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We study the thermodynamics of helium at densities relevant for white dwarf physics. We find evidence
that, as the temperature is increased, there is first a first-order transition between two superconducting
phases followed by a second-order transition to the normal state. These transitions occur, for realistic
densities, at temperatures below the crystallization temperature, and the crystalline state is likely to remain
as the true ground state of the system. The calculations are performed with a screening but nondynamical
electron background, and we comment on the impact of this and other approximations to our result.
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I.INTRODUCTION

Helium white dwarfs (HeWDs) are astrophysical objects
composed predominantly of helium nuclei and degenerate
electrons. At typical WD densities, the nuclei are much
closer together than typical atomic sizes but are still widely
separated compared to typical nuclear sizes. It has long
been known that as WDs cool, the nuclei crystallize, locked
into position by their mutual Coulomb interactions [1–3].
Recently, it was pointed out that in He WDs, the temper-
ature at which the helium nuclei form a Bose-Einstein
condensate (BEC) might be higher than the crystallization
temperature and an intermediate superconducting phase
may exist between the plasma and the crystal phases [4–9].
In this phase, it is the ions that are superconducting;
the electrons form an ordinary Fermi liquid. The low-
temperature properties of this phase are dominated by the
physics of an unusual “phonon” excitation [10] and lead to
a very small specific heat and enhanced neutrino emission
[11], with possible consequences for the cooling of He
WDs [12]. A similar phase could also exist in a deuterium
layer in brown dwarfs [13] and be relevant for inertial
confinement [14–16] as well as other kinds of experiments
[17,18] where high densities are also achieved.
It is guaranteed that at large enough densities there will

be a range of temperatures where the BEC can exist while
the Coulomb crystal cannot. This can be understood by
simple scaling arguments: a BEC should form when the
thermal de Broglie wavelength

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π=MT

p
(here M is the

ion mass and T is the temperature) becomes comparable to
the interparticle spacing l, so that the condensation temper-
ature should scale as TBEC ∼ 1=Ml2. A Coulomb crystal
should melt when the thermal energy is comparable to the

nearest-neighbor interaction, so that TCoulomb ∼ Z2α=l,
where Z is the atomic number of the crystallized nuclei
and α ¼ e2=4π ≈ 1=137, where e is the size of the electron
charge. Since the number density n ∼ l−3, TBEC ∼ n2=3=M
while TCoulomb ∼ n1=3. Thus, at very high density, the
crystallization temperature is markedly lower than the
condensation temperature, and for intermediate temper-
atures, the system should be a BEC.
The natural question is: are astrophysical densities in this

interesting regime? To answer this quantitative question,
one needs to know the numerical coefficients that specify
these critical temperatures. Because the condensation
temperature scales inversely with the ion mass, the density
at which TBEC ¼ TCoulomb and beyond which TBEC >
TCoulomb is smaller for lighter nuclei. Thus, if a nuclear
condensate forms in WDs, it should be most easily
established in He WDs and not carbon-oxygen WDs.
Detailed studies have determined the crystallization

temperature to be TCoulomb ∼ ðZeÞ2=180l [19–21], meaning
TCoulomb ∼ ða0=lÞ7000 K, where a0 is the Bohr radius.
There are various suggestions for the proportionality
constant in TBEC. Simply equating the de Broglie
wavelength to the interparticle spacing suggests
TBEC ¼ 2π=Ml2 ≈ 6.2=Ml2. A free Bose gas has TBEC ¼
Tð0Þ
c ≡ 2πð4πζð3=2Þ=3Þ−2=3=Ml2 ≈ 1.27=Ml2, where ζ is

the Riemman zeta function. The temperature TBEC is
expected to go up when one considers repulsive inter-
actions [22]. A slightly more detailed estimate (see Ref. [6])
suggests TBEC ¼ 4π2=3Ml2 ≈ 13:2=Ml2, which is qualita-
tively supported by the numerical calculations in Ref. [23].
It is the object of this paper to make a reliable estimate
of TBEC.
A BEC composed of nuclei (and not whole atoms) with a

background of degenerate electrons is a novel system with
rich phenomenology. Because the condensed nuclei are
charged, the substance is electrically superconducting. The
electrons provide a neutralizing electric charge, and
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additionally the dynamical response of these electrons
implies an unusual gapless quasiparticle [10]. These
quasiparticles imbue the substance with a very small
specific heat [10]. Moreover, these quasiparticles can
annihilate into neutrinos, and the power emitted per unit
volume scales like T11, so that the phenomenological
relevance of this annihilation for He WD cooling depends
strongly on the critical temperature of the nuclear con-
densate, with higher temperatures corresponding to more
relevant neutrino emission [11]. These considerations
motivate the detailed study of the thermodynamics of such
a nuclear condensate.
For calculational simplicity, we will work in the regime

