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Froissart bound on total cross section without unknown constants
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We determine the scale of the logarithm in the Froissart bound on total cross sections using

absolute bounds on the D-wave below threshold for pion-pion scattering. For example, for z

0”0

scattering, we show that for c.m. energy /s — 00, Gyo((5,00) =5 [® ds'ci,((s")/s'* < n(m,)*[In(s/s0)+
(1/2)In In(s/sq) + 1], where 1/sy = 17x+/n/2 m;>.
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I. INTRODUCTION

Froissart [1] proved from the Mandelstam representation
that the total cross section o, (s) for two particles to go to
anything at c.m. energy /s must obey the bound,

Giot(8) Ssmeo ClIn(s/50)]%, (1)

where C, s, are unknown constants. Later Martin [2]
proved this bound rigorously from axiomatic field theory
by enlarging the Lehmann ellipse of analyticity [3] for the
absorptive part; further, the constant C was fixed by
Lukaszuk and Martin [4] using unitarity and validity of
dispersion relations with a finite number of subtractions for
—T < t <0 (and as a consequence, twice subtracted fixed-¢
dispersion relations for || < 7, [5]), to obtain

Utot(s) Ssoo 4”/(t0 - 6') [ln(S/SO)]Z = amax(s)’ (2)

where 1, is the lowest singularity in the ¢ channel and € an
arbitrarily small positive constant. For many processes (for
example, for 7z, KK, KK, nK, nN, A scattering), it is
known [6] that #, = 4m2, m, being the pion mass. (We
shall choose units m, = 1.)

These results were obtained by Martin [2] in the
framework of local field theory as applied to hadrons,
using implicitly the Wightman axioms [7]. However, later,
the needed analyticity properties, as well as polynomial
boundedness at fixed momentum transfer, were obtained by
Epstein ef al. [8] in the more general framework of the
theory of local observables of Haag ef al. [9].

Recently, Azimov has revisited the Froissart bound in a
paper [10], Sec. 2 of which is similar to the 1962 and 1963
works of Martin [11]. These papers were a precursor to
Martin’s later paper [2] which proved the bound rigorously
from axiomatic field theory. Azimov has raised doubts
about “application of the ideas and methods of axiomatic
local field theory to hadron properties.” His main point is
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that “hadrons, consisting of quarks and gluons, cannot be
pointlike,” and might not be associated to local fields.
However, Zimmermann [ 12] has shown that local fields can
be associated to composite particles (for instance, deuter-
ons). We postulate that this construction applies to hadrons
made of quarks. This is not obvious because, in spite of the
practical successes of QCD, nobody knows how to incor-
porate particles without asymptotic fields in a field theory.
Anyway, this is a much weaker assumption than that of the
validity of Mandelstam’s representation. In particular, we
do not use the Froissart-Gribov representation of physical
region partial waves for fixed s.

The Froissart-Martin bound has triggered much work on
high energy theorems (see, e.g., [13,14]) and on models of
high energy scattering [15]. Recently, Martin proved a
bound on the total inelastic cross section at high energy
[16] which is one fourth of the bound 6,,,,(s) on the total
cross section. Wu ez al. [17] obtained a bound on 6, () in
terms of o, (s) which vanishes both when the total cross
section vanishes and when it equals the unitarity
upper bound.

In spite of all this progress, these bounds share severe
shortcomings [17]. (i) They are deduced assuming that the
absorptive part A(s,1),0 <t <ty is bounded by Const
s%/1In(s/s) for s = oco. In fact, the Jin-Martin theorem on
twice subtracted dispersion relations only guarantees that

0<1t<ty, 3)

C(t) = /oo dsA(s,1)/s* < oo,

Sth

where sy is the s-channel threshold. As stressed by
Yndurain and Common [18], this does not imply that
A(s, t) < Const.s?/ In(s/s) for all sequences of s — co.
(ii) The bounds are expressed in terms of 6, (s), which
still contains the unknown scale s, of the logarithm, and the
unknown positive parameter e, which can be chosen
arbitrarily small but # 0. If ¢ is not fixed, s, cannot be
fixed, since the advantage of a larger s, can be offset by a
larger e.
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We now remove both of these shortcomings. We report
definitive bounds on energy averages of the total cross
section in which the scale s is determined in terms of C (1),
which is a low energy (in fact below threshold) property in
the ¢ channel. In some cases (e.g., for pion-pion scattering),
for t — 4, C(r) is proportional to the D-wave scattering
length [19] which is known phenomenologically; hence,
we obtain bounds on energy averages in terms of that
scattering length. Even more exciting is the fact that for

7°7° scattering we are able to obtain absolute bounds (in
terms of pion mass alone) on C(¢) below threshold without
assuming finiteness of the D-wave scattering length; this
yields absolute bounds on the asymptotic energy averages
of the total cross section.

