
QED plasma in a background of static gravitational fields

F. T. Brandt, J. Frenkel, and J. B. Siqueira
Instituto de Física, Universidade de São Paulo, São Paulo, São Paulo 05315-970, Brazil

(Received 25 November 2013; published 18 February 2014)

We derive, in d-dimensional space-time, the effective Lagrangian of static gravitational fields interacting
with a QED plasma at high temperature. Using the equivalence between the static hard thermal loops and
those with zero external energy-momentum, we compute the effective Lagrangian up to two-loop order. We
also obtain a nonperturbative contribution which arises from the sum of all infrared divergent ring
diagrams. From the gauge and Weyl symmetries of the theory, we deduce to all orders that this effective
Lagrangian is equivalent to the pressure of a QED plasma in Minkowski space-time, with the global
temperature replaced by the Tolman local temperature.
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I. INTRODUCTION

The search for a consistent thermal field theory in the
perturbative regime has led to realization that all the so-
called hard thermal loops have to be taken into account. In
momentum space, these are amplitudes with loop momenta
of the order of the temperature, which is large compared
with all the external momenta. In the case of gauge field
theories, it has been shown that it is possible to construct a
closed form expression for the effective Lagrangian, which
generates all hard thermal loops [1–3].
In gauge theories the hard thermal loop amplitudes are

related to each other throughWard identities. This property,
together with the characteristic nonlocalities exhibited by
the amplitudes, are key ingredients for the construction of a
gauge invariant effective action. In principle, the same
approach can be employed for hard thermal loops in a
background of soft gravitational fields. It is known that,
similarly to the gauge field amplitudes, the graviton thermal
amplitudes satisfy, in the high temperature limit, simple
Ward identities which reflect the symmetry under local
coordinate transformations (in addition, these amplitudes
are also related by Weyl identities which arise from the
scale invariance) [4]. Nevertheless, an explicit closed form
expression for the one-loop order effective Lagrangian is
only known in two special limits, when the background
gravitational field is either time independent or space
independent. Each of these limits (which physically cor-
responds to static or long wavelength plasma perturbations)
yields two different local effective Lagrangians which
are functionals of the background field [5,6]. In the case
of a general configuration of the background gravitational
fields, so far only an implicit representation of the one-loop
effective Lagrangian is known [7].
In previous works it has been shown that the leading

contributions of hard thermal loops in a static background
can be obtained by evaluating them at zero external energy-
momentum. This has been shown both at one loop [8] and
subsequently at two loops [9]. More recently, this result has

also been generalized to all orders [10]. This interesting
property has prompted us to consider a more direct
approach in seeking for the effective Lagrangian, by
making use of the background field method [11] (for a
pedagogical review article see also [12]).
As an example of the usefulness of this method, the

one-loop effective Lagrangian has been previously derived
in a simple manner in the case of thermal scalar fields
in a static background [13]. The result, which has been
known for many years [14], has the same metric depend-
ence as in Eq. (12), differing only by a factor which counts
the degrees of freedom of the fields. This form exhibits
some interesting properties. First, it has a characteristic
dependence on the local temperature,

T loc ≡ Tffiffiffiffiffiffi
g00

p ; (1)

being proportional to Td
loc, where d is the space-time

dimension and T is the asymptotic Minkowski space
temperature. T loc is the temperature measured by a standard
local thermometer, such as a Carnot cycle [15,16]. This
behavior is in agreement with the so-called Tolman-
Ehrenfest effect which argues that in a system at thermal
equilibrium in a stationary gravitational field, the temper-
ature varies with the space-time metric according to the
relation (1). This effect was originally discovered in the
context of a classical fluid interacting with external static
gravitational fields [17–19].
Another important property of the one-loop static

effective Lagrangian is its invariance under conformal
transformations, for any value of d. This can be simply
understood since, in order to behave like a density, the
factor Td

loc in the effective Lagrangian has to be multiplied
by

ffiffiffiffiffijgjp
. Consequently, the resulting expression is invariant

under the rescaling gμν → σgμν.
The main purpose of the present work is to obtain the

higher loop corrections to the effective Lagrangian of a
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QED plasma in a static gravitational background. The one-
loop results above described do not take into account the
interactions between electrons and photons. In order to
consider these effects, we will apply the same basic idea of
the background field method to higher loop orders. As we
will show, in a d-dimensional space-time, the interactions
break the Weyl symmetry when d ≠ 4. The two-loop
contribution, given by Eq. (21), is obtained computing
the one particle irreducible (1PI) diagrams, with no external
legs, in the background of static gravitational fields. We
also compute a nonperturbative contribution to the effective
Lagrangian which arises from the summation of all higher
order infrared divergent 1PI diagrams. In this case, there are
two different forms, given by Eqs. (30) and (35), depending
on whether the space-time dimension is even or odd,
respectively. The above results have a very simple structure.
They are equivalent, up to a factor of

