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We construct cosmological solutions of higher spin gravity in 2þ 1 dimensional de Sitter space. We
show that a consistent thermodynamics can be obtained for their horizons by demanding appropriate
holonomy conditions. This is equivalent to demanding the integrability of the Euclidean boundary
conformal field theory partition function, and it reduces to Gibbons-Hawking thermodynamics in the spin-
2 case. By using the prescription of Maldacena, we relate the thermodynamics of these solutions to those of
higher spin black holes in AdS3.

DOI: 10.1103/PhysRevD.89.045007 PACS numbers: 11.15.Yc, 11.25.-w, 98.80.Bp

I. INTRODUCTION

In 2þ 1 dimensions, pure gravity has no (perturbative)
dynamics because curvature is completely rigid. But despite
the lack of any gravitational attraction, gravity in 2þ 1
dimensions is nontrivial—black hole solutions were dis-
covered by Banados, Teitelboim and Zanelli (BTZ) [1] as
quotients of AdS3 [2]. This fact makes 2þ 1 D gravity an
excellent theoretical laboratory for testing a variety of
nonperturbative issues inquantumgravity,without the added
complications of curvature dynamics which play a huge role
in higher dimensions. However, effort in this direction did
not begin in earnest until thework ofWitten [3] (see also [4]).
He demonstrated that 2þ 1 D gravity can be recast
as a Chern-Simons gauge theory, with the gauge group
SLð2; RÞ × SLð2; RÞ when the cosmological constant Λ is
< 0, and the gauge group SLð2; CÞ when Λ is > 0.
The negative cosmological constant case drew a lot of

attention, partly because that was the context in which the
above-mentioned BTZ black holes were discovered, but
also because of the earlier work of Brown and Henneaux
[5] who showed that the asymptotic symmetry algebra of
AdS3 gravity is a Virasoro algebra. In fact, this latter result
is now widely recognized as a precursor to the celebrated
AdS-CFT duality [6], where a fully quantum theory of
gravity in AdSdþ1 is conjectured to have an equivalent
description in terms of a conformal field theory supported
on the boundary of AdSdþ1. However, there was no such
happy ending in the case of a positive cosmological
constant, namely dS3. Although the counterpart to the
BTZ black hole quotients were constructed in [7] (also see
[8]), the fact that de Sitter is a cosmological spacetime with
a spacelike boundary [9] has made the development of a
consistent dS/CFT proposal much more confusing. Various
interesting attempts were made in [10–12], but there seems

to be a fundamental difficulty in realizing de Sitter space in
any kind of unitary quantum set up as a stable vacuum
[13–18].
On an entirely different theme, theories of interacting

gauge fields with an infinite tower of higher spins (s ≥ 2)
have been studied as a toy version of a full string theory1 by
Fradkin and Vasiliev [20–25], building on the early work of
Fronsdal [26]. Higher spin theories in three dimensions, as
demonstrated in [27], are considerably simpler than theo-
ries in higher dimensions due to the absence of any local
propagating degrees of freedom. In addition, it is possible
to truncate the infinite tower of higher spin fields to spin,
s ≤ N. The complicated nonlinear interactions of the higher
spin fields can be reformulated in terms of an SLðN;RÞ ×
SLðN;RÞ Chern-Simons gauge theory (for the AdS3 case)
or an SLðN;CÞ Chern-Simons (for dS3). Therefore 2þ 1
dimensional higher spin theories are a generalization of
Chern-Simons gravity—one gets back to the spin-2 pure
gravity theory when one sets N ¼ 2.
The aim of this paper is to construct cosmological

solutions in higher spin dS3 gravity. We work specifically
with the case where the rank of the gauge group, N ¼ 3.
The solutions we construct are the higher spin generaliza-
tions of dS3 quotients such as Kerr-dS3 and quotient
cosmology [7,8,28] and should be thought of as the de
Sitter counterparts of the spin-3 charged AdS3 black hole
solutions of [29,30]. It has been shown recently by two of
us that big-bang–type singularities contained in quotient
cosmologies in the purely SLð2Þ sector of this higher spin
theory can be removed by performing a spin-3 gauge
transformation [28]. But the problem of constructing spin-3
charged cosmologies was left open. In this paper, we
fill this gap and discuss the thermodynamics of their
cosmological horizons.
The plan of the paper is the following. In Sec. II, we

recap the formulation of a spin-3 field coupled to gravity in
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1Since the latter has infinite dimensional gauge invariance, see
the work by Sundborg [19].
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2þ 1-dimensions as a Chern-Simons gauge theory with a
noncompact gauge group, SLð3; CÞ. We fix all notations
and conventions for the map between the second order
variables (metric and spin-3 field) and the gauge connection
here. We also review and discuss the variational principle
for asymptotically de Sitter–like connections in the gauge
theory formulation. In Sec. III, we first review pure gravity
i.e. SLð2; CÞ sector solutions, namely the Kerr de Sitter
universe and the quotient cosmology. We do this both in the
metric and in the gauge theory setup. Then we construct
higher spin extensions of these geometries by modifying
their gauge connection and adding spin-3 charges in a
manner consistent with the triviality of gauge connection
holonomies along contractible cycles. These solutions are
shown to contain cosmological horizons and, in the case of
quotient cosmology, higher spin big bang/ big crunch–like
causal singularities. In the final section, Sec. IV, these
holonomy conditions are shown to be necessary for the
consistency of thermodynamics associated with cosmo-
logical horizons. These consistency conditions turn out to
be identical to demanding integrability of a “boundary CFT
partition function.” Using the prescription of Maldacena
[12], we relate thermodynamics of our solutions to those of
higher spin AdS3 black holes. Our formulation gives the
same results as the Gibbons-Hawking results when we
restrict to the spin-2 case and work in the metric language.

