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We develop the formalism that incorporates quantum anomalies in the effective field theory of
nondissipative fluids. We consider the effect of adding aWess-Zumino-like term to the low-energy effective
action to account for anomalies. In this paper we restrict to two spacetime dimensions. We find
modifications to the constitutive relations for the current and the stress-energy tensor, and, more
interestingly, half a new propagating mode (one-and-a-halfth sound): a left- or right-moving wave with
propagation speed that goes to zero with the anomaly coefficient. Unlike for the chiral magnetic wave in
four dimensions, this mode propagates even in the absence of external fields. We check our results against a
more standard, purely hydrodynamical derivation. Unitarity of the effective field theory suggests an upper
bound on the anomaly coefficient in hydrodynamics.
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I. INTRODUCTION

Relativistic hydrodynamics has recently attracted con-
siderable attention from particle theorists. Part of the reason
is that hydrodynamics turned out to be an adequate tool to
describe properties of the quark-gluon plasma produced at
the RHIC and at the LHC. Additionally, AdS/CFT provided
a rich theoretical laboratory for modeling hydrodynamics
of strongly coupled field theories and calculating various
transport coefficients.
One of the interesting recent results is that quantum

anomalies—one of the most subtle phenomena in quantum
field theory—may manifest in hydrodynamical transport
coefficients. Building on earlier AdS/CFT results [1,2]
and field theory ones [3–6], Ref. [7] presented a purely
hydrodynamical derivation of this effect.
An interesting property of the anomalous transport is that

it does not lead to dissipation (in the form of entropy
increase). This suggests that it should be relatively straight-
forward to incorporate anomalies into a field theoretical
approach, which treats hydrodynamics as an effective field
theory for the Goldstone bosons associated with sponta-
neously broken translations and global charges [8,9]. If
successful, this will be a nontrivial test for the field theory
techniques.
Furthermore, a complete understanding of the physical

consequences of quantum anomalies in hydrodynamics is

still lacking and being worked out. A field theory descrip-
tion, if possible, may streamline this task.
The proposal of this paper is that anomalies should be

reproducible by adding Wess-Zumino (WZ)-like terms [10]
to the fluid Lagrangian of [8,9]. The defining property of
WZ terms is that they are invariant under the symmetries
only after integration by parts. In other words, even though
the action is invariant in the presence of these terms, the
Lagrangian density is not.
Here we report on our progress in implementing this

proposal for relativistic hydrodynamics in two spacetime
dimensions. Two dimensions is curious: there is no dis-
tinction between fluids and solids (see Sec. II). But as we
will see, it is also particularly simple from the point of view
of anomalies, for the relevant WZ term appears at the same
derivative level as the lowest-order, nonanomalous fluid
Lagrangian.
We start in Sec. II with reviewing the field theory

description of nonanomalous hydrodynamics: we introduce
the symmetries defining the field theory, write down the
action at the leading order in derivatives, and establish the
dictionary between field theory and hydrodynamic observ-
ables. This is a brief review of what is presented in a
companion paper [11].
In Sec. III we present the Wess-Zumino term that can be

added to this theory in accord with all its symmetries. In
Sec. IV we study the behavior of the resulting theory in the
presence of an external gauge field and confirm that upon
gauging, theWess-Zumino term gives rise to the anomaly. In
Sec.Vweestablishthedictionarybetweenthefield theoryand
hydrodynamics in the presence of the Wess-Zumino term.
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In Sec. VI we study the physical consequences of the
Wess-Zumino term in the absence of an external gauge
field. We find that that it gives rise to half a new
propagating degree of freedom, i.e. a purely left (right)
moving mode—which we dub “one-and-a-halfth sound.”
We calculate the propagation velocity of this mode and
point out that unitarity of the field theory description sets an
upper bound on the possible values of the anomaly
coefficient. In Sec. VII we cross-check our field theory
results via a conventional hydrodynamical derivation of the
constitutive relations for anomalous hydrodynamics in two
spacetime dimensions. We conclude in Sec. VIII.

