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We study the functional renormalization group flow of a Higgs-Yukawa toy model mimicking the top-
Higgs sector of the standard model. This approach allows for treating arbitrary bare couplings. For the class
of standard bare potentials of ϕ4 type at a given ultraviolet cutoff, we show that a finite infrared Higgs mass
range emerges naturally from the renormalization group flow itself. Higgs masses outside the resulting
bounds cannot be connected to any conceivable set of bare parameters in this standard model ϕ4 class. By
contrast, more general bare potentials allow us to diminish the lower bound considerably. We identify a
simple renormalization group mechanism for this depletion of the lower bound. If this depletion is also
active in the full standard model, Higgs masses smaller than the conventional infrared window do not
necessarily require new physics at low scales or give rise to instability problems.
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I. INTRODUCTION

The recent potential discovery of the standard model
Higgs boson with a comparatively low mass of mH ≃
125 GeV [1] has stimulated renewed interest in Higgs
mass bounds within the standard model itself [2–8]
and beyond [9–13]. In particular, arguments based on
vacuum stability [14–20] (or sufficient metastability
[21–24]) appear to give rise to a lower bound for the
Higgs mass [25–30]. The measured value for the mass
of the discovered scalar boson is either close to or on top
of the bound or might even violate the bound, depending
on various other parameters, most notably, the value of the
top mass (in the appropriate scheme) and the strong
coupling constant.
The consequences of the true Higgs mass satisfying or

violating the bound can be rather dramatic, ranging from
measured constraints on the underlying ultraviolet (UV)
theory structure via an upper bound for the scale of new
physics to the prediction of the decay of the Universe as we
know it. Therefore, a thorough understanding of Higgs
mass bounds within the standard model is clearly
mandatory.
Even though typical computations of mass bounds are

often done with perturbative (RG-resummed) methods,
the problem is generically nonperturbative. This is
obvious for the upper Higgs mass bound—the so-called
unitarity or triviality bound—which is, in principle,
related to a strongly coupled Higgs sector in the UV.
In perturbation theory, this becomes manifest from the
vicinity to the Landau pole indicating the failure of

perturbation theory.1 Apart from that, also the lower bound
involves nonperturbative information for two reasons: First,
the prediction of infrared (IR) quantities such as Higgs and
top masses involve a proper description of threshold effects.
These are nonperturbative, as such mass scales are related
to the couplings. Second, an investigation of stability issues
requires the computation of a full effective potential for
arbitrary field amplitudes.
In a series of works, Higgs mass bounds have,

therefore, recently been studied within lattice quantum
field theory both for a simple Z2 Higgs-Yukawa model
[31–33], as well as for a Higgs-Yukawa model more
similar to and significant for the standard model [33,34].
In particular, the lower Higgs mass bound arises from
the mere criterion of starting from a physically mean-
ingful bare UV theory on the lattice. No reference to
low-energy stability issues had to be made, and no
indications for an instability have been observed. Most
prominently, the simulations of Refs. [35,36] essentially
rule out or put strong constraints on the existence of a
fourth flavor generation for the measured Higgs boson
mass; similar conclusions have been drawn from
analytic considerations [37].
In the present work, we revisit the Higgs mass bounds by

analytic means using the functional renormalization group
(RG). Within a consistent systematic derivative expansion,
the functional RG provides for a tool to analyze the
problem nonperturbatively and allows us to estimate errors
of the approximation scheme. Though the parameter region
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1In fact, the upper bound is often motivated from the require-
ment that the standard model per definitionem should be
describable within perturbation theory in the UV. Since this is,
if at all, an aesthetic but not a physical criterion, we rely on the
criterion of triviality in the present work.
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near the conventional lower bound appears perturbatively
accessible, the nonperturbative functional RG has better
access to and control of threshold effects and can treat
arbitrary bare potentials. The latter turns out to be essential
for the lower bound. Moreover, standard perturbative
metastability analyses of the effective potential indicate that
a second lower minimum might occur at nonpertubatively
large values of the Higgs field, also calling for a non-
perturbative tool. In order to concentrate on the basic
mechanisms for the mass bounds, we confine ourselves
to the simple Z2 Higgs-Yukawa model, as it avoids intricate
questions arising from the gauge-Higgs interplay in the full
standard model [38,39], while at the same time maintaining
the standard model property that no Goldstone bosons arise
in the broken phase. The first functional RG studies of Higgs
mass bounds have already been performed in Refs. [40,41].
In the present work, we particularly concentrate on the

influence of genericUVactions on theHiggsmass bounds. In
fact, we find a rather substantial influence of the precise form
of the bare scalar potential on the lower bound of the Higgs
boson. At first sight, this seems to be at odds with the
common wisdom of renormalizable field theories that IR
observables should be independent of the details of the
microscopic UV theory. This statement (formulated under
suitable mild assumptions) is, of course, left untouched by
our work. However, the main point is that the notion of a
Higgs mass bound is, strictly speaking, not a pure IR
observable. Higgs mass bounds are typically formulated as
a function of the UV cutoff Λ, i.e., mH;bound ¼ mH;boundðΛÞ.
Hence, in order to quantify this dependence, we have to
make certain assumptions about the system at and near the
cutoff. This includes the choice of a regularization scheme
specifying thedetails of theUV regularization at the cutoff; in
this sense, part of the scheme dependence of the Higgs mass
bounds is actually physical, and this includes dynamical
properties of the flow near the cutoff, which can be rather
strongly influenced by the bare theory. Quantitatively, we
find that rather mild modifications of the bare potential can
have a significant impact on the lower Higgs mass bound.
This article is organized as follows: In Sec. II, we briefly

introduce our simple toy model. Section III summarizes the
concepts of the functional RG applied to this model and
presents the resulting flow equations. As a warm-up, a
simple mean-field (MF) analysis already illustrating many
of the properties of the Higgs mass bounds is given in
Sec. IV. Incidentally, these mean-field properties do not
actually require the functional RG framework but could
equally well be derived within a large-N type of reasoning.
Our main results based on the nonperturbative RG flow
equations are summarized in Sec. V.