of stiff electrons, so that they simply screen the Coulomb
interaction with a screening mass. In this light, our
investigation may be seen as an investigation of non-
relativistic charged spin-0 bosons interacting via a screened
Coulomb (that is, Yukawa) interaction. Surprisingly, we
find that the system is significantly more complex than
expected and that we can merely set an upper bound for the
first-order transition temperature: TBEC < Tð0Þ

c . We con-
jecture that this low first-order transition temperature is
accompanied by an unforeseen second-order transition
at Tð0Þ

c .
The real problem, of course, contains dynamical elec-

trons that, besides screening the static force lead to Friedel
oscillation in the potential between ions and other dynami-
cal effects. It turns out that the simplified model we
consider already contains surprising results whose nature
should be clarified before additional complications are
included.
This paper is organized as follows: in Section II we

discuss this model in detail and calculate its one-loop
effective potential. In Section III we establish the phase
diagram described by this model and investigate its proper-
ties analytically and numerically. In Section IV we dem-
onstrate that the condensed phase is globally disfavored
anywhere the usual uncondensed phase exists, and to
resolve this puzzle conjecture that the phase transitions
that this system undergoes are more complicated than
previously appreciated. Finally, in Section V we make
some remarks about the phenomenological relevance of
nuclear condensates and discuss priorities for more deeply
understanding this model.

II.MODEL, QUASIPARTICLES AND EFFECTIVE
POTENTIAL

At the densities we are considering our system can be
described by the (Euclidean space) Lagrangian

L ¼ ψ†

�
D0 − μ − D2

2M

�
ψ þ 1

4
FμνFμν þ Lgauge

þ η̄ðDμγμ þmþ μeγ0Þη; (1)

where ψ is the spin-0 helium nucleus field with charge
Ze ¼ 2e so that Dμψ ¼ ∂μψ − iZeAμψ , η represents the
usual electron, with Dμη ¼ ∂μηþ ieAμη, Aμ is the photon
field, M (m) is the helium nucleus (electron) mass and μ
(μe) is the chemical potential for the nuclei (electrons).
Lgauge is the gauge-fixing action required for perturbative
calculations.
The Lagrangian in (1) does not contain the nuclear force

between ions. We omit this force because in the regime we
are considering the Coulomb repulsion prevents two nuclei
from approaching one another to distances comparable to
the nuclear size and, consequently, the nuclear force
between them is inoperative: the nuclei interact with each
other (and with electrons) only through the electromagnetic
force. At the densities we consider (n < 108 g=cm3) the
nuclei are nonrelativistic while the electrons may or may
not be relativistic. A chemical potential for the electron is
included and chosen so that the charge density of electrons
equals that of the nuclei, ensuring charge neutrality.
Despite its apparent simplicity the action above describes

a tremendous array of phenomena; this is not surprising
giving the number of parameters present. We will concen-
trate on the regime described in the Introduction, where
three different small parameters can be identified, namely
(i) αml ¼ l=a0, the ratio between the particle distances and
the Bohr radius, (ii) the fine structure constant α and (iii) the
mass ratio m=M. In order to make progress we will attempt
a calculation that captures the leading order effect on these
three parameters. Sometimes, however, certain effects will
be proportional to ratios of these parameters. In these
circumstances we will consider their numerical value to
decide which terms to neglect. For instance, we count
m=ðαMÞ ≈ 10−2 as a small parameter.
The first step is to integrate out the electrons. The result

is, in general, a complicated nonlocal action for nuclei and
photons only. Later, we will use only the part of the action
quadratic in the fields. So, at leading order in α we have

LψA ¼ ψ†

�
D0 − μ − D2

2M

�
ψ þ 1

4
FμνFμν þ Lgauge

þ 1

2
AμΠμνAν − ðeA0 þ μeÞn: (2)

The quadratic term in Aμ is the one-loop photon polariza-
tion tensor due to the electrons. Higher loop corrections are
suppressed by powers of αml ¼ l=a0 and are small for the
dense electron plasmas considered here [24].
In the density and temperature regime considered here,

the electrons are degenerate and we can use the T ¼ 0 form
of the polarization tensor

