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We show that a nonrelativistic particle in a combined field of a magnetic monopole and 1=r2 potential
reveals a hidden, partially free dynamics when the strength of the central potential and the charge-
monopole coupling constant are mutually fitted to each other. In this case the system admits both a
conserved Laplace-Runge-Lenz vector and a dynamical conformal symmetry. The supersymmetrically
extended system corresponds then to a background of a self-dual or anti-self-dual dyon. It is described by a
quadratically extended Lie superalgebra Dð2; 1; αÞ with α ¼ 1=2, in which the bosonic set of generators is
enlarged by a generalized Laplace-Runge-Lenz vector and its dynamical integral counterpart related to
Galilei symmetry, as well as by the chiral Z2-grading operator. The odd part of the nonlinear superalgebra
comprises a complete set of 24 ¼ 2 × 3 × 4 fermionic generators. Here a usual duplication comes from the
Z2-grading structure; the second factor can be associated with a triad of scalar integrals—the Hamiltonian,
the generator of special conformal transformations, and the squared total angular momentum vector, while
the quadruplication is generated by a chiral spin vector integral which exits due to the (anti-)self-dual nature
of the electromagnetic background.
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I. INTRODUCTION

Peculiar features of a classical or quantum system are
usually associated with and reflected in its special sym-
metry properties. A well-known example is the conserved
Laplace-Runge-Lenz vector, which explains the periodicity
of the classical bound trajectories in the Kepler problem
and the “accidental” degeneracy of the bound states energy
levels of the hydrogen atom [1–6]. A different kind of
example is provided by nonlinear integrable systems, in
which soliton solutions exhibit particlelike properties
in classical scattering processes. The robustness of solitons
in these field systems is a consequence of the infinite
number of conservation laws. In the inverse scattering
method, solitons correspond to reflectionless potentials in
the associated quantum problems [7]. The reflectionless
nature of soliton potentials can be linked, in turn, with a
presence of a nontrivial Lax-Novikov quantum integral of
motion which is a higher order differential operator. These
peculiarities of the quantum mechanical soliton systems
show up in a supersymmetric generalization, where they
reveal a richer supersymmetry structure in comparison with
that for the nonsolitonic ones [8].
A charged particle in the field of a magnetic monopole

exhibits a hidden free conical dynamics [9,10]. In this
aspect it resembles one-dimensional quantum mechanical
reflectionless systems with their close relation to a free

particle. A charge-dyon system, on the other hand, is
characterized by the presence of the conserved Laplace-
Runge-Lenz vector [11], similarly to the Kepler problem.
The study of both the charge-monopole and charge-dyon
systems, as well as their superextensions, has attracted a lot
of attention in literature [9–33].
This paper is devoted to the investigation of the rather

exotic nonlinear superconformal structure of a particle in
the field of the Dirac magnetic monopole accompanied by
the field of the central 1=r2 potential. Particular aspects of
this system, including the supersymmetric one, have been
investigated in earlier works [17,18,25]. In the present work
we shall, however, emphasize the aspects related to the
hidden symmetries. Namely, we first investigate in detail
the spinless particle and show, that for a particular value of
the strength of the central potential relative to the charge-
monopole coupling, the system reveals a hidden partially
free dynamics. As a result, besides the rotational and
conformal symmetries, it will admit the conserved
Laplace-Runge-Lenz vector as well as the associated
dynamical (explicitly depending on time) vector integral
related to the Galilei symmetry. Then we shall arrive at a
related system from a different direction, by constructing
the supersymmetric extension of the particle in an electro-
magnetic background field by incorporating spin degrees of
freedom. We shall observe that for a (anti-)self-dual back-
ground the system admits a chiral spin integral of motion.
As a result, we obtain a supersymmetric generalization of
the original spinless system, which can be treated as a
supersymmetric spinning particle in the field of a (anti-)
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self-dual dyon. The supersymmetric structure we obtain is
rather unusual and unexpectedly rich. It incorporates the
Laplace-Runge-Lenz and the associated dynamical vector
integrals, the generators of conformal and rotational
symmetries, and the chiral spin vector integral. They enter
the resulting partially nonlinear (quadratic) superalgebra
with 24 quantum fermionic generators, which represents a
certain extension of the superconformal Dð2; 1; αÞ sym-
metry [25] with a particular value of the parameter
α ¼ 1=2.
In the following section we investigate the spinless

particle and in particular the special case characterized
by the presence of the conserved Laplace-Runge-Lenz
vector and a partially free dynamics. In Sec. III we
construct the supersymmetric extension of the system,
and study its nonlinear superconformal structure both at
the classical and quantum levels. Finally, Sec. IV includes a
summary and concluding remarks.

II. SPINLESS CASE

Consider a nonrelativistic particle of charge e and mass
m in a combined field of a magnetic monopole1,
B⃗ ¼ gr⃗=r3, and central potentialUðrÞ. It is described by the
Hamiltonian

H ¼ 1

2m
Π⃗2 þ UðrÞ; (2.1)

and Poisson brackets

fri; rjg ¼ 0; fri;Πjg ¼ δij; fΠi;Πjg ¼ eϵijkBk:

(2.2)

The equations of motion for the position vector and kinetic
momentum read

r⃗
:
¼ 1

m
Π⃗; Π⃗

:

¼ − ν

mr3
L⃗ −U0ðrÞn⃗; (2.3)

where ν ¼ eg, n⃗ ¼ r⃗=r, L⃗ ¼ r⃗ × Π⃗. From here one finds

n⃗
:
¼ 1

mr2
L⃗ × n⃗; L⃗

:

¼ ν

mr2
L⃗ × n⃗; (2.4)

and

d
dt

r⃗2 ¼ 2

m
Π⃗ · r⃗;

d
dt

ðΠ⃗ · r⃗Þ ¼ 2H − ð2U þ rU0Þ:
(2.5)

From (2.4) it follows that the Poincaré vector

J⃗ ¼ L⃗ − νn⃗; with J⃗2 ¼ L⃗2 þ ν2 ≥ ν2; (2.6)

is an integral of motion for any choice of the central
potential. It is just the angular momentum of the system,:

fJi; Jjg ¼ ϵijkJk; fJi; njg ¼ ϵijknk;

fJi; rg ¼ fJi;Πrg ¼ 0; (2.7)

where Πr ¼ Π⃗ · n⃗ is the radial component of the kinetic
momentum and we also have fr;Πrg ¼ 1. In terms of the
variables J⃗, n⃗, r, and Πr the Hamiltonian takes the form

H ¼ 1

2m

�
Π2

r þ
ðJ⃗ × n⃗Þ2

r2

�
þUðrÞ; with

ðJ⃗ × n⃗Þ2 ¼ J⃗2 − ν2: (2.8)

The vectors n⃗ and L⃗ precess around the conserved angular
momentum J⃗ with the same frequency,

n⃗
:
¼ 1

mr2
J⃗ × n⃗; L⃗

:

¼ 1

mr2
J⃗ × L⃗: (2.9)

Hence the trajectory of the particle lies on the cone defined
by J⃗ · n⃗ ¼ −ν with vertex in r ¼ 0 and symmetry axis
oriented along the vector J⃗. For UðrÞ ¼ 0 the particle
moves on geodesics on the cone [9,10], and like a free
particle (ν ¼ 0) is characterized by a conformal symmetry
[34–39]. This symmetry survives under switching on the
inverse square potential

UðrÞ ¼ λ

r2
: (2.10)

In this case the scalar Π⃗ · r⃗ is subject to a simple dynamics,
d
dt ðΠ⃗ · r⃗Þ ¼ 2H. As a consequence, the dilatation generator

D ¼ Π⃗ · r⃗ − 2tH (2.11)

is an explicitly time-dependent dynamical integral of
motion: d

dt D ¼ ∂
∂t Dþ fD;Hg ¼ 0. The first equation from

(2.5) implies then that another dynamical integral of motion
exists:

K ¼ 2mr2 − 4tD − 4t2H: (2.12)

It is the generator of special conformal transformations.
From now on, we shall consider the potential (2.10)

characterized by the presence of the two dynamical
integrals of motion D and K, and assume that λ > 0 to
avoid the problem of the fall to the center r ¼ 0. We shall
see that the system admits an even richer symmetry
structure when the relation λ ¼ ν2=2m between the cou-
plings holds true. This particular choice of couplings is also
distinguished by the supersymmetric extension of the
system.
The minimal distance of the particle from the force

center corresponds to the instant t0 for which1We use the units c ¼ ℏ ¼ 1.
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ðΠ⃗ · r⃗Þðt0Þ ¼ 0; see Eq. (2.5). Taking into account relation

