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We present an effective field theory study of radiation and radiation reaction effects for scalar and
electromagnetic fields in general spacetime dimensions. Our method unifies the treatment of outgoing
radiation and its reaction force within a single action principle. Central ingredients are the field doubling
method, which is the classical version of the closed time path formalism and allows a treatment of
nonconservative effects within an action, action level matching of system and radiation zones, and the use
of fields which are adapted to the enhanced symmetries of each zone. New results include compact
expressions for radiative multipoles, radiation, and radiation reaction effective action in any spacetime
dimension. We emphasize dimension-dependent features such as the difference between electric and
magnetic multipoles in higher dimensions and the temporal nonlocality nature of the effective action for
odd spacetime dimensions, which is a reflection of indirect propagation (“tail effect”) in the full theory.
This work generalizes the method and results developed for four dimensions in Phys. Rev. D 88, 104037
(2013) and prepares the way for a treatment of the gravitational case.
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I. INTRODUCTION

While extensive work has been done on the post-
Newtonian (PN) two-body problem in general relativity
(GR) in four spacetime dimensions (see Sec. I of paper I [1]
for a comprehensive review of existing literature), much
less is known in general spacetime dimensions (d). In this
paper we study PN radiative effects, namely radiation and
radiation reaction (RR), for (massless) scalar and electro-
magnetic (EM) theories in general d. We work within an
effective field theory (EFT) approach, which was intro-
duced in [2] to the PN limit of GR and applied to the study
of dissipative effects in four-dimensional GR also in [3–8].
Our study of nonconservative effects in scalar and EM
theories gives new results and insights into the problem
already in these physically important cases and lays
foundations for a comprehensive treatment of these effects
in higher d GR (see [9] for the first treatment of gravita-
tional radiation in higher d within the EFT approach),
where the main additional complication is the theory’s
nonlinearity.
The well known 4d Abraham-Lorentz-Dirac (ALD)

formula [10–13] gives the EM self-force on a point charge
in flat spacetime in a covariant manner. There has been an
extensive effort to generalize ALD to any d undertaken by
Kosyakov, Gal’tsov, Kazinski and others [14–22]. Joint
treatment of self-force under scalar, vector and tensor fields
has been given by [23–26]. As is well known, in even d
waves exhibit direct propagation, that is the Green’s
function is supported only on the light cone, while in
noneven d waves propagate also indirectly—exhibiting the

so-called tail effect. These features appear also in the above
treatments of RR, but to our knowledge a closed-form
formula for generalized ALD is available currently only for
EM in even d [16]. The very regularizability of RR in high
d is sometimes put to question in the above treatments.
Our method divides the problem into two zones, the

system and radiation zones (Fig. 1). Each zone has an
enhanced symmetry, namely a symmetry that is not a
symmetry of the full problem. Different symmetries emerge
when zooming out to the radiation zone or in to the system
zone. The system zone is approximately stationary (time
independent) since by assumption (of the PN approxima-
tion) all velocities are nonrelativistic. The radiation zone is
approximately spherically symmetric since the system
shrinks to a point at the origin and hence rotations leave
it invariant. Identifying symmetries is central to making
fitting choices for the formulation of a perturbation theory
in each zone, including the choice of how to divide the
action into a dominant part and a perturbation, the choice of
field variables and—when relevant—the choice of gauge.
Hence we insist on using spherical field variables (in fact,
symmetric trace-free tensors), following paper I and [27],
and unlike the more common plane-wave and wave-vectors
approach used in many EFT works [3–7].
As is well known, Hamilton’s traditional action formal-

ism is not compatible with dissipative effects. In order to
account for nonconservative effects within the action we
use the method of field doubling (see [8] for a crisp general
formulation) which is the classical version of the closed
time path or in-in formalism [28] introduced in the quantum
field theory context in the 1960s. In this method each
degree of freedom in the system is doubled and a
generalized action principle for the whole system (includ-
ing doubled fields) is constructed from the original action.
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Only after deriving equations of motion (EOM) from this
generalized action, one enforces the so-called physical
condition, identifying each field with its doubled counter-
part. The resulting forces in the EOM can be dissipative.
In order to formulate the whole problem within a single

action principle, we introduce new matching fields which
couple to system and radiation zone fields at an appropriate
boundary. We call these fields “two-way multipoles.” We
physically interpret them as the multipole moments of the
system (living at the origin of the radiation zone and at
infinity of the system zone), but they are treated as any
other field in the theory. Thereby, matching is lifted to the
level of the action.
The main goal of this paper is to compute, in general d,

the radiative multipoles, outgoing radiation, RR effective
action, dissipated energy and RR force in the cases of scalar
and electromagnetic fields, thereby generalizing the
method devised in paper I to general d. We comment that
this paper is not intended to be self-contained: the main
ideas and ingredients of our formulation are thoroughly
elaborated on in paper I, and here we generalize and apply
them to obtain new results in higher dimensions. The ability
to generalize the machinery set up in paper I in order to
obtain new results demonstrates the method’s efficiency.
Moreover, this generalization is natural since a central step
in the method is a reduction to one dimension (correspond-
ing to the radial coordinate)—and from there on the
treatment is very similar to the one done in 4d.
This paper is organized as follows: In Sec. 2 we treat the

scalar field case, which already contains most of our
formulation’s main ingredients. In particular this section
contains a thorough discussion of the tail effect in noneven
spacetime dimensions. In Sec. 3 we treat the EM case,
where one must account for the additional polarizations
available for general dimensional vector fields. In both
sections we also show explicitly successful comparisons to
known results in 4d and 6d. Sections 2 and 3 contain
detailed derivations of our results, intended to maximally
clarify our computations for interested readers. In Sec. 4 we
briefly summarize our main results and definitions. In

Sec. 5 we discuss these results and elaborate on future
directions.

A. Conventions and nomenclature

We use the mostly plus signature for the flat d-dimensional
spacetime metric ημν, as well as c ¼ 1. We denote
D ≔ d − 1, d̂ ≔ d − 3, and Ωd̂þ1 is the volume of a unit

d̂þ 1-dimensional sphere. Lowercase Greek letters denote
f0; 1;…; Dg spacetime indices, lowercase Latin letters
denote f1…Dg spatial indices, uppercase Greek letters
denote f1…ðd̂þ 1Þg indices on the sphere, uppercase
Latin letters are spatial multi-indices, and Hebrew letters
(ℵ) enumerate different vectorial harmonics on the sphere.

