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We determine the scale of the logarithm in the Froissart bound on total cross sections using
absolute bounds on the D-wave below threshold for pion-pion scattering. For example, for π0π0

scattering, we show that for c.m. energy
ffiffiffi
s

p
→ ∞, σ̄totðs;∞Þ≡ s

R∞
s ds0σtotðs0Þ=s02 ≤ πðmπÞ−2½lnðs=s0Þþ

ð1=2Þ ln lnðs=s0Þ þ 1�2, where 1=s0 ¼ 17π
ffiffiffiffiffiffiffiffi
π=2

p
m−2

π .
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I. INTRODUCTION

Froissart [1] proved from the Mandelstam representation
that the total cross section σtotðsÞ for two particles to go to
anything at c.m. energy

ffiffiffi
s

p
must obey the bound,

σtotðsÞ ≤s→∞ C½lnðs=s0Þ�2; (1)

where C, s0 are unknown constants. Later Martin [2]
proved this bound rigorously from axiomatic field theory
by enlarging the Lehmann ellipse of analyticity [3] for the
absorptive part; further, the constant C was fixed by
Lukaszuk and Martin [4] using unitarity and validity of
dispersion relations with a finite number of subtractions for
−T < t ≤ 0 (and as a consequence, twice subtracted fixed-t
dispersion relations for jtj < t0 [5]), to obtain

σtotðsÞ ≤s→∞ 4π=ðt0 − ϵÞ½lnðs=s0Þ�2 ≡ σmaxðsÞ; (2)

where t0 is the lowest singularity in the t channel and ϵ an
arbitrarily small positive constant. For many processes (for
example, for ππ, KK, KK̄, πK, πN, πΛ scattering), it is
known [6] that t0 ¼ 4m2

π, mπ being the pion mass. (We
shall choose units mπ ¼ 1.)
These results were obtained by Martin [2] in the

framework of local field theory as applied to hadrons,
using implicitly the Wightman axioms [7]. However, later,
the needed analyticity properties, as well as polynomial
boundedness at fixed momentum transfer, were obtained by
Epstein et al. [8] in the more general framework of the
theory of local observables of Haag et al. [9].
Recently, Azimov has revisited the Froissart bound in a

paper [10], Sec. 2 of which is similar to the 1962 and 1963
works of Martin [11]. These papers were a precursor to
Martin’s later paper [2] which proved the bound rigorously
from axiomatic field theory. Azimov has raised doubts
about “application of the ideas and methods of axiomatic
local field theory to hadron properties.” His main point is

that “hadrons, consisting of quarks and gluons, cannot be
pointlike,” and might not be associated to local fields.
However, Zimmermann [12] has shown that local fields can
be associated to composite particles (for instance, deuter-
ons). We postulate that this construction applies to hadrons
made of quarks. This is not obvious because, in spite of the
practical successes of QCD, nobody knows how to incor-
porate particles without asymptotic fields in a field theory.
Anyway, this is a much weaker assumption than that of the
validity of Mandelstam’s representation. In particular, we
do not use the Froissart-Gribov representation of physical
region partial waves for fixed s.
The Froissart-Martin bound has triggered much work on

high energy theorems (see, e.g., [13,14]) and on models of
high energy scattering [15]. Recently, Martin proved a
bound on the total inelastic cross section at high energy
[16] which is one fourth of the bound σmaxðsÞ on the total
cross section. Wu et al. [17] obtained a bound on σinelðsÞ in
terms of σtotðsÞ which vanishes both when the total cross
section vanishes and when it equals the unitarity
upper bound.
In spite of all this progress, these bounds share severe

shortcomings [17]. (i) They are deduced assuming that the
absorptive part Aðs; tÞ; 0 ≤ t < t0 is bounded by Const
s2= lnðs=s0Þ for s → ∞. In fact, the Jin-Martin theorem on
twice subtracted dispersion relations only guarantees that

