh12̄ih23̄ih31̄i
sðsþm2Þ þ h12̄ih1̄2i − h13̄ih1̄3i

uþm2
− 2imh12̄ih23̄ih31̄i

uðuþm2Þ : (54)

The four boson amplitudes with external gauge fields may be gotten using the algebra in (24). One finds

hΦΦAAi ¼ − h1̄ 2̄i
h3̄ 4̄i hΨ2Ψ2Ψ1Ψ1i ¼ − h1̄ 2̄i

h3̄ 4̄i
�h41ih23i
uþm2

þ 1

sþm2

�
2h23ih41i − h12ih34i − 2im

h13ih14i
h12̄i

��
: (55)

hAAAAi ¼ h32i
h1̄3i hχþχ−AAi þ

h34i
h1̄3i hχþAAχ−i ¼ − h32i

h1̄3i hχþAAχ−ii→iþ1 þ
h34i
h1̄3i hχþAAχ−i; (56)

where i → iþ 1 indicates momentum relabeling, and hχþAAχ−i is given in (53).
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We end this section by pointing out that the computation
of amplitudes involving external gauge fields using
Feynman diagrams is significantly more complicated than
the other computations presented in this paper. The
complications have to do with defining a mode expansion
for the gauge fields that is compatible with both the
noncommutativity of the spatial components of the vector
potential as well as the Gauss law constraints mentioned in
Sec. II B. In particular, it has been argued in [53,54] that the
canonical commutation relations of the gauge field cannot
be satisfied if the mode expansion of the gauge field only
contains the modes of an on-shell massive scalar field.
Auxiliary fields must also appear in the mode expansion in
order for the theory to be consistently quantized and for the
noncommutativity of the gauge fields to be respected,
making the use of Feynman diagrams extremely unwieldy.
We are able to circumvent this difficulty in the results
presented above by using the on-shell SUSY algebra—the
algebra was shown to be consistent with both the off-shell
superalgebra as well as the canonical quantization pro-
cedure in Sec. II B—to determine the amplitudes contain-
ing the external gauge fields.
It would be extremely desirable to have a spinor helicity

framework for the computations of gauge field amplitudes
in YMCS theories (with and without supersymmetry) using
Feynman diagrams efficiently. We hope to analyze this
issue in further detail elsewhere.

V. BCFW FOR MASS-DEFORMED THREE-
DIMENSIONAL THEORIES

A very useful tool for computing scattering amplitudes
are the BCFW recursion relations, which allow one to
construct higher point on-shell amplitudes from lower-
point on-shell amplitudes [8]. The BCFW recursion rela-
tions in d ≥ 4 do not hold in 3d, however, even in the
mass-deformed case. In d ≥ 4 one derives the recursion
relations by deforming two external legs of an on-shell
amplitude as follows:

pi → pi þ zq; pj → pj − zq;

where z is a complex number and q is some vector. In order
for the momenta to remain on-shell for general z, we must
impose the following conditions on q:

q · pi ¼ q · pj ¼ q2 ¼ 0:

In 3d, the only solution is q ¼ 0. Hence, the usual BCFW
deformation does not apply in 3d, even in the mass-
deformed case. In order to define a two-line deformation,
we must allow the deformation to be nonlinear. The BCFW
recursion relations for massless 3d theories were derived in
[10]. In this section, we will propose BCFW recursion
relations for massive 3d theories.