B. Field doubling conventions

We work in the Keldysh [28] representation of the field
doubling formalism, where for every field ϕ (and source
function) in the original action, we introduce a counterpart
ϕ̂, interpreted as the difference between the doubled
degrees of freedom, and with it a new EOM:

δŜ

δϕ̂
¼ 0: (1.1)

Ŝ is always linear in the hatted fields, so enforcing the
so-called physical condition φ̂ ¼ 0 (after the derivation of
EOM) is trivial.
We write the RR effective action Ŝ in terms of the

system’s multipoles and their doubled counterparts, which
are defined as

Q̂ ¼ δQ
δρ

ρ̂: (1.2)

In particular, for a source composed of point particles the
doubled multipoles are given by

Q̂ ¼
X
A

δQ
δxA

x̂A; (1.3)

FIG. 1 (color online). Schematic sketch of the two relevant zones. On the left side is the system zone, with a typical stationarylike field
configuration. On the right side is the radiation zone with its typical outspiraling waves.
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and the EOM for the Ath point particle is δŜ
δx̂A

¼ 0. For a
detailed survey of the doubling formalism used in this
paper, see Sec. II D of paper I.

II. SCALAR CASE

A. Spherical waves and double-field action

We start with a massless scalar field coupled to some
charge distribution in arbitrary spacetime dimension d. We
take the action to be

SΦ ¼ þ 1

2Ωd̂þ1G

Z
ð∂μΦÞ2rd̂þ1drdΩd̂þ1dt

−
Z

ρΦrd̂þ1drdΩd̂þ1dt; (2.1)

which leads to the usual field equation

□ϕ ¼ −Ωd̂þ1Gρ: (2.2)

1. Spherical waves: Conventions

We shall work in the frequency domain and use a basis of
spherical decomposition to multipoles. We note that any
symmetric trace-free tensor ϕLl

(l being given) can be
represented equivalently using the standard (scalar) spheri-
cal harmonic representation ϕlm [which form a basis of
dimension Dlðd̂þ 1; 0Þ1] or using functions on the unit
sphere ϕlðΩd̂þ1Þ, with the different forms related by

ϕlðΩd̂þ1Þ ¼ ϕLl

xLl

rl
¼

X
m

φlmYlmðΩd̂þ1Þ: (2.3)

We found it convenient to use the ϕL decomposition, which
is similar to the Maxwell Cartesian spherical multipoles
[31–34]. We thus decompose the field and the sources as

Φðr⃗; tÞ ¼
Z

dω
2π

X
L

e−iωtΦLωðrÞxL; (2.4)

ρðr⃗; tÞ ¼
Z

dω
2π

X
L

e−iωtρLωðrÞxL; (2.5)

where L ¼ ðk1k2…klÞ is a multi-index and xL is the
corresponding symmetric-trace-free (STF) multipole

xL ¼ ðxk1xk2…xklÞSTF ≡ rlnL: (2.6)

With gΩΩ
0
the metric on the d̂þ 1-dimensional unit sphere,

the xL are eigenfunctions of the Laplacian operator on that
sphere:

ΔΩd̂þ1
xL ¼ −csxL ¼ −lðlþ d̂ÞxL: (2.7)

For any dimension d, an orthogonal basis can be con-
structed from the multipoles, satisfying

Z
xLl

ðr;Ωd̂þ1ÞxL
0
l0ðr;Ωd̂þ1ÞdΩd̂þ1

¼ Nl;d̂r
2lΩd̂þ1δll0δLlL0

l0
; (2.8)

Z
gΩΩ

0∂ΩxLl
ðr;Ωd̂þ1Þ∂Ω0xL

0
l0 ðr;Ωd̂þ1ÞdΩd̂þ1

¼ cs · Nl;d̂r
2lΩd̂þ1δll0δLlL0

l0
; (2.9)

Nl;d̂ ¼
Γð1þ d̂=2Þ

2lΓðlþ 1þ d̂=2Þ ¼
d̂!!

ð2lþ d̂Þ!!: (2.10)

We use the summation conventions and definitions follow-
ing [1] (see Appendix B.1) and note that d ¼ 4 implies
d̂ ¼ 1, Nl;1 ¼ ð2lþ 1Þ!!−1. We also use the inverse
transformation

ρLωðrÞ ¼
Z

ρωðr⃗ÞxL
dΩd̂þ1

Nl;d̂Ωd̂þ1r
2l

¼
Z Z

dteiωtρðr⃗; tÞxL
dΩd̂þ1

Nl;d̂Ωd̂þ1r
2l : (2.11)

2. Spherical waves: Dynamics

In the new notation, using ΦL−ω ¼ Φ�
Lω, the action (2.1)

becomes

SΦ ¼ 1

2

Z
dω
2π

X
L

Z
dr

�
r2lþd̂þ1Nl;d̂

G
Φ�

Lω

�
ω2 þ ∂2

r

þ 2lþ d̂þ 1

r
∂r

�
ΦLω − ðρΦLωΦ�

Lω þ c:c:Þ
�
; (2.12)

with the source term defined as

ρΦLωðrÞ¼Nl;d̂Ωd̂þ1r
2lþd̂þ1ρLωðrÞ¼ rd̂þ1

Z
dΩd̂þ1ρωðr⃗ÞxL:

(2.13)
From (2.12) we derive the EOM

0 ¼ δS
δΦ�

Lω

¼ Nl;d̂r
2lþd̂þ1

G

�
ω2 þ ∂2

r þ
2lþ d̂þ 1

r
∂r

�
ΦLω − ρΦLω:

(2.14)

Defining x ≔ ωr the homogenous part of this equation is

�
∂2
x þ

2lþ d̂þ 1

x
∂x þ 1

�
ψl;d̂ ¼ 0; (2.15)

1Dlðn; sÞ is the number of independent spherical harmonics of

degree l and spin s on the n sphere. We use Dlðd̂þ 1; 0Þ ¼
ð2lþd̂Þðlþd̂−1Þ!

l!d̂!
[29,30].
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and its solutions ψl;d̂ ¼ ψα ¼ ~jα, ~yα, ~h
�
α (with α ¼ lþ d̂=2) are Bessel functions up to normalization (see Appendix B.2).