II. FLUID LAGRANGIAN IN TWO
SPACETIME DIMENSIONS

We start by reviewing the field theory description of
nonanomalous fluids carrying conserved charges. We
restrict to ð1þ 1Þ spacetime dimensions. We only state
the results here and refer the reader to [11] for the
derivation, which is valid in any number of dimensions.
The dynamics of a perfect nonanomalous relativistic fluid
in ð1þ 1Þ dimensions are described by a Lagrangian of the
form

L0 ¼ Fðb; yÞ; (1)

where

b≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂μϕÞ2

q
; y≡ ϵμν∂μψ∂νϕ

b
:

We are using the ð−þÞ-signature, and the sign convention
for the ϵ-tensor is ϵ01 ¼ 1. The scalar field ϕ describes a
mapping of the physical space into the comoving fluid
space. This is a one-dimensional space, so, unlike in higher
dimensions, there is no need to impose any symmetry
acting on ϕ to ensure that the action describes a perfect
fluid, rather than some general medium—a generic elastic
medium in one spatial dimension (i.e., in a tube or in a wire)
can be thought of as a fluid. Technically, this is because in
one dimension the volume preserving diffs of [11] are just
constant shifts, ϕ → ϕþ a.
On the other hand, on top of the Uð1Þ particle number

symmetry

ψ → ψ þ c; (2)

which defines our conserved charge, one needs to impose
the “chemical” shift symmetry [11,12]

ψ → ψ þ fðϕÞ; (3)

to ensure that the action (1) does not depend on ð∂μψÞ2.
This dependence, if present, would indicate that we are

actually dealing with a mixture of a normal fluid and a Bose
condensate (superfluid component).
The shape of the function F is determined by the fluid

equation of state. Namely, the dictionary establishing the
correspondence between the field theory quantities and
thermodynamical variables works in the following way. We
define the fluid two-velocity as

uμ ¼ ϵμν∂νϕ

b
: (4)

Then, from the field theory energy-momentum tensor

Tμν ¼ ðFyy − FbbÞuμuν þ ðF − FbbÞημν (5)

we read the expressions for the fluid density and pressure,

ρ ¼ Fyy − F; p ¼ F − Fbb: (6)

Similarly, from the Noether current associated with the shift
symmetry acting on ψ ,

jμ ¼ Fyuμ; (7)

we deduce that the fluid charge density is

n ¼ Fy: (8)

Furthermore, we identify the identically conserved current

Jμ ¼ buμ (9)

with the entropy current, so that the entropy density is
given by

s ¼ b: (10)

Finally, by imposing the standard thermodynamic iden-
tities,

ρþ p ¼ Tsþ μn; dρ ¼ Tdsþ μdn; (11)

we find the expressions for the temperature and chemical
potential of the fluid

T ¼ −Fb; μ ¼ y: (12)

To summarize, the fluid Lagrangian is one of the most
uncommon thermodynamic potentials,

Fðs; μÞ ¼ nμ − ρ;

which arises if one uses entropy density s and chemical
potential μ as the independent thermodynamic variables.

III. FLUID WESS-ZUMINO LAGRANGIAN

It is straightforward to extend the above formalism to
describe the fluid motion in the presence of an external
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gauge field Aμ; for our purposes it is enough to consider
only the case of a fixed nondynamical Aμ. All that one
needs to do is to replace

∂μψ → ∂μψ þ Aμ (13)

everywhere in the fluid Lagrangian (1). General covariance
of the fluid action in the presence of a nontrivial metric,
implies that the fluid energy-momentum tensor (non)con-
servation in the presence of the external A field takes the
form

∂μT
μν
A ¼ FνλjAλ (14)

in agreement with what one expects in hydrodynamics. The
subscript A here is a reminder that the energy-momentum
tensor and the current in (14) are obtained from the energy-
momentum tensor and the Noether current of the fluid in
the absence of the external field, followed by applying the
replacement (13).
As was realized recently [7], hydrodynamics gets modi-

fied in an interesting and controllable way when the particle
number symmetry (2) is anomalous, meaning that the
corresponding current is no longer conserved in the
presence of an external gauge field. In a spacetime with
an even dimensionality D, the current’s divergence is
proportional to the wedged product F∧ � � � ∧F of D=2
field-strength two-forms.
Interestingly, even though the effects of anomalies in

