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Using the coset approach (nonlinear realization) we construct component actions for a superparticle in
three-dimensional spacetime with N = 4 supersymmetry partially broken to N = 2. These actions may
contain an anyonic term and the square of the first extrinsic worldline curvature. We present the
supercharges for the unbroken and broken supersymmetries as well as the Hamiltonian for the super-
symmetric anyon. In terms of the nonlinear realization superfields, the superspace actions take a simple

form in all cases.
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I. INTRODUCTION

In a relativistic theory, any particlelike configuration
spontaneously breaks the target-space Poincaré invariance
to the stability group of the worldline. This breakdown is
accompanied by the appearance of Goldstone bosons
associated with the spontaneously broken translations
and Lorentz boosts. The most appropriate method to con-
struct low-energy effective actions for these Goldstone
modes is the nonlinear-realization (or coset) approach [1],
suitably modified for the case of supersymmetric spacetime
symmetries [2].

Toward the construction of particle actions in
D-dimensional spacetime, the coset approach works as
follows. Let P, Z; with i = 1,...,D — 1 be the generators
of the target spacetime translations, M;; be the generators of
the SO(D — 1) subgroup of the Lorentz group SO(1,D —
1) rotating the spatial coordinates Z; among each other, and
K; generate the coset SO(1,D —1)/SO(D — 1). All trans-
formations of the full Poincaré group may be realized by a
left action on the coset element

g= etPeq,»(t)Z,-eA,v(t)K[' (11)
The dependence of the coset coordinates ¢;(7) and A;(r)
on the time ¢ signals that the Z and K symmetries are
spontaneously broken.

According to the general theorem [3], not all of the above
Goldstone fields have to be treated as independent. In the
present case, the fields A;(¢) can be covariantly expressed
through time derivatives of ¢;(¢) by imposing the constraint

Q, =0, (1.2)

where the Cartan forms € are defined in a standard way,
g 'dg = QpP + Qj,M;; + QLZ; + Qi K. (1.3)
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Thus, we are dealing with the fields ¢;(¢) only. The form
Qp defines the einbein E, which connects the covariant
world-volume form Qp and the differential dr via

Qp = Edt. (1.4)
Observing that the form Qp is invariant under all
symmetries, one may immediately write an invariant action

[4-T71,
S() - /th

This action describes a free particle moving in D-dimensional
spacetime in the static gauge.

The Cartan forms Qf pertaining to the coset may be
used for constructing actions with higher time derivatives
[5,6,8-10]. Moreover, in three spacetime dimensions,
D =3, there exists an additional possibility: the form
Q,, allows for a Wess-Zumino-like term in the action,

a
Sanyon = E/QM’

which provides the system with a nonzero (anyonic) spin
[11]. The above integrand €2, is only quasi-invariant under
the three-dimensional Poincaré transformations [12]; i.e. it
shifts by a full time derivative under K; transformations.

The supersymmetric generalization of particle actions
within the coset approach requires spinor generators Q and
S, which extend the Poincaré group to the super-Poincaré one,

{0.0} ~P.

All symmetries can then be realized by group elements acting
on the coset element

(1.5)

(1.6)

{S,S} ~P,

{0.8}~Z. (1.7)

g — etPeH"Q”eqi(tﬂ)ziel//“(l.é))saeAi(f,H)Ki. (18)
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One obtains a collection ¢'(z,0),w“(t,0), A'(1,0) of
Goldstone superfields that depend on the worldline super-
space coordinates t, 0. The appearance of the Goldstone
fermions w“(t) is crucial for ensuring the symmetry with
respectto spontaneously broken (§) supersymmetry. The rest
of the coset approach machinery works as before: one may
construct the Cartan forms g~' dg for the coset element (1.8)
(and obtain new forms Q, and €g), and one may find the
supersymmetric einbein and the corresponding bosonic and
spinor covariant derivatives Vp and V,, respectively. One
may even invent proper generalizations of the covariant
constraints (1.2) as

Q,=0, Q4 =0, (1.9)

where | denotes the d6 projection of aform (see e.g., [13] and

references therein). The structure of the coset element (1.8)

implies that Q supersymmetry is kept unbroken while S

supersymmetry is spontaneously broken.'