II. SLð3;CÞ CHERN-SIMONS FORMULATION
OF HIGHER SPIN dS3 GRAVITY

Here we quickly review the basics of the SLð3; CÞ CS
gauge theory generalizing Witten’s construction [3] as
presented in detail in [28,31] (see also [32] for a discussion
on higher spins in dS3). One simply defines the higher spin
(up to spin-3) theory, i.e. an interacting theory of gravity
and a spin-3 field, by the action [27]

ICS½A� ¼
k

4πdR

Z
M
Tr

�
AdAþ 2

3
A3

�

− k
4πdR

Z
M
Tr

�
ĀdĀþ 2

3
Ā3

�
: (1)

The constant dR ¼ −2TrðT0T0Þ is a characteristic of the
representation size. Here the gauge field A is a complex
SLð3Þ matrix-valued one-form. In the basis of SLð3Þ
matrices, fTa; Tab; a; b ¼ 0; 1; 2g as listed in [33], we
can expand the gauge field as

A ¼
�
ωa
μ þ

i
l
eaμ

�
Tadxμ þ

�
ωab
μ þ i

l
eabμ

�
Tabdxμ

¼
�
ωμ þ

i
l
eμ

�
dxμ;

ωμ ¼ ωa
μTa þ ωab

μ Tab; eμ ¼ ωa
μTa þ ωab

μ Tab:

Then, the more familiar metric and spin-3 fields can
be extracted from the (imaginary parts of the basis
coefficients) of the gauge field [33]:

gμν ¼
1

2!
TrðeμeνÞ; ϕμνλ ¼

1

3!
TrðeðμeνeλÞÞ; (2)

while the three-dimensional Newton’s constant (in units of
the dS radius, l) is given by the Chern-Simons level
number,

G3

l
¼ 1

4ik
: (3)

We work in the prevalent general relativity convention
where 8G3 ¼ 1. Since the gauge group SLð3; CÞ is non-
compact, the Chern-Simons level number is not quantized.
Now let us consider the variation of the action (1).

Generically a variation has a bulk (volume) piece propor-
tional to the equation of motion and boundary pieces
supported on temporal and spatial boundaries,

δI ¼
Z

d3xðE:O:MÞ þ
Z

d2xπμδAμjtfti

þ
Z

dtdxjπjμδAμjxi;max
xi;min

: (4)

To have a good variational principle one has to ensure that
these boundary pieces vanish (on shell) by prescribing
initial and final conditions and spatial boundary conditions.
If the prescribed conditions do not lead to a vanishing
contribution for the boundary pieces of the variation, then
one has to add supplementary boundary terms to the action
to cancel these. One crucial point to be noted here, in
contrast to the AdS case, is that the action (1) already
defines a good variational principle without any supple-
mentary boundary terms. This is because asymptotically de
Sitter spaces have closed spatial sections and the only
boundary contributions are from future infinity (tf → ∞)
and at some time coordinate in the past (ti ¼ const). As the
variational principle is usually defined with vanishing
variations at the initial and final times,

δAjti;tf ¼ 0; (5)

these boundary pieces vanish. However, we shall not
demand that the future data are fixed (i.e. δAjtf→∞ ≠ 0),
and we look to set up a variational principle by demanding
instead that the conjugate momentum vanishes,

πμjtf→∞ → 0: (6)

Such a variational principle will be made to appear natural
in Sec. IV, where the close parallel between de Sitter
and anti-de Sitter cases is brought out. This will often
restrict us to a subclass of solutions which are specified by
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their future falloff behaviors (which close under gauge
transformations),

lim
t→∞

Aμ ∼ tαμ (7)

for some real bounded exponent αμ. This is the analogue of
non-normalizable falloffs in AdS. These falloff behaviors
are fixed by conducting the asymptotic (future or past)
symmetry analysis in a manner closely parallel to the AdS3
counterpart [33,34], as was done in [31]. By demanding that
the asymptotic symmetries of this larger theory still contain
the Virasoro algebras already present in the SLð2; CÞ case, it
was found that the suitable falloff behaviors at future
infinity for the SLð3; CÞ gauge connections are

Aw̄ ¼ 0; Aρ ¼ b−1∂ρb; A − AdS3⟶
τ→∞

Oð1Þ: (8)

Here b is a gauge transformation ∈ SLð3; CÞ. However, as
we shall see in the next section, in order to construct gauge
field configurations with nonvanishing higher spin charges,
one has to violate the asymptotic falloffs (8), and hence one
has to supplement the action (1) with boundary terms.
Again this is parallel to the situation for higher spin
AdS black hole solutions [29] for which the boundary
counterterms were worked out in [35,36].

III. HIGHER SPIN DE SITTER COSMOLOGIES

We are interested in constructing solutions of the
SLð3; CÞ gauge theory describing spacetimes of positive
cosmological constant which have nonzero spin-3 charges
in addition to the spin-2 charges, i.e. energy and angular
momentum. Since these are higher spin extensions of the
pure gravity solutions or SLð2Þ sector, let us first review the
solutions of the SLð2Þ sector obtained by taking quotients
of pure three-dimensional de Sitter space [8].

A. Kerr-dS3 universe

The first class of SLð2Þ quotients of pure de Sitter space
is the so-called Kerr-de Sitter universe (KdS3). This is very
similar to de Sitter space itself, in the sense that these
solutions have two regions bounded by cosmological
horizons and have future and past infinite regions outside
the cosmological horizons. However, the topology of the
past and future infinities of KdS3 is that of a cylinder,
S1 × R, in contrast to the de Sitter space, for which they
have topology of a sphere, S2.
In static Schwarzschild-like coordinates, the KdS3 metric

[7,8] reads

ds2 ¼ −N2ðrÞdt2 þ N−2ðrÞdr2 þ r2ðdϕþ NϕdtÞ2;

N2ðrÞ ¼ M − r2

l2
þ J2

4r2
; Nϕ ¼ − J

2r2
: (9)

Introducing the outer and inner radii,

r2� ¼ Ml2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðJ=MlÞ2

q
� 1Þ=2; (10)

one can rewrite Eq. (9) as

ds2 ¼ − ðr2 þ r2−Þðr2þ − r2Þ
r2l2

dt2

þ r2l2

ðr2 þ r2−Þðr2þ − r2Þ dr
2 þ r2

�
dϕþ rþr−

r2
dt
l

�
2

;

r < rþ (11)

and we note that this geometry has a horizon at r ¼ rþ.
This metric can be analytically continued across the out-
side, i.e. for r > rþ:

ds2 ¼ − r2l2

ðr2 þ r2−Þðr2 − r2þÞ
dr2 þ ðr2 þ r2−Þðr2 − r2þÞ

r2l2
dt2

þ r2
�
dϕþ rþr−

r2
dt
l

�
2

: (12)

In this region r is timelike while t is spacelike.
To make contact with the gauge theory we write

down the SLð2; CÞ connections for the two regions.