D ¼ 4 (the case considered in [7]) arise at the same order in
the derivative expansion as various dissipative phenomena
(shear viscosity, bulk viscosity, and conduction), they do
not lead to an entropy growth on their own. The same holds
for higher dimensions as well [13,14]. This suggests that it
should be possible to incorporate them in our Lagrangian
formalism without introducing extra degrees of freedom,
which would be needed to describe dissipation.
Furthermore, the presence of an anomaly in [7] has

physical consequences even in the absence of an external
field. For instance, it gives rise to a contribution to the
particle current proportional to the fluid vorticity. This is
reminiscent of what happens in the pion chiral Lagrangian,
where in order to reproduce the anomalies arising as a result
of gauging the flavor symmetries one introduces a Wess-
Zumino term in the pion Lagrangian, which gives rise to
physical processes, such as ππ → KKK scattering even in
the absence of gauge fields.
The key property of the Wess-Zumino term for repro-

ducing the anomalies is that it is invariant under the flavor
symmetries only at the level of the action, i.e. the
Lagrangian itself acquires a variation which is a total
derivative. As a result the invariance may get lost upon
gauging, implying the anomaly.
To see whether the same mechanism works in hydro-

dynamics we need to find an additional term in the fluid

Lagrangian, which is noninvariant under some of the fluid
symmetries, but gives rise to a variation which is a total
derivative. In this paper we will accomplish this in the
simplest case of D ¼ ð1þ 1Þ hydrodynamics, where the
only nontrivial symmetry is the chemical symmetry (3).
Another simplification occurring in the D ¼ 2 case is

that the anomalous divergence is proportional simply to
ϵμνFμν. Unlike in higher dimensions, where anomalies arise
at higher orders in the derivative expansion, this term is of
the same order as the leading order terms associated with
(1). So, to construct a Wess-Zumino term, we need to find
an expression which (i) changes under the chemical
symmetry (3) by a total derivative, and (ii) involves exactly
one derivative per ψ and ϕ field.
Without further ado let us present the action with the

required properties:

SWZ ¼ −C
Z

d2xuμ∂μψ ~uν∂νψ ; (15)

where uμ is the fluid two-velocity, and

~uμ ≡ ϵμνuν ¼ b−1∂μϕ

is orthogonal to it and normalized to one. This action is not
of the form (1), so there is no invariance under (3) at the
level of the Lagrangian. However, it is straightforward to
check that the corresponding variation is a total derivative,

δSWZ ¼ −C
Z

d2xuμ∂μψ ~uν∂νfðϕÞ

¼ −C
Z

d2xϵμν∂μψ∂νfðϕÞ (16)

where we made use of the identity

uμ ~uν ¼ ϵμν þ ~uμuν: (17)

Consequently, the action

S ¼ S0 þ SWZ (18)

satisfies all the symmetries expected for the perfect fluid
action. One expects that there should exist an extension of
the dictionary outlined in Sec. II between our field theory
and (anomalous) hydrodynamics applicable in the presence
of the Wess-Zumino term (15). To establish this dictionary,
it is instructive to consider first what happens with the
system (18) in the presence of an external gauge field.
Along the way we will also check that the Wess-Zumino
term (15) indeed gives rise to the anomaly.

IV. GAUGING THE WESS-ZUMINO TERM

Let us try first to introduce the external field following
the rule (13). This “naïve” gauging leads to the action
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Sng½ϕ;ψ ; Aμ�≡ S½ϕ; ∂μψ þ Aμ�: (19)

The problem with this gauging is that in the presence of the
Wess-Zumino term (15), it does not preserve the chemical
symmetry (3). Indeed, following the same steps as in (16)
we obtain a nontrivial variation of the form

δSng ¼ −C
Z

ϵμνAμ∂νfðϕÞ:

The invariance under the chemical symmetry can be
restored by sacrificing gauge invariance and postulating
that the correct action describing the fluid in an external A
field is

Sg ¼ Sng þ C
Z

ϵμνAμ∂νψ : (20)

This action is no longer invariant under the gauge sym-
metry: its anomalous variation is

δSan ¼
1

2
C
Z

αϵμνFμν;

where α is the gauge transformation parameter,
Aμ → Aμ þ ∂μα, ψ → ψ − α. Notice that this anomalous
variation is independent of the dynamical “matter fields” of
the theory—it only depends on the external gauge field.
This allows one to apply the conventional argument for
why gauging an anomalous symmetry is a sensible and
well-defined procedure. Namely, one can introduce an
additional “spectator” sector, which is not directly coupled
to our fluid, whose only purpose in life is to cancel the
anomaly in the full theory.
Let us see now how the presence of the anomaly affects

the fluid equations. First, note that the extra term in (20)
does not contribute to the energy-momentum tensor.
However, this term does contribute to the energy-
momentum (non)conservation. Namely, the invariance of
the gauged action under a combined diff transformation of
the dynamical fields, the metric and the external gauge field
implies,

∂μTμ
ν ¼

δSg
δAμ

Fνμ − Aν∂μ
δSg
δAμ

: (21)