ffiffiffiffiffijgjp
, to the pressure

of a QED plasma at high temperature in d-dimensional
Minkowski space-time, with T replaced by the local
temperature T loc. This shows that the Tolman-Ehrenfest
effect is explicitly manifested even when the quantum
corrections are taken into account. These and other related
aspects of the effective Lagrangian are discussed further in
the concluding section.

II. ONE-LOOP EFFECTIVE LAGRANGIAN

In this section we will introduce our basic notation and
method. Also, for completeness we derive the one-loop
effective Lagrangian.
Let us consider the Lagrangian for photons and electrons

in a gravitational background

L ¼
ffiffiffiffiffi
jgj

p �
iψ̄gμνγμð∂ν − ieAνÞψ − 1

4
gμνgαβFμαFνβ

−
1

2
ðgμν∂μAνÞ2 þ gμν∂μC̄∂νC

�
; (2)

where gμν is the metric tensor (jgj ¼ j det gμνj), Fμν ¼∂μAν − ∂νAμ is the electromagnetic field tensor, ψ is the
fermion field and C is the ghost field (we are employing the
Feynman gauge condition for the gauge field Aμ). As we
have pointed out in the introduction, for the purpose of
obtaining the static effective Lagrangian in the high
temperature limit, we will neglect all the space-time
derivatives of the metric as well as the fermion masses
since these quantities would be suppressed by the much
larger scale of temperature.
The Feynman rules for photons, fermions and ghosts in a

gravitational background can be readily obtained using the
vierbein formalism, which allows us to write the
Lagrangian in the following form:

L ¼
ffiffiffiffiffi
jgj

p �
iψ̄ ~γað ~∂a − ie ~AaÞψ − 1

4
~Fab

~Fab

−
1

2
ð ~∂a

~AaÞ2 þ ~∂aC̄ ~∂aC

�
; (3)

where Aa ¼ Eμ
aAμ is the field in the local frame (Eμ

a is the
vierbein) and the Dirac matrices ~γa satisfy

f~γa; ~γbg ¼ 2Ea
μEb

νgμν ¼ 2Ea
μEb

νecμedνηcd ¼ 2ηab: (4)

From this Lagrangian one obtains the following Feynman
rules for the effective propagators and vertices:

The lowest order contributions to the effective Lagrangian
are represented diagrammatically in Fig. 1. Let us first
consider the fermion loop contribution. Using the imagi-
nary time formalism and performing the Dirac algebra in
the vierbein basis, we obtain

LF
1 ¼ T

X
n

Z
dd−1p
ð2πÞd−1 tr logðβ~γa ~paÞ

¼ T
2
2Eðd=2Þ

X
n

Z
dd−1p
ð2πÞd−1 logð−β

2gμνpμpνÞ; (6)

where β ¼ 1=T and we are considering a d-dimensional
space-time. The time component of the momentum is
p0 ¼ iωF

n , where ωF
n ¼ ð2nþ 1ÞπT are the fermionic

Matsubara frequencies and n ¼ 0;�1;�2;…. Here we
are employing the minimal representation for the Dirac
matrices, so that the trace of the identity is given by
trI ¼ 2Eðd=2Þ, where Eðd=2Þ is the integer part of d=2.
Similarly the respective contributions from the photon

and ghost loops shown in Fig. 1 can be expressed as
follows:

LP
1 ¼ − d

2
T
X
n

Z
dd−1q
ð2πÞd−1 logð−β

2gμνqμqνÞ (7a)

and
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LG
1 ¼ T

X
n

Z
dd−1q
ð2πÞd−1 logð−β2gμνqμqνÞ; (7b)

where q0 ¼ iωB
n and ωB

n ¼ 2nπT is the bosonic Matsubara
frequency, with n ¼ 0;�1;�2;….
In order to perform the sum/integrals in Eqs. (6) and (7)

we now use a locally rest vierbein frame as defined in
Appendix A. Proceeding in this way, Eq. (6) yields

LF
1 ¼ T

2
2Eðd=2Þ

X
n

Z
dd−1p
ð2πÞd−1 log f−β2½ðp0=

ffiffiffiffiffiffi
g00

p Þ2

þ gijðpi þ ðg−1Þikg0kp0Þðpj þ ðg−1Þjlg0lp0Þ�g: (8)