CðtÞ≡
Z

∞

sth

dsAðs; tÞ=s3 < ∞; 0 ≤ t < t0; (3)

where sth is the s-channel threshold. As stressed by
Yndurain and Common [18], this does not imply that
Aðs; tÞ ≤ Const:s2= lnðs=s0Þ for all sequences of s → ∞.
(ii) The bounds are expressed in terms of σmaxðsÞ, which
still contains the unknown scale s0 of the logarithm, and the
unknown positive parameter ϵ, which can be chosen
arbitrarily small but ≠ 0. If ϵ is not fixed, s0 cannot be
fixed, since the advantage of a larger s0 can be offset by a
larger ϵ.
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We now remove both of these shortcomings. We report
definitive bounds on energy averages of the total cross
section in which the scale s0 is determined in terms of CðtÞ,
which is a low energy (in fact below threshold) property in
the t channel. In some cases (e.g., for pion-pion scattering),
for t → 4, CðtÞ is proportional to the D-wave scattering
length [19] which is known phenomenologically; hence,
we obtain bounds on energy averages in terms of that
scattering length. Even more exciting is the fact that for
π0π0 scattering we are able to obtain absolute bounds (in
terms of pion mass alone) on CðtÞ below threshold without
assuming finiteness of the D-wave scattering length; this
yields absolute bounds on the asymptotic energy averages
of the total cross section.

II. NORMALIZATIONS

Let Fðs; tÞ be an ab → ab scattering amplitude at c.m.
energy

ffiffiffi
s

p
and momentum transfer squared t normalized

for nonidentical particles a, b such that the differential
cross section is given by

dσ
dΩ

ðs; tÞ ¼
����4Fðs; tÞffiffiffisp

����
2

; (4)

with t being given in terms of the c.m. momentum k and the
scattering angle θ by the relation,

t ¼ −2k2ð1 − cos θÞ; z≡ cos θ ¼ 1þ t=ð2k2Þ: (5)

Then, for fixed s larger than the physical s-channel
threshold, Fðs; cos θÞ≡ Fðs; tÞ is analytic in the complex
cos θ plane inside the Lehmann-Martin ellipse with foci −1
and þ1 and semimajor axis cos θ0 ¼ 1þ t0=ð2k2Þ. Within
the ellipse, in particular, for jtj < t0, Fðs; tÞ and the
s-channel absorptive part Fsðs; tÞ ¼ Aðs; tÞ have the con-
vergent partial wave expansions,

Fðs; tÞ ¼
ffiffiffi
s

p
4k

X∞
l¼0

ð2lþ 1ÞPlðzÞalðsÞ; (6)

Fsðs; tÞ ¼ Aðs; tÞ ¼
ffiffiffi
s

p
4k

X∞
l¼0

ð2lþ 1ÞPlðzÞImalðsÞ; (7)

with the unitarity constraint,

ImalðsÞ ≥ jalðsÞj2; s ≥ 4: (8)

Correspondingly, the optical theorem gives, for a ≠ b,

σtotðsÞ ¼
4π

k
Imð4Fðs; 0Þ= ffiffiffi

s
p Þ

¼ 4π

k2
X∞
l¼0

ð2lþ 1Þ ImalðsÞ: (9)

For identical particles a ¼ b, e.g., for π0π0 scattering, or for
pion-pion scattering with isospin I, we have the same
formula for the differential cross section,

dσ
dΩ

ðs; tÞ ¼
����4Fðs; tÞffiffiffisp

����
2

;

and the same form of the unitarity constraint,

ImaIlðsÞ ≥ jaIlðsÞj2; s ≥ 4; (10)

but the partial waves alðsÞ → 2aIlðsÞ in the partial wave
expansion, i.e.,

FIðs; tÞ ¼
ffiffiffi
s

p
4k

X∞
l¼0

ð2lþ 1Þ2aIlðsÞPlðzÞ: (11)

With this normalization, FIð4; 0Þ ¼ aI0, the S-wave scatter-
ing length for isospin I, and for pion-pion scattering the
identical particle factors lead to

σItotðsÞ ¼
4π

k2
X∞
l¼0

ð2lþ 1Þ2 ImaIlðsÞ: (12)

In the following, we shall consider nonidentical particles
a ≠ b for detailed derivations and quote the identical
particle results when needed.