A. Two-line deformation

The BCFW recursion relations follow from deforming
the momenta of two external legs of an on-shell amplitude.
Suppose we deform legs i and j. The deformation must
preserve the total momentum

ðpi þ pjÞαβ ¼ λðαi λ̄
βÞ
i þ λðαj λ̄j

βÞ. (57)

The deformation must also preserve the following two
conditions

hiīi2 ¼ −4m2; hjj̄i2 ¼ −4m2: (58)

We will assume that all external particles of an on-shell
amplitude have the same mass.
If the external particles are massless, then the momentum

is given by

ðpi þ pjÞαβ ¼ λαi λ
β
i þ λαj λ

β
j :

In this case, the BCFW deformation is given by [10]

�
λi
λj

�
→

�
1
2
ðzþ z−1Þ i

2
ðz − z−1Þ

− i
2
ðz − z−1Þ 1

2
ðzþ z−1Þ

��
λi
λj

�
; (59)

where z is an arbitrary complex number. The deforma-
tion above clearly conserves momentum since it is an
orthogonal transformation. For the mass deformed case,
there is a natural generalization. We simply deform the
antiholomorphic spinors in the same way as the holomor-
phic ones in (59)

�
λ̄i
λ̄j

�
→

�
1
2
ðzþ z−1Þ i

2
ðz − z−1Þ

− i
2
ðz − z−1Þ 1

2
ðzþ z−1Þ

��
λ̄i
λ̄j

�
: (60)

It is easy to see that (59) and (60) preserve momentum in
(57). Furthermore, after these transformations we see that

hiīi → hiīi þ ðhij̄i − hījiÞ i
4
ðz2 − z−2Þ;

hjj̄i → hjj̄i − ðhij̄i − hījiÞ i
4
ðz2 − z−2Þ:

Note that

hij̄i ¼ eiκ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpi þ pjÞ2

q
; hīji ¼ e−iκ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpi þ pjÞ2

q
;

where eiκ is someUð1Þ phase. Also note that we can we can
redefine λi and λ̄i by a phase since p

αβ
i ¼ λðαi λ̄

βÞ
i is invariant

under ðλi; λ̄iÞ → ðeiωλi; e−iωλ̄iÞ. Hence, by taking
ðλi; λ̄iÞ → ðe−iκλi; eiκλ̄iÞ, this will set hij̄i ¼ hīji and the
mass-shell conditions in (58) will be preserved. After fixing
the phases of the ðλ; ηÞ variables, there is still a residual
Uð1Þ symmetry which rotates all the ðλ; ηÞ variables in the
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same way. In the mass-deformed Chern-Simons theory, this
Uð1Þ phase is then fixed once we define the superfields, as
explained in Sec. III B 1. Note that the deformations in (59)
and (60) also preserve hiji and hī j̄i.
To generalize this to a super-BCFW shift, consider the

definition of supermomentum in (38)

q ¼ λη̄þ λ̄η:

Then the sum of the supermomenta of the particles which
are being shifted is given by

qi þ qj ¼ λiη̄i þ λ̄iηi þ λjη̄j þ λ̄jηj:

The supermomentum will be preserved if we apply the
same BCFW deformation to the fermionic coordinates as
we do to the bosonic coordinates of the on-shell superspace

�
ηi

ηj

�
→

� 1
2
ðzþ z−1Þ i

2
ðz − z−1Þ

− i
2
ðz − z−1Þ 1

2
ðzþ z−1Þ

��
ηi

ηj

�
;

�
η̄i

η̄j

�
→

� 1
2
ðzþ z−1Þ i

2
ðz − z−1Þ

− i
2
ðz − z−1Þ 1

2
ðzþ z−1Þ

��
η̄i

η̄j

�
: (61)

B. Recursion relation

After performing the BCFW deformation, the amplitude
becomes a function of z. Assuming the amplitude vanishes
when z → ∞, we have the following

I
jzj¼∞

AðzÞdz
z − 1

¼ 0. (62)

On the other hand, this contour integral must also be equal
to the sum of the residues of the integrand in the complex
plane, which occur at z ¼ 1 and the poles of AðzÞ. Near its
poles, AðzÞ factorizes into two on-shell amplitudes
(denoted AL and AR) multiplied by a propagator. Hence,
we find that

Aðz ¼ 1Þ ¼ − 1

2πi

X
f;j

Z
dη

I
zf;j

ALðz; ηÞARðz; iηÞ
p̂fðzÞ2 þm2

1

z − 1
;