Introducing N 2ðrÞ≡ ðr2þr2−Þðr2−r2þÞ
r2l2 ¼ −N2ðrÞ, the gauge

field expressions are

A0 ¼ NðrÞ
�
dϕþ i

dt
l

�
; A1 ¼ lNϕ − i

NðrÞ
dr
l
;

A2 ¼
�
rNϕ þ i

r
l

��
dϕþ i

dt
l

�
; r < rþ;

A0 ¼ − lNϕ − i

N ðrÞ
dr
l
; A1 ¼ N ðrÞ

�
dϕþ i

dt
l

�
;

A2 ¼
�
rNϕ þ i

r
l

��
dϕþ i

dt
l

�
; r > rþ: (13)

In the exterior region, r > r2þ, one can make the trans-
formation to Fefferman-Graham–like coordinates (ρ, w, w̄)
defined by

ρ ¼ ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2þ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2−

p
2l

�
;

w ¼ ϕþ it=l; w̄ ¼ ϕ − it=l (14)

and obtain the form of the metric,

ds2 ¼ −l2dρ2 þ 1

2
ðLdw2 þ L̄dw̄2Þ

þ
�
l2e2ρ þ LL̄

4
e−2ρ

�
dwdw̄; (15)

where the zero modes L, L̄ are defined by
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Lþ L̄ ¼ Ml; L − L̄ ¼ iJ: (16)

Note that ρ here is a time coordinate (see e.g. [37]).
This coordinate system is better suited than the

Schwarzschild one for conducting the asymptotic sym-
metry analysis of dS3 and its identification with Euclidean
Virasoro algebra and its charges [8]. As we have worked
out in our previous paper [28], the corresponding SLð2; CÞ
gauge field is

A ¼ iT0dρþ
��

eρ − L
2l
e−ρ
�
T1

þi

�
eρ þ L

2l
e−ρ
�
T2

�
dw: (17)

One can obtain the above Kerr-dS3 connection from a
primitive connection a given by

a ¼
��

1 − L
2l

�
T1 þ i

�
1þ L

2l

�
T2

�
dw; (18)

free of any ρ dependence, by performing a single-valued
gauge transformation on a:

A ¼ B−1aB þ B−1dB; (19)

for

B ¼ exp ðiρT0Þ ¼ expðρL0Þ (20)

(because B, being a sole function of ρ, is single valued in
the ϕ direction).

B. Quotient cosmology

One can also construct de Sitter quotients containing
(spinning) big bang/big crunch singularities [8] (also
reviewed in [38] ). These quotients are locally given by
the same exterior Kerr-de Sitter metric (12). But since t and
r switch their roles and become spacelike and timelike,
respectively, we are better off switching their roles in the
metric itself,

ds2 ¼ − t2l2

ðt2 þ r2−Þðt2 − r2þÞ
dt2 þ ðt2 þ r2−Þðt2 − r2þÞ

t2l2
dr2

þ t2
�
dϕþ rþr−

t2
dr

�
2

: (21)

The quotient cosmology arises when we compactify r into a
circle. With r and ϕ both being periodic, the future and past
infinities of this quotient cosmology have the topology of a
torus, S1 × S1, as opposed to R × S1 for the case of the
Kerr-de Sitter universe. Also with a periodic r, this metric
cannot be extended to −rþ < t < rþ, where grr < 0 and
one has closed timelike curves. Removing this region then
leaves us with a big bang (big crunch)–like solution for

t > rþ (t < rþ), with the r-ϕ torus degenerating to a circle
[8]. This is an example of a causal structure singularity [2],
and these are the analogues of higher dimensional curvature
singularities in 2þ 1 dimensions. These singularities were
shown to be removable via a higher spin gauge trans-
formation when we embedded this metric into a spin-3
SLð3Þ theory in [28].
Since the quotient cosmology is metrically identical to

the exterior regions of the Kerr-de Sitter universe, the
Fefferman-Graham gauge metric expression (15) and the
gauge connection expressions (17), (18), (20) also carry
over with the coordinate changes,

ρ ¼ ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − r2þ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ r2−

p
2l

�
;

w ¼ ϕþ ir=l; w̄ ¼ ϕ − ir=l: (22)

C. The higher spin cosmological gauge fields

In the SLð3Þ theory, the general primitive connection that
satisfies asymptotic (future) de Sitter falloff conditions is

a0 ¼
��

1 − L
2l

�
T1 þ i

�
1þ L

2l

�
T2 þ

W
8l

W−2
�
dw: (23)

L and W can be functions of z, but we will consider the
constant case in analogy with [29]. Explicit forms for the
generators can be found in [28].
We can transform from the primitive connection

a0 to A0, the fully ρ-dependent form, by applying the
transformation (20),

A0 ¼ iT0dρþ
��

eρ − L
2l
e−ρ
�
T1

þi

�
eρ þ L

2l
e−ρ
�
T2 þ

W
8l

e−2ρW−2
�
dw; (24)

which we call the Fefferman-Graham gauge because it
manifests the proper ρ → ∞ falloff behaviors, Eq. (8), as
derived in [31,33].
As the trace ofW−2 with any SLð3Þ generator is zero, we

find that the metric obtained from A0, Ā0 is the same as (15).
But the spin-3 field now attains a nonzero value. These
nonvanishing components of spin-3 fields are given by

φwww ¼ − i
8
l2W;

φwww̄ ¼ − i
24

lL̄We−2ρ þ i
24

l2W̄;

φww̄ w̄ ¼ − i
96

L̄2We−4ρ þ i
24

lL̄ W̄ e−2ρ;

φw̄ w̄ w̄ ¼ i
32

L̄2W̄e−4ρ: (25)
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In order to construct metrics (cosmologies) with non-
vanishing spin-3 charges (which will necessarily violate the
asymptotically dS falloff), we propose the following ansatz
for the primitive connection corresponding to a general
spin-3 cosmology,

a0 ¼
��

1 − L
2l

�
T1 þ i

�
1þ L

2l

�
T2 þ

W
8l

W−2
�
dw

þ μ½W2 þ w0W0 þ w−2W−2 þ tðT1 − iT2Þ�dw̄;
(26)

where μ, w0, w−2 and t are constants. The motivation for
this comes from the fact that under a suitable set of
analytical continuations of the charges and sign of the
cosmological constant (which will be elaborated in the
following sections), de Sitter higher spin cosmologies turn
into the Euclidean sections of AdS higher spin black hole
solutions of [29] [much like in the case of pure gravity or
the SLð2Þ sector, Kerr-dS3 solutions continue on to
Euclidean BTZ black holes].
Now, the connection (26) is an off-shell object, and it

contains too many independent parameters. Restricting on
shell, we find that the connection has to be of the form

a0 ¼
��

1 − L
2l

�
T1 þ i

�
1þ L

2l

�
T2 þ

W
8l

W−2
�
dw

þ μ

�
W2 − L

2l
W0 þ

L2

16l2
W−2 þ

W
l
ðT1 − iT2Þ

�
dw̄:

(27)