Πμν ¼
� Π − pip0

p2 Π

− pjp0

p2 Π pipjp2
0

p4 Πþ ðpipj − δijp2ÞΠ⊥

�
(3)
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where Π and Π⊥ are functions of p0, p. The form of the
polarization tensor and the fact that it is determined by two
functions follow from the Ward identity pμΠμν ¼ 0. Π⊥
will play no role in what follows but Π will be essential for
our discussion. It can be written as Πðp0;pÞ ¼
m2

sfðp0m=k2F;p=kFÞ where f → 1 at small p0m=k2F,
p=kF [24]. The zero momentum value of Π describes
the static screening of Coulomb forces by the cold electron
gas. For certain values of the momentum Π also has a small
imaginary part. In this paper we will neglect both the
imaginary part and the momentum dependence of Π,
effectively working with a model where the electrons
provide a negative charge background canceling the ion
charge and screening for the Coulomb force. In reality the
electron gas leads to the “Friedel oscillations” in the
screened Coulomb force that will be considered in a further
publication. Our calculations are thus applicable to a model
of spinless bosons interacting through a screened Coulomb
(Yukawa) potential. The effect of the full momentum
dependence of Π and the Friedel oscillations on the
thermodynamics will be left for a later publication.
We are interested in the possibility that nuclei condense,

that is, that the condensate hψi ¼ v be nonzero, breaking
the electromagnetic Uð1Þ symmetry spontaneously.
Whether this happens or not can be decided by minimizing
the effective potential VðvÞ1. For this purpose we compute
now the one-loop effective potential by using standard
methods [25]. First, we split the nuclear field into a
classical part v and a fluctuating piece χ as
ψ ¼ vþ χR þ iχI . Then we expand the action to quadratic
order in the fields Aμ, χ, χ† and perform the gaussian path
integral. The effective potential is given by

e−β
R

d3rVðvÞ ¼
Z

DχDχ†DAμe−Squad

¼ ðdetSquadÞ−1=2
¼ e−1

2
tr ln Squad ; (4)

where β ¼ 1=T is the inverse temperature.
The fields χ, χ† and Aμ mix in the quadratic part of the

action. The unitary gauge-fixing used in Ref. [10],

Lgauge ¼ − 1

2ξ

�
∇:A − 2M

ev
∂0χR − ξZev2

M
χI

�
2

; (5)

followed by the limit ξ → ∞ allows us to decouple the
fields at quadratic order and therefore simplify many
calculations. However, the use of the unitary gauge (and
Rξ gauges in general) is known to be problematic at finite
temperature [26]. The gauge fixing condition depends
explicitly on v and with this gauge we would be computing
the effective potential (a gauge-dependent quantity) at
different values of v in different gauges. For this reason
we will instead use the Coulomb gauge-fixing,

Lgauge ¼ − 1

2ξ
ð∇:AÞ2; (6)

followed by the ξ → 0 limit. For the one-loop calculations
described in this paper the use of Coulomb gauge is a
modest calculational complication that preempts more
complicated conceptual questions.
The quadratic part of the action is given, in momentum

space by

Squad ¼
Z

d4p
ð2πÞ4 ð χRð−pÞ χIð−pÞ A0ð−pÞ A∥ð−pÞ Þ

×

0
BBBBBB@

− p2

2M þ μ ip0 Zev 0

−ip0 − p2

2M þ μ 0 iZevp
2M

Zev 0 p2þΠ
2

− p0

2p ðp2 þ ΠÞ
0 − iZevp

2M − p0

2p ðp2 þ ΠÞ 1
2

�
− Z2e2v2

M þ p2
0 − p2

ξ þ p2
0
Π

p2

�

1
CCCCCCA

0
BBBBB@

χRðpÞ
χIðpÞ
A0ðpÞ
A∥ðpÞ

1
CCCCCA: (7)

The eigenvalues of the matrix in (7) are p0 − iEp and p0 þ iEp, where

E2
p ¼p4 − 2Mp2μ − 2Mm2

Aμξ

p4 − 2Mm2
Aμξ

�
p2

2M

�
p2

2M
− μ

�
þ p2m2

A

p2 þ Π

�
!ξ→0

�
p2

2M
− μ

�
2

þ
�
p2

2M
− μ

�
2Mm2

A

p2 þ Π
; (8)

where m2
A ¼ 4παZ2v2=M. Eq. (8) gives the dispersion relation for the quasiparticles in the system (after the analytic

continuation p0 → ip0). The effective potential is known to be dependent on the gauge fixing parameter ξ. However, the
Nielsen identity [27] guarantees that physical observables extracted from it are independent of ξ. Among these physical
observables is whether the minimum of the effective potential occurs at a nonzero value of ϕ, the hallmark of symmetry