II. Z2-SYMMETRIC HIGGS-YUKAWA
TOY MODEL

Many of the fluctuation-induced features of the Higgs
mass bounds in the standard model can already be studied

in a greatly simplified model involving a Dirac fermion
flavor ψ (the top quark) and a real scalar boson ϕ. The
model is defined by the Euclidean classical action

S ¼
Z

d4x

�
1

2
ð∂μϕÞ2 þ

m̄2

2
ϕ2 þ λ̄

8
ϕ4 þ ψ̄ i∂ψ þ ih̄ϕψ̄ψ

�
:

(1)

For later purposes, we allow the top quark to appear in Nf
flavor copies. We use Nf merely as an ordering parameter
of the calculation but not as a physical parameter mimick-
ing the generations of the standard model. For quantitative
statements, we will use Nf ¼ 1. The model is invariant
under a discrete “chiral” symmetry,

ψ → ei
π
2
γ5ψ ; ψ̄ → ψ̄ei

π
2
γ5 ; ϕ → −ϕ; (2)

which protects the fermions against acquiring a direct mass
term. Since the symmetry is only discrete, its spontaneous
breaking owing to a nonzero expectation value for the
scalar field v ¼ hϕi does not give rise to massless
Goldstone bosons. This feature mimics the property of
the standard model that the Goldstone modes are eaten by
the massive electroweak gauge bosons.
The quantum theory corresponding to Eq. (1) has to

be defined with a finite UV cutoff Λ which, together with a
specified regularization prescription, remains an implicit
physical parameter of the theory. This is because triviality
inhibits an ultraviolet extension to arbitrarily high scales
while keeping the physical low-energy parameters
fixed [42]; in perturbation theory, this feature is reflected
by the existence of a Landau pole in the running
coupling.
In this setting, we aim at solving the so-defined quantum

theory by integrating out fluctuations from the UV cutoff Λ
towards the observable long-range physics. The micro-
scopic bare action at Λ, therefore, corresponds to an UV
initial condition for the long-range physics extracted at IR
scales. This resulting solution provides for a mapping from
the microscopic bare parameters m̄2, λ̄, h̄, Λ, and possibly
further RG irrelevant bare couplings to the set of physical
parameters, which are given by the top massmtop, the Higgs
mass mH, the vacuum expectation value v, and still the
cutoff Λ. These physical parameters can be related to
renormalized couplings in the quantum effective action,
such as the renormalized Yukawa coupling h, see below,
and the effective potential UðρÞ, where ρ ¼ ϕ2

2
. The precise

relation is fixed by imposing a renormalization condition at
an a priori arbitrary renormalization point. As the long-
range physics of the present model is characterized by
massive degrees of freedom, we choose the renormalization
point to be a deep IR scale μ being much smaller than all
mass scales. In this way, the physical parameters can be
read off directly from the values of the renormalized
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couplings in the deep IR. Denoting the minimum of the
effective potential by ρ0, we identify

v ¼ Z1=2
ϕ hϕi ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2Zϕρ0
p

; m2
top ¼ v2h2;

m2
H ¼ v2

U00ðρ0Þ
Z2
ϕ

; (3)

where all renormalized couplings are considered in the
deep IR. This also holds for the wave function renormal-
ization Zϕ, which is introduced below. In this work, we
consider the vacuum expectation value and the top mass as
given, v≃ 246 GeV and mtop ≃ 173 GeV for the purpose
of illustration.2 Furthermore, choosing a fixed cutoff Λ
leaves only mH as a free parameter, which becomes a
function of the whole set of microscopic bare parameters.
We stress that it is meaningless to quantitatively compare
the Higgs mass bounds obtained below with the measured
Higgs mass of mH ≃ 125 GeV, as the toy model consid-
ered here differs in many quantitative respects from the
top-Higgs sector of the standard model.
Constraints on the Higgs mass are now obtained if the

region of attainable Higgs masses is bounded for any given
combination of bare parameters. These bare parameters are
essentially unconstrained, as they are provided by a yet
unknown underlying microscopic theory (UV completion).
Only a stable bare scalar potential bounded from below is
required in order to facilitate a meaningful definition of the
quantum theory. In the present work, we start with the
standard class of initial bare λ̄ϕ4 potentials. UV stability
then implies that λ̄ ≥ 0 for this class of potentials. We then
extend our considerations to more general potentials. For
instance, a negative λ̄ is permitted as well if the potential is
stabilized for large ϕ, e.g., by positive ϕ6;ϕ8;… terms in
the bare potential. We emphasize that these higher-
order terms cannot be excluded by referring to renormaliz-
ability criteria. This is because we consider them to be
present in the microscopic UV potential at a fixed (possibly
physical) UV cutoff Λ. Presently, no experiment can
impose relevant constraints on such terms which could
arise from an underlying UV completion of the standard
model. Renormalizability, rather, tells us that the IR
is dominated by the power-counting “renormalizable”
operators in the standard model, provided that the UV
theory starts near the perturbative Gaussian fixed point.

III. RENORMALIZATION FLOW

As an alternative to the functional-integral definition of
continuum quantum field theory, we use a differential
formulation provided by the functional RG. A convenient
version is given by the flow equation for the effective
average action Γk, which interpolates between the bare
action Γk¼Λ ¼ S at the UV cutoff Λ and the full quantum
effective action Γ ¼ Γk¼0 [43]. The latter corresponds to
the generator of fully dressed proper vertices. The variation
of the effective action with respect to the scale k is given by
the Wetterich equation

k∂kΓk ≡ ∂tΓk ¼
1

2
STr½ð∂tRkÞðΓð2Þ

k þ RkÞ−1�;

t ¼ ln
k
Λ
: (4)

Here, Γð2Þ
k denotes the second functional derivative with

respect to the fluctuating fields Φ ¼ ðϕ;ψ ; ψ̄Þ, and the
supertrace also includes a minus sign for the fermions. The
regulator Rk in the denominator is chosen such that it
suppresses IR modes below the scale k, and its derivative
k∂kRk establishes UV finiteness; as a consequence, the
flow of Γk is dominated by fluctuations with momenta
p2 ≃ k2 implementing the concept of smooth momentum-
shell integrations, for reviews see Refs. [44–50]. In this
Wilsonian spirit, the long-range physics is a result of the
microscopic bare theory serving as the initial condition for
the RG flow at the cutoff scale Λ. Therefore, the attribute
“initial” refers to quantities at the UV cutoff Λ in the
following. This may differ from the perturbative literature,
where in some cases the renormalization (matching) point
in the IR is considered as the initial scale, and the
perturbative RG is then run towards the UV.
Let us emphasize another difference to standard pertur-

bative treatments: typical perturbative renormalization
schemes seem to suggest that the cutoff Λ can ultimately
be sent to infinity once physical observables are expressed
in terms of renormalized quantities. Some schemes, such as
dimensional regularization, can even be applied without
any explicit appearance of an UV cutoff scale. However,
because of the triviality of the Higgs sector and of the
U(1) gauge sector, the standard model cannot be extended
generically to arbitrarily large momentum scales. The same
statement applies to our simple toy model [51]. Hence, the
only fundamentally consistent way to deal with these
theories also beyond perturbation theory is to view them
as effective field theories which are valid below a certain
scale Λ. We, therefore, manifestly work with a cutoff Λ,
even though all IR quantities, if expressed in terms of
renormalized quantities, could be rewritten such that the
cutoff Λ is traded for a finite renormalization scale μ as in
standard perturbation theory [52,53].
As we are working with an explicit finite cutoff Λ, the

choice of the regularization scheme, strictly speaking, also
belongs to the definition of the model. This scheme is here