III. CONVEXITY PROPERTIES OF LOWER
BOUND ON ABSORPTIVE PART IN
TERMS OF TOTAL CROSS SECTION

Martin has proved unitarity lower bounds on Aðs; tÞ for
0 < t < t0 in terms of σtotðsÞ [2], and in terms of σinelðsÞ
[16]. He has also proved [20] that these bounds are convex
functions of σtotðsÞ and σinelðsÞ, respectively. We recall first
the convexity properties which will be crucial for our
proofs of lower bounds on CðtÞ in terms of energy averages
of total cross sections. We work at a fixed s, and suppress
the s dependence of ImalðsÞ, and σtotðsÞ for simplicity of
writing. Using 0 ≤ Imal ≤ 1, the lower bound on Aðs; tÞ
for given σtot is obtained by choosing

Imal ¼ 1; 0 ≤ l ≤ L; ImaLþ1 ¼ η;

Imal ¼ 0; l > Lþ 1; (13)

where the fraction η (0 ≤ η < 1) and the integer L are
determined from the given σtot. Thus,

Aðs; tÞ 4kffiffiffi
s

p ≥
�XL

l¼0

ð2lþ 1ÞPlðzÞ þ ηð2Lþ 3ÞPLþ1ðzÞ
�

≡ AðzÞ; (14)

where
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σtot
k2

4π
¼

�Xl¼L

l¼0

ð2lþ 1Þ þ ηð2Lþ 3Þ
�
≡ Σtot: (15)

Hence, AðzÞ is a monotonically increasing function of Σtot
with piecewise constant positive derivative. Denoting
IntðxÞ ¼ integer part of x,

dAðzÞ=dΣtot ¼ PLþ1ðzÞ; L ¼ Intð
ffiffiffiffiffiffiffi
Σtot

p
Þ − 1; (16)

which increases with L since z > 1, and hence with Σtot
when it crosses the square of an integer. This proves that the
lower bound AðzÞ is a convex function of Σtot, and that

AðzÞ ¼ Σtot; for Σtot ≤ 1; (17)

and, for Σtot > 1,

AðzÞ ¼ 1þ
Z

Σtot

1

PIntð ffiffi
σ

p ÞðzÞdσ;

≥ 1þ 2

Z ffiffiffiffiffi
Σtot

p −1
0

ðμþ 1ÞPμðzÞdμ: (18)

Using integral representations for PμðzÞ and for the
modified Bessel function I0, we obtain for μ ≥ 0; z > 1,

PμðzÞ ≥ I0ðμ ln zþÞ; zþ ≡ zþ
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 1

p
: (19)

This yields the strict inequality (without any high energy
approximation),

AðzÞ ≥ 2

�
xI1ðxÞ
ðln zþÞ2

þ I0ðxÞ
ln zþ

�����
x¼ð ffiffiffiffiffi

Σtot
p −1Þ ln zþ

þ 1þ 2 ln zþ; for Σtot > 1: (20)

At high energy, this gives

Aðs; tÞ > s
4t
xI1ðxÞjx¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tσtotðsÞ=ð4πÞ
p ð1þOð1= ffiffiffi

s
p ÞÞ; (21)

which is a convex function of σtotðsÞ.