Note that the gauged action (20) is invariant under shifts of
ψ ; the corresponding conserved Noether current is equal to

jμN ¼ δSg
δAμ

− CϵμνAν − Cϵμν∂νψ : (22)

Conservation of this current implies

∂μ
δSg
δAμ

¼ 1

2
CϵμνFμν (23)

so that the energy-momentum conservation takes the form

∂μTμν ¼ Fνμ
δSg
δAμ −

1

2
CAνϵμλFμλ: (24)

By making use of the identity

1

2
AνϵμλFμλ ¼ −FναϵαβAβ

the energy-momentum (non)conservation can be presented
in the traditional hydrodynamical form

∂μTμν ¼ Fνμjμ (25)

where the hydrodynamical current is

jμ ¼ δSg
δAμ þ CϵμνAν ¼ Fyuμ − 2Cy ~uμ; (26)

which is manifestly gauge invariant (F and y here and
henceforth stand for their gauged versions FA and yA,
according to the notation of Sec. III). As a consequence of
the anomaly the gauge-invariant hydrodynamical current jμ

is different from the conserved, but gauge noninvariant
Noether current (22). The anomalous divergence of the
hydrodynamical current is equal to

∂μjμ ¼ CϵμνFμν; (27)

as desired.

V. HYDRODYNAMIC DICTIONARY

It is straightforward now to establish the dictionary
between our field theory with the Wess-Zumino term
and the conventional description of (anomalous) hydro-
dynamics. As before, we identify the normalized velocity
of comoving volume elements with the two-velocity of the
fluid, see Eq. (4). Applying the same logic as in the
nonanomalous case [11] we identify the identically con-
served current

Jμ ¼ ϵμν∂νϕ

with the entropy current, which gives us

s ¼ b

for the entropy density. Note that for anomalous hydro-
dynamics, the rest frames for mass, charge, and entropy, are
in general all different from each other. We see that in the
field theory description the “entropy frame”—which iden-
tifies the fluid velocity with the direction of the entropy
flow—is the most natural one. The charge density n is
defined as the projection of the hydrodynamical current
(26) onto the fluid velocity,
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n ¼ −jμuμ ¼ Fy (28)

—unmodified with respect to Eq. (8). To identify the field
theory operators corresponding to the fluid density and
pressure, we need the contribution of the Wess-Zumino
term to the energy-momentum tensor,

TWZ
μν ¼ −Cy2ð ~uμuν þ ~uνuμÞ: (29)

We see that the contractions of the Wess-Zumino energy-
momentum with both uμuν and ημν are zero. Consequently,
there is no anomaly contribution to the fluid density and
pressure either. Note also that TWZ

μν is traceless by virtue of
the Weyl invariance of the Wess-Zumino term. Then, by
applying the thermodynamic identities

ρþ p ¼ Tsþ μn; dρ ¼ Tdsþ μdn; (30)

we find that the expressions for the fluid temperature
and chemical potential also remain the same, Eq. (12).
Consequently, the whole dictionary establishing the rela-
tion between the hydrodynamic variables and the field
theory ones remains unchanged in the presence of the
Wess-Zumino term. The only consequence of this term is
the change of the constitutive relations for the fluid current
and energy-momentum. When written in fluid variables,
the new anomalous contributions to these quantities take
the form

ΔTμν ¼ −Cμ2ðuμ ~uν þ uν ~uμÞ (31)

Δjμ ¼ −2Cμ ~uμ: (32)

In Sec. VII we will confirm this result by a direct
hydrodynamical calculation.
One may be puzzled by the fact that even though the

momentum density does not vanish in a frame aligned with
uμ, the thermodynamical identities do not get corrected by
the standard “relative motion” terms of the form v⃗ · P⃗ and
v⃗ · dP⃗ [15]. This implies that the effective field theory
formalism automatically defines the most natural thermo-
dynamic frame: that in which the relative velocity v⃗
vanishes. Usually this would imply that in the same frame
the momentum density at equilibrium vanishes as well, but
this implication is enforced only by parity, which is violated
by our system.
A microphysical interpretation of the chiral vortical

effect of Ref. [7] is still lacking. On the other hand, the
microscopic origin of our correction to the current-
Eq. (32)—is quite clear. In 1þ 1 dimensions, there is
no spin, and chirality for fermions takes a degenerate
form: left-handedness is the same as left-movingness. As
a result, at final chemical potential for a chiral charge,
there are more left-moving fermions than right-moving
ones (or vice versa). This mismatch leads to a net current

for this charge. The effect is proportional to the anomaly
coefficient—which just counts the number of fermion
species involved democratically in the charge under
consideration. The appearance of the chemical potential
may seem more puzzling at first: given the physical
argument above, one would expect the effect to be
proportional to the charge density n. However the average
speed at which the net charge moves is determined by
thermodynamical equilibrium—one certainly cannot
model the effect by considering free-streaming left-
moving and right-moving particles.