Making a change of variables in the pi integration, it is
possible to factorize all the metric dependence and we
obtain the following result:

LF
1 ¼ 2Eðd=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−1Þd−1g−1g00

p
gd=200

T
2

X
n

Z
dd−1p
ð2πÞd−1

× log f−β2½p2
0 − jp⃗j2�g; (9)

where g−1 ¼ det ðg−1Þij. The sum/integral in the previous
expression is the same as in flat space-time [20], here
generalized to d space-time dimensions. The temperature-
independent part of (9) leads to a divergent integral. This
divergent result gives just the zero-point energy of the
vacuum, which can be subtracted off since it is an
unobservable constant. On the other hand, the T-dependent
part of (9) leads to a finite result.
The metric dependence can be dealt with by expanding

the determinant of the metric in terms of cofactors (see
Appendix B). In this way, the fermionic contributions to the
one-loop effective Lagrangian reduces to the following
expression:

LF
1 ¼

ffiffiffiffiffi
jgj

p �
Tffiffiffiffiffiffi
g00

p
�

d ΓðdÞζðdÞ2Eðd=2Þð1 − 21−dÞ
ð2 ffiffiffi

π
p Þd−1Γðdþ1

2
Þ ; (10)

where Γ and ζ are the Euler and Riemann functions,
respectively.
Proceeding similarly, the sum of the photon and ghost

contributions in (7) yields

LB
1 ¼

ffiffiffiffiffi
jgj

p �
Tffiffiffiffiffiffi
g00

p
�

d
ðd − 2Þ ΓðdÞζðdÞ

ð2 ffiffiffi
π

p Þd−1Γðdþ1
2
Þ : (11)

Finally, adding together the results (10) and (11), we obtain
the one-loop effective Lagrangian in the form

L1 ¼
ffiffiffiffiffi
jgj

p �
Tffiffiffiffiffiffi
g00

p
�

d ΓðdÞζðdÞ
ð2 ffiffiffi

π
p Þd−1Γðdþ1

2
Þ

× ½ðd − 2Þ þ 2Eðd=2Þð1 − 21−dÞ�: (12)

As expected for a density, Eq. (12) exhibits the factor
ffiffiffiffiffijgjp
.

It also displays a temperature dependence in terms of the
local temperature defined in Eq. (1), which is a simple
consequence of the Tolman-Ehrenfest effect. The combi-
nation of these two factors leads to the invariance under the
scale transformation gμν → σgμν. In the following sections
we will investigate the effect of higher order corrections,
when the thermal photons interact also with thermal
fermions.

III. EFFECTIVE LAGRANGIAN AT
TWO-LOOP ORDER

Let us now apply the technique illustrated in the simple
one-loop calculation of the previous section, in order to
obtain the two-loop order contribution to the effective
Lagrangian. This can be obtained by computing the
diagram shown in Fig. 2. Using the effective Feynman
rules given in (5) we obtain

L2 ¼
e2T2

2

X
m;n

Z
dd−1p
ð2πÞd−1

dd−1q
ð2πÞd−1

× tr

�
γμ

1

γνpν
γμ

1

γαpα

�
1ffiffiffiffiffijgjp ðp − qÞγðp − qÞγ

; (13)

where q0 ¼ ið2nþ 1ÞπT and p0 ¼ ið2mþ 1ÞπT. In the
vierbein basis the Dirac algebra yields

FIG. 1. One-loop diagrams which contribute to the effective
Lagrangian. The solid line represents a fermion and wavy and
dashed lines denote respectively gauge and ghost particles, all in
the gravitational background.

FIG. 2. Two-loop contribution to the effective Lagrangian. The
effective vertex and propagators are given by Eq. (5).
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L2 ¼
e2T2

2
ffiffiffiffiffijgjp 2Eðd=2Þð2 − dÞ

X
m;n

Z
dd−1p
ð2πÞd−1

dd−1q
ð2πÞd−1

×
~pa ~qa

ð ~pb ~pbÞð ~qc ~qcÞð ~p − ~qÞdð ~p − ~qÞd
; (14)

which can be rewritten as

L2 ¼
e22Eðd=2Þð2 − dÞ

4
ffiffiffiffiffijgjp

×

�
2T2

X
m;l

Z
dd−1p
ð2πÞd−1

dd−1k
ð2πÞd−1

1

ð ~pa ~paÞð~kb ~kbÞ

−T2
X
m;n

Z
dd−1p
ð2πÞd−1

dd−1q
ð2πÞd−1

1

ð ~pa ~paÞð ~qb ~qbÞ
�
; (15)

where k ¼ p − q is the photon momentum (k0 ¼ i2lπ).
There are two independent sum/integrals in Eq. (15),
namely