(63)

where the factorization channels are labeled by f, and zf;j
corresponds to the jth root of p̂fðzÞ2 þm2. In obtaining
this formula, we assumed that all the external legs of the on-
shell scattering amplitudes have the same mass, m. The
integral

R
dη takes into account all the fields in the

supermultiplet which can appear in the propagator. Note
that Aðz ¼ 1Þ corresponds to the undeformed on-shell
amplitude. Using (63), we can compute higher-point on-
shell amplitudes from lower-point on-shell amplitudes.
From the deformation in (59) and (60), one can see that

in any channel, p̂fðzÞ2 þm2 has the following form

p̂fðzÞ2 þm2 ¼ afz−2 þ bf þ cfz2.

Hence the roots are obtained by solving a quadratic
equation in z2, see Appendix C.

C. Large-z behavior

In order for the recursion relation described in the
previous section to be applicable, the on-shell amplitudes
must vanish after performing the BCFW deformations in
(59), (60), and (61) and taking the deformation parameter z
to infinity.
The amplitudes of the YMCS theory do not generally

have good large-z behavior. Furthermore, it does not appear
to be possible to combine them into superamplitudes
(which could in principle have better large-z behavior).
Hence, our proposed BCFW recursion relation does not
appear to be applicable to the N ¼ 2 YMCS theory. The
situation may improve for YMCS theories with more
supersymmetry however.
Although the 4-point component amplitudes of the CSM

theory also do not generally have good large-z behavior,
our proposed recursion relation may be applicable to the
superamplitudes of the CSM theory. In particular, the first
4-point superamplitude in (39) is Oð1=zÞ when legs (1, 3)
or (2, 4) are shifted. In order to test this, one should use the
recursion relation to compute a 6-point superamplitude of
the CSM theory, and match various components of the
superamplitude with Feynman diagram calculations.

D. Factorization of YMCS amplitudes from BCFW shift

It is interesting to investigate the 4-point amplitudes of
the YMCS theory in the vicinity of their poles, and to look
for simple factorization into two 3-point amplitudes. As an
illustrative example, we will look at one of the four-fermion
amplitudes

Að1Þ¼ hχþχþχ−χ−i¼
2h43i

s23þm2

�
h12iþ im

h42i
h41̄i

�
; (64)

and perform the BCFW shift on legs 1 and 2. We find

AðzÞ¼ 2z2

m2ðs−þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2−− s2þ

p
Þ

2h43i
ðz2− z21Þðz2− z22Þ

×

�
h12iþ im

ðz2þ1Þh42i− iðz2−1Þh41i
ðz2þ1Þh41̄iþ iðz2−1Þh42̄i

�
; (65)

where (see Appendix C for details)

s� ¼ 1

2m2
ðs13 � s23Þ; (66)

and where the massive poles corresponding to s23 ¼ −m2

are found at z ¼ �z1 and z ¼ �z2 where
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fz21; z22g ¼
�
1

2

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sþ þ 1

p þ 1Þ2
s− þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2− − s2þ

p ;
1

2

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sþ þ 1

p − 1Þ2
s− þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2− − s2þ

p
	
:

(67)

Note that the massless pole corresponding to s23 ¼ 0 has a
vanishing residue6; this is consistent with the fact that the
YMCS gauge field has only a single, massive degree of
freedom.
In order to understand the factorization, we should

associate the residues at the massive poles with the product
of “left” and “right” 3-point amplitudes AL and AR. We
should be able to see both a contribution from two fermion-
fermion-scalar amplitudes and also one from two fermion-
fermion-gauge field amplitudes. We therefore write the
deformed amplitude in the following way

AðzÞ ¼ 2z2

m2ðs− þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2− − s2þ

p
Þ

1

ðz2 − z21Þðz2 − z22Þ
× ½ðh104ih203iÞ þ ð−2h12ih34i − h104ih203i
þ 2imh420ih43i=h41̄0iÞ�; (68)

where the prime denotes the BCFW rotated spinor. The first
term (enclosed in rounded parentheses) is the scalar
exchange and the following factorization