L⃗2 ¼ 2mr2H − ðΠ⃗ · r⃗Þ2 − μ2, where μ2 ¼ 2mλ, one finds
that r2min ¼ ðJ⃗2 − ν2 þ μ2Þ=ð2mHÞ: Now we decompose
the unit vector n⃗ into the parts n⃗jj and n⃗⊥ parallel and
perpendicular to the total angular momentum. Due to (2.6)
the former is time independent, n⃗jj ¼ −νJ⃗=J⃗, and this

implies n⃗2⊥ ¼ ðJ⃗2 − ν2Þ=J⃗2. Thus the latter can be written
as

n⃗⊥ðtÞ ¼ n⃗⊥ðt0Þ cos φðtÞ þ
1

J
J⃗ × n⃗⊥ðt0Þ sin φðtÞ: (2.13)

Since n⃗
:

⊥ ¼ n⃗
:

the first relation in (2.9)

implies φ
: ¼ J=ðmr2Þ. Employing the relations 1=r2 ¼

2mH=½ðΠ⃗ · r⃗Þ2 þ L⃗2 þ μ2� and 2H ¼ d
dt ðΠ⃗ · r⃗Þ, we obtain

dφ ¼ JdðΠ⃗ · r⃗Þ=½ðΠ⃗ · r⃗Þ2 þ L⃗2 þ μ2�. This yields the evo-
lution law for the angle ϕ in the plane orthogonal to the
angular momentum,

ϕðtÞ ¼ Jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L⃗2 þ μ2

q arctan

�
Π⃗ · r⃗=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L⃗þ μ2

q �
þ const:

(2.14)

For t0 ¼ 0 and a vanishing integration constant the angle

vanishes when r is minimal, Π⃗ · r⃗ ¼ 2Ht; and
r2ðtÞ ¼ r2min þ 2Ht2=m, such that

φðtÞ ¼ Jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 − ν2 þ μ2

p arctan

�
2Htffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J2 − ν2 þ μ2
p

�
; (2.15)

n⃗ðtÞ ¼ −ν 1

J2
J⃗ þ n⃗⊥ðtÞ;

n⃗⊥ðtÞ ¼
�
n⃗ð0Þ þ ν

1

J2
J⃗

�
cos φðtÞ þ 1

J
J⃗ × n⃗ð0Þ sin φðtÞ:

(2.16)

The scattering angle of the trajectory projected onto the
plane orthogonal to J⃗ is

Δφ − π ¼
Z þ∞

−∞
φ
:
dt − π ¼ π

�
Jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J2 − ν2 þ μ2
p − 1

�
:

(2.17)

In general it depends on the value of the angular momentum
J. Only in the exceptional case when μ2 ¼ ν2 we have
Δϕ − π ¼ 0 for all J2 ≥ ν2.
From now on we restrict our analysis to the special case

μ2 ¼ ν2, for which the Hamiltonian can be presented in the
two equivalent forms

H ¼ 1

2m

�
Π⃗2 þ ν2

r2

�
¼ 1

2m

�
Π2

r þ
J⃗2

r2

�
: (2.18)

Only for this particular value of the parameter λ the central
potential compensates exactly the term−ν2=r2 appearing in
the centrifugal term ðJ⃗ × n⃗Þ2=r2 of the charge-monopole
Hamiltonian; see Eq. (2.8).
The cos and sin functions, which enter the precession

law of the unit vector, simplify (only) in this case to
elementary functions, cos φðtÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p
, sin φðtÞ ¼

τ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p
, where we introduced the dimensionless time

variable τ ¼ 2Ht=J. The distance of the particle from the
force center varies as rðtÞ ¼ J

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p
=

ffiffiffiffiffiffiffiffiffiffi
2mH

p
, and we get

rmin ¼ rð0Þ ¼ Jffiffiffiffiffiffiffiffiffiffi
2mH

p : (2.19)

The evolution law for the particle’s coordinate vector can
then be written as

r⃗ðtÞ ¼ r⃗ð0Þ

þ Jffiffiffiffiffiffiffiffiffiffi
2mH

p
�
ν

J2
J⃗ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p
Þ þ 1

J
ðJ⃗ × n⃗ð0ÞÞτ

�
:

(2.20)

The projected motion of the particle in the plane orthogonal
to the angular momentum is that of a free particle: it moves
along a straight line with constant velocity.
Peculiar properties of a dynamical system both at the

classical and quantum levels are in many cases associated
with the presence of hidden symmetries. This happens also
in the special case of the system (2.18). Indeed, consider the
Laplace-Runge-Lenz-vector

G⃗ ¼ Π⃗ × J⃗ þ κn⃗; (2.21)

where κ is a constant with the dimension of a mass. In the
general case with central potential (2.8) its dynamics is
given by

d
dt

G⃗ ¼ L⃗ × n⃗

�
U0 þ ν2

mr3
þ κ

mr2

�
: (2.22)

The vector is an integral of motion only for central
potentials of the form

UðrÞ ¼ ν2

2mr2
þ κ

mr
; (2.23)

that is for a linear combination of the Kepler potential and
the particular potential (2.10) with

2mλ ¼ μ2 ¼ ν2: (2.24)
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The case κ ¼ 0 is characterized by the presence of the
additional conformal symmetry associated with dynamical
integrals D and K. The particular system (2.18) therefore
admits the additional integral of motion

G⃗ ¼ Π⃗ × J⃗: (2.25)

This, particularly, can easily be seen from the equation of
motion

Π⃗
:

¼ − ν

mr3
J⃗ (2.26)

which holds for relation (2.24) between the couplings; see
Eqs. (2.3) and (2.6).
From relations (2.25) and (2.6) one also finds

G⃗ · r⃗ ¼ J2 − ν2: (2.27)

Equation (2.20) in particular means that the vector J⃗ × n⃗ð0Þ
is oriented along the integral

G⃗ × J⃗ ¼ −J2Π⃗ − νΠrJ⃗: (2.28)

The conserved vectors J⃗, G⃗ and G⃗ × J⃗ form an orthogonal
basis, and in addition to (2.27), the projections of r⃗ and Π⃗
onto these vectors are

r⃗ · J⃗ ¼ −νr; r⃗ · ðG⃗ × J⃗Þ ¼ −rΠrðJ2 − ν2Þ; (2.29)

Π⃗ · G⃗ ¼ 0; Π⃗ · ðG⃗ × J⃗Þ ¼ −G⃗2; Π⃗ · J⃗ ¼ −νΠr:

(2.30)

In addition, note that

G⃗2 ¼ 2mHðJ2 − ν2Þ; ðG⃗ × J⃗Þ2 ¼ G⃗2J2: (2.31)

The angle between the vectors n⃗ðtÞ and J⃗ is given by
cos θ ¼ −νJ−1. Taking into account Eq. (2.19), one finds
that relation (2.27) can be written in the equivalent form

G⃗ · ðr⃗ðtÞ − r⃗ð0ÞÞ ¼ 0: (2.32)

The trajectory of the particle lies, therefore, in the plane
orthogonal to G⃗. We conclude that the trajectory is given by
the intersection of the cone J⃗ · n⃗ ¼ −ν with the specified
plane. It has a form of a hyperbola, whose projection onto
the plane orthogonal to J⃗ is a straight line parallel to the
conserved vector G⃗ × J⃗. The projected coordinate of
the particle evolves with constant speed along this line.
The equation of hyperbola can be presented in the form

ðr⃗ · J⃗Þ2
ν2J2

− ðr⃗ · ðG⃗ × J⃗ÞÞ2
G2J2ðJ2 − ν2Þ ¼

1

2mH
: (2.33)

Since the conserved vectors J⃗, G⃗ and G⃗ × J⃗ form the
complete orthogonal set in the 3-dimensional space, one
finds

r⃗ ¼ 1

2mH
G⃗ − νr

J2
J⃗ − r⃗ · Π⃗

2mHJ2
G⃗ × J⃗; (2.34)

where the relations

ðr⃗ · Π⃗ÞðtÞ ¼ ðr⃗ · Π⃗Þð0Þ þ 2Ht;

r2ðtÞ ¼ r2ð0Þ þ 2

m
ðr⃗ · Π⃗Þð0Þtþ 2

m
Ht2 (2.35)

finally determine the evolution of r⃗ðtÞ. One obtains the
same law as in (2.20).
In addition to the scalar integrals D and K, explicitly

depending on time, the first equation in (2.3) and Eq. (2.25)
allow us to construct an analogous, dynamical vector
integral depending explicitly on time,

R⃗ ¼ r⃗ × J⃗ − t
m
G⃗: (2.36)

It satisfies the relations

2mHR⃗ ¼ DG⃗þ G⃗ × J⃗; (2.37)

and we also get

R⃗ · J⃗ ¼ 0; R⃗ · ðG⃗ × J⃗Þ ¼ J2ðJ2 − ν2Þ; (2.38)