I1 ¼ T
X
m

Z
dd−1p
ð2πÞd−1

1

~pa ~pa (16)

and

I2 ¼ T
X
l

Z
dd−1k
ð2πÞd−1

1

~kb ~k
b ; (17)

which differ since k0 ¼ i2πlT and p0 ¼ iπð2mþ 1ÞT.
Using the definition of the locally rest vierbein (A11),

the integral I1 can be written as

I1 ¼ T
X
m

Z
dd−1p
ð2πÞd−1

1

ðp0=
ffiffiffiffiffiffi
g00

p Þ2 þ gij½pi − ðg−1Þikg0kp0�½pj − ðg−1Þjlg0lp0�
: (18)

Proceeding as in the one-loop case, a change of variables
in pi allows one to perform the thermal part of the resulting
integral, which yields the result

I1 ¼
ffiffiffiffiffijgjp

ðg00Þd=2−1
Td−2ð2 − 24−dÞΓðd − 2Þζðd − 2Þ

Γðd−1
2
Þð2 ffiffiffi

π
p Þd−1 : (19)

Similarly, we obtain the following result for the integral I2:

I2 ¼ −2
ffiffiffiffiffijgjp

ðg00Þd=2−1
Td−2 Γðd − 2Þζðd − 2Þ

Γðd−1
2
Þð2 ffiffiffi

π
p Þd−1 : (20)

Substituting (19) and (20) in Eq. (15) yields

L2 ¼
ffiffiffiffiffi
jgj

p �
Tffiffiffiffiffiffi
g00

p
�

d
�
e2
�

Tffiffiffiffiffiffi
g00

p
�

d−4�
2Eðd=2Þ−2ð2 − dÞ

×

�
Γðd − 2Þζðd − 2Þ
Γðd−1

2
Þð2 ffiffiffi

π
p Þd−1

�
2

ð2 − 24−dÞð6 − 24−dÞ: (21)

This result, which can be identified with the two-loop
contribution to the pressure, in the high temperature limit, is
similar to the flat space-time result, corrected by the factorffiffiffiffiffijgjp

(as expected for a density). Also, the two-loop result
exhibits the simple dependence on the local temperature, as
defined in (1).

IV. NONPERTURBATIVE CONTRIBUTION TO
THE EFFECTIVE LAGRANGIAN

Higher loop corrections to the effective Lagrangian may
exhibit infrared divergences which arise from the dominant

high temperature contribution of the zero mode. In order to
deal with these divergences one has to sum an infinite series
of diagrams which are individually divergent. Each suc-
cessive order is obtained by inserting an extra one-loop
static photon self-energy (the photon self-energy diagram is
shown in Fig. 4 of Appendix C). By power counting one
can see that these zero mode contributions will produce
infrared divergences in the high temperature limit, when
the number of insertions is large enough. For instance, in
four space-time dimensions diagrams with two or more
self-energy insertions are infrared divergent.
Figure 3 shows three such diagrams, corresponding to

three, four and five loops. Diagrams in this set are called
ring diagrams. A diagram withN self-energy insertions has
the form

RN ¼ T
2N

Z
dd−1p
ð2πÞd−1

× ½ð−1ÞN ~Da1b1 ~Πb1a2 � � � ~ΠbN−1aN
~DaNbN ~ΠbNa1 � ~p0¼0

;

(22)

where Dab is the photon propagator. Using the Eq. (C9) for
the static self-energy we obtain

FIG. 3. Ring diagrams.
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RN ¼ T
2N

Z
dd−1p
ð2πÞd−1

�
2m2ffiffiffiffiffijgjp
gijpipj

�
N

; (23)

where m is the thermal mass given by (C10). Performing a change of variables, we obtain