Now, although the connection is on shell, it is still
arbitrary in the sense that one does not know whether such
solutions make a regular or singular contribution to the
Hartle-Hawking wave function (or, equivalently, when
continued to Euclidean AdS, the corresponding Gibbons-
Hawking partition function, ZECFT). Just as in the second-
order or metric formulation of gravity, this is guaranteed by
demanding the regularity of the Euclidean section of the
metric, in the case of the first-order or connection formu-
lation, it is fixed by demanding triviality of the gauge
connection A along contractible circle(s). The nontrivial
topology of the connection is captured by the holonomy
matrix or the Wilson loop operator along any contractible
circle C,

HolCðAÞ≡ B−1 exp

�I
C
dxμaμ

�
B ¼ eHC : (28)

The triviality of the connection is ensured when this
holonomy matrix is equal to identity. Equivalently, this
means that the matrix HC has eigenvalues ð0;−2 πi; 2πiÞ.
In the case of Kerr-dS3 and its spin-3 generalizations, one
has a contractible thermo-angular circle,

ðt;ϕÞ ∼ ðtþ iβ;ϕþ iβΩÞ: (29)

Equivalently, if one defines τ ¼ β
2π ð1 − iΩlÞ, this thermo-

angular circle can be reexpressed as ðw; w̄Þ ∼
ðwþ 2πτ=l; w̄þ 2πτ̄=lÞ: The associated holonomy is

HolðaÞ ¼ B−1 exp

�Z
iβ

0

dtat þ
Z

iβΩ

0

dϕaϕ

�
B

¼ B−1 exp

�Z
iβ

0

dtiðaw − aw̄Þ=l

þ
Z

iβΩ

0

dϕðaw þ aw̄Þ
�
B

¼ B−1 exp ½−ð2πτaw − 2πτ̄aw̄Þ=l�B
¼ eWðaÞ: (30)

This means that the matrix WðaÞ should have eigenvalues
ð0;−2πi; 2πiÞ2. These two (complex) conditions entirely
fix the charges L, W in terms of the potentials β, μ.
For generic gauge connections it is nontrivial to compute

the holonomy matrix exactly. Since all we need are its
eigenvalues, we are perfectly fine to work with the matrix
expð ~wðaÞÞ; ~wðaÞ≡−ð2πτaw − 2πτ̄aw̄Þ instead, since it is
related to the holonomy matrix expðWðaÞÞ by a single-
valued gauge transformation (similarity transformation) B
and hence has the same eigenvalue spectrum. Demanding
that the eigenvalues of the ~wz be ð0;−2πi; 2πiÞ implies

det ð ~wðaÞÞ ¼ 0; Tr½ ~wðaÞ2� ¼ −8π2;
Tr½ ~wðaÞ� ¼ 0; (31)

which translate to the following relations determining the
charges L, W in terms of the potentials τ, μ,

27l2τ3W−36lτ2αL2−54lτα2LW−54lα3W2−8α3L3¼0

1−2τ2L
l3

−6ταW
l3

þ4

3

α2L2

τ2l2
¼0; (32)

where α ¼ μτ̄.

2Of course, one could consider the eigenvalues to be integer
multiples of �2πi, in general, to get trivial holonomy. This
ambiguity is directly tied to the ambiguity in identifying the
period of the thermal circle with the inverse temperature, which in
turn is ultimately tied to fixing the asymptotics of the geometry
[39]. The choice ð0;−2πi; 2πiÞ can be found in Sec. 5.4 of [29]. It
is easy to see from (30) that once we fix a period τ, scaling the
holonomy eigenvalues by N can only be accomplished by scaling
the primitive connection a in (27). But this results in a metric (and
connection A) that will violate the standard Brown-Henneaux
falloffs (and their higher spin generalizations). This is again
ultimately tied to the fact that the asymptotic falloffs are defined
after fixing the asymptotic coordinates; the Killing vectors are
normalized at infinity. Note that the norm of the Killing vector
that turns null at the horizon is crucial for determining the surface
gravity or temperature [39].
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Since we are already familiar with the exact solution for
purely spin-2 charges, i.e. mass and angular momentum,
we can now obtain a solution to the charges in the presence
of spin-3 potentials in a perturbation series in the spin-3
chemical potential, μ:

W ¼
X∞
i¼1

aiμi L ¼ l
2τ2

þ
X∞
j¼1

bjμj: (33)

Substituting this into Eq. (32) and solving both equations
to quadratic order μ, we get the following perturbative
solution for L and W,

L
l
¼ l2

2τ2
− 5α2l4

6τ6
þ � � � ;

W
l
¼ αl4

3τ5
− 20α3l6

27τ9
þ � � � : (34)

These solutions satisfy the “integrability conditions” (as
can be checked order by order),

∂L
∂α ¼ ∂W

∂τ ; (35)

pointing out the existence of a bulk (Euclidean)
action I,

δI ∼ δτLþ δαW; (36)

with L andW being functions of τ, α. The basic reason why
Eq. (35) arises is because we are demanding that there be an
underlying partition function description for the system (the
exponential of the action being the semiclassical partition
function). The integrability condition is the statement that
the double derivatives of the partition function (with respect
to α and τ) commute. A closely related discussion can be
found in Sec. (5.2) of [29]. The precise form of the action
functional requires taking care of various subtleties (see
[42]). We will make use of their results when we make
comparisons with the AdS case.
For the (higher spin) AdS case, the integrability con-

ditions were understood [29] to be integrability conditions
of a boundary CFT partition function ZCFT dual to the
higher spin AdS bulk theory (as expected from AdS=CFT).
The on-shell bulk action Ion-shell is the saddle-point con-
tribution to ZCFT, corresponding to the classical higher spin
black hole configuration. Similarly, it will be shown in
Sec. IV that the integrability conditions Eqs. (32), (34) for
the case of (higher spin) de Sitter connections apply to a
putative dual Euclidean CFT partition function ZCFT�. It
will also be shown that the two partition functions (ZCFT,
ZCFT�) are related by a suitable “Wick rotation” of the
Cherns-Simons level number (cosmological constant) and
gauge theory charges (mass, spin, spin-3 charges).
Finally, we apply the radial gauge transformation (20) to

obtain full radial dependence,

A0 ¼ iT0dρþ
��

eρ − e−ρ L
2l

�
T1 þ i

�
eρ þ e−ρ L

2l

�
T2 þ e−2ρW

8l
W−2

�
dw

þ μ

�
e2ρW2 − L

2l
W0 þ e−2ρ L2

16l2
W−2 þ e−ρW

l
ðT1 − iT2Þ

�
dw̄;