Thus the propagator for spherical waves is

(2.16)

where

Ml;d̂ ¼
π

22αþ1Nl;d̂Γ2ðαþ 1Þ ¼
π

2lþ1þd̂Γð1þ d̂=2ÞΓðlþ 1þ d̂=2Þ
; (2.17)

which we notice is equal to ½d̂!!ð2lþ d̂Þ!!�−1 for odd d̂ and to π
2
½d̂!!ð2lþ d̂Þ!!�−1 for even d̂. We turn to derive the source

terms (vertices) in the radiation zone. This is done through matching with the system zone according to the diagrammatic
definition

(2.18)

From the radiation zone point of view the sourcesQLω are located at the origin or r ¼ 0. Hence the radiation zone field can
be written as

(2.19)

In the full theory (or equivalently in the system zone), on the other hand, we can also use spherical waves to obtain the field
outside the source as

ΦLωðrÞ ¼ −
Z

dr0ρΦL0ωðr0ÞGΦ
retðr0; rÞ ¼ −

�Z
dr0~jαðωr0ÞρΦLωðr0Þ

�
ð−iGω2lþd̂Ml;d̂Þ ~hþα ðωrÞ

¼ −
�Z

dDx0 ~jαðωr0Þρωðr⃗0Þx0L�ð−iGω2lþd̂Ml;d̂Þ ~hþα ðωrÞ: (2.20)

By comparing the above expressions for the field (2.19) and (2.20) and using (2.11) to return to the time domain we find that
the radiation source multipoles are

QL ¼
Z

dDx~jαðir∂tÞxSTFL ρðr⃗; tÞ: (2.21)

We note that from the series expansion of ~jα (B8) it can be seen that QL includes only even powers of i∂t, for every
l, d̂, and is thus well defined and real. A simple test of substituting d ¼ 4 shows these multipoles coincide with the
multipoles given by Ross [35] and by paper I. We can think of this process as a “zoom out balayage” (French for sweeping
or scanning—see paper I) of the original charge distribution ρðr⃗Þ into QL carried out through propagation with ~jαðωrÞ. A
useful representation of this result is
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QL ¼
Z

dDx xSTFL

Z
1

−1
dzδ

l;d̂
ðzÞρðr⃗; uþ zrÞ; (2.22)

where (inspired by [36,37]) we have implicitly defined the d̂-dimensional generating time-weighted function

Z
1

−1
dzδ

l;d̂
ðzÞfðr⃗; uþ zrÞ ¼

Xþ∞

p¼0

ð2lþ d̂Þ!!
ð2pÞ!!ð2lþ 2pþ d̂Þ!! ðr∂uÞ2pfðr⃗; uÞ; (2.23)

remarking that for odd d̂ (even spacetime dimension),

δ
l;d̂
ðzÞ ¼ ð2lþ d̂Þ!!

2ð2lþ d̂ − 1Þ!! ð1 − z2Þlþðd̂−1Þ=2: (2.24)

Altogether the Feynman rules in the radiation zone for the propagator and vertices are

(2.25)

(2.26)

where for future use we allowed for a possible polarization label ϵ and a rational l, d̂-dependent factor Rϵ
s which is absent in

the scalar case, namely Rjs¼0 ¼ 1.

B. Outgoing radiation and the RR effective action

We can now use these Feynman rules to compute central quantities.
Outgoing radiation can now be found diagrammatically as

(2.27)

where we used the asymptotic forms of ~hαðxÞ (B9) and ~jαðωr0Þjr0¼0 ¼ 1 for the source at r0 ¼ 0, and (2.17). In odd d̂we can
use (2.5) to find that (as r → ∞) the outgoing radiation is

Φðr⃗; tÞ ∼ G

d̂!!
r−d̂þ1

2

X
L

nL∂lþd̂−1
2

t QLðt − rÞ: (2.28)

For d ¼ 4 this coincides with paper I [Eq. (3.20)] and with [35] [Eq. (21); note our normalizations differ by 4π]. While
(2.28) is valid and local for all odd d̂, for nonodd d̂ (noneven spacetime dimension), the corresponding expression in the
time domain would include a noninteger number of time derivatives, implying nonlocality (see more below).
Equation (2.27) is, of course, valid in every dimension.

ACTION FOR REACTION IN GENERAL DIMENSION PHYSICAL REVIEW D 89, 045003 (2014)

045003-5



1. Dissipated power

The power carried away by the radiation field (2.27) is

E
: ¼ 1

G

Z
Φ
: 2rd̂þ1dΩd̂þ1 ¼

1

G

Z
dω
2π

X
L;L0

Z
rd̂þ1dΩd̂þ1ω

2Φ�
Lωx

LxL0ΦL0ω

¼
X
L

Z
dω
2π

πGNl;d̂

2d̂þ1Γ2ð1þ d̂=2Þ
ω2lþd̂þ1QLωQ�

Lω

¼
X
L

Z
dω
2π

Gω2lþd̂þ1jQLωj2 ·

8>>><
>>>:

π
2
½d̂!!ð2lþ d̂Þ!!�−1 d odd;

½d̂!!ð2lþ d̂Þ!!�−1 d even;

π
h
2lþd̂þ1Γ

�
lþ 1þ d̂

2

�
Γ
�
1þ d̂

2

�i−1
d noninteger;

(2.29)

where we have used (2.4), (2.8), and (2.10). We note in particular that in even dimension d we can find the symmetric time-
domain form:

E
: ¼

X
L

G

d̂!!ð2lþ d̂Þ!! hð∂
lþd̂þ1

2
t QLÞ2i ¼

X
L

G

l!d̂!!ð2lþ d̂Þ!! hð∂
lþd̂þ1

2
t QSTF

k1k2…kl
Þ2i: (2.30)

We remark that in 4d this matches (3.22) of [1] and (15) of [35] (note normalization and summation conventions).
Radiation reaction effective action encodes the RR force and is given formally by

(2.31)

Gα ¼ ~jαðωrÞjr→0 · ½~jαðωr0Þ þ i~yαðωr0Þ�jr0→0; (2.32)

where now both vertices are taken at r ¼ r0 ¼ 0. For noneven d̂ (odd or noninteger), we use ~jαð0Þ ¼ 1, and (B8) and (B10)
for ~jα, ~yα, to find

Gα ¼ ~jαð0Þ · ~jαð0Þ þ
�
iΓðαþ 1Þ2α~jαðxÞ½JαðxÞ cosðαπÞ − J−αðxÞ�

sinðαπÞxα
�				

x→0

¼ 1þ iΓðαþ 1Þ2α
sinðαπÞ

�X∞
p;q¼0

ð−ÞpþqΓðαþ 1Þx2pþ2q

2pþqð2pÞ!!ð2qÞ!!Γðqþ αþ 1Þ
�

cosðαπÞ
2αΓðpþ αþ 1Þ −

2αx−2α
Γðp − αþ 1Þ

��				
x→0

: (2.33)