The constraints (1.9) leave the lowest components of the
superfields ¢'(z,0) and yw“(t,6) as the only independent
component fields of the theory. Unfortunately, as it hap-
pened in (1.6), any superparticle Lagrangian is only quasi-
invariant with respect to the super-Poincaré group. For this
reason, the corresponding action cannot be built from the
Cartan forms. Commonly adopted alternatives for con-
structing supersymmetric particle (or brane) actions are

(i)to construct a linear realization of target-space

Poincaré supersymmetry, in which the superfield
Lagrangian appears as a supermultiplet component
[14-16],

(i1) to perform a reduction from higher-dimensional com-
ponent actions,

(iii) to make a superfield ansatz for the action (manifestly
invariant under Q supersymmetry) and then impose the
spontaneously broken S supersymmetry invariance.

Clearly, in all these approaches the coset method is not too

helpful. The method working perfectly in bosonic models
seems to be almost useless in the supersymmetric case. This

shortcoming is caused by our concentrating on unbroken Q

supersymmetry and on the superspace action. If instead we

focus on the component action with broken § supersym-
metry being manifest, the coset approach will again be

quite useful. It has indeed been demonstrated in [17,18]

that, with the coset parametrization (1.8), it is easy to

produce an ansatz for the component action manifestly
invariant with respect to the broken S supersymmetry.

To this end, the following properties are important:

(i) with the chosen parametrization (1.8) of the coset

element, the superspace coordinates @ are inert under
S supersymmetry. Therefore, all superfield compo-
nents transform independently with respect to S
supersymmetry,

'In this paper we shall only consider the case where #0 = #S,
i.e. a half-breaking of global supersymmetry.
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(ii) the & = 0 projection of the covariant derivative Vp is
invariant under the broken S supersymmetry,

(iii) all physical fermionic components are just € =0
projections of the superfields w(z,0), and these
components transform as the fermions of the Volkov-
Akulov model [19] with respect to the broken S
supersymmetry.

Thus, an ansatz for the component action with the smallest
number of time derivatives can be written down immediately,
because the physical fermionic components can enter the
action only through the 8 = 0 projection of the einbein E or
through the spacetime derivatives Vp of the “matter fields”
¢'(t). This ansatz will contain some arbitrary functions that
can be determined by two additional requirements:

(i) the supersymmetric action should have a proper

bosonic limit,

(ii) the supersymmetric action has to be invariant under
unbroken supersymmetry.

These conditions completely fix the component action.

Actions for D =2+ 1 superparticles realizing an N =

2K+l N = 2% pattern of supersymmetry breaking have

been constructed in such a way [18].

The situation becomes more interesting if we admit
terms with a nonminimal number of time derivatives in the
action. The main goal of the present paper is to demonstrate
how the corresponding component actions can be con-
structed for a three-dimensional superparticle with N = 4
supersymmetry partially broken to N =2 and how an
anyonic term (1.6) and the first extrinsic curvature
(“rigidity””) come to appear in the action. It should be
clear from our exposition that the choice of the physical
fermionic components is very important: it is the choice of
the coset element as in (1.8) that forces the wl,_
components to be Volkov-Akulov goldstini. In terms of
these fermions all the actions we will construct have a clear
geometric interpretation. For the super anyonic case we will
provide the Hamiltonian description as well. For complete-
ness, for all cases considered we will also present the
superspace actions that, in terms of the superfields
q'(t,0),w"(t,0), take a simple form. We shall conclude
with a few comments and remarks.

II. SPONTANEOUS BREAKDOWN OF D =2 +1
POINCARE SYMMETRY

A. Coset approach: Kinematics
The commutation relations of the D = 2 + 1 Poincaré
algebra read
[Mclb7PCd] = eachd + €deac + eadec + ebcPadv
[Mab’ Mcd] = eachd + ebdMac + €adec + 6‘bcjwad-
(2.1)

To get a convenient d = 1 form let us define the following
generators:
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P =Py + Py,
Z =Py — Py —2iP),,
Z =Py — Py + 2iPy,,

i

Jzz(Mu + M),
1 .
T-z(Mn —M22—21M12),
_ i .
T:Z(Mn — My +2iM ). (2.2)

Being rewritten in terms of these generators (2.2) the
algebra (2.1) acquires the familiar d = 1 form,

.1 =T, [J1.T)=-T. [T.T]=-2J,
v.z)=z, [I.P)]=-2.  [I.P]=Z,
[J,Z] = -Z, [T,Z] = —2P, [T,Z] =2P. (2.3)

From the d = 1 point of view the generators Z, Z are the
central charge generators.