IV. UPPER BOUND ON ENERGY-AVERAGED
TOTAL CROSS SECTION

Defining

σ̄totðs;∞Þ≡ s
Z

∞

s

ds0

s02
σtotðs0Þ (22)

and

CsðtÞ≡
Z

∞

s
ds0Aðs0; tÞ=s03 < ∞; 0 ≤ t < t0; (23)

we obtain

CsðtÞ ≥
1

4ts
s
Z

∞

s

ds0

s02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tσtotðs0Þ

4π

r
I1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tσtotðs0Þ

4π

r �

≥
1

4ts

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tσ̄totðs;∞Þ

4π

r
I1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tσ̄totðs;∞Þ

4π

r �
; (24)

since the average of a convex function must be greater than
the convex function of the average [21]. At high energies if
σ̄totðs;∞Þ goes to ∞, the asymptotic expansion of I1ðξÞ
yields

4stCsðtÞ
ffiffiffiffiffiffi
2π

p
> ð

ffiffiffi
ξ

p
exp ξÞð1þOð1=ξÞÞ; (25)

where

ξ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tσ̄totðs;∞Þ

4π

r
: (26)

To extract a bound on the cross section, we need the
following lemma [20]. If ξ > 1, and

y ≥
ffiffiffi
ξ

p
exp ξ; (27)

then

ξ < fðyÞ≡ ln y − ð1=2Þ ln
�
ln y − 1

2
ln ln y

�
: (28)

Proof. It is enough to prove this for y ¼ ffiffiffi
ξ

p
exp ξ,

since the right-hand side is an increasing function of ξ.
Taking logarithms, and using ξ ¼ ln y − ð1=2Þ ln ξ≡ ξ1
repeatedly,

ξ ¼ ln y − ð1=2Þ ln
�
ln y − 1

2
ln ξ1

�
: (29)

For fixed y, the derivative of the right-hand side with
respect to ξ1 is ð4ξ21Þ−1, which is positive, and ξ1 < ln y for
ξ > 1. Hence, the stated upper bound on ξ follows.
Instead of the s-dependent CsðtÞ, we shall use the simple

s-independent upper bound,

CsðtÞ ≤ CðtÞ −
Z

x

4

ds0
k0

ffiffiffiffi
s0

p
σtotðs0Þ

ðs0Þ316π ; 4 < x < s;

(30)

which follows by using Aðs; tÞ > Aðs; 0Þ for 4 > t > 0 and
improves the value CðtÞ if low energy total cross sections
are known. The integral of the weight function multiplying
σtot can be done. Thus,

CsðtÞ ≤ CxðtÞ≡ CðtÞ − ðx − 4Þ3=2σ̄totðxÞ
12x3=216π

; (31)

where
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σ̄totðxÞ ¼
R
x
4 ds

0k0
ffiffiffiffi
s0

p
σtotðs0Þ=s03R

x
4 ds

0k0
ffiffiffiffi
s0

p
=s03

: (32)

With fðyÞ as defined above, the upper bound on the
average total cross section in terms of CxðtÞ is

σ̄totðs;∞Þ ≤s→∞
4π

t
ðfðs=s0Þ þOðlnðs=s0ÞÞ−1Þ2;

1

s0
¼ 4tCxðtÞ

ffiffiffiffiffiffi
2π

p
; t ¼ 4m2

π − ϵ: (33)

Wemay also find bounds on the average of the total cross
section in the interval ðs; 2sÞ,

σ̄totðs; 2sÞ≡ 2s
Z

2s

s

ds0

s02
σtotðs0Þ: (34)

The lower bound on Aðs; tÞ and its convexity yield

CxðtÞ ≥
1

8ts
2s

Z
∞

s

ds0

s02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tσtotðs0Þ

4π

r
I1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tσtotðs0Þ

4π

r �

≥
1

8ts

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tσ̄totðs; 2sÞ

4π

r
I1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tσ̄totðs; 2sÞ

4π

r �
: (35)

Asymptotically we obtain a bound of the same form as
before, but with the scale factor in the logarithm being s0=2,

σ̄totðs; 2sÞ ≤s→∞
4π

t
ðfð2s=s0Þ þOðlnðs=s0ÞÞ−1Þ2: (36)