The contribution from the ~j2αð0Þ ¼ 1 term is simple and independent of dimension. The ~jα ~yα contributes both a Taylor series
x2pþ2q and a Laurent series x2pþ2q−2α. We note that for every d̂, the number of terms divergent as x → 0 is finite
(lþ ⌊ d̂þ1

2
⌋), and these amount to renormalizations of the different multipole moments. The Taylor series consists of an

infinite number of zeros (pþ q > 0), and a single (p ¼ q ¼ 0) imaginary numerical correction, i cotðαπÞ. Therefore for
noneven d̂ we are left with

Gα ¼ 1þ i cotðπαÞ ¼ i sin−1ðπαÞ½cosðπαÞ − i sinðπαÞ� ¼ ½i2lþd̂−1 sinðπαÞ�−1: (2.34)

Substituting in (2.31), we find
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ŜΦ ¼ G
2

Z
dω
2π

X
L

ð−iωÞ2lþd̂

sinðlπ þ d̂π
2
Þ
Ml;d̂Q

LωQ̂�
Lω þ c:c:;

(2.35)

in all noneven d̂. In odd integer d̂, using (2.11) and (2.17)
we return to the time domain, finding the radiation reaction
effective action to be

ŜΦ ¼ G
Z

dt
X
L

ð−Þlþd̂þ1
2

d̂!!ð2lþ d̂Þ!! Q̂
L∂2lþd̂

t QL; (2.36)

where QL was given by (2.21) and

Q̂L ¼ δQL

δρ
ρ̂¼ δQL

δxi
x̂i¼ ∂QL

∂xi x̂
iþ∂QL

∂vi v̂
iþ∂QL

∂ai â
iþ��� :

(2.37)

We remark especially that this action, and as we shall see
the dissipated energy and the self-force, are given by
regular, local and real expressions for all odd d̂. The
computation itself reduces to mere multiplication: vertex-
propagator-vertex. The expression (4.6) contains an odd
number of time derivatives, matching our expectation of a
time-asymmetric dissipative term.
In fractional dimensions, transforming (2.35) back to the

time domain introduces the Fourier transform of a frac-
tional derivative, yielding

ŜΦ ¼ G
2

X
L

Ml;d̂

sinðlπ þ d̂π
2
Þ

Z
dω
2π

ð−iωÞ2lþd̂

Z
dte−iωtQ̂LðtÞ

Z
dt0eiωt0QLðt0Þ þ c:c:

¼ G
2

X
L

Ml;d̂

sinðlπ þ d̂π
2
Þ

Z
dtQ̂LðtÞ

Z
dt0QLðt0Þ∂n

t

Z
dω
2π

ð−iωÞ−beiωðt0−tÞ þ c:c:

¼ G
X
L

Ml;d̂

ΓðbÞ sinðlπ þ d̂π
2
Þ

Z
dtQ̂LðtÞ

Z
dt0QLðt0Þ∂n

t
Θðt − t0Þ
ðt − t0Þ1−b

¼ G
ΓðbÞ

X
L

π

2lþ1þd̂Γð1þ d̂
2
ÞΓðlþ 1þ d̂

2
Þ sinðlπ þ d̂π

2
Þ

Z
∞

−∞
dtQ̂LðtÞ

Z
t

−∞
dt0QLðt0Þ∂n

t ðt − t0Þb−1; (2.38)

where n ¼ 2lþ ⌈d̂⌉, b ¼ ⌈d̂⌉ − d̂. Thus in fractional
dimensions, the self-force has a nonlocal (tail) contribution,
originating from transforming ð−iωÞ−b. We note that this
tail integral converges at t0 → t and under reasonable
assumptions regarding QLðtÞ at very early times converges
at t0 → −∞ as well. As shown earlier, in even integer
dimensions b ¼ 0 and the transformation produces a delta
function in time, indicating locality. However, the same
form does not apply at odd integer d, because the Bessel
functions and Gα assume a different form. Using a limiting
process over d0 ¼ dþ ϵ for ϵ → 0þ, corresponding to
n ¼ 2lþ d̂þ 1, b ¼ 1 − ϵ, we expect a ln term to appear
as b → 1−; we treat it separately.

C. Odd spacetime dimensions

Radiation in odd spacetime dimensions—as in any
dimension—is given in the frequency domain by
Eq. (2.27). However, radiation in the time domain will
look essentially different, as we know that in odd d an
additional effect of indirect (off the light cone) propagation
comes into play. In our analysis, this effect appears in (2.27)
via nonanalyticity of the frequency domain solution for the
field, in the form of a branch cut. An inverse Fourier
transform of the solution can now have two distinct
contributions (see Fig. 2): one from the integral along
the branch cut, which gives rise to a tail term, and the other
from the arc at jωj → −∞ðℑω < 0Þ, which may give rise to

a local term. Fourier transforming as described gives the
radiation at infinity

Φðr⃗; tÞ ¼ −Gffiffiffiffiffiffi
2π

p
d̂!!

r−d̂þ1
2

X
L

nL∂lþd̂
2

t

Z
t−r

−∞
QLðt0Þ

jt − r − t0j1=2 dt
0;

(2.39)

which converges at both integration limits under reasonable
assumptions for QLðtÞ.

FIG. 2 (color online). Contour integration in the complex ω
plane, avoiding the branch cut along ω ¼ −iσ. Different possible
contours are represented by dashed (green) and solid (blue) lines.
The branch cut is represented by the zigzag (red) line.
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In the case of odd spacetime dimensions (even d̂), α ¼
lþ d̂

2
¼ n is an integer, and (B10) for ~yα must be replaced

with (B11). This is of importance in the analysis of the RR
effective action (2.31,2.32). Multiplying the Bessel func-
tions ~jnðωrÞ, ~jnðωr0Þ þ i~ynðωr0Þ and taking the limit r,
r0 → 0 at the same rate,2 we again regularize the finite
number of terms of joint negative degree, ignore the infinite
number of positive degree terms (each giving zero), and are
left only with a ln term and with constant terms:

Gn ¼ 1þ i
π

�
2 ln

�
ωr0

2

�				
r0→0

− ðψð1Þ þ ψðnþ 1ÞÞ

−Xn
m¼1

ð−Þmn!2
mðnþmÞ!ðn −mÞ!