1We are assuming that translation symmetry is not spontaneously broken and v is position independent.
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breaking. Thus the gauge dependent quantity VðϕÞ con-
tains gauge independent information about the disappear-
ance of superconductivity. We took the ξ → 0 to simplify
our calculations. As we will see below, we will only be able
to make definite statements about the region in parameter
space where μ can be neglected. In that region the
dependence of the dispersion relation on ξ disappears
and, in fact, the dispersion relation in (8) agrees with the
dispersion relation obtained in using the unitary gauge [10].
This is another reason we believe our results are gauge
independent.
The computation of the one-loop part of the potential

Vð1Þ can then proceed in the usual fashion:

Vð1Þ ¼ 1

2
T
X
p0

Z
d3p
ð2πÞ3 ln ðp2

0 þ E2
pÞ

¼
Z

0

dδ
d
dδ

1

2
T
X
p0

Z
d3p
ð2πÞ3 log ðp2

0 þ E2
p þ δÞ

¼ 1

2

Z
0

dδT
X
p0

Z
d3p
ð2πÞ3

1

ðp2
0 þ E2

p þ δÞ

¼ 1

2

Z
0

dδ
Z

d3p
ð2πÞ3

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
p þ δ

q coth

�
1

2
β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
p þ δ

q �

¼ T
Z

d3p
ð2πÞ3 ln 2 sinh

�
1

2
βEp

�

¼
Z

d3p
ð2πÞ3

1

2
Ep þ T

Z
d3p
ð2πÞ3 ln ð1 − e−βEpÞ; (9)

where the sum is over the discrete values p0 ¼ 2 πTj,
j ¼ 0;�1;…. Had we kept the full Πðp0;pÞ instead of
merely Π ¼ m2

s we would have encountered cuts in the
complex p0 plane and the effective potential would have a
more complicated form. The loop expansion we are
performing amounts to an expansion on the parameter
αml ¼ l=a0. To the extent that a weak coupling analysis
makes sense, the zero-temperature one-loop contribution
cannot compete with the tree-level term. The one-loop
finite-temperature contribution, however, can become arbi-
trarily large as the temperature is increased. Thus, only the
finite-temperature contribution can compete with the tree-
level zero-temperature part and lead to the restoration of
symmetry. This is a generic feature of any weak coupling
analysis of symmetry restoration by temperature effects.
Since our goal is to estimate the temperature for which the
symmetry is restored we will ignore the temperature-
independent piece when exploring this effective potential
in pursuit of its corresponding phase diagram.

III.PHASE DIAGRAM

The minimization of V in relation to v gives us the actual
expectation value of the condensate at any given value of

the chemical potential μ. We would like, however, to have
the ion density n fixed in order to neutralize the charge
of the electrons. We then have to solve simultaneously the
pair of equations,

n¼−∂V
∂μ ¼ v2þ

Z
d3p
ð2πÞ3

1

eβEp −1

1

Ep

�
p2

2M
−μþ Mm2

A

p2þm2
s

�
;

(10a)

0¼ ∂V
∂v ¼−μvþv

Z
d3p
ð2πÞ3

1

eβEp −1

1

Ep

�
p2

2M
−μ

�
4πZ2α

p2þm2
s
:

(10b)

The first terms in these equations come from the tree level
contribution Vð0Þ ¼ −μv2 to the effective potential. In the
absence of dynamical electrons and screening effects
(ms ¼ 0), (10) were derived in Ref. [28].
We notice that the dispersion relation dependence on μ,

shown in Eq. (8), is important in deriving these relations,
even if μ is set to zero afterwards. The nonrelativistic limit
of the dispersion relation obtained in Ref. [23], for instance,
differs from ours at finite values of μ and is, consequently,
at odds with Ref. [28].
To the extent that higher loop contributions to the

effective potential are small (10) determine the variation
of the condensate v ¼ vðTÞwith the temperature. However,
as we can see from (10b), μ cannot be negative if v ≠ 0. We
are led then to expect that the condensate forms at positive
values of μ. However, at positive μ, E2

p can be negative for
some values of p, and thus the effective potential is
complex at positive μ. A complex one-loop effective
potential is a common occurrence and signals an instability
[29]. Frequently, this instability is an artifact of the loop
expansion and can be cured by a resummation of higher
loop contributions, as it occurs, for instance, in the
relativistic λϕ4 model at finite temperature [26]. We are
unable at this point to identify the necessary resummations
needed in our model. But, just like in the models discussed
in Ref. [26], the unresummed one-loop potential already
carries important information about the thermodynamics of
our problem. We will now proceed to extract as much
information from the one-loop effective potential as
possible.
The analysis of (10) is simple in the v ¼ 0 case and

found in textbooks. In this case Eq. (10a) becomes

n ¼
Z

d3p
ð2πÞ3

1

eβð
p2

2M−μÞ − 1
: (11)