R⃗ · G⃗ ¼ ðJ2 − ν2ÞD; R⃗2 ¼ 1

2m
ðJ2 − ν2ÞK: (2.39)

In the liming case ν → 0 corresponding to a free particle,
one gets

R⃗ → D

�
r⃗ − t

m
p⃗

�
− K
2m

p⃗: (2.40)

In more detail, at g ¼ ν ¼ 0, the mechanical (or kinetic)

momentum Π⃗ turns into the canonical momentum p⃗ with
Poisson-commuting components, fpi; pjg ¼ 0. At the

same time the angular momentum J⃗ becomes the orbital
angular momentum and the system transforms into a free
particle with H ¼ p⃗2=2m. In accordance with Eq. (2.28),
the integral G⃗ × J⃗ reduces to canonical momentum vector
p⃗multiplied by the integral −L⃗2. The Laplace-Runge-Lenz
vector G⃗ itself reduces to p⃗ × L⃗ ¼ p⃗2r⃗ − ðp⃗ · r⃗Þp⃗. Note
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that the free particle system possesses the additional
dynamical integral N⃗ ¼ r⃗ − p⃗t=m that coincides with
r⃗ð0Þ, and is a generator of Galilei boosts. It is interesting
to compare the free particle relations N⃗ · p⃗ ¼ D and
2mN⃗2 ¼ K with (2.39). The integral p⃗ × L⃗ can be written
in terms of the dynamical integrals N⃗ and D as
p⃗ × L⃗ ¼ 2mHN⃗ −Dp⃗, which can be compared with the
limit relation (2.37) for the dynamical vector integral R⃗.
The trajectory of the free particle is a straight line along the
vector p⃗ that passes though the point r⃗ð0Þ ¼ N⃗ and lies in
the plane orthogonal to L⃗. Switching on the magnetic
monopole field and at the same time the scalar potential
UðrÞ ¼ ν2=2mr2 results in “lifting” and deforming the
straight line into the hyperbola given by the intersection of
the magnetic monopole cone J⃗ · n⃗ ¼ −ν with a plane
orthogonal to G⃗ and passing through the point r⃗ð0Þ.
From (2.31) it follows that the Hamiltonian of the system

can be presented in terms of the angular momentum and
Laplace-Runge-Lenz vector,

H ¼ 1

2m
G2

J2 − ν2
: (2.41)

The latter satisfies the Poisson bracket relation

fGi; Gjg ¼ −2mHϵijkJk: (2.42)

As H > 0, one defines the vector

V⃗ ¼ G⃗ffiffiffiffiffiffiffiffiffiffi
2mH

p : (2.43)

This rescaled Laplace-Runge-Lenz vector together with J⃗
generates the soð3; 1Þ Lorentz algebra,

fJi; Jjg ¼ ϵijkJk; fVi; Vjg ¼ −ϵijkJk;
fJi; Vjg ¼ ϵijkVk: (2.44)

The quantities C1 ¼ V⃗2 − J⃗2 and C2 ¼ J⃗ · V⃗ are two
independent Casimirs of the soð3; 1Þ algebra (2.44),
fCa; Jig ¼ fCa; Vig ¼ 0, a ¼ 1, 2, which have here the
values C1 ¼ ν2 and C2 ¼ 0. In terms of the complex
combinations L�

j ¼ 1
2
ðJj � iVjÞ, we have

fLþ
i ;L

þ
j g ¼ ϵijkL

þ
k ; fL−

i ;L
−
j g ¼ ϵijkL−

k ;

fLþ
i ;L

−
j g ¼ 0:

(2.45)

In conclusion of this section, let us note that we have
identified additional integrals of motion for a particular
central potential by first analyzing the scattering of the
particle. The acceleration points in the direction of J⃗ only
if UðrÞ ¼ ν2=ð2mr2Þ þ const, i.e. exactly for the particular

central potential we have studied. For this potential

G⃗ ¼ Π⃗ × J⃗ is an integral of motion. The acceleration of
r⃗, projected on the integral J⃗ × G⃗, is zero and this reveals a
hidden partially free dynamics of the particle. The relation
d3

dt3 ðr2Þ ¼ 0 is equivalent to the condition that K is a

dynamical integral of motion. Since r⃗ · J⃗ ¼ −νr, this
reduces to the equation d3

dt3 ðr⃗ · J⃗Þ2 ¼ 0. The last relation

means that the acceleration of the particle along J⃗ is
constant, and from here we recover the hyperbolic form
of the trajectory.
Note that the system (2.18) corresponds to a spinless part

of the model [17] at the “points of higher symmetry”
λ2 ¼ ν2. It was discussed in [25], where a special hyper-
bolic trajectory was also identified and associated with the
presence of the Laplace-Runge-Lenz vector. However,
there the dynamical integral (2.36) was not considered.
As we shall see below, both the vector integrals G⃗ and R⃗
(more precisely, their analogs incorporating spin degrees of
freedom) will play the key role in a nonlinear supecon-
formal structure of the superextended version of the system.
In the next section we find a supersymmetric extension

of the system (2.18) by exploiting its particular symmetry
properties.

III. SUPERSYMMETRIC EXTENSION: PARTICLE
IN (ANTI-)SELF-DUAL DYON BACKGROUND

To construct a supersymmetric generalization of the
system, we introduce four Grassmann variables ξa, where
a ¼ 0, i, and i ¼ 1, 2, 3, with Poisson brackets

fξa; ξbg ¼ −iδab: (3.1)

Their quantum analogs are given by Euclidean gamma
matrices γa, ξ̂0 ¼ 1ffiffi

2
p γ0, ξ̂i ¼ 1ffiffi

2
p γi, realized, for example,

via two sets of the Pauli matrices,

γ0 ¼ τ1 ⊗ 1 ¼
�
0 1

1 0

�
;

γi ¼ τ2 ⊗ σi ¼
�

0 −iσi
iσi 0

�
:

(3.2)

We distinguish the values a ¼ 0 and a ¼ 1, 2, 3 since in the
model we shall obtain the ξ0, and ξi will have different
transformation properties under the spatial rotations. The
operators ξ̂a anticommute with

Γ≡ γ5 ¼ τ3 ⊗ 1 ¼
�
1 0

0 −1
�
; Γ2 ¼ 1; (3.3)

which at the quantum level is identified as a Z2-grading
operator of the superalgebraic structure. We introduce also
the chiral projectors
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T � ¼ 1

2
ð1� γ5Þ ¼

1

2
ð1� τ3Þ ⊗ 1;

T þ þ T − ¼ 1; T þT − ¼ 0: (3.4)

In terms of the Grassmann variables ξi and ξ0, one defines
the chiral spin vectors:

S�
i ¼ 1

2
ðSi � ViÞ; where Si ¼ − i

2
ϵijkξjξk;

Vi ¼ −iξ0ξi: (3.5)

They generate the soð4Þ ¼ soð3Þ⊕soð3Þ algebra,

fSþ
i ;S

þ
j g ¼ ϵijkS

þ
k ; fS−

i ;S
−
j g ¼ ϵijkS−

k ;

fSþ
i ;S

−
j g ¼ 0: (3.6)

The Sþ
i has the following Poisson brackets with the ξa:

fSþ
i ; ξjg ¼ 1

2
ðϵijkξk − ξ0δijÞ; fSþ

i ; ξ0g ¼ 1

2
ξi: (3.7)

Analogous relations for S−
i are obtained from (3.7) by the

change ξ0 → −ξ0.
The quantum analogs of S�

i contain the chiral projectors,
Ŝ�
i ¼ T �Ŝi, where Ŝi ¼ Ŝþ

i þ Ŝ−
i ¼ 1 ⊗ 1

2
σi, and, par-

ticularly, the quantum analog of the third relation from
(3.6), ½Ŝþ

i ; Ŝ
−
j � ¼ 0, is just a trivial consequence of the

opposite chiralities of Ŝþ
i and Ŝ−

i .
Now we consider a particle with charge e propagating in

electric and magnetic fields described by a vector potential
Aiðr⃗Þ and a scalar potential A0ðr⃗Þ, and consider a
Grassmann-odd classical quantity

Θ0 ¼ Πiξi þ ϕðr⃗Þξ0; (3.8)

where φðr⃗Þ ¼ eA0ðr⃗Þ and Πiðr⃗Þ ¼ pi − eAiðr⃗Þ are the
components of the kinetic momentum Π⃗. From here on
we set 2m ¼ 1. We have fΠi;Πjg ¼ ϵijkBk and fΠi;φg ¼
Ei with Bi ¼ eBi and Ei ¼ eEi. Here Bi ¼ ϵijk∂jAk and
Ei ¼ −∂iA0 are the background magnetic and electric
fields, whose forms are not further specified at the moment.
The Grassmann-even quantity H generated by Θ0,

fΘ0;Θ0g ¼ −iH; (3.9)

H ¼ Π2
i þ ϕ2 − 2ðSþ

i ðBi − EiÞ þ S−
i ðBi þ EiÞÞ; (3.10)

is readily identified as a Pauli type, second order in pi
Hamiltonian. With such an interpretation, Θ0 can be
considered as a classical analog of the stationary
(∂=∂t → 0), first order in pi Dirac operator. From the
generalized, graded Jacobi identity 3fΘ0; fΘ0;Θ0gg ¼ 0 it
follows at once that fΘ0;Hg ¼ 0, and so, Θ0 can be treated
as a supercharge for the system with the Hamiltonian H.