Note that σtotðsÞ < σ̄totðs; 2sÞ if the cross section
increases with s in the interval ðs; 2sÞ; the above bound
on energy averages therefore immediately yields a bound
on σtotðsÞ in that case.
For identical particles there are only even partial waves

in the partial wave expansions, but the lower bound on the
absorptive part is again a convex function of the total cross
section; the identical particle factors multiplying the partial
waves ensure that in spite of only even partial waves
contributing, the largest partial wave L in the variational
bound which is of Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sσtotðsÞ
p Þ has only Oð1Þ corrections

with respect to the nonidentical particles case. The quoted
asymptotic bounds on the absorptive part in terms of σtot
and on the energy-averaged total cross section in terms of
CxðtÞ therefore remain unchanged.

V. PHENOMENOLOGICAL BOUNDS IN TERMS
OF D-WAVE SCATTERING LENGTH

Rigorous results from axiomatic field theory do not
guarantee finiteness of the D-wave scattering lengths.
However if we use phenomenological values for them
we can choose ϵ ¼ 0 and evaluate Cðt ¼ 4Þ. We shall use
Fπþπ0→πþπ0 ¼ 1=2ðF1 þ F2Þ, Fπ0π0→π0π0 ¼ 1

3
F0 þ 2

3
F2, the

crossing relation,

1

2
ðF1 þ F2Þðs; tÞ ¼ 1

3
ðF0 − F2Þðt; sÞ; (37)

and the total crossing symmetry of the π0π0 → π0π0

amplitude. If we denote Fðs; tÞ ¼ Gðt; sÞ ¼ Gðt; ztÞ, where
Fðs; tÞ denotes the πþπ0 → πþπ0 or the π0π0 → π0π0

amplitude, then the corresponding Gðt; sÞ has only even
partial waves,

glðtÞ ¼
1

2

Z
1

−1
dztPlðztÞGðt; ztÞ: (38)

For 0 < t < 4, with the absorptive part Fsðs; tÞ defined by
Eq. (7), the fixed-t dispersion relationswith two subtractions
imply the Froissart-Gribov formula rigorously for l ≥ 2,

glðtÞ ¼
4

πð4 − tÞ
Z

∞

4

ds0Ql

�
2ðs0 − 4Þ þ 4þ t

4 − t

�
Fsðs0; tÞ;

(39)

whereQl denotes the Legendre function of the second kind.
The positivity of the absorptive part then implies the
positivity of glðtÞ for 0 < t < 4; further,

g2ðtÞ→t→4

ðt − 4Þ2
15π

Z
∞

4

ds0
Fsðs0; tÞ

s03
: (40)

If the t-channel D-wave scattering lengths exist, the defi-
nitions of CðtÞ and of the D-wave scattering lengths aI2 for
isospin I yield

Cπþπ0→πþπ0ðt ¼ 4Þ ¼ 5π

16
mπða02 − a22Þ; (41)

and

Cπ0π0→π0π0ðt ¼ 4Þ ¼ 5π

16
mπða02 þ 2a22Þ: (42)

Here we have defined the l-wave scattering lengths aIl as
the q → 0 limits of the phase shifts δIlðqÞ divided by q2lþ1

where q is the c.m. momentum. Then an S-wave scattering
length is indeed a length, with dimension m−1

π , and the
D-wave scattering lengths have dimension m−5

π . Then,
phenomenologically [19] we have

a02 ≈ 0.00175m−5
π ; a22 ≈ 0.00017m−5

π ; (43)

and Roy [14] has obtained from low energy data, for x ¼ 50,

σ̄π
0π0

tot ðxÞ ¼ 8.2� 4 mb; σ̄π
þπ0

tot ðxÞ ¼ 17� 3.5 mb:

(44)