We are going to consider the spontaneous breakdown of
D =2+ 1 Poincaré symmetry down to d = 1 Poincaré,
generated by P and U(1) rotations, generated by J.
Therefore, we will put the generator J in the stability
subgroup and choose the parametrization of our coset as

g= e el(9Z+3Z) JI(AT+AT) (2.4)
Here, ¢(t), g(t), A(), A() are Goldstone fields depending
on the time .

The local geometric properties of the system are speci-

fied by the left-invariant Cartan forms

gildg = la)pP + la)ZZ + lﬁ)ZZ + la)TT + I&JTT + ia)JJ,

(2.5)
which look extremely simple,
wp =1 [(1+ A)dt + 2i(Adg — 2dq)],
1
=——|dq— 2*dg + iAd1],
wz I—M[ q q + iAdi]
1 - -
0, = ——=|dg — 2*dq —ild1],
b7 =1 =1dq q — iAdi]
dA
wr =———,
Y
aQ
T -ar
AdA — dAd
:.—_7 2'6
B P 0
where
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tanh(vV AA) - tanh(VAA) -
J=—" """’ A d Il=——"A 27
VAR a v &7

The transformation properties of the coordinates and
fields are induced by the left multiplications of the coset
element (2.5),

909 = g'h,

where 1 € U(1) belong to the stability subgroup. Thus, for
the mostly interesting transformations with g, = ‘(@ +a7)
one gets

(2.8)

6t = =2i(ag — aq),

0q = —iat,

5q = i,

o =a—al’,

ol =a—al’. (2.9)

Finally, one may reduce the number of independent
Goldstone fields by imposing the following conditions on
the Cartan forms @, and @, (inverse Higgs phenomenon

[3D):

:O:} .:—.—_ d
vz =71t "
D, =0=g=1i A (2.10)
w; = =1 =, .
z 1=

and therefore,

q

4 I
1+V1-444 T+ V1-444

These constraints are purely kinematic ones. Thus, to
realize this spontaneous breaking of D =2 + 1 Poincaré
symmetry we need two scalar fields, ¢(z) and g(7).

Using the constraints (2.10), one may further simplify
the Cartan forms (2.6) to be

A=2i A= -2i

1—A1 di
wp = ——=dt, wr =——=,
1+ 2 1— A1
dJ Adi — did
Dy = — =i 2.11
r=v"a0 YTV Ca @1
B. Actions

(i) The simplest action, invariant under full D =2 + 1
Poincaré symmetry, is

So = —mo/wp :—mo/dm/l —44g. (2.12)
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It can easily be represented in Poincaré- and repar-
ametrization-invariant form as

dg® d
S():—mo q &
d
:—mo/dT—q E—mO/dS,
dr
1 2 2
P=r LT (2.13)

> ¢

and for the summation we have used the Minkowski
metric g,, = diag(+, —, —). This is the action of a
massive particle in D = 2 4 1 spacetime.

(i1) A less trivial action can be constructed as

a
Sanyon = _5/ wy

fu il
"T-x

GG—qq

_la/ VI=444(1+V1-443)

(2.14)

In reparametrization-invariant form it reads

San on
) [ LU i) ' )

d ’
|dq/dt|(dq"/de+|dq/dx)) i

=t (2.15)

It is seen that this defines the vector potential of a Dirac

monopole in three-dimensional Minkowski space, para-

metrized by the velocities v* = dg“/dr. Hence, we

arrive at an action defining anyonic spin (see, e.g., [11]).
(iii) Finally, one may consider the action

= /),/COTCUT
ngl
ﬁ/ 1+/1/1

:ﬁ/dt qq+t16]) +(1-449)4§
(1—444)"? ‘

(2.16)

Representing this action in Poincaré- and reparamet-
rization-invariant form, we get

Stigid —ﬂ/k%(é,ii)ds 2.17)

where
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.. ana)z B (ana (qbq .
K (q.4) = ( CThE ) ») with
. dqa d2qa
= Gt = — 2.1
=4 (P (2.18)

is the square of the first extrinsic curvature (“rigidity”)
of the worldline in R'2. Note that systems defined by
the sum of (2.12) and (2.16) have been studied by
various authors (see, e.g., [9]).

(iv) The most general action depending on 4,1 and 2, ]
only (i.e. depending on up to second derivatives of ¢
and g) has the form

1— 2 PESY)
Sgen:/ L |1+ 4) d—/}"k2
14+ | (1=20)°

(2.19)

where F is an arbitrary function. For the Hamiltonian
analyses of such systems we refer to [20,21]. The most
interesting case corresponds to the choice F(x) =
co + ¢1v/x, i.e. to a Lagrangian linear in the curvature,
which has been studied extensively [10].
We remark that Sy and S, as well as Sy, define Poincaré-
invariant actions, while S, is only weakly invariant under
D = 2 4 1 Poincaré transformations.