ALðz1Þ ¼ h104i; ARðz1Þ ¼ h203i; (69)

matches with the 3-point amplitudes calculated for
fermion-fermion-scalar scattering in Sec. IV A.
The second rounded-parentheses term in (68) corre-

sponds to the gauge field exchange and so obviously the
product of the two fermion-fermion-gauge field three-point
functions yield

ALAR ¼ −2h12ih34i − h104ih203i þ 2imh420ih43i=h41̄0i:
(70)

There is some freedom in how to factorize this expression
into left and right components—computing the relevant
3-point functions using the techniques of [53,54] would
allow one to determine this factorization, and we leave this
issue as further work.

VI. CONCLUSION

In this paper, we study scattering amplitudes of mass-
deformed three-dimensional gauge theories. In particular,
we focus on mass-deformed Chern-Simons and Yang-
Mills-Chern-Simons theories with N ¼ 2 supersymmetry.
Note that the mass deformations in these theories preserve
locality, Lorentz invariance, and gauge invariance. We

derive the superalgebras which underlie the scattering
matrices of the N ¼ 2 mass-deformed CSM theory and
YMCS theory and show that the on-shell supersymmetry
algebras for the two theories are fundamentally different. In
particular, the algebra for YMCS contains no mass-
deformation.
Using perturbative techniques and on-shell superalge-

bras, we compute 3- and 4-point tree-level color-ordered
amplitudes in these theories (note that the odd point
amplitudes of the CSM theory vanish). For the CS theory,
we find that perturbation theory gives results that are
consistent with the mass-deformed on-shell superalgebra.
Further, we find that the 4-point amplitudes of the
CSM theory can be encoded in very simple superampli-
tudes. On the other hand, for the YMCS theory we
are able to deduce all the 4-point amplitudes using a
combination of perturbative techniques and algebraic
relations. Namely, we compute all the amplitudes without
external gluons perturbatively (and show that they are
consistent with the on-shell algebra) and deduce the
remaining 4-point amplitudes using the on-shell super-
algebra in (24).
We also propose a BCFW recursion relation for mass-

deformed three-dimensional gauge theories which
reduces to the BCFW recursion relation proposed in
[10] in the massless limit. This recursion relation involves
deforming the supermomenta of two external legs of an
on-shell amplitude by a complex parameter z and is only
applicable if the amplitude vanishes as z → ∞. Although
the component amplitudes of theN ¼ 2 CSM and YMCS
theories do not generally have good large-z behavior, we
find that one of the 4-point superamplitudes of the CSM
theory exhibits good large-z behavior, which suggests
that the recursion relation may be applicable to this
theory.
There are a number of open questions that would be

interesting to address. First of all, it would be very desirable
to understand how to compute amplitudes with external
gauge fields in the YMCS theory using Feynman diagrams.
In particular, it would be desirable to use Feynman
diagrams to compute the 3-point amplitudes with external
gauge fields and confirm the 4-point amplitudes with
external gauge fields which we deduced using the on-shell
superalgebra. It would also be interesting to test our BCFW
proposal by using it to compute a 6-point superamplitude of
the CSM theory and then compare it to a Feynman diagram
calculation.
Another interesting direction would be to extend our

analysis to loop amplitudes.Note that IR divergences of loop
amplitudes aremore severe in three-dimensions than in four.
On the other hand, we expect that mass-deformations will
lead to better IR behavior. It would also be interesting to
extend our analysis to mass-deformed theories with more
supersymmetry, like the mass-deformed ABJM theory,
which has N ¼ 6 supersymmetry. If the amplitudes of