RN ¼
�
2m2ffiffiffiffiffijgjp �ðd−1Þ=2

T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−1Þd−1g−1

q Z
dd−1p
ð2πÞd−1

1

2N

�
1

ηijpipj

�
N

¼
ffiffiffiffiffi
jgj

p �
2m2ffiffiffiffiffijgjp �ðd−1Þ=2 Tffiffiffiffiffiffi

g00
p

Z
dd−1p
ð2πÞd−1

1

2N

�
1

ηijpipj

�
N
; (24)

where we have used Eq. (B7) (from now on pi are dimensionless variables). Simple power counting shows that these
individual ring diagrams’ contributions are infrared divergent for N ≥ d=2 or N ≥ ðd − 1Þ=2 respectively when d is even or
odd (notice that the number of loops is N þ 1). Because of this different behavior, one has to consider separately the
two cases.
The sum of all the infrared divergent contributions can be written as

Lring ¼
X∞

N¼Eðd=2Þ
RN ¼

ffiffiffiffiffi
jgj

p �
2m2ffiffiffiffiffijgjp �ðd−1Þ=2 Tffiffiffiffiffiffi

g00
p 1

2d−2πðd−1Þ=2Γðd−1
2
Þ

X∞
N¼Eðd=2Þ

Z
∞

0

dp
pd−2
2N

�−1
p2

�
N
: (25)

Using integration by parts, we can write

X∞
N¼Eðd=2Þ

Z
∞

0

dp
pd−2
2N

�−1
p2

�
N
¼

X∞
N¼Eðd=2Þ

�
pd−1

2Nðd − 1Þ
ð−1ÞN
p2N

����∞
0

þ
Z

∞

0

dp
pd−1
d − 1

ð−1ÞN
p2Nþ1

�
: (26)

One can readily verify that the surface term vanishes when d is an even number. First, for p → ∞ it is immediate that

X∞
N¼d=2

pd−1
2Nðd − 1Þ

ð−1ÞN
p2N → 0: (27)

When p → 0 we obtain

X∞
N¼d=2

pd−1
2Nðd − 1Þ

ð−1ÞN
p2N ¼ pd−1

2ðd − 1Þ logð1þ 1=p2Þ þ
Xd=2−1
N¼1

pd−1
2Nðd − 1Þ

ð−1ÞN
p2N → 0: (28)

Therefore, Eq. (26) with even values of d reduces to

X∞
N¼d=2

Z
∞

0

dp
pd−2
2N

�−1
p2

�
N
¼ ð−1Þd=2

d − 1

Z
∞

0

dp
p2

1

1þ 1=p2
¼ πð−1Þd=2

2ðd − 1Þ : (29)

Substituting Eq. (29) into Eq. (25), we obtain the following nonperturbative contribution for even space-time dimensions:

Ld−even
ring ¼

ffiffiffiffiffi
jgj

p Tffiffiffiffiffiffi
g00

p ð−1Þd=2
2dπðd−3Þ=2Γðdþ1

2
Þ

�
2m2ffiffiffiffiffijgjp �ðd−1Þ=2

¼
ffiffiffiffiffi
jgj

p �
Tffiffiffiffiffiffi
g00

p
�

d
�
e2
�

Tffiffiffiffiffiffi
g00

p
�

d−4�ðd−1Þ=2 ð−1Þd=2
2dπðd−3Þ=2Γðdþ1

2
Þ

�
2Eðd=2Þþ1ð1 − 23−dÞΓðd − 1Þζðd − 2Þ

Γðd−1
2
Þð2 ffiffiffi

π
p Þd−1

�ðd−1Þ=2
; (30)

which exhibits a nonanalyticity in the coupling constant of the form ðe2Þðd−1Þ=2.
Let us now consider the case when d is odd. In this case, one can show that the surface term in (26) does not vanish.

Indeed, although in the limit p → 0 we obtain
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X∞
N¼ðd−1Þ=2

pd−1
2Nðd − 1Þ

ð−1ÞN
p2N ¼ pd−1

2ðd − 1Þ logð1þ 1=p2Þ þ
Xðd−3Þ=2
N¼1

pd−1
2Nðd − 1Þ

ð−1ÞN
p2N → 0; (31)

when p → ∞ we are left with the following finite contribution:

X∞
N¼ðd−1Þ=2

pd−1
2Nðd − 1Þ

ð−1ÞN
p2N →

ð−1Þðd−1Þ=2
ðd − 1Þ2 : (32)

Substituting Eqs. (31) and (32) into Eq. (26) we obtain

X∞
N¼Eðd=2Þ

Z
∞

0

dp
pd−2
2N

�−1
p2

�
N
¼ ð−1Þðd−1Þ=2

ðd − 1Þ2 þ
X∞

N¼ðd−1Þ=2

Z
∞

0

dp
pd−1
d − 1

ð−1ÞN
p2N−1

¼ ð−1Þðd−1Þ=2
ðd − 1Þ

�
1

d − 1
þ
Z

∞

0

dp
p

1

1þ 1=p2

�
: (33)