C. Hamiltonian formulations

In this subsection we shall consider the Hamiltonian
formulation of the actions (2.12), (2.14), and (2.16)
introduced in the previous subsection.

The Hamiltonian formulation of the action (2.12) is a
textbook exercise. In the static-gauge parametrization it is
defined by the symplectic structure dpAdq + dpAdg

and by the Hamiltonian py, = \/mj + pp and, obviously,
it describes a (2 4 1)-dimensional scalar relativistic particle

with mass m.

1. Majorana anyon

Adding to (2.12) the Wess-Zumino term (2.14) provides
the system with a nonzero spin but relaxes, at the classical
level, the mass-shell condition. So let us give the
Hamiltonian formulation of § = Sy + Syyyon, in  the
static-gauge parametrization

S:—mo/a)p—g/wj
=—m0/dt\/l—4(']é

i4-4§
\/1—4qq +/1

Taking into account the relations (2.10) we rewrite its
Lagrangian in a first-order form,

+ i

—_. (2.20)
—444q)
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1—/12 @Al —1i il
+plg+—=s

Z:
1+M 21— 1+ 24

. il
plg— = . 2.21
o (q 1+,u> (2D
This expression is of the form £ = Amya(x)xt —H(x),

where x* € {p,p.A. A, q.q} are 1ndependent variables,

ip A—ipA+ my(1 —24)

H=py= = 2.22
Po 1+ @22
is the Hamiltonian, and
ia Ad) — AdA
Ay = pd d _— 2.23
() =Peq+ Pl =50y (2:23)
is a one-form defining the symplectic structure
dANd]

This symplectic structure defines Poisson brackets given by
the nonzero relations

L l TN
{42} =~ (1-22).
(2.25)

{r.qr =1

{p.q} =1,

One can easily check that the generators of so(1,2) are
defined by

. 1424
Jo=2i(pg— —,
0=2i(pg—pq)+a—>
. A ) .
J+:l_’+qzl’—lal_/1/—13{Ji,JO}ZZIJi, {J I} =idy.
(2.26)

Together with po =H, p = (p; +ip,)/2, they form the
(2 + 1)-dimensional Poincaré algebra. The Casimirs of
this algebra, p,p%=:m? and p,J%=:ms, define the spin s
and mass m of the particle. Thus, we have the so-called
Majorana condition

ms = mya = const; 2.27)
i.e. we deal with a reducible representation of the Poincaré
group. This (2 4 1)-dimensional system has been studied
in detail in [22], where it was called a “Majorana anyon.”
We remark that the Lagrangian of [22] featured a linear
dependence on the second extrinsic curvature (torsion) k,
and thus included third-order time derivatives as well. A
Majorana anyon can also be described by a simple second-
order action on null curves [23].
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2. Rigid particle

Let us give a Hamiltonian formulation for the action
containing a rigidity term quadratic in the first extrinsic
curvature,

§=S8y+ Sanyon + Srigid = /Edt’

(UT(UT

Its Poincaré-covariant formulation (in the absence of an
anyonic term, i.e. for @ = 0) is well known and has been
considered by many authors [9,21]. Here, we restrict
ourselves to the Hamiltonian formulation in the static
gauge. In complete analogy with the previous case, we
replace the Lagrangian by an equivalent first-order one,

- 1= ai(i—11) . -
L=— £ ¢ Y mrm
MITa 2 - ot
1(1-22)7° __ i
- 7 H -
111 +p<q+1+u>

(s il
P\4 1+1)

Hence, the system is described by the Hamiltonian

(2.29)

Hiigia = Po
1—24 /1 i(pA—pA)
1 —A2)4In — =222
1+M<ﬂ( ) T M
(2.30)
and by the symplectic one-form
ia Ad] — AdA
Ay = pd dg +TdA + Mdl — ————=
= pdq+pag+1laa+ 21—
(2.31)
The latter yields the symplectic structure
= dpAdq + dpAdg + dTIAA + dTIAdA
dANd]
—ia——, 2.32
TEYIE @32)
and the corresponding nonzero Poisson brackets
{p.q} =1 {p.qgt=1. {ILa}=1,
{I1,2} =1, {IL, I} = —ia(1 — A1)%. (2.33)

The Lorentz generators read
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_ 1+
Jo = 2i(p g —pq) + 2i(l11—T12) + a1+—/1/_1 and

Jy=p+¢*p+ T+ 2T —ia

=, 2.34
1—-24 (234)
while the translation generators are given, as before, by

Po = Hiigia» P> P- It is easy to check that neither spin nor
mass are fixed in this model.