II. NORMALIZATIONS

Let F(s,t) be an ab — ab scattering amplitude at c.m.
energy /s and momentum transfer squared ¢ normalized
for nonidentical particles a, b such that the differential
cross section is given by

2

do ’ @

F(s,1)
E(S’ 1)

NG

with 7 being given in terms of the c.m. momentum k and the
scattering angle 6 by the relation,

t = —2k*(1 —cos ); z=cosf =1+1/(2k*). (5)
Then, for fixed s larger than the physical s-channel
threshold, F(s;cos @) = F(s, 1) is analytic in the complex
cos 0 plane inside the Lehmann-Martin ellipse with foci —1
and +1 and semimajor axis cos 6, = 1 + t,/(2k?). Within
the ellipse, in particular, for |f| <, F(s,7) and the
s-channel absorptive part F(s,t) = A(s,t) have the con-
vergent partial wave expansions,

F(s,t) = gi(% + 1)Pi(2)a;(s), (6)
1=0

Fy(s, 1) = ii 20+ 1)Pi(2)Imay(s), (7)
=0

with the unitarity constraint,

Imay(s) > |a,(s)|?, s >4 (&)

Correspondingly, the optical theorem gives, for a # b,

oi(s) = —- Im(4F (s,0)/+/s)
- —fi 20+ 1) Imay(s). ©)
=0
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For identical particles a = b, e.g., for 7°2° scattering, or for
pion-pion scattering with isospin /, we have the same
formula for the differential cross section,

do 2

dQ

F(s,1)
N

and the same form of the unitarity constraint,

3

(s) =

maj(s) > |aj(

s >4, (10)

but the partial waves a;(s) — 2al(s) in the partial wave
expansion, i.e.,

Fl(s,t) = %}fi(ﬂ +1)2al(s)P(z). (11)
=0

With this normalization, F/(4,0) = al, the S-wave scatter-
ing length for isospin /, and for pion-pion scattering the
identical particle factors lead to

ﬂ,' [e]
ol (s ——ZZ (21 + 1)2Imal (s). (12)
=0

In the following, we shall consider nonidentical particles
a # b for detailed derivations and quote the identical
particle results when needed.

III. CONVEXITY PROPERTIES OF LOWER
BOUND ON ABSORPTIVE PART IN
TERMS OF TOTAL CROSS SECTION

Martin has proved unitarity lower bounds on A(s, t) for
0 < t < ty in terms of 6, (s) [2], and in terms of oy, (s)
[16]. He has also proved [20] that these bounds are convex
functions of 6., (s) and oy, (), respectively. We recall first
the convexity properties which will be crucial for our
proofs of lower bounds on C(¢) in terms of energy averages
of total cross sections. We work at a fixed s, and suppress
the s dependence of Ima,(s), and 6, (s) for simplicity of
writing. Using 0 < Ima; < 1, the lower bound on A(s, ¢)
for given o, is obtained by choosing

Ima; =1, 0<I<L; Ima; . =n;

Ima, =0, [>L+1, (13)

where the fraction # (0 <5 < 1) and the integer L are
determined from the given o,,. Thus,

Als. 1) 4—\/’; > <§L:<2z +1)Py(2) + 0L + 3)PL+1(Z)>
1=0
= A(2), (14)

where
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tot (Z(Zl +1 + ’7(2L + 3)) = Yot (15)

Hence, A(z) is a monotonically increasing function of X
with piecewise constant positive derivative. Denoting
Int(x) = integer part of x,

dA(z)/dZ = Pr1(2). L =Int(\/Z) — 1, (16)

which increases with L since z > 1, and hence with X
when it crosses the square of an integer. This proves that the
lower bound A(z) is a convex function of X, and that

A(Z) = Z“totv for 2tot < 1’ (17)

and, for X, > 1,
ZIOI
AR =1+ / Puys ()do,
Zlm_l
> 14+ 2/ (ut+ DP()du.  (18)
0

Using integral representations for P,(z) and for the
modified Bessel function /,;, we obtain for y >0,z > 1,

P,(z) 2 Io(uInzy), L=z+V2 1. (19

This yields the strict inequality (without any high energy

approximation),
Io(x
)
In 2t/ Ix=(V/E—1) Inz,

for Ty > 1. (20)

A0 22

—|—1+21nZ+,

At high energy, this gives

A(s.1) > -xIy ()] (1+0(1/V5). @1

x=y/101(s)/ (47)

which is a convex function of 6,y(s).