The resulting integral is logarithmically increasing at large momenta, where the approximations used for the ring diagrams

are no longer valid. In order to regularize this behavior, we will employ a cutoff
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gijPiPj

q
in the momentum of the

original integral in Eq. (23), where P is naturally of the same order as the local temperature. In terms of the parameter

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ηijPiPj

q
, we then get

X∞
N¼Eðd=2Þ

Z
∞

0

dp
pd−2
2N

�−1
p2

�
N
¼ ð−1Þðd−1Þ=2

2ðd − 1Þ
�

2

d − 1
þ log

�
1þ μ2

ffiffiffiffiffijgjp
2m2

��
; (34)

which yields the following expression for the nonperturbative contribution to the effective Lagrangian:

Ld−odd
ring ¼

ffiffiffiffiffi
jgj

p �
2m2ffiffiffiffiffijgjp �ðd−1Þ=2 Tffiffiffiffiffiffi

g00
p ð−1Þðd−1Þ=2

2dπðd−1Þ=2Γðdþ1
2
Þ

�
2

d − 1
þ log

�
1þ μ2

ffiffiffiffiffijgjp
2m2

��

¼
ffiffiffiffiffi
jgj

p �
Tffiffiffiffiffiffi
g00

p
�

d
�
e2
�

Tffiffiffiffiffiffi
g00

p
�

d−4�ðd−1Þ=2 ð−1Þðd−1Þ=2
2dπðd−1Þ=2Γðdþ1

2
Þ

�
2Eðd=2Þþ1ð1 − 23−dÞΓðd − 1Þζðd − 2Þ

Γðd−1
2
Þð2 ffiffiffi

π
p Þd−1

�ðd−1Þ=2

×

�
2

d − 1
þ log

�
1þ μ2

�
Tffiffiffiffiffiffi
g00

p
�−2�

e2
�

Tffiffiffiffiffiffi
g00

p
�

d−4�−1 Γðd−1
2
Þð2 ffiffiffi

π
p Þd−1

2Eðd=2Þþ1ð1 − 23−dÞΓðd − 1Þζðd − 2Þ

��
: (35)

This expression has a logarithmic nonanalyticity in the
coupling constant e2. The same type of nonanalyticities
have been found previously in the context of scalar fields in
flat backgrounds [21].
As in the previous results for the one- and two-loop

contributions to the effective action, the nonperturbative
results in this section given by Eqs. (30) and (35) can be
expressed in terms of the local temperature as defined in
Eq. (1). This confirms that the Tolman-Ehrenfest effect is
explicitly manifested even in the extreme case when an
infinite number of interactions are taken into account.

V. DISCUSSION

In the present work, we have employed the equivalence
between static and zero energy-momentum thermal

amplitudes, which holds for the leading contributions at
high temperature. Using this correspondence, we have
obtained the effective Lagrangian of static gravitational
fields interacting with a plasma of photons and electrons at
high temperature, up to two-loops order. We have also
obtained a nonperturbative contribution from the sum of the
infinite set of ring diagrams. This generalizes the previous
results for the static effective action which were known
only at one-loop order [13].
It is interesting to remark that the contributions generated

by the static gravitational fields correspond to those
obtained for the pressure of a QED plasma in
Minkowski space-time in the following simple way: apart
from an overall factor of

ffiffiffiffiffijgjp
which is required by gauge

invariance, the only modification involves the replacement
of the Minkowski temperature by the local temperature (1).
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From a physical point of view, this universal behavior
(which has also been derived using other approaches
[15,16,22,23]) can be traced back to the requirement of
thermal equilibrium in a gravitational field. Indeed,
the emergence of a local temperature, and consequently
a temperature gradient, is unavoidable in thermal
equilibrium to prevent heat (which interacts with gravity)
to flow from regions of higher to those of lower
gravitational potential.
Another salient feature is that the conformal invariance

of the effective Lagrangian, which is present at one-
loop order for any space-time dimension d, is not in
general satisfied by the higher loop corrections [this is
also the case of the one-loop photon self-energy given by
Eq. (C9)]. Both in the two-loop correction in Eq. (21) and
in the nonperturbative contributions in Eqs. (30) and (35)
(which receive contributions of an infinite number of
photon self-energy insertions), we find terms like