III. SUPERSYMMETRIC GENERALIZATION

In this section we turn to N =4 supersymmetric
extensions of the actions given above. Two of the four
supercharges are assumed to be spontaneously broken,
leaving us with N = 2 unbroken supersymmetry.

A. Coset approach: Kinematics

We begin with the N'=2,D =2+ 1 super-Poincaré
algebra, which in d = 1 notation appears as N = 4,d = 1
super-Poincaré algebra with two central charges. The basic

(anti)commutation relations extend the previous relations
(2.3) by

{0.0y=2p.  {s.5}=2p. {Q.5}=2Z
3 =22. Wo-j0 1.0--30
1.0=-s.  [1.0=5  .S=35
[J,8] = %S [T,S] =-0, [T,8]=0. (3.1)

Here, O, Q and S, S are the generators of the unbroken and
spontaneously broken supersymmetries, respectively. P is
the generator of translation, 7.7 are the central charge
generators, while 7, T.,J are the generators of the D =
2 4+ 1 Lorentz group, as before.

In the coset approach [1,2], the breakdown of § super-
symmetry and Z, Z translations is reflected in the structure
of the coset element

g= eitP 69Q+9 0 QWS+ S £l(4Z+az) ei(AT+Z\ T) (3.2)
The N = 2 superfields q(z, 0, 8),w(t,0,0), and A(z,0,0)
are Goldstone superfields accompanying the N =2,D =
2+ 1 super-Poincaré to N =2,d =1 super-Poincaré
breaking.

The transformation properties of the coordinates and
superfields are induced by the left multiplications of the
coset element (3.2),

Jog = g h, h~ el (3.3)
The most important transformations read
(i) Unbroken SUSY (gy = e¢%¢9): 60 = ¢, 6t =
i(e0 + &0);
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(i) Broken ~ SUSY  (go = eSt5): 6t = i(ew + &),
oy = g, 6q = 2ied),
(iii) Automorphism group

(g —e ((1T+(1T))
{ ot =—2i(aq—aq) + 200y —2aby, 50=—iay,
oq=a(—it—00+yy), Sy =—ial, SA=a—ai’,

where, as in (2.7) before,

_ tanh(\/f&A) A 3.4)
vVAA
The left invariant Cartan forms read
wp =1 ,1}1{(1 +AA)At+2i(AAG —AAq)],
Aq—A2AQ+idAL
W7 =1 u[ q—A*Aq+idAd],
dA AdA—dAL
wr=—, w;=i———.
1—24 1—AA4
1 1 _
wo = _[dO+iAdy)|, wg= = |dy +1Ad0).
0 ’—I—M[ ], s 1—/1/1[ ]
(3.5)
Here,
At = dt —i(0d0 + 0d6 + wdy +pdy) and
Aq = dq — 2iydo. (3.6)

Having at hand the Cartan forms, one may construct
“semicovariant” derivatives (covariant with respect to
P, J, broken and unbroken supersymmetries, only) via

+d¢92+d92.

0
ALV, + dOV, + dOV,y = dta 50 29 (3.7)
Explicitly, they read
vV, = E—la,,
Vo =D —i(wDy +yDy)V,,
Vo = —l(t//Dw+1//Dl//)V (3.8)
where
E=1+i(yy+py),
0
D = % — 198
_ 0 - .
D= % i00,: {D,D} = —2i0,. (3.9)

These derivatives obey the following algebra:
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{Vo,Vo} = =2i(1 + Vaw Vo + VoyVeip)V,,
{Vy.Vy} = —4iVapVeyV,,
{Vg.Vo} = —4iVapVoy V.,

[Vi. Vo] = 2i(VowV iy + Vo V)V,

V,.Vy] = 21(Vop Vo + VowVap)V,. (3.10)

Finally, imposing the same constraints (2.10) as in the
bosonic case, one may reduce the number of independent
Goldstone superfields,

A -
:O:}v = —1—, v 2i :0, V :0,
wz ! | 11_’_1}” 0q + 21y od
2 _
0 :O:}v_:'—_, v q 2'_:0, v _:O.
Wz q IH—M 0q + 21y 0d
(3.11)

These constraints impose covariant chirality conditions on
the superfields q and q and, in addition, they express the
Goldstone superfields y, ¥, A, A as the derivatives of the q
and q, thereby realizing the inverse Higgs effect [3]. Thus,
we have in the system only one, covariantly chiral, N' = 2
complex bosonic superfield q(z, 9, @).