VI. SPECTRUM OF PERTURBATIONS

To see some of the physical consequences of the fluid
Wess-Zumino term, let us study the spectrum of linear
excitations around a static homogeneous fluid ground state.
We will restrict ourselves to the case of zero external field.
Then the perturbed fluid configuration can be written as

ϕ ¼ s · ðxþ πÞ; ψ ¼ μ · ðtþ χÞ;
where s and μ are the unperturbed entropy density and
chemical potential. The quadratic Lagrangian for small
perturbations π, χ reads

L2 ¼
1

2
ðμFy − sFbÞ _π2 þ

1

2
s2Fbbπ

02 þ 1

2
μ2Fyy _χ

2

þ ð2sμFyb þ μFyÞ_χπ0
− Cμ2ð _ππ0 þ _χχ0Þ þ 2Cμ2 _π _χ; (33)

where the derivatives of F are all computed on the back-
ground configuration. This is a coupled second-order
system of two fields, so in general one expects to find
four propagating modes for each value of the spatial
momentum k—two left-movers and two-right movers.
Without our Wess-Zumino term, the fluid Lagrangian is
invariant under the spatial parity x → −x, ϕ → −ϕ, which
implies that left- and right-movers have the same propa-
gation velocity.
Furthermore, the chemical symmetry implies that there

should be a mode with vanishing propagation velocity, i.e.,
with a dispersion relation ω ¼ 0. Indeed, χ ¼ χðxÞ is a
solution of (33). As a result, without the Wess-Zumino term
one is left with a single left-moving and a single right-
moving phonon with equal propagation velocities. If one
were to include dissipative effects, the nonpropagating ω ¼
0 modes would acquire an imaginary contribution to their
dispersion relation and would describe charge diffusion.
A new phenomenon arising in the presence of the Wess-

Zumino term, is that one of these “frozen” modes starts
propagating. This is still compatible with the chemical
symmetry: χ ¼ χðxÞ is still a solution. Only, since the
Wess-Zumino term breaks spatial parity, left- and right-
movers may have different propagation velocity. A direct
inspection of the dispersion relation following from (33)
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confirms the presence of one ω ¼ 0 mode and three
propagating modes. The expressions for their propagation
velocities are somewhat cumbersome and nonilluminating
in general, so we only discuss here two limiting cases.
For small C, one finds a pair of left- and right-moving

phonons with approximately equal propagation speeds,

ωL;R ¼ vsL;Rk;

where k is the absolute value of the momentum and

v2sL;R ¼ ð2sFby þ FyÞ2 − s2FyyFbb

FyyðFys − μFbÞ
�OðCÞ:

These are the ordinary sound waves, slightly corrected by
the presence of the anomaly. The OðCÞ corrections to the
speed of sound are different (opposite, in fact) for left- and
right-moving phonons.
One top of these, one finds a mode that propagates only

in one direction—one-and-a-halfth sound. This mode is
similar to the chiral magnetic wave in four dimensions [16],
but in two dimensions it appears even in the absence of an
external field. It has a linear dispersion relation

ω ¼ vWZk;

with propagation speed equal to

vWZ ¼ 2C
s2Fbb

s2FyyFbb − ð2sFby þ FyÞ2
þOðC2Þ:

Another limit which is straightforward to look at is
when the action is dominated by the Wess-Zumino term,
F → 0. In such a case the quadratic Lagrangian (33)
reduces simply to

L2 →
1

2
μ2Cð _π2þ − _π2− − _πþπ0þ − _π−π0−Þ;

where π� ¼ π � χ. Each of the fields π� describes one
mode with an ω ¼ 0 dispersion relation, and one propa-
gating at the speed of light. However, the theory is sick
in this case, as one of the fields π� is a ghost—it has a
wrong-sign kinetic term. This indicates that there is an
upper bound on the anomaly coefficient C following
from banning ghosts. For instance, requiring that the
quadratic action (33) is ghost-free at zero momentum
implies