�
e2
�

Tffiffiffiffiffiffi
g00

p
�

d−4�
(36)

which will not be conformal invariant in general. The
physical reason for this behavior may be understood by
noting that e2 is a dimensionful quantity with canonical
mass dimension 4 − d.
We finally remark that the above leading results at high

temperature were obtained by neglecting all masses
compared with the temperature. In four dimensions, since
e2 is dimensionless, these results should therefore be
scale invariant. In this case, because

ffiffiffiffiffijgjp
T4
loc is invariant

under scale transformations, we see that the modification
T → T loc is the only possibility which is consistent with
the Weyl symmetry. When d ≠ 4, the leading thermal
results are no longer scale invariant [see Eq. (36)], but the
violation of the Weyl symmetry still occurs according to
the simple prescription T → T loc, which enforces a
smooth behavior when d → 4. Based on the above
physical considerations and explicit calculations we
conclude that, to all orders, the simple correspondence
T → T loc leads to the effective action of static gravita-
tional fields interacting with a QED plasma at high
temperature. Moreover, the terms involving T loc ensure
the invariance of this action under time-independent local
coordinate transformations.
Our treatment in arbitrary space-time dimensions was

motivated by various unified field theories of gravitational,
electromagnetic and other interactions, which have been
often formulated in higher dimensions. But at present, we
can indicate a direct physical application of the above
results only when d ¼ 4. These results may then be useful
to calculate, for example, the pressure in a plasma of
electrons and photons surrounding a hot star.
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APPENDIX A: VIERBEIN IN THE PRESENCE
OF A THERMAL BATH

A local Lorentz frame can be defined in terms of the
vierbein eaμ (also known as a tetrad), so that in a given
point of the manifold the metric can be written as [24]

gμν ¼ eaμebνηab; (A1)

where the greek and latin indices stand for general and local
coordinates, respectively. At finite temperature, the thermal
bath introduces a privileged reference frame which is
characterized by its four-velocity uμ. In all points of the
manifold, we have a special coordinate system, called
locally rest frame, in which the four-velocity of the thermal
bath has the simple form

uμ _¼
�

1ffiffiffiffiffiffi
g00

p ; 0⃗

�
; (A2)

where _¼ indicates that we are considering the components
of the vector u in this particular frame.
In our notation, the components of an arbitrary vector p

are represented by

~pa ¼ eaμpμ; (A3)

so that the scalar product with the thermal bath vector has
the form

~pa ~ua ¼ pμuμ _¼
p0ffiffiffiffiffiffi
g00

p : (A4)

This equation can be used to define a special class of
vierbein. To see this, note that Eqs. (A2) and (A4) imply
that a vierbein exists which is locally at rest in relation to
thermal bath, in which

~p0 _¼
p0ffiffiffiffiffiffi
g00

p : (A5)

Therefore, for two arbitrary vectors, we have the scalar
product

gμνpμqν _¼ηab ~pa ~qb _¼p0q0
g00

þ ηij ~pi ~qj: (A6)

Using the identity,

1

g00
¼ g00 − ðg−1Þijg0ig0j; (A7)

we can rewrite Eq. (A6) in the form
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gμνpμqν _¼½g00 − ðg−1Þijg0ig0j�p0q0 þ ηij ~pi ~qj; (A8)

where ðg−1Þij is the inverse of the spatial part of the metric

ðg−1Þijgjl ¼ δli: (A9)

On the other hand, we have

gμνpμqν¼g00p0q0þg0iðp0qiþpiq0Þþgijpiqj

¼½g00−ðg−1Þijg0ig0j�p0q0

þgij½piþðg−1Þilg0lp0�½qjþðg−1Þjkg0kq0�: (A10)

Equations (A6) and (A10) allow one to define

� ~p0 ¼ p0ffiffiffiffiffi
g00

p

~pi ¼ Ni
k½pk þ ðg−1Þklg0lp0�;

(A11)

where the symmetric matrix Ni
k is such that

gij ¼ Ni
lη

lmNm
j: (A12)

APPENDIX B: USEFUL IDENTITY
FOR THE DETERMINANT

For completeness, we present here a simple identity
which has been deduced previously [13]. Let us first denote
the determinant of the spatial part as well as the full
determinant of the metric as follows:

g ¼ det gij (B1a)

g ¼ det gμν: (B1b)

Expanding in terms of cofactors

g−1 ¼
X
μ

gμ0Cμ0 (B2)

and using the relations

C00 ¼ g; (B3a)

C0i ¼ g−1g0i (B3b)

Eq. (B2) yields

g−1 ¼ g00gþ g0igi0g−1: (B4)

Solving for g−1 we obtain

g−1 ¼ g00g
1 − g0ig0i

: (B5)