Ā0 ¼ −iT0dρþ
��

eρ − e−ρ L̄
2l

�
T1 − i

�
eρ þ e−ρ L̄

2l

�
T2 þ e−2ρ W̄

8l
W−2

�
dw̄

þ μ̄

�
e2ρW2 − L

2l
W0 þ e−2ρ L2

16l2
W−2 þ e−ρ W̄

l
ðT1 þ iT2Þ

�
dw: (37)

The corresponding metric expression is

ds2 ¼ −l2dρ2 þ
�
lL
2
þ lWμ̄

2
− 1

2
e−2ρLW̄ μ̄− L̄2μ̄2

3

�
dw2 þ

�
lL̄
2
þ lW̄μ

2
− 1

2
e−2ρL̄Wμ − L2μ2

3

�
dw̄2

×

�
1

2
e2ρl2 − 3 lWμ

4
− 3lW̄ μ̄

4
þ L2μμ̄

8
þ LL̄μμ̄

12
þ L̄2μμ̄

8
þ 1

8
e−2ρðLL̄þ 4WW̄μμ̄Þ

�
dwdw̄; (38)

while the expressions for the nonvanishing spin-3 field components are
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ψρρw ¼ 1

18
il2L̄ μ̄; ψρρw̄ ¼ − 1

18
il2Lμ;

ψwww ¼ − 1

8
il2W þ 1

16
ilL2μ̄þ 1

24
ilLL̄ μ̄þ 1

16
ilL̄2μ̄ − 1

12
ilL̄Wμ̄2 þ 1

27
iL̄3μ̄3

þ 1

4
ie−2ρ

�
lWW̄ μ̄− 1

6
LL̄ W̄ μ̄− 1

2
L̄2W̄μ̄2

�
− 1

8
ie−4ρWW̄2μ̄2 þ ie−4ρL̄2W̄2μ̄3

16l
;

ψ w̄ w̄ w̄ ¼ − 1

4
ie4ρl3μþ 1

2
ie2ρl2Wμ2 − 1

24
ilLL̄μþ 1

12
ilLW̄μ2 − 1

27
iL3μ3 − 1

4
ilW2μþ 1

24
ie−2ρLL̄Wμ2

þ 1

32
ie−4ρ

�
L̄2W̄ − L2L̄2μ

2l

�
;

ψwww̄ ¼ 1

12
ie2ρ
�
l2Lμ̄þ 1

3
il2L̄ μ̄

�
þ 1

24
il2W̄ − 1

18
ilL2μ − 1

18
ilLWμμ̄ − 1

72
iL2L̄μμ̄2 − 1

108
iLL̄2μμ̄2 − 1

72
iL̄3μμ̄2

þ ie−2ρ
12

�
1

12
LL̄2μ̄þ 1

4
L̄3μ̄ − lW̄2μ̄ − 1

2
lL̄W þ 2

3
L2W̄μμ̄þ 1

36
L̄WW̄μμ̄2

�

− ie−4ρ
24

�
L̄3W̄μ̄2

2l
− L̄WW̄ μ̄−W̄3μ̄2 þ L2W̄2μμ̄2

2l

�
;

ψwww̄ ¼ 1

12
ie4ρl3μ̄ − ie2ρl2

�
1

9
Lμþ 1

6
Wμμ̄

�

þ 1

12
i

�
lLWμ2 þ 1

6
lL̄2μ̄ − 1

3
lL̄ W̄ μμ̄þ 1

6
L3μ2μ̄þ 1

9
L2L̄μ2μ̄þ 1

6
LL̄2μ2μ̄þ lW2μ2μ̄

�

þ 1

12
ie−2ρ

�
lL̄ W̄ − 1

3
L2L̄μ − 1

6
L̄2Wμμ̄ − 1

3
LWW̄μ2μ̄

�
− 1

24
ie−4ρ

�
L̄2W − L̄4μ̄

8l
þ L̄W̄2μ̄ − L2L̄ W̄ μμ̄

2l

�
: (39)

D. Schwarzschild gauge

The Fefferman-Graham (FG) gauge expressions only
cover part of the spacetime outside the horizon. In this
section, we describe the solution of the gauge connection in
Schwarzschild gauge. For simplicity, we will consider the
purely nonrotating case from now on,

L ¼ L̄; W̄ ¼ −W and μ̄ ¼ −μ: (40)

The metric in FG gauge is then

gρρ¼−l2; gtt¼
�
eρ−Lþ2Wμ

2l
e−ρ
�

2

;

gϕϕ¼ l2
�
eρþL−2Wμ

2l
e−ρ
�

2

þ4L2jμj2
3

−2 lWμ: (41)

We observe that there is a horizon, i.e. gtt vanishes, at

ρþ ¼ 1

2
ln

�
Lþ 2 Wμ

2l

�
: (42)

Now, we can introduce the Schwarzschild radial coordinate
r [motivated by the definition of the Schwarzschild radial
coordinate for the pure SLð2Þ case],

ρ ¼ ln

�
rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2þ

p
2l

�
; (43)

where r2þ is

r2þ ¼ 2lðLþ 2 WμÞ: (44)

In the limit μ ¼ 0, the above equation reduces to the pure
SLð2Þ case, Eq. (14). In the Schwarzschild-like gauge the
metric is given by

ds2 ¼ − l2

r2 − r2þ
dr2 þ 2ðLþ 2 WμÞ

lr2þ
ðr2 − r2þÞdt2

þ
��

rL
Lþ 2 Wμ

þ 2 lμW
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2þ

p
Lþ 2 Wμ

�2

þ 4L2jμj2
3

− 2 lWμ

�
dϕ2: (45)

We also note that gϕϕ > 0, as it is a sum of manifestly
positive quantities [W and μ are imaginary quantities with
the same sign vide (34)] and there are no closed timelike
curves in the ϕ direction.

HIGHER SPIN COSMOLOGY PHYSICAL REVIEW D 89, 045007 (2014)

045007-7



E. Higher spin quotient cosmologies

Now that we have the metric expressions for the
higher spin versions of the Kerr de Sitter universe in
Schwarzschild gauge (45) outside the cosmological hori-
zon, one can write the metric for higher spin generalizations
of the quotient cosmologies (21) by simply swapping
r and t.

ds2¼− l2

t2−r2þ
dt2þ2ðLþ2WμÞ

lr2þ
ðt2−r2þÞdr2

þ
��

Ltþ2 μW
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2−r2þ

p
Lþ2Wμ

�2

þ4L2jμj2
3

−2 lwμ

�
dϕ2:

(46)

Just as in the case for the SLð2Þ quotient cosmology, r is
now compactified into a circle and this metric cannot be
continued inside the horizon rþ. As a result, it contains big
bang/big crunch–like singularities at t ¼ �rþ when the r
circle degenerates to a point, exactly like its SLð2Þ cousin.
It will be interesting to consider the resolution of these
singularities along the lines of [28], but we will not pursue
this here.