�

¼ 1þ i
π

�
2 ln

�
ωr0

2

�				
r0→0

þ 2γ þHð2nÞ − 2HðnÞ
�
;

(2.40)

where HðnÞ is the nth harmonic number. In the frequency
domain, therefore, the RR effective action is given by (2.31)
with Gα given in (2.40). To obtain the time-domain repre-
sentation of the RR effective action, we integrate over ω.
Again, we are presented with the branch-cut discontinuity of
the ln term, absent from the even-dimensional case. Placing
the branch cut along the negative imaginaryw axis (ω ¼ −iσ,
with σ ∈ R, σ ≥ 0), we use contour integration (as shown in
Fig. 2) to find the (dimensionally regularized) identityZ

dω
2π

lnðωr0Þe−iωðt−t0Þ

¼ −Θðt − t0Þ
t − t0

þ
�
i
π

2
− γ þ ln

�
r0

μ

��
δðt − t0Þ; (2.41)

where μ is some arbitrary time scale of the system. Using the
definition of the Fourier transformQLω ¼ Rþ∞−∞ eiωtQLðtÞdt,
the integral (2.41) and the expressions (2.40) and (2.17), from
(2.31) we obtain the odd-dimensional radiation-
reaction effective action in the time domain:

ŜΦ ¼ G
Z

∞

−∞
dt
X
L

ð−Þlþd̂
2

d̂!!ð2lþ d̂Þ!! Q̂
LðtÞ

��
1

2
Hð2lþ d̂Þ

−H

�
lþ d̂

2

�
þ ln

�
r0

μ

�				
r0→0

�
∂2lþd̂
t QLðtÞ

−
Z

t

−∞
dt0

�
1

t − t0
∂2lþd̂
t0 QLðt0Þ

��
: (2.42)

The ln ðr0=μÞ termacts as a regulator for the integral—it takes
care of its divergence near the coincidence limit t0 → t, as the
size of the system (c ¼ 1) is also roughly the natural cutoff for
the t0 integration. However, it also generically adds a finite
local term of the same form as the local terms already present
in (2.42). The value of this additional term depends on the
short-scale structure of the sources (as, for example, in [6]).
In principle it should be determined through matching to the
full theory (cf. [2]). It would be interesting to start by
analyzing the simple case of a single point particle in the
full theory, which would also require Detweiler-Whiting [38]
regularization.
One can write the RR effective action, therefore,

implicitly as

ŜΦ¼G
Z

∞

−∞
dt
X
L

ð−Þlþd̂
2

d̂!!ð2lþ d̂Þ!!Q̂
LðtÞ

��
1

2
Hð2lþ d̂Þ

−H

�
lþ d̂

2

��
∂2lþd̂
t QLðtÞ

−
Z

t

−∞
dt0

�
1

t−t0
∂2lþd̂
t0 QLðt0Þ

�				
regularized

�
: (2.43)

Thus we find that in odd spacetime dimensions the action
includes both a local (purely conservative) term and a
nonlocal term, which is responsible for dissipative effects.
The nonlocal (but causal) term is a manifestation, in our
effective theory of multipoles, of field propagation inside
the light cone (the so-called tail effect) in the spacetime
picture. It is known that integrating out a massless degree of
freedom generically leads to a nonlocal effective action
[22,39,40], as was shown to be the case in odd spacetime
dimensions. The even-dimensional case turns out to be the
special case where the effective action is still local after this
elimination.

D. Applications and tests

1. Perturbative expansion of the RR force

Consider the case of a single charged body with a
prescribed trajectory (“being held and waved at the tip of a
wand”) interacting with a scalar field. In this case the notion
of RR force and self-force coincide. For 4d, the fully
relativistic force expression is given analogously to the
ALD self-force [11,12] familiar from electromagnetism:

Fμ
ALD ≡ dpμ

dτ
¼ 1

3
Gq2

�
d3xμ

dτ3
− d3xν

dτ3
dxν
dτ

dxμ

dτ

�
: (2.44)

Expansion of this equation to leading and þ1PN orders
yields

F⃗ALD ¼Gq2
�
1

3
_⃗aþ1

3
v2 _⃗aþðv⃗ · a⃗Þa⃗þ1

3
ðv⃗ · _⃗aÞv⃗

�
(2.45)

2This makes sense from the point of view of the effective
radiation zone theory, since the “zoom out” procedure out to the
radiation zone affects both hatted and unhatted sources in the
same manner. From the point of view of the full theory, for a
single point source and its hatted counterpart obviously r ¼ r0.
For a composite source, however, there is no unique radial
position of the source. This is strongly related to the fact that in
general the local term in the RR effective action depends on the
source’s short-distance details.
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Upon substituting d̂ ¼ 1, all the expressions given in
Secs. 2.1 and 2.2 can be seen to yield expressions identical
to those given in paper I (Section III A 2) for the scalar
field; in particular, the 4d ALD force at leading and next-
to-leading order (2.45) is recovered immediately. We
derive the formula for the RR force in general even
dimensions, and also check explicitly d ¼ 6, for which an
ALD-like radiation-reaction 4-force on a scalar charge was

developed by Galt’sov [25,26]. Our method derives the
RR force from the action and multipoles (2.21,4.6)) in
three stages: by using a source term of a point particle for
ρ, by matching the appropriate ρ̂, and by finally calculat-
ing the contribution from generalized Euler-Lagrange (E-
L) equation δS=δx̂i. The source term corresponding to a
scalar-charged point particle with a trajectory x⃗ðtÞ in d
spacetime dimensions is

ρðx⃗0; tÞ ¼ q
Z

δðdÞðx0 − xÞdτ ¼ q
γ
δðDÞðx⃗0 − x⃗Þ ¼

X∞
s¼0

−ð2s − 3Þ!!v2s
ð2sÞ!! δðDÞðx⃗0 − x⃗Þ: (2.46)

Thus we find

QL ¼ −ð2lþ d̂Þ!!
X∞
p¼0

X∞
s¼0

ð2s − 3Þ!!
ð2pÞ!!ð2lþ 2pþ d̂Þ!!ð2sÞ!! ∂

2p
t ðv2sr2pxLTFÞ;

Q̂L ¼ −ð2lþ d̂Þ!!
X∞
p̂¼0

X∞
ŝ¼0

ð2ŝ − 3Þ!!
ð2p̂Þ!!ð2lþ 2p̂þ d̂Þ!!ð2ŝÞ!! ∂

2p̂
t

δ

δxi
ðv2ŝr2p̂xLTFÞx̂i: (2.47)

Accordingly we obtain the Lagrangian, which after moving 2p̂ time derivatives from the x̂L multipoles to the xL

multipoles by partial integration becomes

L̂Φ ¼ Gq2
X
L

ð−Þlþd̂þ1
2
ð2lþ d̂Þ!!

d̂!!