With ϵ ¼ 0, t ¼ 4, and the values of Cxðt ¼ 4Þ given in
terms of the scattering lengths, and the low energy total
cross sections, we have, from Eqs. (31)–(33), with x ¼ 50,
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π0π0∶ s0 ¼ 17m2
π;

Cxð4Þ ¼ 2.05 × 10−3 − 0.6 × 10−3

¼ 1.45 × 10−3m−4
π ;

πþπ0∶ s0 ¼ 81m2
π;

Cxð4Þ ¼ 1.55 × 10−3 − 1.24 × 10−3

¼ :31 × 10−3m−4
π ; (45)

where we have indicated the separate contributions of the
D-wave scattering lengths and low energy total cross
sections to Cxð4Þ but have not indicated the (substantial)
errors on them which imply corresponding errors on the
scale factors. Our bounds on average total cross sections for
πþπ0 and π0π0 scattering therefore do not contain any
unknown constants, but the scale factor s0 has large
phenomenological errors. We cure this problem in the next
section at the cost of getting poorer bounds.

ABSOLUTE BOUNDS ON THE D-WAVE BELOW
THRESHOLD FOR π0π0 SCATTERING

Although threshold behavior cannot be proved from first
principles, it was shown long ago [22] that jflðsÞj <
Cð4 − sÞl−1 must hold for 0 < s < 4. We derive an absolute
bound of this form and use it to derive a rigorous
asymptotic bound on energy-averaged total cross section
for π0π0 scattering without unknown constants. As noted
already, for 0 < s < 4 and l ≥ 2, the Froissart-Gribov
formula implies that flðsÞ > 0. Hence, for 0 < s < 4,
4 − s < t < 4, the convergent partial wave expansion,

Fðs; tÞ − Fðs; 0Þ ¼ Σ∞
l¼2ð2lþ 1ÞflðsÞ

×

�
Pl

�
2t − 4þ s

4 − s

�
− 1

�
; (46)

is in fact a sum of positive terms and yields an upper bound
for the l ≥ 2 partial waves if we can obtain a bound on
Fðs; tÞ − Fðs; 0Þ using analyticity. The twice subtracted
fixed-t dispersion relations in s can be rewritten in terms of
the convenient variable z≡ ðs − 2þ t=2Þ2, with
Fðs; tÞ≡ Fðz; tÞ. For 0 ≤ t < 4,

Fðs; tÞ − F

�
4 − t
2

; t

�
¼ z

π

Z
∞

z0

dz0
ImFðz0; tÞ
z0ðz0 − zÞ ; (47)

and the positivity of the absorptive part then yields

Fðs; tÞ − F

�
4 − t
2

; t

�
≥ 0; if 0 ≤ z < z0 ¼

�
2þ t

2

�
2

:

(48)

If s1 < s < 4 and z1 ≡ ðs1 − 2þ t=2Þ2, then

z1 − z ¼ ðs1 − sÞðs1 þ s − 4þ tÞ < 0;

if t > 4 − s − s1;
(49)

and hence for z1 < z < z0,

ðz0 − zÞ−1 − ðz0 − z1Þððz0 − zÞðz0 − z1ÞÞ−1
¼ ðz0 − z0Þðz1 − zÞððz0 − zÞðz0 − zÞðz0 − z1ÞÞ−1 < 0:

(50)

Inserting this into the dispersion relation we have, for
4 > t > 4 − s − s1, and t ≥ 0,

Fðs; tÞ − F

�
4 − t
2

; t

�
<

ð4 − s1Þðs1 þ tÞ2ðs − 2þ t
2
Þ2

ð4 − sÞðsþ tÞ2ðs1 − 2þ t
2
Þ2

×

�
Fðs1; tÞ − F

�
4 − t
2

; t

��
; if s1 < s < 4:

(51)

Choosing s1 ¼ 3, t ¼ 2, and 3 < s < 4, we get

Fðs; 2Þ − Fð1; 2Þ < ð25=16ÞðFð3; 2Þ − Fð1; 2ÞÞ=ð4 − sÞ:
(52)