4C2 < ðμFy − sFbÞFyy=μ2 ¼
ρþ p
μ2

�∂n
∂μ

�
s
: (34)

Banning other pathologies—such as superluminal
modes and classical instabilities—may lead to more con-
straints (cf. the analysis of [8,17]). For instance, another
necessary condition for the absence of pathologies follows

from requiring that the energy-momentum tensor of the
anomalous fluid satisfies the null energy condition, i.e.,

Tμνnμnν ≥ 0 (35)

for any null vector nμ. The results of [8] are directly
applicable to our case and imply that a violation of (35) is
necessarily accompanied by ghosts or classical instabilities
or superluminal modes. The two independent null vectors
in two dimensions are uμ � ~uμ, so that in the presence of
the Wess-Zumino contribution (29) the null energy con-
dition reads

jCj ≤ ρþ p
2μ2

; (36)

which in general is neither stronger nor weaker than (34)—
just different. A comprehensive analysis of stability and
subluminality may provide stronger constraints than the
necessary conditions (34), (36).
This example shows one advantage of having the field

theory description: the presence of a ghost is not obviously
detectable in the hydrodynamical language, and one needs
a field theory to deduce that the coefficient C cannot be
arbitrarily large.

VII. HYDRODYNAMIC DERIVATION

We follow [7] by giving a hydrodynamic derivation in
the momentum frame, i.e. where ΔTμν ¼ 0 [18]. At the
end, we rotate back to the more natural frame from the field
theory point of view, i.e. the entropy frame where Δsμ ¼ 0.
The energy-momentum, charge current, and entropy cur-
rent are

Tμν ¼ ðρ0 þ p0Þuμ0uν0 þ p0η
μν (37)

jμ ¼ n0u
μ
0 þ ξj ~u

μ
0 (38)

sμ ¼ s0u
μ
0 þ ξs ~u

μ
0; (39)

where we use the subscript 0 to denote momentum-frame
quantities. Here, Δjμ ¼ ξj ~u

μ
0 and Δsμ ¼ ξs ~u

μ
0 are the

anomaly corrections to the charge and entropy currents.
The equations of motion are

∂μTμν ¼ Fναjα; ∂μjμ ¼ CϵμνFμν; ∂μsμ ¼ 0: (40)

In particular, entropy is conserved because the anomaly
should not introduce any dissipation, which we are there-
fore neglecting altogether.
The external electric field E is related to Fμν

by Fμν ¼ Eϵμν, so that Fναjα ¼ ξjEuν0 þ nE ~uν0 and
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ϵμνFμν ¼ −2E. Note the useful relations: u20 ¼ −1, ~u20 ¼ 1,
uμ0 ~u

ν
0 − uν0 ~u

μ
0 ¼ ϵμν, and ~uμ0 ~u

ν
0 − uμ0u

ν
0 ¼ ημν.

Projecting the energy-momentum equation along the
fluid flow, and using the thermodynamic relations ρ0 þ
p0 ¼ T0s0 þ μ0n0 and dρ0 ¼ T0ds0 þ μ0dn0 [19], we
obtain:

−T0∂ · ðs0u0Þ − μ0∂ · ðn0u0Þ ¼ −ξjE; (41)

which implies

T0∂ · ðξs ~u0Þ þ μ0∂ · ðξj ~u0Þ þ 2μ0CE ¼ −ξjE (42)

upon using the charge and entropy equations.
Projecting the energy-momentum equation orthogonally

to the flow, we have

ðρ0 þ p0Þ∂ · ~u0 þ ~u0 · ∂p0 ¼ n0E: (43)

This can be used to remove ∂ · ~u0 from Eq. (42), giving

~u0 ·

�
T0∂ξs þ μ0∂ξj − T0ξs þ μ0ξj

ρ0 þ p0

∂p0

�

¼ −E
�
2μ0Cþ ξj þ

n0ðT0ξs þ μ0ξjÞ
ρ0 þ p0

�
: (44)

Since E and ~u0 are arbitrary and independent, we demand
each side to vanish independently. Thus,

2μ0Cþ ξj þ
n0T0

ρ0 þ p0

�
ξs þ

μ0
T0

ξj

�
¼ 0; (45)

and

∂
�
ξs þ

μ0
T0

ξj

�
− ξj∂ μ0

T0

¼
�
ξs þ

μ0
T0

ξj

� ∂p0

ρ0 þ p0

: (46)