X∞
p¼0

X∞
s¼0

X∞
p̂¼0

X∞
ŝ¼0

ð2s − 3Þ!!
ð2pÞ!!ð2lþ 2pþ d̂Þ!!ð2sÞ!!

ð2ŝ − 3Þ!!
ð2p̂Þ!!ð2lþ 2p̂þ d̂Þ!!ð2ŝÞ!!

× x̂i
δ

δxi
ðv2ŝr2p̂xLTFÞ∂2ðlþpþp̂Þþd̂

t ðv2sr2pxLÞ: (2.48)

In the EOM, the RR force contribution is given by the variation by x̂j:

Fj ¼ δŜ
δx̂j

¼
�∂L̂
∂x̂j −

d
dt

�∂L̂
∂x̂: j

��
: (2.49)

The leading order arises from the same term (the leading
dipole term l ¼ 1, p ¼ p̂ ¼ s ¼ ŝ ¼ 0) in every (even)
dimension and is given by

F⃗ðdÞ
LO ¼ ð−Þd2Gq2

ðd − 1Þ!!ðd − 3Þ!! ∂
d−1
t x⃗: (2.50)

The term for d ¼ 6 (d̂ ¼ 3) is shown in Table I. Out of the
15 possible action terms in the next-to-leading order (for
different l; p; p̂; s; ŝ), we find using the E-L equation nine
nonzero contributions to the force (recorded in Table II for
d ¼ 6). Adding these contributions we find

Fi
RR ¼ −Gq2

�
1

45
a
:::i þ 2

45
v2a

:::i þ 2

9
ðv⃗ · a⃗Þäi þ 2

9
ðv⃗ · _⃗aÞ _ai

þ 1

9
ðv⃗ · ̈a⃗Þaiþ 1

45
ðv⃗ · a⃗

…

Þvi þ 1

9
ða⃗ · _⃗aÞai þ 1

9
a2 _ai

�
:

(2.51)

We compared this result (2.51) to Galt’sov’s expression for
the six-dimensional scalar d force in flat space. We seem

to find sign mismatches between his results from 2007
[25] and 2011 [26]; we assume an expression identical to
his up to the signs of two subleading terms (ðx:::ẍÞẍμ, ẍ2x:::v),

fμflat¼−ðημνþ _xμ _xνÞ
�
1

45
xð5Þν −1

9
ẍ2x
:::
v

�
þ2

9
ðx:::ẍÞẍμ; (2.52)

where ημν is the flat (mostly plus) metric and with the
derivatives taken with respect to proper time. Expansion of
this expression up to 1PN (next-to-leading) order to find
the D force gives

Fi
Galt0sov ¼−

�
1

45
a
:::iþ 2

45
v2a

:::iþ2

9
ðv⃗ · a⃗Þäiþ2

9
ðv⃗ · _⃗aÞ _ai

þ1

9
ðv⃗ · ̈a⃗Þaiþ 1

45
ðv⃗ · a⃗

…

Þviþ1

9
ð _⃗a · a⃗Þaiþ1

9
a2 _ai

�
;

(2.53)

TABLE I. Leading-order contribution to the scalar self-force.

l p p̂ s ŝ L̂=ðGq2Þ Fj=ðGq2Þ
1 0 0 0 0 − 1

45
x̂i∂5

t xi − 1
45
α
���j
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where all derivatives are now with respect to t, namely
vi ≔ dxi=dt, ai ≔ d2xi=dt2, etc. This result coincides
exactly with our result (2.51) to þ1PN order.
We can also use the multipole formulation [(4.6), (2.37),

(2.48), and (2.49)] to calculate the power dissipated by the
RR force in even dimension d:

PRR ¼ −v⃗ · F⃗ ¼ − dxi

dt
δL̂
δx̂i

				
ˆ⃗x→x⃗

¼ G
X
L

ð−Þlþd̂−1
2

d̂!!ð2lþ d̂Þ!!
δQL

δxi
dxi

dt
∂2lþd̂
t QL: (2.54)

The time-averaged power is found usingZ
dt

dxi

dt
δQL

δxi
¼

Z
dt

dQL

dt
; (2.55)

followed by lþ d̂−1
2

integrations by parts, to be

_E ¼ hPRRi ¼
X
L

G

d̂!!ð2lþ d̂Þ!! hð∂
lþd̂þ1

2
t QLÞ2i; (2.56)

which agrees with (2.30). In 6d, we record the radiated
power to þ1PN order:

_E ¼ Gq2
�
1

45
_a2 þ 1

15
v2ðv⃗ · a⃗

…

Þ þ 1

3
ðv⃗ · a⃗Þðv⃗ · ̈a⃗Þ

þ 1

9
ða⃗ · _⃗aÞðv⃗ · a⃗Þ þ 1

9
a2ðv⃗ · _⃗aÞ þ 2

9
ðv⃗ · _⃗aÞ2

�
: (2.57)

We note the special case of 2d, where the only STF
multipoles are f1; xg; the leading order remains (2.50),
while at higher orders the sum over L trivializes.

III. ELECTROMAGNETISM

The EM action is given by

S ¼ − 1

4Ωd̂þ1

Z
FμνFμνrd̂þ1drdΩd̂þ1dt

−
Z

AμJμrd̂þ1drdΩd̂þ1dt: (3.1)

Working in spherical coordinates ðt; r;ΩÞ, we reduce over
the sphere as in (2.4) and (2.5). The EM field and sources
are decomposed as

At=r ¼
Z

dω
2π

X
L

ALω
t=rxLe

−iωt;

AΩ ¼
Z

dω
2π

X
L

ðALω
S ∂ΩxL þ ALω

Vℵx
L
ℵΩÞe−iωt;

Jt=r ¼
Z

dω
2π

X
L

Jt=rLωx
Le−iωt;

JΩ ¼
Z

dω
2π

X
L

ðJSLω∂ΩxL þ JVℵLωx
ℵΩ
L Þe−iωt; (3.2)

where the scalar multipoles xL [(2.8) and (2.9)] are
now supplemented by the divergenceless vector multipoles
xLℵΩ, enumerated by an antisymmetric multi-index ℵ taken
from the Hebrew alphabet, representing D − 3 spherical
indices:

xLℵΩ ¼ ϵðd̂þ1Þ
ℵΩΩ0 ∂Ω0

xL ¼ ϵðDÞ
ℵΩbcx

b∂cxL ¼ δaΩϵ
ðDÞ
ℵabcx

b∂cxL

¼ ð�ðr⃗∧∇⃗ÞÞℵΩxL; (3.3)

where ϵðd̂þ1Þ
Ω1…Ωd̂þ1

(ϵðDÞ
a1…aD) is the complete antisymmetric

tensor on the Ωd̂þ1 sphere (in D spatial dimensions), ∧ is
the exterior product and � is the Hodge duality
operator [41–47]. The dimension of this independent

vectorial basis is Dlðd̂þ 1; 1Þ ¼ lðlþd̂Þð2lþd̂Þðlþd̂−2Þ!
ðd̂−1Þ!ðlþ1Þ!