The constraints (3.11) imply some further restrictions.
For example, if we act by V, on the constraint
Voq + 2iy = 0, we will get

Véq +2iVoy =0 = 2iVyap(1 —VawV,q) =0. (3.12)
Thus, we have to conclude that
Voy = 0. (3.13)

Moreover, on the constraint surface given by (3.11)
and (3.13) the algebra of covariant derivatives slightly
simplifies,

V92 == vz = O
{Vo.Vo} = =2i(1 + Vey V)V,
V,,Vy| = —2iV,a VY, (3.14)

B. Component transformation laws

As we are going to define component actions, we need
transformation laws for the components. Let us first denote
the components of superfields in the following way:

Vg0 =w,
/1|9=0 =

Ulo—0 = G
'1|9=0 =4,

qlo—0 = 4.
Vlo—o =W, (3.15)
It appears to be convenient to introduce also the quantity

E=Elg_g=1+i(yrp +ipy) (3.16)
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and to define a new time derivative,

D, =£719,. (3.17)

We list the active transformation laws (at fixed ¢) for
these components under the broken and unbroken
supersymmetries.

Broken supersymmetry:

55q = —i(ew + &y)q,
S5y = e —i(ey + Ew)y,

§:E = —i0,[E(ep + &), (3.18)

Unbroken supersymmetry 67, f|g—y = (eDf + € D f)lgo:

8pq = —2iey + (€ A — eyl)q,
oy = —ied + (e A — eyd)y,
5p€ = 0,[E(ew A — ewd)] + 2(

ey i—eyl). (3.19)

Finally, we stress that the relations between the compo-
nents A and ¢ are given by the following expressions:

D,q
1++1-4D,qD,q’

Dig =— SA=2i (3.20)

Tra
C. Actions

We are ready to construct the supersymmetric generali-
zation of the actions (2.12), (2.14), and (2.16). As they have
different dimensions, these actions must be invariant
separately.

1. Superparticle

It is easy to check that the evident ansatz

/ dtEF,(AA) (3.21)

for the supersymmetric extension of the particle action
(2.12) is perfectly invariant with respect to the broken
supersymmetry (3.18), because

53(EF\ (1) = —i0,E (e + Ew)]F,
—i& (e + By) (WA + AD)F!

= —i0,[EF, (e + &p)). (3.22)

To determine the function F,(A4), we impose invariance
under the unbroken supersymmetry (3.19). The corre-
sponding variation of £F(14) computes to

—8,[5( wi — ey A)F]
A (Fy + (1 +22)F)).

5" (EF,) =

ey i—eip (3.23)
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The first term of this variation is a total time derivative,
while the sgcond one is not. It is absent, however, for
Fy~(1+422)7% So, choosing. F, == ff/&, our ansatz
(3.21) produces a supersymmetic action.
Then, we directly get the invariant supersymmetric

extension of the action (2.12) as

Edt
Sy = dr—2 =
0 mo/ m°/1+/u

:—mo/dt[E 1—4D,qD,g+E—1].  (3.24)

This is just the action of the N'=2,D =2+ 1 super-
particle in the form considered in [18]. Having in mind the
relations (3.20), one may rewrite the Lagrangian in the form

ﬁo = —I’}’l()\/(c;2 —4qq—l’l’l0(5— 1)

Let us give the Hamiltonian formulation of this system.
The momenta p, 7 conjugate to g, y read

(3.25)

2moé

&
p=——-o— and Jr—im()(i.-i- 1)‘/_/,
& —44q VE —44q
(3.26)
from where we immediately get the Hamiltonian
Ho = /m3 + pp (3.27)
and fermionic constraints
= i(mo +y/m}+ pp)u_/ and
7= —i(mo oy /m3+ pi))l//. (3.28)

Substituting these expressions into the symplectic one-form
A, = pdq + pdg + rdy — zdyp, it reduces to

-Ared = qu + ﬁdz] + l(m() + 1/ m% + pi))(l//dl/_/ + l/_/dl//)
(3.29)

From the symplectic structure d.A,4, we read off the
Poisson brackets defined by the nonzero relations