2We use here the value for the top mass measured by
kinematically reconstructing its decay products and comparing
these to Monte Carlo simulations. For Higgs mass bounds,
actually the pole mass is considered to be the appropriate
quantity, which could significantly differ from the experimentally
quoted value [28]. As a rule of thumb, an uncertainty of ∼1 GeV
in the top mass leads to a �2 GeV variation of the lower Higgs
mass bound for large cutoffs Λ. In any case, quantitative results of
the present toy model should only be considered as an illustrative
example anyway.
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specified in terms of the regulator function Rk, more
precisely, in terms of the regulator shape functions
rðp2=k2Þ, rFðp2=k2Þ introduced in the Appendix. From
the viewpoint of the model definition, these shape functions
determine how the modes are physically cut off in the UV.
Since a change of the regularization scheme, such as a
change of the shape functions, can be mapped onto a
change of the initial conditions for the bare couplings (i.e.,
a change of the renormalization constants), we keep the
regulator fixed in the present work and vary the bare
couplings.
In addition to perturbative expansions, nonperturbative

approximation schemes can be devised for the flow
equation. Systematic and consistent expansion schemes,
which do not rely on a perturbative coupling ordering, are,
for instance, the vertex expansion or the derivative
expansion.
In this work, we study the renormalization flow of the

Yukawa system nonperturbatively within the following
truncation based on the derivative expansion:

Γk ¼
Z
x

�
Zϕ;k

2
ð∂μϕÞ2 þUkðρÞ þ Zψ ;kψ̄i∂ψ þ ih̄kϕψ̄ψ

�
;

(5)

where ρ ¼ 1
2
ϕ2, and the potential Uk generally includes

arbitrary powers of the field. In fact, the accuracy of the
derivative expansion for scalar theories has been verified
quantitatively in many contexts. Here, we actively study its
convergence by comparing leading-order (LO) results
(obtained for Zϕ;k ¼ 1, Zψ ;k ¼ 1) to next-to-leading-order
(NLO) results. We find no signatures of a failure of this
expansion, even at comparatively strong coupling, see
below.
Inserting this ansatz (5) into the flow equation (4)

provides us with the RG flows of h̄k, Uk and the wave
function renormalizations Zϕ;k and Zψ ;k; the latter flows
will be followed in terms of the anomalous dimensions

ηϕ ¼ −∂t ln Zϕ;k; ηψ ¼ −∂t ln Zψ ;k: (6)

The flow equation for the effective potential reads

∂tUk ¼ 2vdkd
�
ld0ðk−2Z−1

ϕ;k½2ρU00
k þ U0

k�; ηϕÞ

− Nfdγl
ðFÞd
0 ð2k−2Z−2

ψ ;kh̄
2
kρ; ηψÞ

�
; (7)

where the primes denote derivatives with respect to ρ, and
v−1d ¼ 2dþ1πd=2Γðd=2Þ. For generality, we work in d
dimensions and with a dγ-dimensional representation of
the Dirac algebra. We will later specialize to d ¼ 4 and

dγ ¼ 4. The threshold functions ld0 and lðFÞd0 arise from the
integration over the loop momentum and carry the non-
universal regulator dependence. For any physically admis-
sible regulator, they approach finite constants for vanishing
argument and decrease to zero for large first argument
describing the decoupling of massive modes; details can be
found in the Appendix.
It is useful to introduce renormalized fields

~ϕ ¼ Z1=2
ϕ;kϕ; ~ψ ¼ Z1=2

ψ ;kψ ; (8)

as well as the dimensionless renormalized Z2 invariant
quantity

~ρ ¼ Zϕ;kk2−dρ: (9)

The dimensionless renormalized Yukawa coupling is
defined by

h2k ¼ Z−1
ϕ;kZ

−2
ψ ;kk

d−4h̄2k; (10)

and the dimensionless potential simply is

uk ¼ Ukk−d: (11)

The flow of uk for fixed ~ρ is given by

∂tuk ¼ −duk þ ðd − 2þ ηϕÞ~ρu0k
þ 2vd½ld0ðuk0 þ 2~ρu00k ; ηϕÞ − Nfdγl

ðFÞd
0 ð2~ρh2k; ηψÞ�;

(12)

where primes now denote derivatives with respect to ~ρ. The
flow of the Yukawa coupling is of the form

∂th2k ¼ ½ηϕ þ 2ηψ þ d − 4�h2k þ 8h4kvdl
ðFBÞd
1;1 ðω1;ω2; ηψ ; ηϕÞ

− ½48κku00kðκkÞ þ 32κ2ku
000
k ðκkÞ�h4kvdlðFBÞd1;2 ðω1;ω2; ηψ ; ηϕÞ − 32h6kκkvdl

ðFBÞd
2;1 ðω1;ω2; ηψ ; ηϕÞ; (13)

with

ω1 ¼ 2κkh2k; ω2 ¼ uk0ðκkÞ þ 2κku00kðκkÞ; (14)

and κk ¼ ~ρmin denotes the minimum of the potential; i.e., if κk ≠ 0 then uk0ðκkÞ ¼ 0. Finally, the anomalous dimensions are
determined by
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ηϕ ¼ 8
vd
d

�
κk½3u00kðκkÞ þ 2κku000k ðκkÞ�2

×md
4;0ð2κku00kðκkÞ þ u0kðκkÞ; 0; ηϕÞ

þ Nfdγh2k½mðFÞd
4 ð2κkh2k; ηψ Þ

− 2κkh2km
ðFÞd
2 ð2κkh2k; ηψÞ�

�
; (15)

ηψ ¼ 8h2k
vd
d
mðFBÞd

1;2 ð2κkh2k; 2κku00kðκkÞ þ u0kðκkÞ; ηψ ; ηϕÞ;
(16)

where the threshold functions are again discussed in
the Appendix. These flow equations can be compared to
those of similar investigations in the literature [51,54,55]
within different physical contexts. Once the flow equations
have been solved for suitable initial UV conditions, we can
read off the fully renormalized long-range quantities in the
limit k → 0 corresponding to our renormalization point.
For instance, the physical quantities defined in Eq. (3)
require the renormalized Yukawa coupling h ¼ hk→0 and
the wave function renormalization Zϕ ¼ Zϕ;k→0. The
renormalized vacuum expectation value is obtained from
v2 ¼ limk→02k2κk.