IV. THERMODYNAMICS OF ASYMPTOTICALLY
DE SITTER CONNECTIONS

The aim of this section is to derive a consistent
thermodynamics for asymptotically dS3 spin-2 connections
in the Chern-Simons language. In a metric (second order)
formalism of gravity, more precisely, spin-2 gravity,
thermodynamics of spacetimes containing horizons of
any kind is provided by the Gibbons-Hawking generali-
zation [40] of the black hole thermodynamics of Bardeen,
Carter and Hawking [41]. However, as we shall see, in the
Chern-Simons or first order setup, a consistent thermody-
namics is obtained extremely efficiently by first mapping
de Sitter solutions to Euclidean AdS (EAdS) solutions and
then demanding integrability conditions on free energy
(equivalently, partition function) of a putative Euclidean
CFT located on the future infinity of the asymptotically de
Sitter connections (same as the conformal boundary of the
analytically continued EAdS solution). Maldacena [12]
notes that the conformal patch of dS,3

ds2 ¼ −dη2 þ dx2
d

η2=l2
; (47)

goes over to the Poincare patch of the EAdS, under
l2 → −l2 and η2 → −z2,

ds2 ¼ dz2 þ dx2
d

z2=l2
: (48)

Then he proposes that for any asymptotic (in time) de Sitter
space,

ΨHartle-Hawking ¼ ZCFT�; (49)

since for EAdS one has the celebrated AdS-CFT conjecture
ZESUGRA ¼ ZCFT: Under the identifications, the Euclidean
path integral in AdS becomes the Hartle-Hawking wave
function of dS. Next we construct a similar map between
the exterior regions of Kerr de Sitter and Euclidean BTZ
black holes and then generalize to the higher spin case
where the bulk action would be a first order action instead
of a second order (metric) action.

A. Wick rotation from Kerr de Sitter to EBTZ

We simply write down these identifications for the FG
gauge,

ρdS → ρEAdS þ i
π

2
; tds → itEAdS; ldS → ilEAdS; (50)

LdS; L̄dS → −iLEAdS;−iL̄EAdS;

MdS; JdS → −MAdS;−JAdS: (51)

Under these identifications, the KdS3 metric Eq. (12) goes
over to

ds2 → d~s2

¼ l2dρ2 þ l
2
ðLdw2 þ L̄dw̄2Þ

þ
�
l2e2ρ þ LL̄

4
e−2ρ

�
dwdw̄ (52)

but now with

L ¼ Mlþ J
2

; L̄ ¼ Ml − J
2

: (53)

This is evidently a Euclidean metric. To determine whether
this is the Euclidean BTZ (EBTZ) metric, we write the
EBTZ metric expressions directly from Euclideanizing the
Lorentzian BTZ,

ds2 ¼ l
2
ðLþdwþ2 þ L−dw−2Þ

þ
�
l2e2ρ þ LþL−

4
e−2ρ

�
dwþdw− þ l2dρ2;

w� ¼ ϕ� t
l
; (54)

3In other words, the upper quadrant in the dS Penrose diagram
containing the infinite future at η ¼ 0 and bounded by the horizon
at η ¼ 1. No light rays from the infinite past can reach this region.
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where the “zero modes” Lþ, L− are defined in terms of the
mass and the spin by

Lþ ¼ Mlþ J
2

; L− ¼ Ml − J
2

: (55)

Upon replacing t → itE, we obtain the EBTZ metric,

ds2 ¼ l
2
ðLþdw2 þ L−dw̄2Þ

þ
�
l2e2ρ þ LþL−

4
e−2ρ

�
dwdw̄þ l2dρ2;

w ¼ ϕþ itE
l
; w̄ ¼ ϕ − itE

l
:

(56)

Clearly, this is identical to the wick-rotated KdS3
metric Eq. (52).

1. Schwarzschild gauge wick rotation

In Schwarzschild-like coordinates, the Kerr-dS3 metric
9, using the identifications 51, becomes

d~s2 ¼ N2dt2 þ N−2dr2 þ r2ðiNϕdtþ dϕÞ2;

N2 ¼ −M þ r2

l2
þ J2

4r2
; Nϕ ¼ J

2r2
:

(57)

The Lorentzian exterior BTZ metric Eq. (54) reads

ds2 ¼ −N2dt2 þ N−2dr2 þ r2ðNϕdtþ dϕÞ2;

N2 ¼ −M þ r2

l2
þ J2

4r2
; Nϕ ¼ J

2r2
;

(58)

which, upon Euclideanizing, i.e. t → itE,

ds2 ¼ N2
Edt

2
E þ dr2=N2

E þ r2ðiNϕ
EdtE þ dϕÞ2;

N2
E ¼ −M þ r2

l2
þ J2

4r2
; Nϕ

E ¼ J
2r2

:
(59)

One can write a metric expression in terms of outer and
inner horizons for the BTZ along the lines of 12,

ds2 ¼ − ðr2 − r2þÞðr2 − r2−Þ
r2l2

dt2

þ r2l2

ðr2 − r2þÞðr2 − r2−Þ
dr2 þ r2

�
dϕþ rþr−

r2
dt
l

�
2

;

r > rþ (60)

with

r2� ¼ Ml2

2

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
J
Ml

�
2

s !
: (61)

So the identifications are

rþ → rþ; ðr−ÞKdS3 → −iðr−ÞBTZ: (62)

For KdS3 note that in terms of L, L̄,

rþ ¼
ffiffiffiffiffi
Ll

p þ
ffiffiffiffiffi
L̄l

p
ffiffiffi
2

p ; r− ¼
ffiffiffiffiffi
Ll

p þ
ffiffiffiffiffi
L̄l

p
ffiffiffi
2

p (63)

r2þ þ r2− ¼ 2
ffiffiffiffiffiffiffiffiffiffi
LL̄l2

p
: (64)

So, the temperature inverse of KdS3 in terms of L, L̄ is

β

2π
¼ l2

2

�
1ffiffiffiffiffiffiffiffiffi
2 Ll

p þ 1ffiffiffiffiffiffiffiffi
2L̄l

p
�
: (65)

For nonrotating KdS3, τ ¼ β=2π, and we have

L
l
¼ l2

2τ2
: (66)

Again, the metric (59) is exactly that of the Wick-rotated dS
metric in Schwarzschild coordinates, Eq. (57).