[29,30]3. The complete normalization conditions in d
dimensions are [29,30]

TABLE II. Next-to-leading-order contribution to the scalar self-force.

l p p̂ s ŝ L̂=ðGq2Þ Fj=ðGq2Þ
2 0 0 0 0 1

630
x̂k δ

δxk ½xixj − 1
5
x2δij�∂7

t ðxixjÞ 1
315

½∂7
t ðxixjÞxi − 1

5
∂7
t ðx2Þxj�

1 1 0 0 0 − 1
630

x̂i∂7
t ðx2xiÞ − 1

630
∂7
t ðx2xjÞ

1 0 1 0 0 − 1
630

x̂k δ
δxk

½xix2�∂7
t xi − 1

630
½x2∂7

t xj þ 2xjxi∂7
t xi�

1 0 0 1 0 þ 1
90
x̂i∂5

t ðv2xiÞ þ 1
90
∂5
t ðv2xjÞ

1 0 0 0 1 þ 1
90
x̂k δ

δxk
½v2xi�∂5

t xi þ 1
90
v2∂5

t xj − 1
45
∂t½vjxi∂5

t xi�
0 1 1 0 0 þ 1

450
x̂jxj∂7

t x2 þ 1
450

xj∂7
t x2

0 1 0 0 1 − 1
90
v̂jvj∂5

t x2 þ 1
90
∂t½vj∂5

t x2�
0 0 1 1 0 − 1

90
x̂jxj∂5

t v2 − 1
90
xj∂5

t v2

0 0 0 1 1 þ 1
18
v̂jvj∂3

t v2 − 1
18
∂t½vj∂3

t v2�

3These are generalizations of the single 4d (d̂ ¼ 1) multipole
family xLΩ¼ϵΩΩ0∂Ω0

xL¼ðr⃗×∇⃗xLÞΩ. In 4d, Dlðd̂þ 1; 1Þ ¼
2lþ 1 ¼ Dlðd̂þ 1; 0Þ, and thus these indeed form a single
family; ℵ is then an empty string.
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Z
xLl

xL
0
l0dΩd̂þ1 ¼ Nl0d̂r

2lΩd̂þ1δll0δLlL0
l0
;

Z
gΩΩ

0∂ΩxLl
∂Ω0xL

0
l0dΩd̂þ1 ¼ cs · Nl;d̂r

2lΩd̂þ1δll0δLlL0
l0
;

Z
gΩΩ

0
xLl
ℵΩx

L0
l0

ℵ0Ω0dΩd̂þ1 ¼ cs · Nl;d̂r
2lΩd̂þ1δll0δLlL0

l0
δℵℵ0 ;

Z
gΩΩ

0
gΨΨ0

xLl
ℵ½Ψ;Ω�x

L0
l0

ℵ0½Ψ0;Ω0�dΩd̂þ1 ¼ 2cvcs · Nl0d̂Ωd̂þ1r
2lδll0δLlL0

l0
δℵℵ0 ; (3.4)

where cs ≔ lðlþ d̂Þ, cv ¼ cs þ d̂ − 1 and the semicolon “;” represents the covariant derivative on the sphere. The inverse
transformations are given by

JtLωðrÞ ¼ ðNl;d̂r
2lΩd̂þ1Þ−1

Z
ρωðr⃗ÞxLdΩd̂þ1 ¼ ðNl;d̂r

2lΩd̂þ1Þ−1
Z Z

dteiωtρðr⃗; tÞxLdΩd̂þ1;

JrLωðrÞ ¼ ðNl;d̂r
2lΩd̂þ1Þ−1

Z
J⃗wðr⃗Þ · n⃗xLdΩd̂þ1 ¼ ðNl;d̂r

2lΩd̂þ1Þ−1
Z Z

dteiωtJ⃗ðr⃗; tÞ · n⃗xLdΩd̂þ1;

JVℵLωðrÞ ¼ ðcsNl;d̂r
2lΩd̂þ1Þ−1

Z
J⃗wðr⃗Þ · ð�ðr⃗∧∇⃗ÞÞℵxLdΩd̂þ1

¼ ðcsNl;d̂r
2lΩd̂þ1Þ−1

Z Z
dteiωtJ⃗ðr⃗; tÞ · ð�ðr⃗∧∇⃗ÞÞℵxLdΩd̂þ1: (3.5)

We note that only three inverse transformations are required, as we henceforth replace JSLω using current conservation

0 ¼ DμJ
μ
Lω ¼ iωJtLω þ

�
∂r þ

lþ d̂þ 1

r

�
JrLω − csJSLω: (3.6)

We plug (3.2) into the action (3.1) to obtain

S ¼ 1

2

Z
dω
2π

X
L

Nl;d̂SLω;

SLω ¼
Z

drr2lþd̂þ1

��				iωALω
r − 1

rl
ðrlALω

t Þ0
				
2

þ cs
r2

jiωALω
S − ALω

t j2 − cs
r2

				 1rl ðrlALω
S Þ0 − ALω

r

				
2

þcs

�
ω2

r2
− cv
r4

�
jALω

Vℵj2

− cs
r2

				 1rl ðrlALω
VℵÞ0

				
2
�
−Ωd̂þ1½ALω

r Jr�Lω þ ALω
t Jt�Lω þ csALω

S JS�Lω þ csALω
VℵJ

Vℵ�
Lω þ c:c:�

�
; (3.7)

where 0 ≔ d
dr, and we use AL−ω ¼ A�

Lω, JL−ω ¼ J�Lω since AμðxÞ, JμðxÞ are real. In the spirit of [27], we notice that ALω
r is an

auxiliary field, a field whose derivative A0
r does not appear in (3.7). Therefore, its EOM is algebraic and is solved to yield

Ar
Lω ¼ − 1

ω2 − cs
r2

�
iω
rl

ðrlAt
LωÞ0 þ

cs
rlþ2

ðrlAS
LωÞ0 −Ωd̂þ1J

r
Lω

�
: (3.8)