IV. MEAN-FIELD ANALYSIS

Let us first perform a mean-field analysis corresponding
to a one-loop approximation of the effective potential
including fermion as well as boson fluctuations, while
keeping the wave function renormalizations and the
Yukawa coupling fixed,

Zϕ;k; Zψ ;k → 1; hk → hΛ: (17)

The mean-field effective potential UMF could, of course, be
calculated directly from a Gaussian approximation of the
generating functional yielding the standard formula for
the log of the determinant. Nevertheless, we derive it from
the flow equation, since it provides direct access to the use
of an arbitrarily shaped regulator function, which can be
used to model the physical UV cutoff mechanism.
The standard MF approximation is equivalent to the

large-Nf approximation, taking only fermionic fluctuations

into account. The corresponding mean-field effective
potential is obtained from the flow equation (7) by
integrating the fermion contributions ∼Nf from k ¼ Λ to
0, while keeping the potential on the right-hand side fixed
at Uk → UΛ. We obtain for the mean-field effective
potential

UMF
k ðρÞ ¼ UΛðρÞ

þ Nfdγ
2

Z
p

ln

�
p2ð1þ rFðp2=Λ2ÞÞ2 þ 2h̄2Λρ

p2ð1þ rFðp2=k2ÞÞ2 þ 2h̄2Λρ

�
;

(18)

where
R
p ¼ R ddp

ð2πÞd. The extended mean-field (EMF)
approximation is obtained by including also the scalar
fluctuations on the same Gaussian level. Introducing the
abbreviation

M2
ΛðρÞ ¼ U0

ΛðρÞ þ 2ρU00
ΛðρÞ; (19)

we find

UEMF
k ðρÞ ¼ UMF

k ðρÞ

−
1

2

Z
p
ln

�
p2ð1þ rðp2=Λ2ÞÞ þM2

ΛðρÞ
p2ð1þ rðp2=k2ÞÞ þM2

ΛðρÞ
�
: (20)

Whereas the mean-field approximation becomes exact in
the strict large-Nf limit, no such anchoring to an exact limit
is known for the extended mean-field approximation.
Moreover, further subtleties arise in the extended mean-
field case from convexity violations and complex solutions
for the potential as discussed in Ref. [56]. These subtleties
of the extended mean-field approximation are, however,
irrelevant for the nonperturbative functional RG solution
discussed below. Hence, we will mainly stay within the
standard mean-field approximation in the following for
the purpose of illustration.
For both approximations, the momentum integration can

be done analytically for a suitable choice of the regulator
shape functions rðxÞ, rFðxÞ. For instance, for the linear
regulator (cf. Appendix), we obtain in the limit k → 0 and
in d ¼ 4 dimensions (where h̄Λ ¼ hΛ)

UEMFðρÞ ¼ UΛðρÞ þ
1

64π2

�
½M2

ΛðρÞ −M2
Λð0Þ − 2Nfdγh2Λρ�Λ2 þ 4Nfdγh4Λρ

2 ln
Λ2 þ 2h2Λρ

2h2Λρ

−M4
ΛðρÞ ln

Λ2 þM2
ΛðρÞ

M2
ΛðρÞ

þM4
Λð0Þ ln

Λ2 þM2
Λð0Þ

M2
Λð0Þ

�
; (21)

where we have normalized UEMFðρÞ such that UEMFð0Þ ¼ 0. In the following, we will show that Eq. (21) can be used to
illustrate the appearance of a lower bound for the Higgs mass.
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A. Bare potentials of ϕ4 type

Let us confine ourselves to bare potentials of ϕ4 type,

UΛðρÞ ¼ m2
Λρþ

λΛ
2
ρ2: (22)

For a given UV cutoff Λ, two out of the three bare
parameters m2

Λ, λΛ, hΛ can be fixed by fixing the top mass
and the vacuum expectation value; more precisely, fixing
hΛ ¼ mtop=v and determining m2

Λ from the transcendental
equation

UEMF0ðρ0 ¼ v2=2Þ ¼ 0 (23)

leaves us with the Higgs mass as a function of the bare
scalar coupling, mH ¼ mHðλΛÞ. In the standard mean-field
approximation, it is easy to see that mH ¼ mHðλΛÞ
increases monotonically with λΛ; therefore, a lower bound
on the Higgs mass is obtained from the lowest possible
value of λΛ, which is λΛ;min ¼ 0 for potentials of the form of
Eq. (22). (In the extended mean-field approximation, the
same conclusion holds unless λΛ approaches the strong-
coupling value λΛ → 8

3
h2Λ where an EMF artifact induces

singular behavior).
Equation (23) can easily be solved numerically. For

an analytical estimate, let us stay within the mean-field
approximation and keep only the terms ∼Nf .
Determining m2

Λ from the condition UMF0ðρ0¼v2=2Þ¼0
for fixed values of mtop and v, we find (setting Nf ¼ 1,
dγ ¼ 4)

m2
ΛðΛ; λΛÞ ¼ − λΛ

2
v2 þ h2Λ

8π2
Λ2

−
h4Λv

2

8π2

�
2 ln

�
1þ Λ2

m2
top

�
− Λ2

Λ2 þm2
top

�
: (24)

This fixes the effective mean-field potential as a function of
λΛ and Λ, yielding the Higgs mass

m2
HðΛ; λΛÞ ¼ v2UMF00ðv2=2Þ

¼ m4
top

4π2v2

�
2 ln

�
1þ Λ2

m2
top

�
− 3Λ4 þ 2m2

topΛ2

ðΛ2 þm2
topÞ2

�

þ v2λΛ: (25)

This renders explicitly that the lower bound for UV
potentials of the form of Eq. (22) is given
by mHðΛ; λΛ ¼ 0Þ.
The mean-field analysis performed here gives a first

insight into how lower bounds for the Higgs mass follow
from the mapping from bare to renormalized quantities. It
also exemplifies that the mere existence of a lower bound
on the Higgs mass for bare potentials of ϕ4 type is
essentially a consequence of top fluctuations that drive
the curvature of the effective potential at its nontrivial

minimum to finite values. This statement will also hold on
the nonperturbative level. We plot the mean-field results for
the Higgs mass as a function of Λ for various values of λΛ in
Fig. 1 as solid lines.
The plot also shows corrections from bosonic fluctua-

tions as described by extended mean-field theory UEMFðρÞ
as dashed lines for the same values of λΛ. We observe that
scalar fluctuations tend to decrease the Higgs mass values.
This agrees with the fact that scalar fluctuations drive the
effective potential towards the symmetric regime, thus,
depleting also the curvature near the minimum. However,
the lower bound of the Higgs mass remains unaffected
by the scalar fluctuations because the scalar field is
noninteracting for λΛ ¼ 0 in the EMF approximation.