Equation (3.10) shows that independently from the rota-
tional properties of potentials Ai and A0, there are two
special cases2: self-dual, when Bi ¼ Ei, and anti-self-dual,
Bi ¼ −Ei. As follows from the last relation in (3.6), in these
two cases we have additional Grassmann-even integrals of
motion, Sþ

i , or S
−
i , respectively. Since with any anti-self-

dual background one can associate the corresponding self-
dual background just by changing A0 → −A0, Ai → Ai, one
can restrict the consideration to the self-dual case. Then the
Hamiltonian reduces to

H ¼ Π2
i þ ϕ2 − 4S−

i Bi; (3.11)

and in addition to the supercharge Θ0 we have the integrals
of motion Sþ

i generating an soð3Þ symmetry. As the
Poisson brackets of integrals of motion are also integrals
of motion, we get three more integrals

Θi ≡ ϵijkΠjξk þ ϕξi − Πiξ0; (3.12)

where Θi ¼ 2fSþ
i ;Θ0g. Let us stress that the integrals Θi

andΘ0 form the set with the same transformation properties
with respect to the soð3Þ generators Sþ

i as the set formed by
the basic Grassmann variables ξi and ξ0,

fSþ
i ;Θ0g ¼ 1

2
Θi; fSþ

i ;Θjg ¼ 1

2
ðϵijkΘk − δijΘ0Þ:

(3.13)

Employing (3.13), together with the conservation of Sþ
i

and the graded Jacobi identity −fΘ0; fSþ
i ;Θ0ggþ

fSþ
i ; fΘ0;Θ0gg þ fΘ0; fΘ0;S

þ
i gg ¼ 0, we find that Θi

and Θ0 Poisson commute,

fΘ0;Θig ¼ 0; (3.14)

similarly to ξi and ξ0. Once again using the Jacobi identity
and relations (3.13) and (3.9), we get

fΘi;Θjg ¼ −iδijH: (3.15)

Thus, postulating the supercharge (3.8) and choosing the
(anti-)self-dual electromagnetic background, we have got
the second order in momenta pi system possessing the
soð3Þ ≅ suð2Þ symmetry, whose generators Sþ

i give rise to
the extension of the N ¼ 1 supersymmetry (3.9) up to the
N ¼ 4 supersymmetry (3.9), (3.14), (3.15). Note here that
for the first time it was showed in [40] that the N ¼ 4
supersymmetry for a particle in three-dimensional space
necessarily implies the self-duality of the electromagnetic
background; see also [17,25,26].

2We are not interested here in another special case correspond-
ing to homogeneous electric and magnetic fields.
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Up to this point we did not assume any particular
properties of the background field with respect to the
spatial rotations. Suppose now that the electric field is
spherically symmetric and choose φ ¼ φðrÞ. Then

E⃗ ¼ −r⃗φ0ðrÞ=r ¼ B⃗, and the Maxwell equation ∂iBi ¼ 0
for r⃗ ≠ 0 fixes the magnetic field to be that of the magnetic

monopole, B⃗ ¼ νr⃗=r3. We arrive therefore at the electro-
magnetic background of the self-dual dyon characterized in
the general case by the scalar potential ϕðrÞ ¼ κ þ ν=r,
where κ is a constant. The Hamiltonian (3.11) is then a
supersymmetric generalization of the spinless case given by
the potential (2.23). We are interested in the supersym-
metric generalization of the special case characterized by a
hidden partially free particle dynamics. So, we put κ ¼ 0,
and the Hamiltonian of the system takes the form (3.11)
with ϕ ¼ ν=r,

H ¼ Π2
i þ

ν2

r2
− 4ν

1

r3
S−
i ri: (3.16)

Its Grassmann-free, spinless part coincides with the
Hamiltonian (2.18), which possesses the dynamical con-
formal symmetry, and one can expect that the total
symmetry of (3.16) has to be a supersymmetric extension
of that of the spinless system (2.18). Having in mind this
perspective, we shall show now how an exotic nonlinear
(quadratic) superconformal algebra for (3.16) appears by
exploiting our knowledge about the symmetries of the
system (2.18).
First, we find that the total angular momentum J i ¼

Ji þ Si is an integral of motion of the system (3.16), where

Ji ¼ ðr⃗ × Π⃗Þi − νni. With respect to it, the ξi form a vector
and ξ0 a scalar, and the Grassmann-odd supercharges Θi
and Θ0 have exactly the same rotational properties.
The Sþ

i is the Grassmann-even vector integral. As a result
we find that the total angular momentum J i and the
chiral spin Sþ

i generate the bosonic soð4Þ ¼ soð3Þ⊕soð3Þ
symmetry,

fYþ
i ;Y

þ
j g ¼ ϵijkY

þ
k ; fY−

i ;Y
−
j g ¼ ϵijkY−

k ;

fYþ
i ;Y

−
j g ¼ 0;

(3.17)

where

Yþ
i ≡ Sþ

i ; Y−
i ≡ J i − Sþ

i : (3.18)

The Poisson bracket relations for the supercharges Θa with
the bosonic integrals Y�

i are

fY�
i ;Θ0g ¼ � 1

2
Θi; fY�

i ;Θjg ¼ 1

2
ðϵijkΘk ∓ δijΘ0Þ:

(3.19)

As in the spinless case, the superextended system also
possesses dynamical integrals corresponding to scale- and
special conformal transformations. The corresponding
Grassmann-even dynamical scalar integrals are

D ¼ Π⃗ · r⃗ − 2Ht; K ¼ r⃗2 − 4Dt − 4Ht2: (3.20)

Indeed one finds d
dt I ¼ fI ;Hg þ ∂

∂t I ¼ 0, where I ¼ D,
K. Together with the Hamiltonian, they generate the
soð2; 1Þ algebra,

fD;Hg ¼ 2H; fD;Kg ¼ −2K; fK;Hg ¼ 4D:

(3.21)

In terms of the standard basis

J0 ¼
1

4
ðHþKÞ; J1 ¼

1

4
ðH −KÞ; J2 ¼

1

2
D;

(3.22)

the soð2; 1Þ structure is manifest, fJ0; J1g ¼ J2,
fJ0; J2g ¼ −J1, fJ1;J2g ¼ −J0. All three generators
Poisson commute with the integrals J i and Sþ

i , i.e.

fY�
i ; Jμg ¼ 0; μ ¼ 0; 1; 2: (3.23)

The Poisson brackets of K with Θ0 and Θi generate the
Grassmann-odd dynamical integrals,

Ω0 ¼ ρ0 − 2Θ0t; Ωi ¼ ρi − 2Θit; (3.24)

where

ρ0 ¼ r⃗ · ξ⃗; ρ⃗ ¼ r⃗ × ξ⃗ − ξ0r⃗:

The Grassmann-odd quantities ðρ0; ρ⃗Þ are transformed by
the chiral spin integral Sþ

i and total angular momentum J i

in the same way as ðξ0; ξ⃗Þ. The Ω0 and Ωi are, respectively,
the scalar and vector integrals with respect to J i,
fJ i;Ω0g ¼ 0, fJ i;Ωjg ¼ ϵijkΩk, while with respect to
the chiral spin vector Sþ

i they transform in the same way as
the integrals Θ0 and Θi. Hence the dynamical integrals Ωa
have the Poisson bracket relations of the form (3.19) with
the soð4Þ generators Y�

i . The Poisson brackets of Θa and
Ωa with the soð2; 1Þ generators are

fD;Θag ¼ Θa; fD;Ωag ¼ −Ωa; (3.25)

fH;Θag ¼ 0; fH;Ωag ¼ −2Θa; (3.26)

fK;Θag ¼ 2Ωa; fK;Ωag ¼ 0: (3.27)

The Poisson bracket relations between the Grassmann-odd
integrals are
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fΘa;Θbg ¼ −iδabH; fΩa;Ωbg ¼ −iδabK; (3.28)

and
fΘ0;Ω0g ¼ −iD;

fΘi;Ωjg ¼ iϵijkðJ k − 4Sþ
k Þ − iδijD; (3.29)

fΘ0;Ωig ¼ −iðJ i þ 2Sþ
i Þ;

fΘi;Ω0g ¼ iðJ i þ 2Sþ
i Þ:

(3.30)

Thus, the setH, J i, S
þ
i ,D,K of even, and the setΘa,Ωa of

odd integrals together form a closed Lie superalgebra. To
identify it, we represent the Poisson bracket relations
(3.19), (3.29), and (3.30) in a compact form:

fY�
i ;ϒag ¼

1

2
t�i
abϒb;

fΘa;Ωbg ¼−iDδabþ 2iðαt−iabY−
i − ð1þαÞtþi

abY
þ
i Þ; (3.31)

where ϒa ¼ Θa, Ωa,

t�i
ab ¼ −t�i

ba; t�i
0j ¼ �δij; t�i

jk ¼ ϵijk; (3.32)

and α ¼ 1=2. We conclude that the nine bosonic integrals
H, K, D, Yþ

i , and Y
−
i , and the eight fermionic integrals Θa

and Ωa generate the superconformal Dð2; 1; αÞ symmetry
[35,41–44]3 with α ¼ 1=2. The three bosonic integrals H,
K,D together with a pair of fermionic integralsΘa,Ωa with
fixed a generate one of the four copies of the ospð1j2Þ Lie
superalgebra. As a minimal generating set one can take, for
example, the odd integrals Θ0 and Ω0, and the even
integrals Sþ

1 and Sþ
2 . Their successive Poisson brackets

fully reproduce the described superconformal Lie super-
algebra. The quadratic Casimir element of the Lie super-
algebra Dð2; 1; αÞ can be presented in the form [45,46]

C ¼ ~Yi
~Yi þ αY−

i Y
−
i − ð1þ αÞYþ

i Y
þ
i þ i

2
ΘaΩa: (3.33)

In our case ~Y1 ¼ iJ1, ~Y2 ¼ iJ2, ~Y3 ¼ J0,
~Yi
~Yi ¼ J20 − J21 − J22 ¼ 1

4
ðHK −D2Þ, and one can easily

check that at α ¼ 1=2 the C given by Eq. (3.33) Poisson

commutes with all the even and odd generators H, K, D,
Y�

i , and Θa, Ωa.
We have here i

2
ΘaΩa ¼ ðL⃗þ νn⃗Þ · S⃗−

, and the quantum
analog of the last nilpotent term in (3.33) is

i
4
½Θ̂a; Ω̂a� ¼ L̂σ þ

3

2
;

where L̂σ ≡ T −ð1 ⊗ ð ˆ⃗Lþ νn⃗Þ · σ⃗Þ:

This is a nontrivial integral for the spin-1=2 subsystem with
Hamiltonian Ĥ− ¼ T −Ĥ, see below. It satisfies the relation

L̂σðL̂σ þ 2Þ ¼ ð ˆ⃗J 2 − 3=4ÞT −. A rather natural question at
this point is whether the system possesses a fermionic type
integral which (like the Grassmann-even integral iΘaΩa=2)
quantum mechanically would be the square root of the

integral
ˆ⃗
J

2
(possibly shifted for an additive constant) but

without a chiral projector factor. Now we shall show that
such a Grassmann-odd integral indeed exists, and that it is
associated with the conserved Laplace-Runge-Lenz vector
of the superextended system.
To that end consider the Grassmann-odd scalar quantity

Ξ0 ¼ −
�
L⃗þ 2

3
S⃗
�
· ξ⃗: (3.34)

One can check that it satisfies the Poisson-bracket relation

fΞ0;Ξ0g ¼ −iðJ⃗ 2 − ν2Þ; (3.35)

and that it is an integral of motion, fΞ0;Hg ¼ 0. The
Poisson bracket of (3.34) with the chiral spin vector Sþ

i
generates then three more integrals of motion, which form
a Grassman vector with respect to the total angular
momentum,

Ξ⃗ ¼ ξ⃗ × L⃗þ ξ0ðL⃗þ 2S⃗Þ: (3.36)

With respect to the chiral spin vector, the integrals Ξa have
properties similar to those of Θa and Ωa,

fSþ
i ;Ξ0g ¼ 1

2
Ξi; fSþ

i ;Ξjg ¼ 1

2
ðϵijkΞk − δijΞ0Þ:

(3.37)

There is, however, an essential difference in comparison
with the Grassmann-odd integrals Θa and Ωa. One can
calculate the Poisson brackets of Ξ0 with Ξi by using the
first relation in (3.37) and employing the graded Jacobi
identities. Since the Poisson bracket of Sþ

i with the right-
hand side in (3.35) is nonzero, the integrals Ξ0 and Ξi
possess nontrivial Poisson bracket relations,

fΞ0;Ξig ¼ 2iðS⃗þ × J⃗ Þi: (3.38)

3SuperalgebraDð2; 1; αÞ has an automorphism associated with
permutations of the three soð3Þ subalgebras, which are generated
by Yþ

i , Y
−
i , and ~Yi, where ~Y1 ¼ iJ1, ~Y2 ¼ iJ2, ~Y3 ¼ J0. At the

parameter level the automoprphism corresponds to the dihedral
group D3 generated by the transformations α → −ð1þ αÞ and
α → α−1. As a result, the superalgebras Dð2; 1; λÞ with λ ¼ α�1,
−ð1þ αÞ�1 and −ð α

1þαÞ�1 are isomorphic [42], and the super-
algebra we have here can be identified as the Dð2; 1; αÞ with the
parameter α taking any value from the set f−3;−3=2;−2=3;
−1=3; 1=2; 2g.

MIKHAIL S. PLYUSHCHAY AND ANDREAS WIPF PHYSICAL REVIEW D 89, 045017 (2014)

045017-8



The presence of the quadratic in integrals J⃗ and S⃗þ

expressions on the right-hand sides of (3.38) and (3.35)
means that the extension of the set of generators of the
superconformal Lie algebra Dð2; 1; α ¼ 1=2Þ by the odd
integral Ξ0 transforms it into a nonlinear superalgebra, in
which the parameter ν2 plays a role of the central charge.
This is not surprising since such a nonlinearity character-
izes the symmetry algebras of systems with a conserved
Laplace-Runge-Lenz vector. The nonlinearity originates
from the particular form of the integral (3.34): it is cubic in
the phase space variables4 Πi, rj, and ξa.
The Poisson brackets between Ξi and Ξj can also be

computed by using relations (3.37) and employing the
graded Jacobi identities. Again, we get a nonlinear
(quadratic in the integrals J i and Sþ

j ) Poisson bracket
relation,

fΞi;Ξjg ¼ iδijðν2 − ðJ⃗ − 2S⃗þÞ2Þ þ 4iSþ
i S

þ
j

− 2iðSþ
i J j þ Sþ

j J iÞ: (3.39)

The scalar integral Ξ0 Poisson commutes with two other
scalar Grassmann-odd integrals,

fΘ0;Ξ0g ¼ fΩ0;Ξ0g ¼ 0: (3.40)

On the other hand, we have nontrivial Poisson bracket
relations

fΘi;Ξ0g ¼ −fΘ0;Ξig ¼ iGi;

fΩi;Ξ0g ¼ −fΩ0;Ξig ¼ iRi;
(3.41)

fΞi;Θjg ¼ −iϵijkGk; fΞi;Ωjg ¼ −iϵijkRk: (3.42)

This provides us with a generalization of the Laplace-
Runge-Lenz vector integral (2.25) and its associated
dynamical integral (2.36),

G⃗ ¼ Π⃗ × ðJ⃗ − S⃗þÞ þ Π⃗ × S⃗− þ 2ν

r

�
S⃗− − r⃗

r
ðr⃗ · S⃗−Þ

�
;

(3.43)

R⃗ ¼ r⃗ × ðJ⃗ − S⃗þ þ S⃗−Þ − 2G⃗t: (3.44)

The supersymmetrized Laplace-Runge-Lenz vector (3.43)
can be written in the form

G⃗ ¼ Π⃗ × Y⃗− − i
2
ξ⃗ × Θ⃗þ i

ν

2r3
ρ⃗ × ρ⃗:

It Poisson commutes with the chiral spin vector and
supercharges Θa,

fGi;S
þ
j g ¼ fGi;Θag ¼ 0; (3.45)

while the brackets with the conformal symmetry generators
are

fH;Gig ¼ 0; fD;Gi; g ¼ Gi; fK;Gi; g ¼ 2Ri:

(3.46)

For the dynamical vector integral Ri we have

fRi;S
þ
j g ¼ fRi;Ωag ¼ 0; (3.47)

and in addition

fH;Rig ¼ −2Gi; fD;Ri; g ¼ −Ri;

fK;Ri; g ¼ 0: (3.48)