Comparing Eq. (46) with the thermodynamic relation
dT0 þ n0T2

0=ðρ0 þ p0Þdðμ0=T0Þ ¼ T0dp0=ðρ0 þ p0Þ, one
can see that

ξs þ μ0ξj=T0 ¼ T0gðμ0=T0Þ (47)

—this guarantees their mutual consistency at constant
μ0=T0, while consistency at constant p0 means the function
g obeys

n0T2
0

ρ0 þ p0

¼ Tg0 − ξj
g

: (48)

Substituting ξj from Eq. (45), we thus obtain
g0 ¼ −2Cμ0=T0, which implies g ¼ −Cðμ0=T0Þ2 þ d,
where d is an integration constant (its analog in 3þ 1
was pointed out by [20]; it was suggested in [21] that this
constant is related to gravitational anomaly; this relation

remains obscure in our language). We therefore arrive at the
result:

ξj ¼
�

n0μ20
ρ0 þ P0

− 2μ0

�
C − n0T2

0

ρ0 þ p0

d; (49)

ξs ¼
μ20s0

ρ0 þ p0

Cþ T0

�
1þ n0μ0

ρ0 þ p0

�
d: (50)

This result is expressed more simply in the entropy
frame. Suppose for the moment that ξj and ξs are small,
so that sμ ¼ s0u

μ
0 þ ξs ~u

μ
0 ¼ suμ means s ∼ s0 and

uμ ∼ uμ0 þ ξs ~u
μ
0=s0, i.e. enforcing u2 ¼ −1 would only

introduce terms of Oðξ2sÞ. Here, we use symbols without
the subscript 0 to denote entropy frame quantities. It is
straightforward to see that in the frame where sμ ¼ suμ:

Tμν ¼ ðρþ pÞuμuν þ pημν

− ðμ2Cþ ðT2 þ 2nTμ=sÞdÞðuμ ~uν þ uν ~uμÞ (51)

jμ ¼ nuμ − 2

�
μCþ nT

s
d

�
~uμ: (52)

This entropy frame result looks strikingly simple especially
if one ignores the integration constant, i.e. sets d ¼ 0. In
fact, the rotation from momentum frame to entropy frame
can be done nonperturbatively. The exact mapping between
quantities in the two frames, in the absence of integration
constant terms, is

uμ ¼ c̄uμ0 þ s̄ ~uμ0; ~uμ ¼ s̄uμ0 þ c̄ ~uμ0

s ¼ s0=c̄; μ ¼ c̄μ0; T ¼ c̄T0; p ¼ c̄2p0 þ s̄2ρ0

ρ ¼ s̄2p0 þ c̄2ρ0; n ¼ 1

c̄

�
n0 þ 2s̄2

ρ0 þ p0

μ0

�
; (53)

where the boost parameters c̄≡ cosh η and s̄≡ sinh η
satisfy:

c̄2 − s̄2 ¼ 1;
s̄
c̄
¼ μ20

ρ0 þ p0

C: (54)

It can be checked that the thermodynamic relations work
out correctly for the entropy frame quantities [22], and that
the exact anomaly corrections in entropy frame are ΔTμν ¼
−c̄s̄ðρ0 þ p0Þðuμ ~uν þ uν ~uμÞ and Δjμ ¼ ðc̄ξj − s̄n0Þ ~uμ,
giving:

ΔTμν ¼ −μ2Cðuμ ~uν þ uν ~uμÞ; Δjμ ¼ −2μC ~uμ: (55)

This agrees nicely with the field theory result
Eqs. (31), (32).
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What is the interpretation of the integration constant
terms, those proportional to d in Eqs. (49) and (50)? One
can get a hint by rotating to the charge frame, where
jμ ¼ nuμ, instead of the entropy frame. In the absence of
anomaly, i.e. setting C ¼ 0, one obtains:

ΔTμν ¼ T2dðuμ ~uν þ uν ~uμÞ; Δsμ ¼ 2Td ~uμ; (56)

where we use symbols with no subscript 0 to denote charge
frame quantities. Thus, the integration constant terms
appear particularly simple in this frame. A field theory
realization is