B. The dS-AdS wick rotation at work:
Equivalence of thermodynamics

in the metric formulation

In order to further solidify our heuristic identifications,
we show that under these identifications the Gibbons-
Hawking thermodynamics [40], including the temperature
and entropy of the Kerr-dS3 solution, maps onto those of
the wick-rotated EBTZ solutions.
(1) The entropies for either geometry are the same since

the entropy of either cosmological or black hole
horizons in the Gibbons-Hawking framework is
given by

S ¼ 1

4G
ðHorizonAreaÞ ¼ 2ð2πrþÞ ¼ 4πrþ: (67)

This is borne out by our heuristic identifications,
since rþ → rþ.

(2) The temperature of KdS3 is given by Gibbons-
Hawking thermodynamics by the conical singularity
trick,

TKdS3 ¼
r2þ þ r2−
2πl2rþ

: (68)
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Using the identification Eq. (62) and the additional
identification Tds → −TAdS,

4 this temperature contin-
ues to the Hawking temperature of the corresponding
BTZ black hole,

TBTZ ¼ r2þ − r2−
2πl2rþ

: (72)

(3) The chemical potential conjugate to the angular
momentum is

ΩKdS3 ¼ −T ∂S
∂J ¼ − r−

rþl
: (73)

Again, under the identifications, we obtain the
expected behavior ΩdS → ΩAdS since JdS → −JAdS.5
We note that ΩBTZ ¼ r−

rþl
: Parenthetically, we note that

when we move to Euclidean BTZ, we need to define
JEAdS ¼ −iJAdS and consequently the new conjugate
ΩEAdS ¼ iΩAdS, so that the respective identifications
are JdS → −iJEAdS and ΩKdS3 → −iΩEBTZ.

Since under the identifications, one can successfully map
any dS thermodynamic quantities like entropy, internal
energy, angular charges and their respective conjugates to
AdS quantities, the laws of thermodynamics will continue
as well. When higher spin charges are added, we will
demand a similar statement to hold with higher spin
charges and chemical potential added to the thermody-
namical relations.

C. Thermodynamics in the Chern-Simons formulation

So far everything we discussed was in the SLð2; CÞ
sector of the theory with just metric or spin-2 fields turned

on, but we extend this analogy to the full SLð3; CÞ sector,
i.e. when both metric and spin-3 fields are present. In that
case though we do not know the generalization of the
Gibbons-Hawking thermodynamics [41]. However, taking
dS=CFT as a principle, we can propose that the thermo-
dynamics of a dS connection is identical to that of a suitably
continued Euclidean AdS connection, i.e. a higher spin
AdS black hole [29]. The thermodynamics of SLð3; CÞ-
valued Euclidean AdS3 connections for higher spin
black holes (connected to BTZ, i.e. the so-called “BTZ”
branch) has been shown to be dictated by the integrability
conditions of the free energy of a dual CFT [29]. These
conditions can be cast in a gauge-invariant form by
the holonomy conditions [29]. Under the correct identi-
fications of charges and potentials, the integrability or
holonomy conditions of a dS connection should continue to
those of an AdS connection. Turning this fact around, we
expect the charges we obtain as functions of the potentials μ
and T on solving the integrability conditions on the dS side
(34), to reproduce the respective solutions of the AdS
integrability conditions [42] upon making the dS-to-AdS
identifications. For AdS, the solution to the holonomy
conditions is

Lþ

l
¼ l2

2τ2
þ10

3

α2l4

τ6
þ���; Wþ

l
¼−4

3

αl4

τ5
þ��� : (75)

We have the identifications for the spin-3 charges when
going from dS to AdS,

αAdS ¼ αdS
2

; Wþ
AdS ¼ −2iWdS; (76)

or

μAdS ¼ − μdS
2

; Wþ
AdS ¼ −2iWdS: (77)

1. The action and Free energy in the CS theory

To compute ZCFT from the bulk gauge theory, we make
use of the saddle-point approximation,

ZCFT ¼ ZðEÞSUGRA ¼ eI
On-shell
E (78)

where IE is the Euclidean bulk action, defined in terms of
the original action I by

IE½Fðx; tÞ� ¼ iI½Fðx; itEÞ�: (79)

The Chern-Simons action without any supplementary
boundary terms,

ICS ¼
k

4πεR

Z
Tr

�
AdAþ 2

3
A3

�
; εR ¼ 4; (80)

4This temperature sign flip is a direct result of the flip in the
sign of the mass parameter or “internal energy” M in identi-
fication 51. The conjugacy relation

T−1 ¼ ∂S
∂M (69)

shows us that one needs to perform

TdS → −TAdS (70)

in consonance with

MdS → −MAdS: (71)

5Since going from dS to AdS implies the replacements S → S,
J → −J and β → −β, we must haveΩ → Ω in order to reproduce
the correct thermodynamic relation,

∂S
∂J ¼ −Ωβ: (74)
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is the right action for the SLð2Þ sector. On shell this
becomes [43]

ICS½A� ¼ − k
4πϵR

Z
dtdϕTrðAtAϕÞ: (81)

For the SLð3Þ sector one needs to add new boundary terms
as formulated in [35,36]. But it is easy to see that a similar
map, as we are presenting below, will also hold for the
boundary terms, so in the following, we will illustrate it
only for the bulk terms. Using (5.1) of [29],

IEAdSOn-shell ¼ − 2 βL
l

þ 16βμ2L2

3l2
: (82)

The higher spin de Sitter on-shell action turns out to be6

~IdSOn-shell ¼ −
�
2 βL
l

þ 4

3

βμ2L2

l2

�
: (85)

Again, using the identifications, we see that the dS on-shell
action reproduces the EAdS on-shell action (82),

~IdSOn-shell ¼ IEAdSOn-shell: (86)

Thus, we have demonstrated that the higher spin general-
izations of Kerr de Sitter universes are related to (higher
spin) AdS black holes just as they were in the pure gravity
(spin-2) case in the metric formulation. However, this on-
shell action is not yet equal to a −βΦ, where Φ is the grand
“higher spin" canonical potentialΦ ¼ E − TS − μW. But it
is possible to add boundary or supplementary terms and
change the action ~IdSOn-shell to a new action IOn-shell such that

−IOn-shell ¼ βΦ: (87)

Such a procedure was conducted in the anti–de Sitter case
in [42] [see their Sec. (2.2)]. For our de Sitter case, the
necessary extra terms can be obtained from their expres-
sions by the AdS-dS identifications (51) and (77), in exact
analogy with our computation here for the bulk terms. The
match between our entropy and the higher spin AdS3 black
hole entropy [44] is a natural consequence, and we have
explicitly checked this. This concludes our discussion
about the connection between the thermodynamics of the
Kerr-dS3 solution and that of higher spin black holes
in AdS3.
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(83)

with

k ¼ −2 il: (84)