6This can be seen by noting that the h41̄i appearing in the
second term in (64) is proportional to

ffiffiffiffiffiffi
s23

p
.
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YMCS theorieswithN > 2 supersymmetry can be encoded
in superamplitudes, then the BCFW recursion relation
proposed in this paper may be applicable to these theories
since superamplitudes generally have better large-z behavior
than component amplitudes.
The techniques developed in this paper may also be

useful for studying the scattering amplitudes of three-
dimensional gauge theories with spontaneously broken
gauge symmetry. In this case, masses are acquired via
the Higgs mechanism. In particular, it would be interesting
to study scattering amplitudes in the Coulomb branch of the
ABJM theory and see if they can be related to the
amplitudes of maximal three-dimensional SYM theory in
some limit. There is already some evidence that the
amplitudes of three-dimensional SYM and ABJM theory
can be related order by order in perturbation theory in a
certain limit [4,31].
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APPENDIX A: CONVENTIONS, PROPAGATORS
AND FEYNMAN RULES

We work in ð−þþÞ signature and use the following
gamma matrices:

γμ ¼ fiσ2; σ1; σ3g: (A1)

The SUðNÞ generators ta obey the following relations

tata ¼N2−1

2N
1; trðtatbÞ¼ 1

2
δab; ½ta; tb� ¼ ifabctc;

fabcfabd ¼Nδcd; fta; tbg¼ 1

N
δab1þdabctc: (A2)

The scalar and fermionic fields in this paper have mode
expansions given by

ΨαðxÞ¼
Z

d2p
ð2πÞ2

1ffiffiffiffiffiffiffiffi
2p0

p ðvαðpÞb†ðpÞeip·x

þuαðpÞbðpÞe−ip·xÞ;

ΦðxÞ¼
Z

d2p
ð2πÞ2

1ffiffiffiffiffiffiffiffi
2p0

p ða†2ðpÞeip·xþa2ðpÞe−ip·xÞ; (A3)

where

vðpÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 − p1

p
�
p2 þ im

p1 − p0

�
;

uðpÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 − p1

p
�
p2 þ im

p1 − p0

�
; (A4)

and we have neglected color and R-symmetry indices.
There are many useful formulae involving spinors and
gamma matrices

γμγν ¼ ημν þ ϵμνργρ; ϵμνρϵγδρ ¼ −δμγ δνδ þ δμδδ
ν
γ ; ðγμÞαβðγμÞγδ ¼ 2δαδδβγ − δαβδγδ;

ϵρμνðγμÞστðγνÞαδ ¼ 2ðγρÞατδσδ − ðγρÞαδδστ − ðγρÞστδαδ; u�ðpÞ ¼ vðpÞ; v̄ ¼ uTC; ū ¼ vTC;

v̄ðpÞvðpÞ ¼ 2im; ūðpÞuðpÞ ¼ −2im; v̄ðpÞuðpÞ ¼ 0 ¼ ūðpÞvðpÞ; pv ¼ imv; v̄p ¼ imv̄;

pu ¼ −imu; ūp ¼ −imū; v̄ðkÞγμuðpÞ ¼ v̄ðkÞuðpÞ imðp − kÞμ þ ϵμνρpνkρ
m2 þ p · k

;

ūðkÞγμuðpÞ ¼ ūðkÞuðpÞ imðpþ kÞμ − ϵμνρpνkρ
m2 − p · k

; jūðpÞuðkÞj2 ¼ jv̄ðpÞvðkÞj2 ¼ −ðpþ kÞ2;

jūðpÞvðkÞj2 ¼ jv̄ðpÞuðkÞj2 ¼ ðp − kÞ2; v̄ðpiÞvðpjÞ ¼ hj̄ii; ūðpiÞuðpjÞ ¼ hjīi;

ūðpiÞvðpjÞ ¼ hī j̄i; v̄ðpiÞuðpjÞ ¼ hiji; −
ffiffiffiffiffiffiffiffi
− st
u

r
¼ 2im − h13ih1̄ 2̄i

h2̄3i ¼ − h1̄3ih12̄i
h2̄3i : (A5)