B. Generalized bare potentials

The lower Higgs mass bound determined above arises
from the fact that the values for the bare quartic coupling λΛ
are bounded from below. This is necessary in order to start
with a well-defined theory in the UV for our confined bare
potentials (22) of ϕ4 type. Such a restriction on the bare
potential is typically also required in perturbation theory
because higher-order operators are perturbatively nonre-
normalizable. By contrast, the Wetterich equation provides
us with a nonperturbative tool, so we can study also the
influence of RG irrelevant higher-order operators on the
flow of the effective average action. Alternatively, this
could also be studied with perturbative methods in an
effective-theory approach.
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FIG. 1 (color online). Extended mean-field analysis of the
lower bound for the Higgs mass mH versus the UV cutoff Λ,
based on a bare potential UΛ of ϕ4 type for Nf ¼ 1. For an initial
UV potential which is flat apart from a mass term UΛ ¼ 1

2
m2

Λϕ
2,

the fermionic fluctuations drive the Higgs mass to a finite
minimal value. The solid lines correspond to standard mean-
field theory accounting only for top fluctuations, cf. Eq. (25),
whereas the dashed lines also include scalar fluctuations on the
Gaussian level (extended mean field). The four different line sets
correspond to increasing values of the initial ϕ4 coupling of
λΛ ¼ 0, 1

6
, 1
3
, 2
3
from bottom to top.
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In the following, we address the question how modifi-
cations ΔUΛðρÞ of the quartic bare potential can exert an
influence on the lower Higgs mass bound. The bare
potential can, in principle, be an arbitrary function of the
scalar field. The only constraint which we impose is that the
potential is bounded from below in order to start from a
well-defined quantum field theory at the cutoff. We
emphasize that no further experimental constraints exist.
The simplest extension of the standard potential has an
additional operator of the form ϕ6

UΛðρÞ ¼ m2
Λρþ

λΛ
2
ρ2 þ ΔUΛðρÞ

¼ m2
Λρþ

λΛ
2
ρ2 þ λ3;Λ

6Λ2
ρ3: (26)

Again, in the mean-field case, Eq. (23) can be solved
explicitly for m2

Λ, yielding the Higgs mass as a function of
λΛ and λ3;Λ for a given cutoff, mH ¼ mHðλΛ; λ3;ΛÞ. With
λ3;Λ positive, we can study a wider range of values for the
bare quartic coupling. The Higgs mass reads

m2
HðΛ; λΛ; λ3;ΛÞ ¼

m4
top

4π2v2

×

�
2 ln

�
1þ Λ2

m2
top

�
− 3Λ4 þ 2m2

topΛ2

ðΛ2 þm2
topÞ2

�

þ v2λΛ þ v4

2Λ2
λ3;Λ: (27)

Obviously, we are able to construct a theory with a Higgs
mass below the previous lower bound if the contribution of

the term ∼λΛ for λΛ < 0 exceeds that of the positive
term ∼λ3;Λ.
The same mechanism works in the extended mean-field

analysis but there it requires a solution to the transcendental
Eq. (23) in order to determine m2

Λ. A numerical solution is
plotted in Fig. 2 for different values of λΛ and λ3;Λ.
Furthermore, we have checked that for the given masses,
no additional minimum appears in the effective potential
besides the one at v ¼ 246 GeV.
Let us finally remark that upper bounds cannot mean-

ingfully be studied in the mean-field approximation; this is
because “RG improvement” is necessary to observe the
nonperturbative approach to triviality (reflected by the
Landau-pole behavior within RG-improved perturbation
theory).

V. NONPERTURBATIVE HIGGS MASS BOUNDS

The mean-field approximation has turned out to be
remarkably accurate by direct comparison with nonpertur-
bative lattice simulations for the present model [31,32].
As lattice simulations are typically limited as far as
the separation of the UV scale from the physical scales
is concerned, a nonperturbative continuum analysis of
beyond mean-field theory seems indispensable in order
to appropriately account for scalar fluctuations and the
mutual backreactions between fermionic and scalar
fluctuations on a wide range of scales.
For the solution of the flow equations, we use the

formulation in terms of dimensionless renormalized quan-
tities as introduced in Sec. III. To leading order in the
derivative expansion, we solve the flow equations for the
effective potential uk and for the Yukawa coupling hk. At
next-to-leading order, we include the wave function
renormalizations ηϕ and ηψ .
Since we are mainly interested in the properties of the

effective potential near its minimum, we use a polynomial
expansion of the potential. The stability and convergence of
this expansion will be checked explicitly. In the symmetric
regime (SYM), where the minimum of the potential occurs
at κk ¼ 0, we use the truncated expansion

uk ¼
XNp

n¼1

λn
n!

~ρn; (28)

such that the potential is parametrized by Np couplings λn
(the mass term is related to λ1 and we identify the ϕ4

interaction as λ≡ λ2). In the symmetry-broken regime
(SSB), we instead use

uk ¼
XNp

n¼2

λn
n!

ð~ρ − κkÞn: (29)

The flows of λ1;…; λNp
(SYM) or κk; λ2;…λNp

(SSB) can
directly be derived from Eq. (12).
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FIG. 2 (color online). Extended mean-field analysis of the
lower bound for the Higgs massmH versus the UV cutoff Λ based
on a bare potential UΛ of ϕ6 type for Nf ¼ 1. We have plotted the
lower bound in the ϕ4 theory (λΛ ¼ λ3;Λ ¼ 0) as the solid black
line. Theories with bare couplings λΛ ¼ − 1

30
and λ3;Λ ¼ 2

3
are

depicted as the red dashed line, and λΛ ¼ − 1
15
and λ3;Λ ¼ 2 as the

blue dotted line.

HIGGS MASS BOUNDS FROM RENORMALIZATION FLOW … PHYSICAL REVIEW D 89, 045012 (2014)

045012-7



For small bare scalar coupling λΛ ≡ λ2;Λ, a physical flow
typically starts in the SYM regime. Near the electroweak
scale, fermionic fluctuations drive the system into the SSB
regime at a scale kSSB, where we have to switch from the
SYM flow to the SSB flow. Here, a nonzero minimum
builds up, inducing masses for the fermions and the Higgs
scalar. This leads to a decoupling of the modes, and the
flow freezes out completely; i.e., all right-hand sides of the
flow equations go to zero for k → 0. For large bare scalar
coupling λΛ, the physical flow starts already in the SSB
regime with a small value for κk. The flow can still run over
many scales until κk grows large near the electroweak scale,
implying again the decoupling of all modes.