We also have Lie type Poisson bracket relations

fΩ0;Gig ¼ Ξi; fΩi;Gj; g ¼ ϵijkΞk − δijΞ0; (3.49)

fΘ0;Rig ¼ −Ξi; fΘi;Rj; g ¼ −ϵijkΞk þ δijΞ0:

(3.50)

It is worth noting here that although in (3.49) the Ξa are
generated via Poisson brackets of the dynamical odd
integrals Ωa and the true integrals Gi, they are true
Grassmann integrals. This happens since the time-
dependent term −2tΘa in Ωa Poisson commutes with Gi.
The Poisson brackets of Gi and Ri with Ξa are quadratic

polynomials in the integrals

fΞ0;Gig ¼ ðJ⃗ × Θ⃗Þi; fΞ0;Rig ¼ ðJ⃗ × Ω⃗Þi; (3.51)

fGi;Ξjg ¼ δijðJ⃗ − 2S⃗þÞ · Θ⃗−Θ0ϵijkJ kþ 2Sþ
i Θj−ΘiJ j;

(3.52)

fRi;Ξjg¼δijðJ⃗ −2S⃗þÞ · Ω⃗−Ω0ϵijkJ kþ2Sþ
i Ωj−ΩiJ j:

(3.53)

The Poisson brackets between the integrals Gi and Ri are
also quadratic,

4A nonlinear superalgebraic structure associated with the
squared total angular momentum appears also in the super-
symmetrized charge-monopole system; see [10,19,20,27].
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fGi;Gjg ¼ −HϵijkJ k − i
2
ϵijkðΘ⃗ × Θ⃗Þk; (3.54)

fRi;Rjg ¼ −KϵijkJ k − i
2
ϵijkðΩ⃗ × Ω⃗Þk; (3.55)

fGi;Rjg ¼ δijðν2 − 2J⃗ 2 þ 4J⃗ · S⃗þ þ iΩ⃗ · Θ⃗Þ

þ i
2
ðΘiΩj þ ΘjΩiÞ þ J iJ j

− 2ðSþ
i J j þ Sþ

j J iÞ

− ϵijkðDJ k þ
i
2
ðΘ⃗ × Ω⃗ÞkÞ: (3.56)

With these relations we obtain a closed, nonlinear (quad-
ratic) superconformal algebra extended by the Laplace-

Runge-Lenz vector G⃗, the associated Grassmann-even

dynamical vector integral R⃗, and by the Grassmann-odd
integrals Ξa.
Let us now discuss shortly some aspects of the quantum

version of the described supersymmetric structure, in which
the Poisson brackets between the Grassmann-odd gener-
ators become anticommutators of the corresponding quan-
tum fermionic operators, while the brackets between the
Grassmann-even with Grassmann-even or Grassmann-odd
generators become commutators between their quantum
counterparts.
The quantum analog of the Hamiltonian (3.16) is the

matrix 4 × 4 operator having a block-diagonal form,

Ĥ ¼ ˆ⃗Π
2 þ ν2

r2
− 2ν

r3
T −ð1 ⊗ σ⃗ · r⃗Þ ¼

�
Ĥþ 0

0 Ĥ−

�
;

(3.57)

where the 2 × 2 Hamiltonians are Ĥþ ¼ ˆ⃗Π
2 þ ν2=r2 and

Ĥ− ¼ ˆ⃗Π
2 þ ν2=r2 − 2νðσ⃗ · r⃗Þ=r3:Note that the chiral oper-

ator Ĥþ is proportional to the 2 × 2 identity matrix. This
can be attributed to the self-duality of the dyon field. The

conserved total angular momentum operator
ˆ⃗
J ¼ ˆ⃗J þ ˆ⃗

S

contains the spinless part ˆ⃗J ¼ r⃗ ×
ˆ⃗Π − νn⃗ and the spin

operator
ˆ⃗
S ¼ 1 ⊗ 1

2
σ⃗. By standard arguments, the param-

eter ν undergoes the Dirac quantization: at the quantum
level it can take only integer or half-integer values, i.e.
ν ¼ n=2, n ∈ Z [9,47].
The operator Ĥþ represents two identical copies of the

Hamiltonian operator of the spinless system discussed in
the previous section, and the integral nature of the chiral

spin operator
ˆ⃗
S
þ ¼ T þð1 ⊗ 1

2
σ⃗Þ is then obvious. The

diagonal operator Ŝþ
3 distinguishes the upper and lower

components of this doubled spinless system, while the
operators Ŝþ

1 � iŜþ
2 transform them one into another in an

obvious way. The operator Ĥ− can be interpreted as the
Pauli type Hamiltonian of the charged spin-1=2 particle of
gyromagnetic ratio 4 in the combined field of the magnetic
monopole and scalar potential ν2=r2.
The scalar and vector quantum supercharges for the

extended system (3.57) have a block-antidiagonal form

Θ̂a ¼
1ffiffiffi
2

p
�

0 Q̂a

Q̂†
a 0

�
; (3.58)

where

Q̂0 ¼ −iσ⃗ ·
ˆ⃗Πþ ν

r
;

ˆ⃗Q ¼ −iσ⃗Q̂0 ¼ −i
�
ˆ⃗Π × σ⃗ þ ν

r
σ⃗

�
− ˆ⃗Π: (3.59)

They commute with the Hamiltonian (3.57) and anticom-
mute with the diagonal grading operator Γ in (3.3), which
itself is an additional quantum integral of motion of the
bosonic nature. Note that Q̂a and Q̂†

a are the Darboux
intertwining operators:

Q̂aĤ− ¼ ĤþQ̂a; Q̂†
aĤþ ¼ Ĥ−Q̂†

a: (3.60)

These relations are equivalent to the condition of commu-
tativity of supercharges Θ̂a and iΓΘ̂a with Ĥ. As in the case
of the one-dimensional supersymmetric quantum mechan-
ics, they allow us to relate the eigenstates ψþ and ψ− of the
Hamiltonians Ĥþ and Ĥ− of the quantum subsystems,
ψþ ∝ Q̂aψ−, ψ− ∝ Q̂†

aψþ.
The superconformal generators Ω̂a have a block-

antidiagonal form similar to that in (3.58), with Q̂0 replaced

by −iσ⃗ · r⃗ − 2Q̂0t, and
ˆ⃗Q replaced by −ir⃗ × σ⃗ − r⃗ − 2

ˆ⃗Qt.
The quantum analogs Ξ̂a of the supercharges (3.34) and
(3.36) have the same block-antidiagonal form, but with

the scalar operator Q̂0 replaced by iðσ⃗ · ˆ⃗Lþ 1Þ, and the

vector operator ˆ⃗Q replaced by −ð ˆ⃗Lþ σ⃗Þ − i ˆ⃗L × σ⃗,

where ˆ⃗L ¼ r⃗ ×
ˆ⃗Π. Note that in the anticommutator

½Ξ̂0; Ξ̂0�þ ¼ ˆ⃗
J

2 − ν2 þ 1=4, there appears a quantum
correction term ℏ2=4.
The Laplace-Runge-Lenz vector operator of the super-

symmetric quantum system is

ˆ⃗
G ¼ ˆ⃗Gþ T − · 1 ⊗

�
ˆ⃗Π × σ⃗ þ ν

r
ðσ⃗ − n⃗ðσ⃗ · n⃗ÞÞ

�
; (3.61)

where ˆ⃗G is a Hermitian spinless Laplace-Runge-Lenz
vector,

ˆ⃗G ¼ 1

2
ð ˆ⃗Π × ˆ⃗J − ˆ⃗J ×

ˆ⃗ΠÞ ¼ − ˆ⃗J ×
ˆ⃗Πþ i

ˆ⃗Π:
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It commutes with the supercharges Θ̂a, and thus with the
Hamiltonian Ĥ. The quantum analog of the related,
dynamical vector integral (3.44) is

ˆ⃗
R ¼ 1

2
ðr⃗ × ˆ⃗J − ˆ⃗J × r⃗Þ − T −ð1 ⊗ σ⃗ × r⃗Þ − 2

ˆ⃗Gt: (3.62)

In correspondence with the classical properties, it satisfies

the commutation relation ½ ˆ⃗R; Ĥ� ¼ 2i
ˆ⃗
G.