Following the usual analysis, μ is negative for

T > Tð0Þ
c ¼ 2π

M

�
n

ζð3=2Þ
�

2=3
¼

�
9π

2ζð3=2Þ2
�

1=3 1

Ml2
;

(12)
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and vanishes at T ¼ Tð0Þ
c . For T < Tð0Þ

c it is impossible to
satisfy the equations, which signals the need for a non-
vanishing condensate. The line vðTÞ ¼ 0 is shown in Fig. 1.
In order to consider nonzero values of v our strategy will

be to neglect μ as compared to p2=2M in (10) obtaining

n − v2 ¼
Z

d3p
ð2πÞ3

1

eβEp − 1

1

Ep

�
p2

2M
þ Mm2

A

p2 þm2
s

�
; (13a)

μ ¼
Z

d3p
ð2πÞ3

1

eβEp − 1

1

Ep

p2

2M
4πZ2α

p2 þm2
s
; (13b)

with E2
p ¼ ðp2=2MÞ2 þ p2m2

A=ðp2 þm2
sÞ, which obviates

the complex effective potential problem. We then solve (13)
and carefully verify the regime of validity of theμ ≪ p2=2M
approximation.Wewill solve the equationsbothnumerically
and, in some limits, analytically. The numerical solution of
(13a) and a0=l ¼ 35 (corresponding to a density of ρ ¼
4.6 × 105 g=cm3 is shown as the thick line in Fig. 1.
Fig. 1 has the typical shape of a first-order phase

transition. In the usual scenario, for values of temperatures

where three solutions exist (Tð0Þ
c < T ≲ 8Tð0Þ

c in Fig. 1),
two are locally stable and the middle one is unstable. The
v ¼ 0 solution is stable for temperatures higher than a

critical value Tc > Tð0Þ
c and the v ≠ 0 is only metastable. At

temperatures lower than Tc the roles between the v ¼ 0 and
v ≠ 0 are reversed. Thus, the condensate v jumps discon-
tinuously to zero as the temperature is increased past
T ¼ Tc. As we will see in the next section, the curve
shown in Fig. 1 cannot be trusted for all values of v and the
situation in our model is more complicated.
We now assess the validity of the approximation μ ≪

p2=2M leading to our values of vðTÞ. For any given value
of v and T we can estimate μ by using (13b). This estimate

will be accurate if μ is indeed negligible compared to
p2=2M but not otherwise. In this sense, the use of (13b)
conservatively estimates the range of validity of the μ ≪
p2=2M approximation. The estimate of p2=2M is a little
trickier. Ordinarily, the value of p2=2M could be estimated
from the knowledge of the typical value of p contributing to
the integral in (13a). The integrand in (13a), however, has a
double hump structure dominated by two widely separate
scales as shown in Fig. 2. Depending on the values of v, T,
one or the other hump will dominate the value of the
integral. Fortunately, analytical approximations are avail-
able in these two cases.
For the lower momentum hump we are in the “phonon

region” where the approximations

p2 ≪ m2
s ; (14a)

�
p2

2M

�
2

≪
m2

Ap
2

m2
s

(14b)

are adequate. In this region the dispersion relation
approaches that of a phonon [10],

Ep ≈
mA

ms
p; (15)

and the integrals in (13) can be analytically calculated,

n ¼ v2 þ Mms

12mA
T2; (16a)

μ ¼ Z2π3

15

αm3
s

M
T4

m5
A

: (16b)

Equation (16a) determines the condensate vðTÞ as a
function of T. Its value is plotted as the (blue) dotted line
in Fig. 1.

p

Integrand

FIG. 2 (color online). Integrand in the second equation in (13a)
as a function of momentum (full line). The dotted lines corre-
spond to the phonon and plasmon approximations.

0 2 4 6 8

T

Tc
0

0.0

0.2

0.4

0.6

0.8

1.0

v

n

plasmon
phonon

FIG. 1 (color online). The red curve is the solution to (13a); it is
shown as dashed where the condition μ ≪ p2=2M is violated and
should not be trusted. The result of the phonon (dotted blue) and
plasmon (dotted orange) approximations are also shown. The
purple dashed line separates the phonon-dominated from the
plasmon-dominated regions.
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For the phonon approximation to (13) to be legitimate it
is necessary that the Eqs. (14) be satisfied. The integrals in
(13) are cutoff by the Boltzman factor e−mAp=ðTmsÞ. So, the
typical value of the momentum is p ≈msT=mA. Using this
value of p, both conditions in (14) become