IV. UPPER BOUND ON ENERGY-AVERAGED
TOTAL CROSS SECTION

Defining
fulso)=s [TTol) e
and
C,(1) = /°° ASA(s,1))s" <0,  0<t<1y (23)

we obtain
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oo [ A ()

1 16 (s, ) \/ta-tot(s7 )
> — 1 24
~ dts dr ! dr ’ @4)

since the average of a convex function must be greater than
the convex function of the average [21]. At high energies if
Gioi(s, ) goes to oo, the asymptotic expansion of [, (¢)
yields

4s1C( > (VEexp&) (14 0(1/8),  (25)
where
- tEtOté(‘_S’OO)' 26)
T

To extract a bound on the cross section, we need the
following lemma [20]. If £ > 1, and

y > /Eexpé, 27)

then

E<f(y)=Iny—(1/2)In (lny—%ln lny>. (28)

Proof. It is enough to prove this for y = +/Eexpé,
since the right-hand side is an increasing function of &.
Taking logarithms, and using £ =1Iny— (1/2) Iné =&
repeatedly,

E=Iny—(1/2) In <lny—%ln§,>. (29)

For fixed y, the derivative of the right-hand side with
respect to & is (4£7)~!, which is positive, and &, < Iny for
£ > 1. Hence, the stated upper bound on & follows.

Instead of the s-dependent C,(z), we shall use the simple
s-independent upper bound,

K \/_O'tot( )

, 4<x<s,
T (sY16n e

C,(1) £C(1) —/1 ds’'
(30)

which follows by using A(s, 7) > A(s,0) for4 > ¢ > 0 and
improves the value C(¢) if low energy total cross sections
are known. The integral of the weight function multiplying
0 can be done. Thus,

(x —4)250(x)

Co(0) S Cul) = C) = 5 GD

where

045015-3



ANDRE MARTIN AND S. M. ROY

Jids'K Vs o (s) /s>
f4 dS,k/\/_/S/3 ’

Gion(x) = (32)

With f(y) as defined above, the upper bound on the
average total cross section in terms of C, () is

 (1(s/s0) + OlIn(s/s0) )2
1o 41C,(1)V/ 2,

S0

6-tot<s7 00) Ss—>oo

t=4m2 —e. (33)

We may also find bounds on the average of the total cross
section in the interval (s, 2s),

_ 25 ds' ,
Gior(s.25) =25 STzo'tot<S )- (34)

The lower bound on A(s, ¢) and its convexity yield

mtot mtot
Culr) 2 8ts 4n ( V )
1 t&tot(s, 2s) \/t&mt(s, 2s)
> — 1 .
= 8is \/ 4z ! 4z (33)

Asymptotically we obtain a bound of the same form as
before, but with the scale factor in the logarithm being s, /2,

B1(5.25) Sw - (F(25/50) + On(s/50)) 1. (36

Note that oy (s) < Go(s,2s) if the cross section
increases with s in the interval (s,2s); the above bound
on energy averages therefore immediately yields a bound
on o, (s) in that case.

For identical particles there are only even partial waves
in the partial wave expansions, but the lower bound on the
absorptive part is again a convex function of the total cross
section; the identical particle factors multiplying the partial
waves ensure that in spite of only even partial waves
contributing, the largest partial wave L in the variational
bound which is of O(4/s6,(s)) has only O(1) corrections
with respect to the nonidentical particles case. The quoted
asymptotic bounds on the absorptive part in terms of o
and on the energy-averaged total cross section in terms of
C,(t) therefore remain unchanged.