A. ϕ4-type bare potentials

Let us again start with the restricted class of bare
potentials of ϕ4 type,

uΛ ¼ λ1;Λ ~ρþ
λΛ
2
~ρ2; (30)

where λ1;Λ ≡m2
Λ=Λ

2 for a wave function renormalization
Zϕ;Λ ¼ 1. For a given cutoff Λ, the flow equations map the
bare parameters m2

Λ, λΛ, hΛ onto the physical parameters v,
mtop, mH. In practice, we tune m2

Λ to establish the correct
vacuum expectation value v≃ 246 GeV for a given cutoff
Λ. This is, in fact, a numerical tuning problem correspond-
ing to the problem of separating the scale hierarchies in the
standard model [57]. At the same time, hΛ is varied until
the flow ends at the right value of mtop. This leaves us with
the Higgs mass as a function of λΛ for a given cutoff Λ,
mH ¼ mHðΛ; λΛÞ, where λΛ is allowed to be an a priori
arbitrary non-negative real number for the class of bare
potentials (30).
In Fig. 3, we depict this function mHðλΛÞ for a cutoff

Λ ¼ 107 GeV for various approximations. For λΛ ≲ 0.01,
the Higgs mass becomes rather independent of λΛ
approaching its lower bound. This observation is in perfect
agreement with lattice simulations [31,32,34–36]. For
larger bare coupling λΛ, the Higgs mass increases and
approaches a regime of saturation for λΛ ≫ 1. This is
reminiscent of RG-improved perturbation theory, where the
bare coupling hits the Landau pole λΛ → ∞ already at a
finite cutoff Λ.
Whereas the Landau pole in perturbation theory in the

first place signals the breakdown of the perturbative
expansion, our truncation of the RG flow neither relies
on perturbative ordering nor requires a weak coupling.
Instead, our derivative expansion is organized in terms of
field operators with an increasing number of derivatives. In
order to check the convergence of this expansion, we can
compare the results for the Higgs mass to LO and NLO in
this expansion. To leading order, we drop the running of the
kinetic terms in Eq. (5) by setting the anomalous dimen-
sions to zero, ηψ ;ϕ → 0. The resulting Higgs masses are

plotted as dashed lines in Fig. 3. We observe that the
difference to the NLO result (solid lines) is rather small for
the lower Higgs mass bound for λΛ → 0; even for the
largest accessible couplings, we observe a maximum
deviation of 10%, confirming that the derivative expansion
constitutes a satisfactory approximation for our purpose for
the whole range from weak to strong coupling.
Furthermore, we study the convergence of the polyno-

mial expansion of the scalar potential in Fig. 3. To lowest
nontrivial order Np ¼ 2 (green lines with squares), we
obtain already a complete picture of the physics of Higgs
mass bounds. For the next order Np ¼ 4 (blue lines with
circles), though the upper Higgs mass bound is already
approached for smaller bare couplings λΛ, the value of the
upper bound changes by at most 5%. For even higher
orders, the corresponding results lie on top of the Np ¼ 4
curves. Within our numerical accuracy, we find no
significant difference for Np ¼ 4, 6, 8.
In Fig. 4, we show the resulting Higgs mass bounds

arising within the class of ϕ4 bare potentials. The thick
solid/green line characterizes the lower bound resulting
from the RG flow for a wide range of cutoffs
Λ ¼ 104…108 GeV. Also shown is the lower bound as
derived within the mean-field approximation in the previous
section (thin solid/red line), which neglects the running of
the Yukawa coupling of the anomalous dimension and RG
improvement of the scalar potential. In the full flow, we
observe nontrivial cancellations among these terms, such
that the mean-field result represents a surprisingly good
approximation over a wide range of cutoff scales. The
agreement between mean-field and nonperturbative RG
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FIG. 3 (color online). Higgs mass values versus the bare scalar
coupling λΛ for a cutoff Λ ¼ 107 GeV. The dashed lines denote
the results within LO derivative expansion; the NLO deviates
from the LO result by at most 10% for large coupling,
demonstrating the satisfactory convergence of the derivative
expansion. Also, the convergence of the polynomial expansion
is shown: green lines with squares are obtained within the lowest
nontrivial order with Np ¼ 2; blue lines with circles denote the
Np ¼ 4 result; even higher orders NP ¼ 6, 8 show no further
deviation from the Np ¼ 4 curves.
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results for the lower bound also indicates that threshold
effects may play a quantitatively but not a qualitatively
substantial role for the lower bound. This confirms the
observation that threshold corrections can be dealt with
reliably in a perturbative context also [26,27,58].
The turquoise/dashed lines depict upper bounds for

the Higgs mass for bare couplings λΛ ¼ 1, 10, 50, 100,
respectively. In particular, we find that if we limited
ourselves to a perturbative domain, choosing λΛ ¼ 1, we
would artificially underestimate the upper bound by
a factor ≳Oð1Þ.
Incidentally, the fact that the upper and lower bound

approach each other for increasing the UV cutoff Λ can be
traced back to the existence of a RG fixed point in the flow
of the ratio λ=h2k [5,59]. In the limit of a large cutoff, this IR
window actually shrinks to a point implying a tight relation
between the Higgs and top mass.

B. Generalized bare potentials

Let us now study extensions of the initial bare potential
beyond the ϕ4 type. Motivated by the results of the mean-
field approximation, we concentrate on potentials with a
negative λ2;Λ where the UV stability is guaranteed by a
positive λ3;Λϕ

6. It is possible to construct bare potentials
which give rise to Higgs masses below the lower bound
within the class of ϕ4 bare potentials, similar to the mean-
field approach. Figure 5 shows the lower bound within ϕ4

theory (black solid line) in comparison to Higgs mass
values for an example flow which starts with λ2;Λ ¼ −0.1
and λ3;Λ ¼ 3 in the UV (red solid line). This example
clearly illustrates that the lower bound within ϕ4-like initial