Finally, using the identity

g00g00 ¼ 1 − g0ig0i; (B6)

we obtain

g−1g00 ¼ g: (B7)

APPENDIX C: PHOTON SELF-ENERGY

The one-loop photon self-energy is shown in Fig. 4. The
corresponding analytic expression has the form

~Πabð ~qÞ ¼ e2T
X
n

Z
dd−1p
ð2πÞd−1 tr

�
~γa

1

~p − ~q
~γb

1

~p

�
: (C1)

Computing the trace using the Clifford algebra (4), we
obtain

~Πabð ~qÞ¼e22Eðd=2ÞT
X
n

Z
dd−1p
ð2πÞd−1

×
~pað ~p− ~qÞbþ ~pbð ~p− ~qÞa− ~pcð ~p− ~qÞcηab

~p2ð ~p− ~qÞ2 : (C2)

Using the definition of the locally rest vierbein (A11), we
can rewrite

~Πabð ~qÞ ¼ e22Eðd=2ÞT
X
n

Z
dd−1p
ð2πÞd−1

~pað ~p − ~qÞb þ ~pbð ~p − ~qÞa − ~pcð ~p − ~qÞcηab
~p2ð ~p − ~qÞ2

¼ e22Eðd=2ÞT
X
n

Z
dd−1p
ð2πÞd−1

~pað ~p − ~qÞb þ ~pbð ~p − ~qÞa − ~pcð ~p − ~qÞcηab
½p2

0

g00
− ~pi ~pi�½ðp0−q0Þ2

g00
− ð ~pi − ~qiÞð ~pi − ~qiÞ�

¼ e22Eðd=2Þðg00Þ2T
X
n

Z
dd−1p
ð2πÞd−1

~pað ~p − ~qÞb þ ~pbð ~p − ~qÞa − ~pcð ~p − ~qÞcηab
½p2

0 − g00 ~pi ~pi�½ðp0 − q0Þ2 − g00ð ~pi − ~qiÞð ~pi − ~qiÞ�

¼ e22Eðd=2Þg00T
X
n

Z
dd−1p
ð2πÞd−1

p̄aðp̄ − q̄Þb þ p̄bðp̄ − q̄Þa − p̄cðp̄ − q̄Þcηab
p̄dp̄dðp̄ − q̄Þeðp̄ − q̄Þe

; (C3)
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where q̄a has the components

q̄0 ¼ q0; q̄i ¼
ffiffiffiffiffiffi
g00

p
Ni

k½qk þ ðg−1Þklg0lq0�; (C4)

with one similar expression for p̄a, in such a way that

p̄dp̄d ¼ p2
0 þ g00ηij ~pi ~pj: (C5)

Performing the change of variables

pi → p̄i; (C6)

in the integral in Eq. (C3), we obtain

~Πabð ~qÞ ¼ e22Eðd=2Þg00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−1Þd−1g−1

gd−100

s
T
X
n

Z
dd−1p
ð2πÞd−1

paðp − q̄Þb þ pbðp − q̄Þa − pcðp − q̄Þcηab
ηdepdpeη

fgðp − q̄Þfðp − q̄Þg
¼

ffiffiffiffiffijgjp
gd=2−100

Πabðq̄Þ; (C7)

where Πabðq̄Þ is the Minkowski space self-energy, as a function of the external momentum q̄ (C4).

The static limit can be obtained assuming that all the
components of the external momentum are negligible in
the high temperature limit [8]. Then, Eq. (C7) implies that
the same is valid for ~Πab, so that

~Πab
HTLð ~pÞjp0¼0 ¼ ~Πabð ~p ¼ 0Þ: (C8)

Using the result for the static self-energy in d space-time
dimensions [21], Eq. (C7) yields

~Πab
HTLð ~pÞjp0¼0 ¼ −2m2 ~ua ~ub; (C9)

where m2 is the square of photon thermal mass, given by

m2 ¼
ffiffiffiffiffi
jgj

p �
Tffiffiffiffiffiffi
g00

p
�

2
�
e2
�

Tffiffiffiffiffiffi
g00

p
�

d−4�

×
2Eðd=2Þð1 − 23−dÞΓðd − 1Þζðd − 2Þ

Γðd−1
2
Þð2 ffiffiffi

π
p Þd−1 : (C10)

This thermal mass also behaves like a density under
coordinate transformations (due to the factor

ffiffiffiffiffijgjp
) and

depends on the temperature through T loc defined by Eq. (1).
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