V. PHENOMENOLOGICAL BOUNDS IN TERMS
OF D-WAVE SCATTERING LENGTH

Rigorous results from axiomatic field theory do not
guarantee finiteness of the D-wave scattering lengths.
However if we use phenomenological values for them
we can ghooose € =0 and evalu%tf(:) Cgtoz 4). We shall use
Frim-rtr — ]/Z(Fl +F2), Frr—nn :%FO+%F2’ the
crossing relation,

PHYSICAL REVIEW D 89, 045015 (2014)

(F' + F?)(s,1) = % (F° — F?)(t,s), (37)

N =

and the total crossing symmetry of the 7°z° — 7z%2°

amplitude. If we denote F(s, 1) = G(t,s) = G(t; z,), where
F(s,t) denotes the 777° — z72° or the z°2° — 7%2°
amplitude, then the corresponding G(z,s) has only even

partial waves,

1

1
ai(1) =5 / ] dz,P((z,)G(t; z,). (38)

For 0 < t < 4, with the absorptive part F (s, t) defined by
Eq. (7), the fixed-t dispersion relations with two subtractions
imply the Froissart-Gribov formula rigorously for [ > 2,

ﬁ[n 450, <2(s’ —4)+4+ t)Fs(s’,t),

4—1
where O, denotes the Legendre function of the second kind.
The positivity of the absorptive part then implies the
positivity of g,(¢) for 0 < t < 4; further,

_42 oo F.(s
gz(f)—’z—nt(t )A ds' 5553’[)- (40)

gi(t) =
(39)

157z

If the r-channel D-wave scattering lengths exist, the defi-
nitions of C(7) and of the D-wave scattering lengths a for
isospin / yield

S5t

crtal=nta (p gy = 22

mg (a3 — a3), (41)

and

0 00

le;[ =TT (l — 4) (612 + 2a2> (42)

Sz
16
Here we have defined the [-wave scattering lengths a} as
the ¢ — 0 limits of the phase shifts 6!(g) divided by ¢**!
where ¢ is the c.m. momentum. Then an S-wave scattering
length is indeed a length, with dimension m;!, and the
D-wave scattering lengths have dimension mj>. Then,
phenomenologically [19] we have

ad ~ 0.00175m;; a3 ~ 0.00017m;3, (43)

and Roy [14] has obtained from low energy data, for x = 50,

0.0

o (x) =824 mb;  &5" (x) =17 £3.5 mb.
(44)
With € = 0, t = 4, and the values of C,(t = 4) given in

terms of the scattering lengths, and the low energy total
cross sections, we have, from Eqgs. (31)—(33), with x = 50,
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7% sy = 17m2,
C.(4) = 2.05 x 10 — 0.6 x 10~
— 145 x 103mz4,
ata’: sy = 81m2,
Co(4) = 1.55 x 1073 — 1.24 x 10-3
— 31 % 103m*, 45)

where we have indicated the separate contributions of the
D-wave scattering lengths and low energy total cross
sections to C,(4) but have not indicated the (substantial)
errors on them which imply corresponding errors on the
scale factors. Our bounds on average total cross sections for
at7° and 7°2° scattering therefore do not contain any
unknown constants, but the scale factor s, has large
phenomenological errors. We cure this problem in the next
section at the cost of getting poorer bounds.

ABSOLUTE BOUNDS ON THE D-WAVE BELOW
THRESHOLD FOR 7°2° SCATTERING

Although threshold behavior cannot be proved from first
principles, it was shown long ago [22] that [f;(s)| <
C(4 — s)~! must hold for 0 < s < 4. We derive an absolute
bound of this form and use it to derive a rigorous
asymptotic bound on energy-averaged total cross section
for 7°2° scattering without unknown constants. As noted
already, for 0 < s <4 and [ > 2, the Froissart-Gribov
formula implies that f;(s) > 0. Hence, for 0 < s < 4,
4 —s < t < 4, the convergent partial wave expansion,

F(s.1) = F(5.0) = Z2,(21 + 1)f,(s)
2t—4
x <P, <7+ S) - 1), (46)
4—5

is in fact a sum of positive terms and yields an upper bound
for the / > 2 partial waves if we can obtain a bound on
F(s,t) — F(s,0) using analyticity. The twice subtracted
fixed-t dispersion relations in s can be rewritten in terms of
the convenient variable z=(s—2+1/2)?, with
F(s,t)=F(z;t). For 0 <t < 4,

4—1t z [~ ImF(Z;1)
F(s,t) = F|——,t) =— d7 —————=, 47
wo=r () = [ dEg @

and the positivity of the absorptive part then yields

t )2
F(S,t)—F<T,t>ZO, lfOSZ<Z0:<2+§>

(48)