IV. SUMMARY, CONCLUDING REMARKS,
AND OUTLOOK

Let us summarize the obtained nonlinear superalgebraic
structure of the spinning charged particle in the background
of the self-dual dyon.
A very particular role in the supersymmetric structure is

played by the chiral spin vector S⃗þ
, whose origin is rooted

in the self-dual nature of the background electromagnetic
field. This bosonic, Grassmann-even vector integral com-
mutes with all other basic bosonic integrals, except the total

angular momentum vector J⃗ . On the other hand, all the
fermionic, Grassmann-odd integrals are grouped into the
three irreducible representations with respect to the Poisson

bracket action, or, commutator in the quantum case, of S⃗þ

on them. The rotational symmetry associated with J⃗ is due
to a spherical symmetry of the magnetic and dual to it
electric fields of the dyon. The sets of the integrals Y−

i ¼
J i − Sþ

i and Yþ
i ¼ Sþ

i generate the soð3Þ⊕soð3Þ ¼ soð4Þ
Lie subalgebra.
One can distinguish the three entangled supersymmetry

substructures in the system, each of which can be related to
its corresponding basic bosonic integral.
(i) The Hamiltonian H is a supersymmetric generaliza-

tion of the spinless Hamiltonian (2.18), which pos-
sesses conformal symmetry and reveals a hidden
partially free dynamics. The peculiar dynamics of
the spinless system is encoded in the presence of the
conserved Laplace-Runge-Lenz vector G⃗ and the
associated dynamical integral R⃗, which can be related
to the deformed Galilei symmetry. Quantum mechan-
ically, the square root of Ĥ is the scalar supercharge
Θ̂0, whose classical Grassmann-odd analog Θ0 Pois-
son commutes with itself for −iH. The Poisson
bracket of Θ0 with the chiral spin vector integral
S⃗þ

generates three more integrals, Θi, which form a
vector Θ⃗ with respect to the total angular momentum
integral J⃗ . Each Θi, like Θ0, is a square root of H:
together these four supercharges Θa generate the N ¼
4 supersymmetry: fΘa;Θbg ¼ −iδabH, fΘa;Hg ¼
0. The Poisson bracket of Θi with Sþ

j is a linear
combination of Θ0 and Θk. On the quantum level the
interplay between self-duality and extended super-
symmetry has been emphasized in a more general

context (without further assumptions) in [48], see also
[40] and [26].

(ii) The dynamical integral K, which explicitly depends
on time, generates the special conformal transforma-
tions. Its bracket with the HamiltonianH produces the
generator of dilatations D as a further dynamical
integral. The integrals H, K, D Poisson commute
with the integrals J i and Sþ

i , and generate a soð2; 1Þ
symmetry. The classical analog of the square root
of the quantum operator K̂ corresponds to the
Grassmann-odd dynamical scalar integral Ω0. The
Poisson brackets of Ω0 with the integrals Sþ

i generate
three more dynamical integrals Ωi, which form a
vector with respect to J⃗ . The set Ωa, a ¼ 0, i, has
the same transformational properties with respect to
Sþ
i as the Grassmann odd integrals Θa. The Grass-

mann-odd dynamical integrals Ωa Poisson commute
with K, and together they generate the subsuperalge-
bra, similar to that generated by Θa and H:
fΩa;Ωbg ¼ −iδabK, fΩa;Kg ¼ 0.
The dynamical integrals Ωa are eigenstates of D with
eigenvalue −1, which means fD;Ωag ¼ −Ωa. Sim-
ilarly K is an eigenstate with eigenvalue −2 and H is
an eigenstate with eigenvalue þ2. Accordingly one
finds that the conserved supercharges Θa are eigen-
states of D of eigenvalue þ1.
The superalgebraic structures outlined in (i) and (ii) are
entangled via Poisson brackets. The bracket ofH with
the dynamical integrals Ωa produces the integrals Θa,
while the bracket of K with the integrals Θa generates
Ωa. The Poisson brackets between the supercharges
Θa and superconformal charges Ωa produce linear
combinations of D, J i, and Sþ

i , from which these
even integrals can be completely reconstructed.
The usual integrals H, Y�

i , Θa (which do not depend
explicitly on time) together with the dynamical in-
tegrals K, D, and Ωa generate the exceptional simple
Lie superconformal algebra Dð2; 1; αÞ with α ¼ 1=2.
This Lie superalgebra of order 17 has the quadratic

Casimir C ¼ 1
4
ðHK −D2Þ þ 1

2
Y⃗−2 − 3

2
Y⃗þ2 þ i

2
ΘaΩa.

To the last Grassmann-even nilpotent term corre-
sponds the quantum operator i

4
½Θ̂a; Ω̂a� ¼ L̂σ þ 3=2

with L̂σ ≡ T −½1 ⊗ ð ˆ⃗Lþ νn⃗Þ · σ⃗� which is a nontrivial
integral for the spin-1=2 subsystem Ĥ−. The quantum
bosonic integral L̂σ satisfies the quadratic rela-

tion L̂σðL̂σ þ 2Þ ¼ T −ð ˆ⃗J
2 − 3=4Þ.

(iii) Similarly as for Ĥ and K̂, there exists an antidiagonal

fermionic square root for the conserved operator
ˆ⃗
J

2
.

Its classical analog is the Grassmann-odd scalar
integral Ξ0, which satisfies the Poisson bracket rela-

tion fΞ0;Ξ0g ¼ −iðJ⃗ 2 − ν2Þ. The bracket of Ξ0 with

the chiral spin vector S⃗þ
produces the Grassmann odd
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vector integral Ξ⃗, and the set Ξa is transformed by Sþ
i

in the same way as the integrals Θa and Ωa. However,
Ξi has nonzero Poisson brackets with Ξ0, and the
brackets of Ξa with Ξb turn out to be quadratic in the
total angular momentum J i and the chiral spin vector
Sþ
i . On the other hand, in contrast with the Grass-

mann-odd integrals Θa and Ωa, the integrals Ξa, like
J i and Sþ

i , Poisson commute with the soð2; 1Þ
generators K and D, which means that they are
soð2; 1Þ scalars.

The Poisson brackets of Ξa with Θb generate the
Laplace-Runge-Lenz vector integral Gi. Analogously, the
brackets of Ξa with Ωb produce the dynamical vector
integral Ri associated with Gi, ∂

∂tRi ¼ Gi. In correspon-
dence with this, Gi and Ri are eigenvectors of D with
eigenvalues þ1 and −1, respectively. The Poisson bracket
of Gi with K leads to Ri, while Ri Poisson commutes with
K. The Hamiltonian H acts on these vector integrals in the
opposite way: it Poisson commutes with Gi, and its bracket
with the dynamical integralRi yields the integral Gi. These
bosonic vector integrals Poisson commute with the chiral
spin vector Sþ

i . At the same time, the vector Gi Poisson
commutes with Θa, while its brackets with Ωa produce
integrals Ξa. Analogously, the dynamical integral Ri
Poisson commutes with Ωa, and generates the
Grassmann-odd integrals Ξa via the brackets with Θa.
The Poisson brackets of Gi andRi with Ξa, and between Gi
and Ri yields quadratic expressions of the other integrals.
So, the extension of the set of the generators of the
superconformal symmetry Dð2; 1; α ¼ 1=2Þ by the
Grassmann-odd and Grassmann-even integrals Ξa and
Gi, Ri transforms the Lie superalgebra into a nonlinear,
quadratic superalgebra.
It is worth noting that starting with any one of the set of

the ten integrals Ξa, Gi, and Ri, one can generate the
complete set of integrals by taking Poisson brackets with
the generators of Dð2; 1; α ¼ 1=2Þ, for instance,

Ξ0↦
Sþi Ξi↦

Θj
Gi↦

K
Ri↦

Θj
Ξ0;Ξi:

Then, as the minimal set of the integrals generating all the
quadratic superalgebra via the Poisson brackets one can
take one of the Grassmann-odd integrals Θa, one of the
Grassmann-odd dynamical integrals Ωb, two components

of the chiral spin vector S⃗þ
, and finally one of the odd or

even integrals Ξa or J i, Ri.
Quantum mechanically the system has the additional

integral Γ ¼ γ5 ¼ −γ0γ1γ2γ3 ¼ τ3 ⊗ 1. It commutes with
quantum analogs of all the Grassmann-even integrals but
anticommutes with the quantum analogs of all the
Grassmann-odd integrals. It is identified as the Z2-grading
operator of the quantum supersymmetric structure. The
multiplication of any of the fermionic Hermitian generators
Φ̂μ from the set (Θ̂a, Ω̂a, Ξ̂a) by iγ5 gives a new Hermitian

fermionic integral, and in an algebraic way doubles the
set of them. As a result, instead of the nonlinear,
quadratic superalgebra consisting of 12 fermionic
integrals, we end up with a superalgebra with 24 fermionic
generators satisfying the commutation relations
½Γ; Φ̂sμ� ¼ −2iϵss0Φ̂s0μ, where s, s0 ¼ 1, 2, Φ̂1μ ¼ Φ̂μ, and