HIGHER SPIN COSMOLOGY PHYSICAL REVIEW D 89, 045007 (2014)

045007-11

http://dx.doi.org/10.1103/PhysRevLett.69.1849
http://dx.doi.org/10.1103/PhysRevLett.69.1849
http://dx.doi.org/10.1103/PhysRevD.48.1506
http://dx.doi.org/10.1016/0550-3213(88)90143-5
http://dx.doi.org/10.1016/0370-2693(86)90140-1
http://dx.doi.org/10.1016/0370-2693(86)90140-1
http://dx.doi.org/10.1007/BF01211590
http://dx.doi.org/10.1007/BF01211590
http://dx.doi.org/10.1016/S0370-2693(98)01119-8
http://dx.doi.org/10.1103/PhysRevD.65.123508
http://dx.doi.org/10.1103/PhysRevD.65.123508
http://arXiv.org/abs/hep-th/0110007
http://arXiv.org/abs/hep-th/0110007
http://arXiv.org/abs/hep-th/0106109
http://dx.doi.org/10.1088/1126-6708/2001/11/049
http://dx.doi.org/10.1088/1126-6708/2003/05/013
http://dx.doi.org/10.1016/j.nuclphysb.2008.01.002
http://arXiv.org/abs/hep-th/0503066
http://dx.doi.org/10.1088/1126-6708/2001/07/003
http://dx.doi.org/10.1088/1126-6708/2002/08/045
http://dx.doi.org/10.1088/1126-6708/2002/08/045
http://dx.doi.org/10.1088/1126-6708/2002/10/011
http://dx.doi.org/10.1088/1126-6708/2002/10/011
http://dx.doi.org/10.1088/0264-9381/24/13/019
http://dx.doi.org/10.1088/0264-9381/24/13/019
http://dx.doi.org/10.1016/S0920-5632(01)01545-6
http://dx.doi.org/10.1016/S0920-5632(01)01545-6
http://dx.doi.org/10.1016/S0003-4916(87)80025-8
http://dx.doi.org/10.1016/S0003-4916(87)80025-8


[21] E. Fradkin and M. A. Vasiliev, Phys. Lett. B 189, 89 (1987).
[22] M. A. Vasiliev, JETP Lett. 51, 503 (1990).
[23] M. A. Vasiliev, Phys. Lett. B 243, 378 (1990).
[24] M. A. Vasiliev, Phys. Lett. B 285, 225 (1992).
[25] M. A. Vasiliev, arXiv:hep-th/9910096.
[26] C. Fronsdal, Phys. Rev. D 18, 3624 (1978).
[27] M. Blencowe, Classical Quantum Gravity 6, 443 (1989).
[28] C. Krishnan and S. Roy, arXiv:1305.1277.
[29] M. Gutperle and P. Kraus, J. High Energy Phys. 05 (2011)

022.
[30] M. Ammon, M. Gutperle, P. Kraus, and E. Perlmutter, J.

High Energy Phys. 10 (2011) 053.
[31] P. Ouyang, arXiv:1111.0276.
[32] S. Lal and B. Sahoo, J. High Energy Phys. 01 (2013) 004.
[33] A. Campoleoni, S. Fredenhagen, S. Pfenninger, and S.

Theisen, J. High Energy Phys. 11 (2010) 007.
[34] M. Henneaux and S.-J. Rey, J. High Energy Phys. 12

(2010) 007.

[35] M. Banados, R. Canto, and S. Theisen, J. High Energy Phys.
07 (2012) 147.

[36] J. de Boer and J. I. Jottar, arXiv:1302.0816.
[37] S. de Buyl, S. Detournay, G. Giribet, and G. S. Ng,

arXiv:1308.5569.
[38] A. Castro and A. Maloney, J. High Energy Phys. 11 (2012)

096.
[39] C. Krishnan, arXiv:1011.5875.
[40] G. Gibbons and S. Hawking, Phys. Rev. D 15, 2738

(1977).
[41] J. M. Bardeen, B. Carter, and S. Hawking, Commun. Math.

Phys. 31, 161 (1973).
[42] J. R. David, M. Ferlaino, and S. P. Kumar, J. High Energy

Phys. 11 (2012) 135.
[43] M. Banados, T. Brotz, and M. E. Ortiz, Nucl. Phys. B545,

340 (1999).
[44] P. Kraus and T. Ugajin, J. High Energy Phys. 05 (2013) 160.

KRISHNAN et al. PHYSICAL REVIEW D 89, 045007 (2014)

045007-12

http://dx.doi.org/10.1016/0370-2693(87)91275-5
http://dx.doi.org/10.1016/0370-2693(90)91400-6
http://dx.doi.org/10.1016/0370-2693(92)91457-K
http://arXiv.org/abs/hep-th/9910096
http://dx.doi.org/10.1103/PhysRevD.18.3624
http://dx.doi.org/10.1088/0264-9381/6/4/005
http://arXiv.org/abs/1305.1277
http://dx.doi.org/10.1007/JHEP05(2011)022
http://dx.doi.org/10.1007/JHEP05(2011)022
http://dx.doi.org/10.1007/JHEP10(2011)053
http://dx.doi.org/10.1007/JHEP10(2011)053
http://arXiv.org/abs/1111.0276
http://dx.doi.org/10.1007/JHEP01(2013)004
http://dx.doi.org/10.1007/JHEP11(2010)007
http://dx.doi.org/10.1007/JHEP12(2010)007
http://dx.doi.org/10.1007/JHEP12(2010)007
http://dx.doi.org/10.1007/JHEP07(2012)147
http://dx.doi.org/10.1007/JHEP07(2012)147
http://arXiv.org/abs/1302.0816
http://arXiv.org/abs/1308.5569
http://dx.doi.org/10.1007/JHEP11(2012)096
http://dx.doi.org/10.1007/JHEP11(2012)096
http://arXiv.org/abs/1011.5875
http://dx.doi.org/10.1103/PhysRevD.15.2738
http://dx.doi.org/10.1103/PhysRevD.15.2738
http://dx.doi.org/10.1007/BF01645742
http://dx.doi.org/10.1007/BF01645742
http://dx.doi.org/10.1007/JHEP11(2012)135
http://dx.doi.org/10.1007/JHEP11(2012)135
http://dx.doi.org/10.1016/S0550-3213(99)00069-3
http://dx.doi.org/10.1016/S0550-3213(99)00069-3
http://dx.doi.org/10.1007/JHEP05(2013)160