T ≪ mA: (17)

Since v2 < n, the second condition in (14) follows from the
first one. The region excluded by this condition is shown as
the darker blue area in Fig. 3. We can now compare μ to
p2=2M. We find

μ ≪
p2

2M
⇒

Z2π3

15
αms

T2

m3
A

≪ 1: (18)

The region where Eq. (18) fails is shown in blue in Fig. 3.
This condition T ≪ mA is always satisfied when (18)

holds and for the relevant values of the density parameter
l=a0. We conclude then that, as long as the phonon region
dominates the integrals in (13a), we are justified in
neglecting μ.
At higher momentum, on the second hump of the

integrand, the “plasmon approximation” is adequate:

m2
s ≪ p2 (19a)

p2

2M
≪

Mm2
A

p2
: (19b)

In this region, the dispersion relation becomes that of a
massive excitation (plasmon),

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
p2

2M

�
2

þm2
A

s
; (20)

the integrals are cut off by the exponential statistical factor

e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2=2MÞ2þm2

A

p
=T ≈ e−mA=Te−p4=8M2mAT . Also it turns out,

(19) implies ⇒ T ≪ 1
4
mA and hence we can drop 1

compared to eβEp in the integrand. The typical momentum
is given by

p2 ≈
ffiffiffiffiffiffiffiffiffiffiffiffi
8mAT

p
M: (21)

With the approximations in (19), (13) reduces to

n ¼ v2 þ Γð5=4Þ
21=4π2

M3=2m5=4
A T1=4e−mA=T; (22a)

μ ¼ 21=4Z2Γð3=4Þ
π

Z2α
ffiffiffiffiffi
M

p T3=4

m1=4
A

e−mA=T: (22b)

We can now verify for which values of v and T the plasmon
approximation is valid:

m2
s ≪ p2 ⇒

m4
s

8M2m2
A
≪ T; (23a)

p2

2M
≪

Mm2
A

p2
⇒ T ≪

1

4
mA; (23b)

μ ≪
p2

2M
⇒

Z2Γð3=4Þ
21=4π

ffiffiffiffiffi
M

p
T1=4

m3=4
A

αe−mA=T ≪ 1: (23c)

The first condition (23a) excludes a tiny region of the v − T
plane near T ≈ 0 where our calculations which neglect the
temperature-independent one-loop effective potential are
not valid. The second and third condition are actually very
similar since the exponential factor e−mA=T is very small
when as T ≲mA. The areas excluded by these conditions
are shown in yellow in Fig. 3.
Finally, the phonon and plasmon region contributions to

the integral in (13a) should be compared by taking the ratio
of (16a) and (22a). We find

ðn − v2Þjphonon
ðn − v2Þjplasmon

∼
21=4π2

12Γð5=4Þ
msT7=4ffiffiffiffiffi
M

p
m9=4

A

emA=T: (24)

The contour separating the phonon-dominated from the
plasmon-dominated regions is shown as a dashed line
Fig. 1 and Fig. 3. For v ≈

ffiffiffi
n

p
, the only part of the v ¼

vðTÞ solution where those approximations make sense, the
phonon contribution dominates at small temperatures,
while the plasmon contribution dominates at higher
temperatures.
We have now our full verification of the μ ¼ 0 approxi-

mation. On the upper branch of the v ¼ vðTÞ solution up to
T ≲ 5Tð0Þ

c the phonon and the μ ≈ 0 approximations are

0 2 4 6 8

T

T c
0

0.0

0.2

0.4

0.6

0.8

1.0

v

n

plasmon
phonon

FIG. 3 (color online). Regions where the phonon (plasmon)
approximation is not valid are shown in blue (yellow). The purple
dashed line separates the phonon-dominated from the plasmon-
dominated regions. The red curve is the solution to (13a); it is
shown as dashed where the condition μ ≪ p2=2M is violated and
should not be trusted.

PAULO F. BEDAQUE, EVAN BERKOWITZ, AND SRIMOYEE SEN PHYSICAL REVIEW D 89, 045010 (2014)

045010-6



valid. At higher T until T ≈ 7.5Tð0Þ
c , the plasmon and the

μ ≈ 0 approximations are valid. Beyond that and for the
lower branch of v ¼ vðTÞ≲ 0.7

ffiffiffi
n

p
our approximations,

including the neglect of μ, are no longer valid. For this
reason we draw the v ¼ vðTÞ solution as a dashed line in
Figs. 1 and 3.
The numerical examples presented in the figures corre-

spond to a fixed value of the density parameter l=a0 ¼ 1=35.
It turns out that the dependence of v=

ffiffiffi
n

p
and other quantities

on the density is very mild, particularly if we remember that
only a relatively narrow rangeof densities around105 g=cm3

is phenomenologically relevant. In fact, in addition to the
dependence of ms ∼ k1=2F ∼ n1=6, only the overall normali-
zation of the integral on (13a) is dependent on n. As a rule,
however, there is a reductionof thephonondominated region
in the phase diagram as the density is raised, as can be seen
on (24).