(pa}=1. {w,w}=m,

vp yp

{l//7 C]} = _4(
(3.30)

The transformation properties (3.18) and (3.19) then tell us
the supercharges

m0+H0)H0’ {W’Q} :_4(1’}104'7'[0)7'(0'

PHYSICAL REVIEW D 89, 045013 (2014)

0 =2py. S=2(my+H)p. 3.31)

Indeed, these forms of Q and S produce the proper shifts of
q and y, respectively,

5pq = —ie{Q, q} ~ —2iey + -+ and

Ssw = —ie{S,y} =& (3.32)
It is matter of straightforward calculations to check that the
remaining terms in (3.18) and (3.19) are also reproduced.

The supercharges (3.31) form centrally extended
N =4,d =1 super-Poincaré algebra,

{0.0} = 2i(Hy — my). {8, 8} = 2i(Hy + my),
{Q,S} = 2ip. (3.33)

The appearance of the central charge m, in the algebra is a
signal that the supersymmetry is partially broken and that
the vacuum cannot be annihilated simultaneously by both
0 and S.

From (3.29) we can readily deduce the canonical
coordinates p and

X =\/my+Hyy,
D 1

~ . P _ ~ —
=q—1 : s - la ’ =5
q=q m(ww) {p.q} iy =—3
(3.34)
In these coordinates, the supercharges read
0=2—-* and S =2/my+ Hop. (3.35)

Vmy +Hy

Finally, we note that the action (3.24) can be written in
terms of superfields as

Sy = 2my / didoad Y _ .

3.36
1 + A4 (3.36)

2. Supersymmetric anyon

The supersymmetrization of the anyonic action (2.14) is
more involved. The most general ansatz with the proper
bosonic limit reads”

i D,A — AD,A B}
Sanyon = lg / d;g# + / dtEF,(A)DyD,p.

(3.37)

This action is invariant with respect to the broken super-
symmetry (3.18) because

*The second term in (3.37) is of the proper dimension but
disappears in the bosonic limit.
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DA — AD, DA — DA
5* 5 t - t —_ 8 — - (‘: t _t
{ [y ] [(8"’“ A
(3.38)

and

S5[ED D F,] =—i0,[(ew + 8w )EDyDyF,]. (3.39)

A straightforward calculation shows that invariance under
unbroken supersymmetry fixes F, to

1+ A4

Fy=—2a— 2.
N T3

(3.40)

and the full supersymmetric anyonic action acquires the
form

_ 1; / U gzp,x — /1_7)[2

S
anyon 11—

1+ 22 _
—2a/d[g(1_WD,l//D[l//

_ ia/dtg Dz(Dt‘I)D_tEI - Dt(DzZI)th
V1—4D,qD,q(1 +

- 4thDtZI)
14+ +/1—-4D,qD,q B
— dt€ DyDy. 3.41
a/ 1 —4D,qD,g wDw.  ( )

Two notes are in order:

(1) The forms wg and @g can be evaluated on the
superfield constraints (3.14), which removes the df
and d projections. We find that the yry term can be

represented as
) / ws| - d| ‘
wp|

(i) The superfield expression for the action (3.41) takes
the simple form

(3.42)

:15“ / drdoda? ¥V

3.43
1—24 (3.43)

S anyon

We are ready to give a Hamiltonian formulation of the
supersymmetric extension of the anyonic system. It is
defined as the sum of the particular actions (3.24) and
(3.41), S = 8y + Sanyon- Introducing fermionic momenta n
and 77 conjugate to the Grassmann variables y and , the
first-order Lagrangian reads

PHYSICAL REVIEW D 89, 045013 (2014)

~ 2mp€  ia -3

I = my — 210 ;
T 21—M+W

L= aP (i
« 1+ P\YTTIa
(3.44)

Y 2a
&2
1+/1/1

Hence, the Hamiltonian is given by the expression

Ql

"’eu

1 (1—22)%n
= —_— 3.45
Hsusy = H+2a i (3.45)
where H is defined in (2.22) as
pA—pA 11—
H = _ = 3.46
Ry Ry (3.46)

The symplectic structure follows from the one-form:

_ dadlA—da
Ay = pdq+ pdg — 5 ————

L — 2dy, (3.4
> 1= + ndy — zndy, (3.47)

where

n=n—i(H+my)y and 7=n+i(H+ my)y.