S ¼
Z

d2xFðb; yÞ þ dðu · ∂ψÞð ~u · ∂ψÞ þ ϵμν∂νϕAν; (57)

with the modified dictionary: sμ ¼ Fyuμ þ 2dy ~uμ, s ¼ Fy,
jμ ¼ ϵμν∂νϕ ¼ buμ, n ¼ b, T ¼ y ¼ u · ∂ψ , μ ¼ −Fb. It
can be verified that this dictionary reproduces Eqs. (56),
and gives ∂μTμν ¼ Fναjα and ∂μjμ ¼ 0. Consequently,
when the current is nonanomalous, the integration constant
exists due to the possibility of establishing an alternative
dictionary. This possibility is related to some flexibility in
how to identify the entropy current [although, arguments
presented in [11] favor our canonical choice (9)]. This
flexibility is absent in the presence of the anomaly, when
(9) is the only current which is conserved in the presence of
an external field.
It was argued in [23] that one of the two integration

constant terms in 3þ 1 should vanish because it violates
CPT invariance, while the other is allowed. It is clear our
hydrodynamic result for the integration constant in 1þ 1,
Eq. (56), is consistent with CPT (under which uμ → −uμ,
~uμ → − ~uμ, n → −n, μ → −μ, while other relevant quan-
tities remain unchanged such as jμ and Tμν), and indeed our
field theory realization confirms it. It is not obvious what
field theory þ dictionary would reproduce both the
anomaly and the integration constant at the same time.
Perhaps related to this, it remains an open question how to
incorporate gravitational anomalies in our formalism (cf.
recent discussion in [24,25]).

VIII. CONCLUDING REMARKS

To summarize, our results demonstrate that in two
spacetime dimensions it is possible to incorporate the
effect of anomalies in hydrodynamics by introducing a
Wess-Zumino term in the effective field theory description
of fluids. It is straightforward to extend these results to an
arbitrary number of global charges.
It would be interesting to establish a relation between the

existence of Wess-Zumino terms and the topology of field
space in the fluid effective field theory. For a pion chiral σ-
model this allows us to prove the quantization of the
coefficient in front of the Wess-Zumino term [26]. At the
current level of understanding we cannot prove this for a

fluidWess-Zumino term. However, the field theory descrip-
tion already strongly suggests that this coefficient cannot
get renormalized. Indeed, one can apply the following
argument commonly used to prove various nonrenormal-
ization theorems in field theory. If this coefficient depended
on any coupling constants, we could deform the theory by
allowing these couplings to vary slightly in spacetime.
However, this would ruin the chemical symmetry, which
for the Wess-Zumino term holds only after integration
by parts.
Given how simply and naturally things work in the two-

dimensional case, one may expect that it should be
straightforward to generalize our results to anomalies in
higher dimensions. Our investigations so far suggest that
the full story is a bit subtler than for the two-dimensional
case. Let us nevertheless present here what we expect to be
very close to the correct answer.
It is convenient to use the language of differential forms

and to decompose the gradient of ψ as

dψ ¼ ðdψÞu þ α

where ðdψÞu ≡−yuμdxμ is the projection of dψ on the
direction of the fluid flow. This projection is invariant under
the chemical symmetry, while the one-form α transforms as
a gauge potential, α → αþ dfðϕÞ. Then the Wess-Zumino
term (15) can be written as

SWZ ¼ C
Z

ðdψÞu ∧ dψ ¼ C
Z

ðdψÞu ∧ α ¼ C
Z

dψ ∧ α:

The very last way of writing the Wess-Zumino term makes
its invariance under the chemical symmetry manifest—the
variation of the first factor gives rise to dfðϕÞ∧α, which is
zero because both one-forms here are proportional to dϕ
(recall that α is orthogonal to the flow), while the variation
of α gives rise to a total derivative, dψ ∧ dfðϕÞ. A natural
generalization of this expression to D ¼ 2nþ 2 dimen-
sions appears to be

S2nþ2 ¼
Z

dψ ∧ α∧ ðdαÞn: (58)

In particular, in D ¼ 3þ 1 this would giveR
y2ϵμνλρ∂μψuν∂λuρ. Unfortunately, these expressions are

not invariant under the chemical symmetry, because the
invariant two-form dα in general has nonvanishing, non-
comoving (dϕ∧ uμdxμ) components, so that the variation
of dψ results in a nonvanishing variation of (58). We are not
certain at the moment whether this indicates that one should
give up the full chemical symmetry in higher dimensions,
or that a more sophisticated Wess-Zumino term is required.
We plan to address the fate of the fluid Wess-Zumino terms
in even D > 2 dimensions in the near future.
Finally, it would be very interesting to see if the anomaly

discussed in this paper and its physical manifestations such
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as the 1.5th sound, are realized in one-(spatial)-dimensional
condensed matter systems with massless fermionic exci-
tations, e.g. [6].
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