IV.GLOBAL STABILITY AND A CONJECTURE

Having identified the locally stable states of the model
we now study their global stability. In a certain range of
temperatures two states—the trivial v ¼ 0 and the con-
densed v ≠ 0 one—satisfy the conditions for the local
minimization of the effective potential. We want now to
decide which one is the global minimum. There two states,
however, are obtained from solving (13a) and, conse-
quently, have the same particle density n. In order to
decide which one is the stable state we have to compare
their free energies defined by

Fðn; TÞ ¼ Veffðv; TÞ þ μn; (25)

where μ and v are the solutions to (13a) and (13b) for given
values of T and n. The evaluation of F is particularly simple
right at T ¼ Tð0Þ

c .
Let us first compute this value for the trivial v ¼ 0

solution. Right at T ¼ T0
c the uncondensed solution has

μ ¼ 0, and we find

Fv¼0ðn; Tð0Þ
c Þ ¼ Tð0Þ

c

Z
d3p
ð2πÞ3 ln

�
1 − e

− p2

2MT
ð0Þ
c

�

¼ −ζð5=2ÞTð0Þ
c

�
MTð0Þ

c

2π

�3=2

¼ − 35=3ζð5=2Þ
27=3ζ5=3ð3=2Þ

1

Ml5:
(26)

This is to be compared to the free energy of the v ≠ 0 states.
The T ¼ Tð0Þ

c , v ≠ 0 solution is well within the phonon-
dominated region, where the free energy can be computed,
with the results in (16), to be

Fphononðn; TÞ ¼ μðn − v2Þ þ T
Z

d3p
ð2πÞ3 ln

�
1 − e−

mAp
msT

�

¼ π3Z2αm4
sT6

180m6
A

− π2m3
sT4

90m3
A

: (27)

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

T Tc
0

v

n

a b c d e f

0 0.25 0.5 0.75 1. 1.25

v n

F

(a)

0 0.25 0.5 0.75 1. 1.25

v n

F

(b)

0 0.25 0.5 0.75 1. 1.25

v n

F

(c)

0 0.25 0.5 0.75 1. 1.25

v n

F

(d)

0 0.25 0.5 0.75 1. 1.25

v n

F

(e)

0 0.25 0.5 0.75 1. 1.25

v n

F

(f)

FIG. 4 (color online). The left panel shows a schematic of our conjectured phase diagram for the condensate v as a function of T. The
red curve in the left panel shows the minima in Fðv; n; TÞ for a fixed n. The green curves in the right panel are cross sections of
Fðv; n; TÞ at fixed T, with the subfigures in the right panel corresponding to the slices in the left panel with the same label. At
temperature a only the condensed solution exists. At temperature b the free energy develops an inflection point which turns into one
minima and one maxima. The first-order phase transition happens at temperature cwhen the wells become equally deep. By temperature
d (i.e. Tð0Þ

c ), the well with small v is already favored, and there is a second-order transition to v ¼ 0. At higher temperatures the v ≠ 0
minimum vanishes, shown in (e) and (f).

THERMODYNAMICS OF NUCLEAR CONDENSATES AND … PHYSICAL REVIEW D 89, 045010 (2014)

045010-7



Fphononðn; Tð0Þ
c Þ ¼ − 31=6π7=3

5 21=3ζ8=3ð3=2ÞZ5=2

1

Ml5

�
m
M

�
3=2

×

�
1 − 31=6π4=3

2ζ4=3ð3=2ÞZ5=6

ffiffiffiffiffi
m
M

r �
. (28)