For the N ¼ 2 YMCS theory, the propagators are given by the following expressions

hAa
μðpÞAb

νð−pÞi ¼ −ie2δabΔμνðpÞ ¼
−ie2δab

p2ðp2 þm2Þ ðp
2ημν − pμpν þ imϵμνρpρÞ;

hΦaðpÞΦbð−pÞi ¼ −ie2δab
p2 þm2

;

hΨa
AαðpÞΨb

Bβð−pÞi ¼ −ie2δabδAB
p2 þm2

½ðpþ imÞC−1�αβ; (A6)
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where C ¼ γ0 is the charge conjugation matrix. In
obtaining the gauge field propagator, we have chosen
Landau gauge. For the N ¼ 2 massive Chern-Simons
theory, the scalar and fermion propagators are given by
similar expressions and the gauge field propagator may be
read off from the m → ∞ limit of the YMCS gauge field
propagator

hAa
μðpÞAb

νð−pÞiCS ¼ 1

κ

ϵμνρpρ

p2
: (A7)

Finally, we have made use of the following Feynman rules,
where all momenta are ingoing unless explicitly indicated
via an arrow, and where gluons, fermions, and scalars are
represented by wiggly, dashed, and solid lines, respectively.

APPENDIX B: CALCULATIONAL DETAILS

In this appendix, we will compute the 4-fermion ampli-
tudes of the YMCS theory and the CSM theory. We first
compute the 4-fermion YMCS amplitudes, since the
corresponding result in the CSM theory will then follow
straightforwardly.
In the YMCS theory, the basic building blocks for the

four-fermion amplitudes are the gluon and scalar exchange,
given by

Að1; 2; 3; 4Þ ¼ v̄ðp1Þγμuðp2ÞΔμνðp1 þ p2Þv̄ðp3Þγνuðp4Þ;
(B1)

where Δμν is the YMCS gauge field propagator [see (A6)],
and

Bð1; 2; 3; 4Þ ¼ v̄ðp1Þuðp2Þ
1

ðp1 þ p2Þ2 þm2
v̄ðp3Þuðp4Þ;

(B2)

respectively. Defining the color-ordered amplitudes
hϕA1

ϕA2
ϕA3

ϕA4
i of completely general fields ϕAi

as

hϕa1
A1

†ðp1Þϕa2
A2

†ðp2Þϕa3
A3

†ðp3Þϕa4
A4

†ðp4Þi
¼ 2ie2hϕA1

ϕA2
ϕA3

ϕA4
iTr½Ta1Ta2Ta3Ta4 � þ � � � ; (B3)

we find that

hΨA1
ΨA2

ΨA3
ΨA4

i¼δA1A2
δA3A4

�
Bð4;1;2;3ÞþAð1;2;3;4Þ

�

−δA1A3
δA2A4

�
Bð4;1;2;3Þ−Bð1;2;3;4Þ

�

−δA1A4
δA2A3

�
Að4;1;2;3ÞþBð1;2;3;4Þ

�
:

(B4)

The expressions for the gluon and scalar exchange may be
compactly expressed as follows

Bð1; 2; 3; 4Þ ¼ h12ih34i
ðp1 þ p2Þ2 þm2

;

Að1; 2; 3; 4Þ ¼ 1

ðp1 þ p2Þ2 þm2

�
2h23ih41i − h12ih34i

− 2im
h13ih14i
h12̄i

�
: (B5)

Because of the inherent SOð2Þ symmetry enjoyed by the
fermions, it is useful to make the combinations

χ� ¼ 1ffiffiffi
2

p ðΨ1 � iΨ2Þ; (B6)

which gives rise to the following amplitudes7

7We define s ¼ ðp1 þ p2Þ2, t ¼ ðp1 þ p3Þ2, u ¼ ðp1 þ p4Þ2.
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hχþχþχ−χ−i¼ hχ−χ−χþχþi¼−Að4;1;2;3Þ−Bð4;1;2;3Þ