If s, <s <4and z; = (s; — 2 +t/2)?, then

PHYSICAL REVIEW D 89, 045015 (2014)
zZ1—z2=(s1—s8)(s1+s—4+1) <0,

(49)
if t>4—s5—s,

and hence for z; < z < z,

(2 =2)" = (20— 21)((z0 = 2)(& —z1))"

= (2 = 20)(z1 = 2)((Z = 2)(20 — 2) (2’ —21)) "' <O.
(50)

Inserting this into the dispersion relation we have, for

4>t>4—s5—s5;,and t >0,
4—t 4 — +0)2(s =2+ 12
F(s,t)—F(—,t) <( s1)(s1 2) (s t2)2
2 =) +1P( —2+9)

41
x(F(sl,t)—F<T,t)>, if 5, <s<4.

&)

Choosing s; =3, t=2, and 3 < s < 4, we get

F(s,2) — F(1,2) < (25/16)(F(3.2) — F(1,2))/(4 — s).

(52)
Using this and F(s,0) > F(2,0),
F(s,2) — F(s,0) < F(1,2) — F(2,0)
+(25/16)(F(3,2) — F(1,2))/(4—s), for3 <s <4.
(53)
We now use absolute bounds on pion-pion amplitudes first
discovered by Martin [23], and improved successively by

[4], [24], and [25] in the improved final form,

—7.25 < F(1,2) <2.75,
F(2,0) > —35,  F(3.2) < 145, (54)

with normalization F(4,0) = S-wave scattering length,
and we obtain the absolute bound,

33.99
F(5.2)=F(5.0) <625+, for3<s<4. (55
-

The partial wave expansion of F(s,2) — F(s,0) now
yields, for 3 < s < 4,

6.25 + 3%
QL+ D(Pi(z5) - 1)

fils) < (56)

which implies in particular,

4—5

_ Y
50 (344 6.25(4 —5) + O0(4—s)*). (57)

fa(s8) <smu-
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With s replaced by 7 in this formula, the Froissart-Gribov
formula now yields

) 177
foaass ﬂo(t) <ia 1 (58)

(4-1)

VI. ABSOLUTE BOUND ON ENERGY-AVERAGED
TOTAL CROSS SECTION FOR 7°z°
SCATTERING AT HIGH ENERGY

Inserting the bound on C(r) into the average cross-
section bound, the optimum value of ¢ turns out to be
t=4—(1/8 In(s/sy))~", and the optimum bound,

Gior(s. 00) < m(m,)~*[In(s/s0) + (1/2) In In(s/s0) + 1]?
+ O(In In(s/sg)), so! = 17n\/n/2m;>.
(59

For 6(s,2s) we obtain the same form of the bound, but
with half the value of s.

VII. OUTLOOK

Our basic bound on the absorptive part, Eq. (20), is valid
at all energies and its energy integral may be used for
comparisons with experimental cross-section data which
have a large nonasymptotic contribution at current energies.
We have highlighted the simpler asymptotic upper bounds
on average total cross sections.

We believe that our result is important as a matter of
principle. However, we also believe that the magnitude of
the coefficient in front of the Froissart bound is not
satisfactory, especially if one decides to believe that the

PHYSICAL REVIEW D 89, 045015 (2014)

Froissart term is universal and compares with p-p and
p — p cross sections at the ISR [26], the SppbarS [27], the
Tevatron [28] and the LHC [29]. All these indicate the
existence of a Froissart-like contribution with a much
smaller coefficient and a much larger scale, and they are
well reproduced by, for instance, the Bourrely-Soffer-Wu
model [15] which incorporates automatically the Froissart
behavior. Returning to zz scattering, can the situation be
improved? Yes, because one has to enforce crossing
symmetry and unitarity. Kupsch [30] has constructed a
crossing symmetric model satisfying Eq. (8) but never tried
to get numerical results. Also, we believe that unitarity in
the elastic strips could be important. This led to the
discovery by Gribov [31] that the behavior sF () for the
total amplitude is impossible. If you remove the elastic
unitarity constraint [32], the Gribov theorem disappears. To
attack the problem, one could use a variational approach,
taking as an input the inelastic double spectral function in
the Mandelstam representation. All we need is to find
someone courageous not looking for a job.

Similar bounds on inelastic cross sections without any
unknown constants will be reported separately [33].
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