UV potentials does no longer hold if higher-dimensional
operators are also permitted.
This phenomenon can be understood from the RG flow

itself: first we note that in both cases (ϕ4-like as well as the
beyond-ϕ4 example above) the flow starts in the symmetric
regime. In the beyond-ϕ4 example, the quartic coupling λ2
runs quickly to positive values, whereas λ3 becomes very
small as is expected in the vicinity of the Gaussian fixed
point. As a consequence, this particular system flows back
into the class of ϕ4-type potentials. The decisive difference,
however, is that the scale kGFP where the system is again
near the Gaussian fixed point is now lower than the initial
UV scale Λ. Loosely speaking, some “RG time” is required
to run from the beyond-ϕ4 form of the potential back to
the ϕ4 Gaussian type.
From another viewpoint, the RG flow can map an initial

bare action with λ2 < 0 and λ3 > 0 at an initial UV scale Λ
to a theory with λ2 ≥ 0 and λ3 ≈ 0 at a smaller scale
kGFP < Λ. Therefore, the red/gray lower curve (beyond ϕ4)
in Fig. 5 can also be viewed as a horizontally displaced
version of the black curve (ϕ4-like) to effectively larger
cutoff values. We emphasize that the present example has
neither been specifically designed or fine-tuned, nor does it
represent an exhaustive study of admissible initial poten-
tials. A wide range of beyond-ϕ4 potentials initiating the
flow at Λ leads to Higgs masses below the bound of the ϕ4-
type class. Still, the mechanism observed above starting
from stable potentials with λ2 < 0 and globally stabilizing
higher-order terms appears rather generic. We have also
checked for more involved initial conditions that the results
for the Higgs masses do not change for higher-order NP ≥
4 polynomial expansions of the scalar potential.
In fact, the influence of higher-dimensional operators has

also been studied in recent lattice simulations in a chiral
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FIG. 4 (color online). Higgs mass bounds versus cutoff Λ. The
thick green/solid line denotes the lower bound for the Higgs mass
derived within the class of bare ϕ4 potentials. The thin red/solid
line shows the lower bound as derived within mean-field
approximation. The turquoise/dashed lines mark upper bounds
if the bare scalar coupling is allowed to start maximally from
λΛ ¼ 1, 10, 50, 100 from bottom to top, respectively. An artificial
restriction to the perturbative domain λΛ ≲ 1 underestimates the
upper bound by a factor ≳Oð1Þ.
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FIG. 5 (color online). Higgs mass versus cutoff Λ. The black
upper line denotes the lower bound for the Higgs mass derived
within the class of bare ϕ4 potentials. The red/gray lower line
shows how we can construct Higgs masses below the lower
bound by giving up the restriction to quartic bare potentials. The
masses are derived for λ2 ¼ −0.1 and λ3 ¼ 3.
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Higgs-Yukawa model [36] by adding a positive λ3ϕ6 term
to the bare potential. No lowering of the Higgs mass bound
has been observed in this study. This is indeed in agreement
with our observations, because merely adding this term has
barely any effect on the Higgs mass bound and rather leads
to an increase of the Higgs mass. Our mechanism for
lowering the mass bound works particularly well for initial
UV potentials with λ2 < 0. In other words, the λ2 < 0
deformation requires a comparatively long RG time to run
the potential back to the ϕ4 Gaussian type. A lattice study
with such (or even more general) bare potentials could,
hence, put our mechanism to test.
Having put the significance of the lower bound of the

Higgs mass derived for ϕ4-type bare potentials into
perspective, let us address the issue of stability: while
the standard approach to vacuum stability in the present
simple model based on RG-improved perturbation theory
has been questioned by lattice simulations [31,32] and
functional RG methods [40] (in turn, critically assessed by
Ref. [60]), a full stability analysis would require us to
follow the RG flow of arbitrary physically admissible initial
potentials. In particular, the RG evolution of potentials with
multiple local minima would have to be dealt with
quantitatively. While this is indeed possible with appro-
priate numerical solvers [41,54,61–63], here we confine
ourselves to the validity region of the polynomial expan-
sion of the effective potential about a local minimum.
Since high-order polynomials typically have multiple

local minima, we have to estimate the radius of conver-
gence of our expansion in field space. A new local
minimum showing up within this convergence region could
then be interpreted as a signature of instability. If such
minima only occur outside the convergence radius, we
consider them as an artifact of the polynomial expansion.
A rough estimate for the radius of convergence is given

by comparing the quotients of successive couplings
λn=λnþ1 for large n in the infrared. In practice, we solve
the system of coupled differential equations for NP ¼ 20,
switching back to dimensionful quantities at a scale
where the flows are frozen out, e.g., Uk ¼ ukk4 ¼P

nanðZϕρ − v2=2Þn with an ¼ λn
n! k

4−2n and computing
the dimensionful radius of convergence by comparing
anðkÞ
anþ1ðkÞ for k → 0. The results expressed in units of

103 GeV2 for various initial conditions are plotted in Fig. 6.
Our primary observation is that this estimate for the

radius of convergence appears to stabilize at a universal
value rather independent of the chosen initial conditions.
The resulting value near ≃23; 000 GeV2 is of the order of
the vacuum expectation value v2=2 ¼ 30;258 GeV2 for
large n. We still observe a slight drift in our data even at
high order, which might be due to the fact that the inner
region of the effective potential owing to its convexity
cannot be resolved within a polynomial expansion as a
matter of principle. Restricting the field amplitudes to

values of the order of the ratio of the highest couplings in
the truncation Zϕρmax ≃ ðv2=2Þ þ j aNP−1

aNP
j, we find in all

studied cases that the effective potential is a convex
monotonically rising function in the outer region
(ϕ > v). No evidence for an instability within this radius
of convergence is found.
These observations agree with solutions of the RG flow

for the full effective potential beyond the polynomial
expansion as worked out in Ref. [41] using pseudospectral
methods (Chebyshev expansion). Both methods lead to
equivalent results for both the Higgs mass bounds for ϕ4-
type initial potentials as well as the absence of any
indication for an instability. We would like to emphasize
that a full stability analysis, in principle, requires us to
study the evolution of more general potentials. In particular,
bare potentials with several minima and their RG evolution
over a wide range of scales could clarify whether insta-
bilities can exist in the low-energy regime, possibly towards
nonperturbatively large field expectation values.