¼− 2h34i
uþm2

�
h12iþ im

h42i
h41̄i

�
;

hχþχ−χ−χþi¼ hχ−χþχþχ−i¼Að1;2;3;4ÞþBð1;2;3;4Þ

¼ 2h41i
sþm2

�
h23iþ im

h13i
h12̄i

�
;

hχþχ−χþχ−i¼ hχ−χþχ−χþi¼Að1;2;3;4Þ−Bð1;2;3;4Þ
−Að4;1;2;3ÞþBð4;1;2;3Þ

¼ 2h13i
sþm2

�
h42i− im

h14i
h12̄i

�

− 2h42i
uþm2

�
h31i− im

h43i
h41̄i

�
: (B7)

The calculation of the color-ordered four-fermion ampli-
tudes of the CSM theory is similar to the one we carried out
for the YMCS theory. In fact the hχþχþχ−χ−i amplitude
may be read off from (B5). There is no Yukawa coupling in
the CSM theory, thus the tree-level four-fermion ampli-
tudes are given only by the exchange of the gauge field.
Thus we can take B to zero, and take them → ∞ limit inA,
in order to single out the pure CS term in the YMCS gauge
field propagator. This corresponds to keeping only the last
term in A, and replacing ðp1 þ p2Þ2 þm2 → m2 in the
factor outside the rounded brackets. Multiplying by e2 and
noting that e2=m ¼ κ, where κ ¼ k=4π, one then finds that
the 4-fermion amplitude of the CSM theory is given by

hχþχþχ−χ−iCSM ¼ −2i h34ih42ih41̄i ; (B8)

where we absorbed κ into the normalization of the fields.

APPENDIX C: BCFW DETAILS

We note that the BCFW shift has the following form on
momenta:

pij →
1

2
ðpi þ pjÞ � z2q� z−2 ~q; (C1)

so that pi þ pj → pi þ pj. We find that q and ~q may be
parametrized as follows:

q ¼ 1

4

�
pi − pj þ

2ffiffiffiffiffisij
p pi∧pj

�
;

~q ¼ 1

4

�
pi − pj − 2ffiffiffiffiffisij

p pi∧pj

�
; (C2)

where ða∧bÞμ ¼ εμνρaνbρ, sij ¼ ðpi þ pjÞ2, and

q · ðpi þ pjÞ ¼ ~q · ðpi þ pjÞ ¼ 0 ¼ q2 ¼ ~q2;

qþ ~q ¼ 1

2
ðpi − pjÞ: (C3)

Wewill be interested in the deformation of the remaining
Mandelstam invariants sik and sjk, where8 i ≠ j ≠
k ∈ 1; 2; 3. We find

sik →
1

2
ðsik þ sjkÞ þ

z2

2

�
1

2
ðsik − sjkÞ þ εijk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi−siksjkp �

þ z−2
2

�
1

2
ðsik − sjkÞ − εijk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi−siksjkp �
; (C4)

sjk →
1

2
ðsik þ sjkÞ −

z2

2

�
1

2
ðsik − sjkÞ þ εijk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi−siksjkp �

−
z−2
2

�
1

2
ðsik − sjkÞ − εijk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi−siksjkp �
; (C5)

where we have used pi · pj∧pk ¼ εijk
ffiffiffiffiffiffiffiffiffiffi−stup

. We
will be looking for poles in the massive channels
sik þm2 and sjk þm2; these correspond to the following
equations

z4

2
ðs−þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2−− s2þ

q
Þ� z2ðsþþ1Þþ1

2
ðs−−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2− −s2þ

q
Þ¼ 0;

(C6)

where the upper sign corresponds to sik and the lower to sjk,
and where

s� ¼ 1

2m2
ðsik � sjkÞ: (C7)

The roots of these two equations are

fz21;z22g¼
�
∓1

2

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sþþ1

p ∓1Þ2
s−þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2−− s2þ

p ;∓1

2

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sþþ1

p �1Þ2
s−þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2−−s2þ

p
	
:

(C8)

8The remaining momentum p4 in the four-particle process is
equal to −pi − pj − pk.
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