(3.48)

Therefore, the Poisson brackets are defined by the relations

(P} =1 (AT =022
N R

In these terms the Hamiltonian and supercharges read

(3.49)

B 1 (1—24)? . _
Hsusy = H + 2@ 154 (m +i(H + mo)w)
X (7 —1i(H + my)y). (3.50)
Q =2py + A7 — i(Hsusy + mo)w),
S=ir+ l/_/(HSUSY + mo). (351)
They form the superalgebra
0.0} =2i(H —my),
{ } (Hsusy 0) (3.52)

{8.8} = 2i(Hsysy + my). {0. 8} =2ip.

3. Rigid superparticle

The supersymmetric extension of the bosonic term

1 s
/dz(im /dtGl(M)/M

1= 2) (3.53)
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from (2.16) is a more complicated task, due to the existence
of two further expressions of the proper dimension, which,
however, vanish in the bosonic limit, namely

iG,() (i +i ) and Gy (A1)(AA—AA)r . (3.54)

All three terms can be immediately promoted to be
invariant under the broken supersymmetry, giving

Srigid = /Sdt[GIDt/‘LDIZ =+ 1G2 (D%WDIV_/ + thl[_/D[l//)

+ iG5(D, A — DA DD, (3.55)
where we temporarily unfix the function G,. We expect the
three functions Gy, G,, and G3 to be constrained by
invariance under unbroken supersymmetry.

After quite lengthy calculations, we find that our action

Sria = / dt]G\E~ G AHGHE 2 (i 4+ )

FiG,E2 (AT =AW ] (3.56)

is invariant under unbroken supersymmetry if the equations

~G3+ G5 +2G; =0,  G3+Gy+2(1 + )G, =0,
G, + (1 +210)G, =0 (3.57)

hold, where the prime denotes a derivative with respect to
the single argument A4 of these functions. These equations
are not independent, because the sum of the first two
reduces to the derivative of the third. The solution of this
system reads

(3.58)
Thus, invariance with respect to both N = 2 supersymme-

tries determines the action up to one arbitrary function
G1(24). The prescribed bosonic limit fixes this function to

1+
G =——, 3.59

and thus the complete N = 4 supersymmetric generaliza-
tion of the rigid-particle action has the form

1 1 .2 1 2)? . -
Srigid_/dt{(ﬂg_lﬂi—iﬂg_z(lﬁv_/ﬂ/_/w)

1—1)3 (1—22)3
_ (1+/1/_1)3 '—_1 2.
31—(1_/12)4 (AA—INE Hjrp | (3.60)

In superfield language this action can be written in the
much more compact form

PHYSICAL REVIEW D 89, 045013 (2014)

1+A4 . .

The Hamiltonian formulation of the supersymmetric rigid
particle will be considered elsewhere.

Srigid - /dtdgdé

IV. DISCUSSION AND OUTLOOK

We have applied the coset approach to the construction
of component actions describing a superparticle in D =
2+ 1 spacetime, with N =4 supersymmetry partially
broken to N = 2, and with the bosonic action containing
higher time derivatives, in the forms of an anyonic term and
the square of the first extrinsic curvature. We presented the
supercharges for the unbroken and broken supersymmetries
as well as the Hamiltonian for the supersymmetric anyon
and provided the superspace actions for all cases.

Our main goal was to find out whether it is possible to
apply the approach, previously developed for the construc-
tion of supersymmetric actions with a minimal number of
time derivatives [17,18], also to systems with higher time
derivatives in the bosonic sector. We are aware that the
simple N = 4 — N = 2 pattern of supersymmetry break-
ing drastically simplifies the analysis (for example, by the
absence of auxiliary components). Clearly, the analysis of
more involved systems with higher supersymmetries or
higher target-space dimensions is desired. Using the
fermions of the nonlinear realization as the physical
fermionic components renders the constructed actions quite
compact and involves only geometric objects such as the
einbein and covariant derivatives of the bosonic “matter”
fields and the fermions.

Because of the fact that our actions are just gauge-
fixed forms of the standard ones (modulo a proper
redefinition of the fermions), interactions with background
fields (including electromagnetism) may be introduced in a
standard way. An interesting further question is whether
also p-brane actions (with p > 1) containing higher deriv-
atives can be supersymmetrized in a similar way. Such a
generalization is not obvious, however, due to the presence
of auxiliary fields, which have to be excluded by their,
a priori unknown, equations of motion. Other issues not
discussed here are the physical properties of the rigid-
particle model or the quantization of our systems. We hope
to treat them elsewhere.
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