The free energy of the v ¼ 0 solution is more negative than
the free energy of the condensed state by a factor propor-
tional to the large parameter ðM=mÞ3=2. This shows that at
all temperatures where the v ¼ 0 state exists, it is this state,
and not the condensed v ≠ 0 state, that is the globally stable
state of the system. A numerical calculation of the free
energy using the solution of (13a) and (13b) confirms this
result and shows that the difference in free energy between
the two competing states increases as the temperature is
further increased past T ¼ Tð0Þ

c .
This result is at odds with the standard picture of a first-

order transition. In the usual case, one has Fphonon < Fv¼0

for all T < Tc, where the critical temperature Tc is greater
than Tð0Þ

c . Even though we were unable to compute
Fðv; n; TÞ for arbitrary v, it is easy to see that no function
Fðv; n; TÞ could have a set of local and global minima as
shown in Fig. 1 while also globally favoring the v ¼ 0 state
all the way down to Tð0Þ

c . To understand this impossibility,
consider the shape of this purported function around T ≈
Tð0Þ
c as T is increased. A new minimum at v ¼ 0 is

supposed to appear in addition to the nontrivial one with
v ≠ 0 and immediately become the global minimum of the
function. This is clearly impossible.
The only way out of this inconsistency is to assume

that the state with small v beats the superconducting state
v ≈

ffiffiffi
n

p
at temperatures smaller than Tc. This can occur if

the actual curve v ¼ vðTÞ has the shape shown in the left
panel of Fig. 4. In that case a first-order transition occurs
at a temperature lower than Tð0Þ

c , followed by a second-
order transition. The shape of the free energy as a
function of V at different temperatures indicated on
the right panel is sketched on the right panel of
Fig. 4. The extra knee in the v ¼ vðTÞ curve can occur
in the region of the v − T plane where our calculation is
not under control. The part of our calculation that is
under good theoretical control forces us to believe in this
more exotic possibility.

V.CONCLUSION

Despite the difficulty posed by the fact that the effective
potential is complex for positive chemical potential, we
were able to extract some physical consequences from our
one-loop calculation. The main one is the indication of a
sequence of a first-order transition followed by a second-
order phase transition. This conclusion was developed by
looking at the free energy values computed within the range
of validity of the approximations performed and, as such, is
quite robust. On the other hand, we were not able to
compute the critical temperature where the stable

(superconducting) and metastable (normal) states trade
places. But if the double transition conjecture described
above is correct, this temperature is below the free boson
critical temperature Tð0Þ

c .
We also found that the superconducting phase exists,

as a metastable state, for temperatures up to about 8
times Tð0Þ

c . This conclusion agrees with that in Ref. [23];
this is not entirely a coincidence. Contrary to the present
paper, Ref. [23] analyzes the unscreened model (ms ¼ 0).
But the High T region of the v ¼ vðTÞ curve is in the
plasmon-dominated region where the screening is not
important. In addition, the methodological differences
between this paper and Ref. [23] lead to a change in
(10a) that is numerically small and, just like here, the μ
dependence of the dispersion relation is neglected, albeit
for different reasons.
Although the model we analyzed (bosons interacting

through a screened Coulomb (Yukawa) potential) is inter-
esting on its own merits, applications to high density
physics require a proper treatment of the effects of a
dynamical electron background. Technically the main
effect is the inclusion of the contribution of the cuts of
Πðp0;pÞ in the effective potential calculation. Physically
they correspond to the fact that the actual force between
two bosons presents an oscillating component (Friedel
oscillations) [30–32]. A detailed analysis of the influence
of these effects on the thermodynamics of the system will
be left for a future publication.
We have also not discussed the metastability of the

superconducting state in a quantitative fashion. In particu-
lar, we have not estimated its lifetime. This is due to the fact
that a proper estimate would require us to compute the free
energy F as a function v in order to understand the size of
the potential barrier separating normal from superconduct-
ing phases. Until a deeper understanding of the resumma-
tions needed to make sense of the one-loop results is
achieved, this calculation is impossible. In fact, all the
results discussed here as a well as a confirmation or
falsification of our conjectured phase diagram hinge on
an understanding of this resummation, and that should be
viewed as the number one priority for further progress in
this topic.
Finally, we can use the results of this paper to assess

where the idea of nuclear condensates in dense matter
stands. Recall that for the existence of an intermediate
temperature regime where the nuclear condensate can exist,
it is necessary that the crystallization temperature be
smaller than the condensation temperature. If one is willing
to consider metastable states, our estimate that the super-
conducting state extends up to ≈8Tð0Þ

c is similar to the
hypothesis made in [5]. As such, the estimate—that at
densities around 105 g=cm3 relevant for white dwarf
physics a nuclear condensate should exist—stands
unaltered. Only an estimate of the decay time of the
false superconducting ground state can decide whether
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the inclusion of the metastable state is appropriate but,
considering the extreme slow evolution of white dwarfs
and the fact that they start out at high temperatures,
suggest the the metastable state is irrelevant. In that case,
only at much higher densities (ρ≳ 2.4 × 107 g=cm3) and
temperatures (T ≳ 106 K) can the nuclear conden-
sate exist.
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