Using this and Fðs; 0Þ > Fð2; 0Þ,

Fðs; 2Þ − Fðs; 0Þ < Fð1; 2Þ − Fð2; 0Þ
þ ð25=16ÞðFð3; 2Þ − Fð1; 2ÞÞ=ð4 − sÞ; for 3 < s < 4:

(53)

We now use absolute bounds on pion-pion amplitudes first
discovered by Martin [23], and improved successively by
[4], [24], and [25] in the improved final form,

−7.25 < Fð1; 2Þ < 2.75;

Fð2; 0Þ > −3.5; Fð3; 2Þ < 14:5; (54)

with normalization Fð4; 0Þ ¼ S-wave scattering length,
and we obtain the absolute bound,

Fðs;2Þ−Fðs;0Þ< 6.25þ33:99
4− s

; for 3<s< 4: (55)

The partial wave expansion of Fðs; 2Þ − Fðs; 0Þ now
yields, for 3 < s < 4,

flðsÞ ≤
6.25þ 33:99

4−s
ð2lþ 1ÞðPlð s

4−sÞ − 1Þ ; (56)

which implies in particular,

f2ðsÞ <s→4−
4 − s
120

ð34þ 6.25ð4 − sÞ þOð4 − sÞ2Þ: (57)
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With s replaced by t in this formula, the Froissart-Gribov
formula now yields

Cπ0π0→π0π0ðtÞ <t→4−
17π

4ð4 − tÞ : (58)

VI. ABSOLUTE BOUND ON ENERGY-AVERAGED
TOTAL CROSS SECTION FOR π0π0

SCATTERING AT HIGH ENERGY

Inserting the bound on CðtÞ into the average cross-
section bound, the optimum value of t turns out to be
t ¼ 4 − ð1=8 lnðs=s0ÞÞ−1, and the optimum bound,

σ̄totðs;∞Þ ≤ πðmπÞ−2½lnðs=s0Þ þ ð1=2Þ ln lnðs=s0Þ þ 1�2

þOðln lnðs=s0ÞÞ; s−10 ¼ 17π
ffiffiffiffiffiffiffiffi
π=2

p
m−2

π :

(59)

For σ̄totðs; 2sÞ we obtain the same form of the bound, but
with half the value of s0.

VII. OUTLOOK

Our basic bound on the absorptive part, Eq. (20), is valid
at all energies and its energy integral may be used for
comparisons with experimental cross-section data which
have a large nonasymptotic contribution at current energies.
We have highlighted the simpler asymptotic upper bounds
on average total cross sections.
We believe that our result is important as a matter of

principle. However, we also believe that the magnitude of
the coefficient in front of the Froissart bound is not
satisfactory, especially if one decides to believe that the

Froissart term is universal and compares with p-p and
p − p̄ cross sections at the ISR [26], the SppbarS [27], the
Tevatron [28] and the LHC [29]. All these indicate the
existence of a Froissart-like contribution with a much
smaller coefficient and a much larger scale, and they are
well reproduced by, for instance, the Bourrely-Soffer-Wu
model [15] which incorporates automatically the Froissart
behavior. Returning to ππ scattering, can the situation be
improved? Yes, because one has to enforce crossing
symmetry and unitarity. Kupsch [30] has constructed a
crossing symmetric model satisfying Eq. (8) but never tried
to get numerical results. Also, we believe that unitarity in
the elastic strips could be important. This led to the
discovery by Gribov [31] that the behavior sFðtÞ for the
total amplitude is impossible. If you remove the elastic
unitarity constraint [32], the Gribov theorem disappears. To
attack the problem, one could use a variational approach,
taking as an input the inelastic double spectral function in
the Mandelstam representation. All we need is to find
someone courageous not looking for a job.
Similar bounds on inelastic cross sections without any

unknown constants will be reported separately [33].
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