Φ̂2μ ¼ iΓΦ̂1μ. The linear combinations Φ̂�μ ¼ 1
2
ðΦ̂1μ ∓

iΦ̂2μÞ ¼ T �Φ̂μ with ðΦ̂þμÞ† ¼ Φ̂−μ define chiral fermionic
generators, see Eq. (3.58), and the integrals Ξ̂�a are
Darboux generators that intertwine the spin-independent
(doubled) Schrödinger operator Ĥþ and spin-dependent
Pauli operator Ĥ−. This property has a natural explanation
if one views Ĥ� as parts of a squared Euclidean Dirac
operator for self-dual background fields [48]. Analogously,
the Ω̂�a are Darboux intertwiners for the operators K̂þ and
K̂−, K̂� ¼ T �K̂, which are generators of the special
conformal symmetries of the corresponding spinless and
spin-1=2 quantum subsystems.
On the other hand, at the classical level the quantity

−2ξ0ξ1ξ2ξ3 ¼ 1
3
S⃗þ2

corresponds to the operator γ5. This,
however, is a Grassmann-even integral, whose quantum
analog includes a multiplicative factor ℏ2 in contrast with
the quantum analog of ξa to be proportional to

ffiffiffi
ℏ

p
. A

multiplication of this nilpotent Grassmann-even integral by
any of the classical Grassmann-odd integral produces zero,
and we have no classical analog for the quantum fermionic
integrals Φ̂2μ. Alternatively, as a classical analog of γ5, one
could try to introduce an independent Grassmann scalar
variable ξ5 with the only nontrivial Poisson bracket
fξ5; ξ5g ¼ −i. In this case multiplication of classical
integrals Θa, Ωa and Ξa by iξ5 will give new classically
nontrivial integrals. However, they will be of the
Grassmann-even, bosonic nature. The described problems
associated with the introduction of the classical analog for
the matrix γ5 are well known and were discussed in a
different context in the literature [49].
Based on relations (2.43) and (2.44) for the spinless

bosonic case, one could assume that by a suitable nonlinear
(nonlocal at the quantum level) redefinition of the even, Gi
and Ri, and the odd, Ξa, generators of the nonlinear
superconformal symmetry it can be reduced to some linear
superextension of the Dð2; 1; α ¼ 1=2Þ. Let us show that
such a linearization, however, is impossible.
Nonlinear (quadratic) algebraic relations (3.54) and

(3.55) are linearized by a redefinition Gi → Ǧi, Ri → Ři,

Ǧi ¼
1ffiffiffiffiffi
H

p Gi þ
1

2H
ðΘ⃗ × Θ⃗Þi;

Ři ¼
1ffiffiffiffi
K

p Ri þ
1

2K
ðΩ⃗ × Ω⃗Þi: (4.1)

These vectors satisfy, particularly, the Lie-Poisson alge-
braic relations
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fǦi; Ǧjg ¼ −ϵijkJ k; fǦi;Θjg ¼ iϵijkΘk;

fǦi;Hg ¼ fǦi;Dg ¼ fǦi;Θ0g ¼ 0; (4.2)

and

fŘi; Řjg ¼ −ϵijkJ k; fŘi;Ωjg ¼ iϵijkΩk;

fŘi;Kg ¼ fŘi;Dg ¼ fŘi;Ω0g ¼ 0: (4.3)

One can also redefine Ξa → Ξ̌a,

Ξ̌0 ¼
Ξ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J⃗ 2 − ν2
q ;

Ξ̌i ¼
Ξiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J⃗ 2 − ν2
q − 2Ξ̌0

J⃗ 2 − ν2
ðJ⃗ × S⃗þÞi:

(4.4)

These integrals satisfy with the Sþ
i the same relations as

the initial odd integrals Ξa, fSþ
i ; Ξ̌0g ¼ 1

2
Ξ̌i, fSþ

i ; Ξ̌jg ¼
1
2
ðϵijkΞ̌k − δijΞ̌0Þ, but instead of the nonlinear Poisson

bracket relations (3.35), (3.38) and (3.39) we get

fΞ̌a; Ξ̌bg ¼ −iδab: (4.5)

These last Poisson brackets can be treated as a super-
algebraic relation with central charge 1. The brackets

fΘi; Ξ̌0g ¼ −fΘ0; Ξ̌ig ¼ i
Giffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J⃗ 2 − ν2
q − ðJ⃗ × Θ⃗Þi

J⃗ 2 − ν2
Ξ̌0

(4.6)

together with Eq. (4.1) show nevertheless that the redefined
integrals generate a more complicated, nonpolynomial super-
algebra (which is of a nonlocal nature at the quantum level).
Analogous nonpolynomial structures appear in the Poisson
brackets ofΘa andH with Ři, and in those ofΩa andK with
Ǧi. The brackets of Ǧi with Řj are also of a nonpolynomial
form in other integrals. This shows the impossibility of the
linearization of the obtained quadratic extension of the
superconformal symmetry Dð2; 1;α ¼ 1=2Þ.
The model we considered possesses only the continuous

spectrum with E > 0. It is known that in the quantum Kepler
problem the hidden symmetry associated with the dynamical
Laplace-Runge-Lenz vector integral not only determines the
energy levels completely but also the phase shifts [50]. One
could naturally expect that the hidden supersymmetry we
discussed here may also be helpful for analyzing the
scattering characteristics of the quantum system.
Investigation of this problem is outside of the scope of
the present work and deserves a separate consideration.
The dynamics of the boson (spinless) sector of the

system we studied corresponds to the special bosonic

dynamics of the Dð2; 1; αÞ model with α2 ¼ 1=4 inves-
tigated by Ivanov, Krivonos, and Lechtenfeld in [25]. The
approach of [25] is completely different, however, that
allowed the authors to obtain the generalDð2; 1; αÞmodels.
Namely, in [25] the N ¼ 4 superconformal mechanics
realizing the Dð2; 1; αÞ symmetry with arbitrary values
of the parameter α was constructed in the N ¼ 4, d ¼ 1
superspace. It was shown then that the bosonic sector of the
system describes a conformally invariant nonlinear sigma
model, which at the two particular values α ¼ þ1=2 and
α ¼ −1=2 reduces to the system (2.18).5 We have shown
that the superextension of the system, which corresponds to
an (anti-)self-dual dyon background, is described by a
qudratically extended Lie superalgebra Dð2; 1; αÞ with the
parameter α ¼ 1=2. This belongs to the set of the values
f−3;−3=2;−2=3;−1=3; 1=2; 2g, which can be related by
the superalgebra automorphism D3; see footnote 3. The
case of α ¼ −1=2, also appearing in special bosonic
dynamics in [25], is not included in the indicated set. As
it is clear, particularly, from the form of the Dð2; 1; αÞ
Casimir (3.33), the case α ¼ −1=2 (related by the D3

automorphism to the cases α ¼ −2 and α ¼ 1) is essen-
tially different. For this value of the parameter α the
Casimirs of the two soð3Þ subalgebras enter with the same
“weight” into the Dð2; 1; αÞ Casimir. Therefore, it seems to
be very interesting to investigate another special case α ¼
−1=2 of the Dð2; 1; αÞ model [25] from the viewpoint of
nonlinear extension of superconformal symmetry associ-
ated with a presence in the bosonic sector of the Laplace-
Runge-Lenz vector and its dynamical integral counterpart.
As it was already noted in the Introduction, for one-

dimensional quantum systems with soliton potentials the
hidden free nature of the systems reveals itself in two
related ways. Namely, such systems are characterized by
zero reflection coefficient, and they possess the Lax-
Novikov higher order differential operator as a nontrivial
integral. The latter is a Darboux-dressed form of the free
particle momentum operator, and its differential order is
fixed by the number of solitons “hidden” in the potential.
The hidden free nature also shows up in a supersymmetric
extension of a reflectionless system. Instead of the two
supercharges that we have in ordinary, superextended
systems with two superpartner Hamiltonians, the solitonic
superextended systems admit four supercharges. Together
with the two bosonic integrals associated with the Lax-
Novikov integrals, they generate a nontrivial nonlinear
superalgeba [8]. The 3D quantum system we studied here
also reveals a hidden, partially free dynamics. The system
(2.18) is characterized by a vanishing scattering angle for
all values of J, J2 ≥ ν2, and this property is reminiscent of

5Based on Eq. (5.2) the special bosonic dynamics is interpreted
in [25] as describing an electrically charged particle in spherically
symmetric fields of the not (anti-)self-dual form Ei ¼ ν2ri=r4 and
Bi ¼ −νri=r3; cf. [17,40] and our discussion in Sec. III.
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the vanishing reflection coefficient in 1D solitonic systems.
Thus it may be interesting to investigate whether the system
we studied here possesses yet an additional hidden non-
linear supersymmetric structure associated with a partially
free nature of its dynamics. This is suggested by the
property of the 1D conformal quantum mechanical model
with a=x2 potential. It has a hidden, bosonized super-
symmetric structure for special values of the strength
a [51].
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