VI. CONCLUSIONS

We have determined Higgs mass bounds in a simple
Higgs-Yukawa toy model sharing some similarities with
the standard model Higgs–top-quark sector. Our study is
based on the functional renormalization group, which can
keep track of threshold phenomena, and has better access to
strong coupling regimes and automatically accounts for
“RG improvement.”Most importantly, for the present work,
the functional RG can conveniently deal with arbitrary bare
potentials.
In agreement with the standard literature, the existence of

an upper Higgs mass bound is a consequence of triviality of
the scalar sector. As such, it is inherently nonuniversal. In
this work, we have also emphasized the nonuniversality of
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FIG. 6 (color online). Estimate for the radius of convergence in
units of 103 GeV2 of the polynomial expansion of the effective
potentials in terms of the absolute values of the ratios of
expansion coefficients. The red filled circles are derived for a
theory which starts at Λ ¼ 107 GeV with all couplings set to zero
apart from the mass term. The black empty circles are for the case
Λ ¼ 107 GeV and λ2 ¼ 1 and λn ¼ 0 (n ≥ 3).
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the lower Higgs mass bound. In addition to the regulari-
zation scheme dependence which the lower bound shares
with the upper bound in any UV incomplete theory, we
have discovered that the lower mass bound can depend
sensitively on the microscopic details of the bare potential
for the Higgs field.
This observation does not contradict Wilsonian renor-

malizability arguments stating that IR observables should
be independent of the details of the UV theory. The reason
is that a Higgs mass bound given in the form mH;bound ¼
mH;boundðΛÞ as a function of the UV cutoff Λ does not
constitute a pure IR observable. By contrast, it should be
understood as a mapping of initial conditions at the
microscopic UV scale onto the set of possible IR observ-
ables. As the UV initial conditions are typically not
accessible by low-energy measurements, they are uncon-
strained. A statement about Higgs mass bounds, therefore,
often goes along with (typically only implicit) constraints
on the UV initial conditions, i.e., bare actions or bare
potentials.
In the conventional discussions of Higgs mass bounds,

the IR measured observables are taken from experiment
and the RG flow is run to higher scales. This procedure
lacks any control over RG irrelevant operators, as their
influence on the IR observables is exponentially small.
Therefore, their high-energy behavior is simply ignored or
implicitly fixed by computational recipes such as RG-
improved perturbation theory. The latest results along this
line of reasoning show that the measured mass of the Higgs
boson is close to the “vacuum stability” bound or even in
the “metastable region” (with the biggest uncertainty
arising from the exact value of the top mass, to be specified
in an appropriate scheme) [27–30]. From this viewpoint,
the fact that the Higgs mass together with the whole
standard model is close to a phase transition is a remarkable
result of the LHC, requiring an explanation of this
“near-criticality” property [30]. Since this running up of
the perturbative RG cannot access the large field regime,
where a new vacuum is expected to occur, a full resolution
of this near-criticality puzzle either requires nonperturba-
tive complements or even calls for beyond-standard-model
explanations.
Our results offer a different viewpoint: as we have hardly

any information about the bare action at an initial scale Λ,
bounds on particle masses can only arise from the mapping
of all admissible bare initial conditions onto the IR
observables as is provided by the RG. Of course, the
resulting bounds will depend on the criteria of admissibility
which we may impose. In this work, we have demonstrated
that strict Higgs mass bounds arise if we restrict the initial
conditions to ϕ4-type potentials. We emphasize, however,
that this restriction is somewhat arbitrary: it cannot be
justified by Wilsonian renormalizability arguments, as they
simply do not apply to bare actions. Hence, if we lift
this artificial restriction, we can easily discover initial

conditions that lead to Higgs masses substantially smaller
than the Higgs mass bound within the ϕ4 class. This is
already the case for initial potentials with comparatively
small higher-order operators. Nonperturbatively large
deformations of the initial potential are not required.
From this viewpoint, the near-criticality property of the

standard model remains nevertheless remarkable, as it may
provide for a first handle on the microscopic action at some
high (GUT-like or Planck) scale that has to emerge from an
underlying theory (“an UV completion”). The top-down
analog of this reasoning has been used in a model with
asymptotically safe gravity that predicted the value of the
Higgs mass [64] (see, also, Ref. [65]) based on the fact that
asymptotically safe gravity interactions are likely to put the
Higgs mass onto its “conventional” lower bound. Already
earlier, arguments for putting the standard model onto this
conventional lower bound lead to similar predictions [66].
By contrast, if the Higgs mass turns out to lie below this

conventional lower bound, this may not be a sufficient
reason for concern regarding vacuum stability or metasta-
bility. Stability might simply be provided by higher-order
operators in the initial bare action. Rather generically, we
find that models with a negative λ2;Λ being stabilized by
higher-order operators yield Higgs mass values below the
conventional lower bound. Of course, the presence and
magnitude of these higher-order operators eventually has to
be explained by an (more) UV complete underlying theory.
In fact, models with a negative λ2;Λ have recently been
discussed from a string-theory perspective [67]. An UV
complete example for models with a potentially smaller
Higgs mass has recently been given within pure quantum
field theory in the context of an asymptotically safe gauged
Higgs-Yukawa model [68].
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APPENDIX: THRESHOLD FUNCTIONS

In this work, we use the linear regulator which is
optimized for the present truncation [69]. For the bosonic
modes, this regulator is given by

RkðpÞ ¼ Zϕ;kp2rðp2=k2Þ ¼ Zϕ;kðk2 − p2Þθðk2 − p2Þ:

The corresponding chirally symmetric fermionic regulator
RkðpÞ ¼ Zψ ;kprFðp2=k2Þ is chosen such that p2ð1þ rÞ ¼
p2ð1þ rFÞ2. For reasons of completeness, we list the
threshold functions appearing in the main text, which
can be analytically computed for the linear regulator as
a result of the corresponding momentum integrations:
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ldnðω; ηϕÞ ¼
2ðδn;0 þ nÞ

d

1 − ηϕ
dþ2

ð1þ ωÞnþ1
;

lðFÞd0 ðω; ηψ Þ ¼
2ðδn;0 þ nÞ

d

1 − ηψ
dþ1

ð1þ ωÞnþ1
;

lðFBÞdn1;n2 ðω1;ω2; ηψ ; ηϕÞ ¼
2

d
1

ð1þ ω1Þn1
1

ð1þ ω2Þn2
�
n1ð1 − ηψ

dþ1
Þ

1þ ω1

þ n2ð1 − ηϕ
dþ2

Þ
1þ ω2

�
;

md
n1;n2ðω1;ω2; ηϕÞ ¼

1

ð1þ ω1Þn1ð1þ ω2Þn2
;

mðFÞd
2 ðω; ηψ Þ ¼

1

ð1þ ωÞ4 ;

mðFÞd
4 ðω; ηψ Þ ¼

1

ð1þ ωÞ4 þ
1 − ηψ
d − 2

1

ð1þ ωÞ3 −
�
1 − ηψ
2d − 4

þ 1

4

�
1

ð1þ ωÞ2 ;

mðFBÞd
n1;n2 ðω1;ω2; ηψ ; ηϕÞ ¼

1 − ηϕ
dþ1

ð1þ ω1Þn1ð1þ ω2Þn2
:

These threshold functions agree with those given in Ref. [54].
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