Substituting the solution into the action, it is seen that the action can be separated into independent fields, corresponding to
the different possible polarizations. We distinguish between the vectorial ALω

Vℵ fields, as they appear already in (3.7), coupled
to the vector source terms

ρVℵLω ≔ JVℵLω; (3.9)

and the scalar fields

~ALω
S ≔ ALω

t − iωALω
S ; (3.10)

which are coupled to the corresponding source terms
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ρSLω ≔ −JtLω þ i

ωrlþd̂þ1

�
rlþd̂þ1

Λ
Λ − 1

JrLω

�0
; (3.11)

where Λ ≔ ω2r2
cs

and we have used (3.6). The action can now be concisely decoupled to scalar and vector parts [omitting
hereafter the indices (Lω) for brevity]:

SEM ¼ 1

2

Z
dω
2π

X
L

�
SLωS þ

X
ℵ

SLωVℵ

�
; (3.12)

with

SLωS ¼ Nl;d̂

Z
r2lþd̂þ1dr

�
1

1 − Λ

				 1rl ðrl ~ASÞ0
				
2

þ cs
r2

j ~ASj2 þΩd̂þ1ð ~ASρ
S�
Lω þ c:c:Þ

�
; (3.13)

SLωVℵ ¼ Nl;d̂

Z
r2lþd̂þ1drcs

��
ω2

r2
− cv
r4

�
jAVℵj2 −

				 1

rlþ1
ðrl ~AVℵÞ0

				
2 −Ωd̂þ1ð ~AVℵρ

Vℵ
Lω þ c:c:Þ

�
; (3.14)

and we treat them separately. Note that for l ¼ 0 we have ρSLω ¼ 0 [see Eqs. (3.6) and (3.11)] as well as SV ¼ 0; thus, only
l ≥ 1 need be considered.
The scalar part of the EM action
We derive the equation of motion for the scalar action from SLωS (3.13) by treating (rl ~AS) as the field and finding

equations for its conjugate momentum (Nl;d̂r
lΠS):

ðNl;d̂r
lΠSÞ ≔

∂L
∂ðrl ~A�

SÞ0
¼ Nl;d̂

1 − Λ
rd̂þ1ðrl ~ASÞ0; (3.15)

ðNl;d̂r
lΠSÞ0 ≔

∂L
∂ðrl ~A�

SÞ
¼ Nl;d̂csr

d̂−1ðrl ~ASÞ þ Nl;d̂Ωd̂þ1r
lþd̂þ1ρSLω: (3.16)

Differentiating (3.16) with respect to r, substituting (3.15), and renaming the field AE and source term ρAE
Lω [recalling (3.5)

and (3.11)] as

AE ¼ ðlrd̂Þ−1ΠS;

ρAE
Lω ¼ Nl;d̂Ωd̂þ1

rlþd̂ðrlþ2ρSLωÞ0
lþ d̂

¼
Z

dΩd̂þ1

rd̂xL
lþ d̂

�
i

ωrd̂−1

�
rd̂þ1

Λ
Λ − 1

J⃗wðr⃗Þ · n⃗
�0 − r2ρωðr⃗Þ

�0
; (3.17)

we find the equation

0 ¼ Nl;d̂r
2lþd̂þ1

l

lþ d̂

�
ω2 þ ∂2

r þ
2lþ d̂þ 1

r
∂r

�
AE − ρAE

Lω: (3.18)

This equation is of the same form as (2.14), up to the replacement of G by

Rþ
1 ¼ lþ d̂

l
; (3.19)

and thus we find a propagator similar to (2.16):

GAE
ret ðr0; rÞ ¼ Rþ

1 G
Φ
retðr0; rÞ ¼ −iω2lþd̂Ml;d̂R

þ
1
~jαðωr1Þ ~hþα ðωr2ÞδLL0 ; r1∶ ¼ minfr0; rg; r2 ≔ maxfr0; rg: (3.20)

We again present the EFT Feynman rules following the steps (2.19–2.21). In the radiation zone, the field can be written as

ALω
E

EFTðrÞ ¼ ð−QE
LωÞð−iω2lþd̂Ml;d̂R

þ
1
~hþl ðωrÞÞ; (3.21)

where QE
Lω are the sources [Eq. (2.18)]. In the full theory the solution outside the sources is given (see (3.18)) by
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ALω
E ðrÞ ¼

Z
dr0ρAE

Lωðr0ÞGAE
ret ðr0; rÞ ¼

�
−
Z

dr0 ~jαðωr0ÞρAE
Lωðr0Þ

�
½−iω2lþd̂Ml;d̂R

þ
1
~hþl ðωrÞ�; (3.22)

and the sources can be read off and identified [using (3.5) and (3.17), integrations by parts and (2.15)] to be

QðEÞ
Lω ¼

Z
dr0 ~jαðωr0ÞρAE

Lωðr0Þ

¼ 1

lþ d̂

Z
dr0~jαðωr0Þ

Z
dΩ0

d̂þ1
r0d̂x0L

�
−r02ρωðx⃗0Þ þ i

ωr0d̂−1

�
r0d̂þ1

Λ
Λ − 1

J⃗ωðx⃗0Þ · n⃗0
�0�0

¼ 1

lþ d̂

Z
dDx0x0L

�
1

r0lþd̂−1 ðr
0lþd̂~jαðωr0ÞÞ0ρωðx⃗0Þ − iω~jαðωr0ÞJ⃗ωðx⃗0Þ · x⃗0

�
: (3.23)

We return to the time domain using (3.5) to find the electric type radiation source multipoles [compare (2.21)]

QL
ðEÞ ¼

1

lþ d̂

Z
dDxxLTF

�
1

rlþd̂−1 ðr
lþd̂~jαðir∂tÞÞ0ρðx⃗Þ − ~jαðir∂tÞ∂tJ⃗ðx⃗Þ · x⃗

�
; (3.24)

Q̂L
ðEÞ ¼

δQL
E

δJi
Ĵi ¼ δQL

E

δxi
x̂i: (3.25)

We note here that an expansion of ~jα according to (B8) reproduces, for d ¼ 4, Eq. (47) of [35] [after using current
conservation, Eq. (49) there].
The vector part of the EM action
For the vector sector of the action, we rewrite (3.14) in a form similar to (2.12):

SLωVℵ ¼
Z

dr

�
Nl;d̂r

2lþd̂þ1

R−
1

A�
Mℵ

�
ω2 þ ∂2

r þ
2lþ d̂þ 1

r
∂r

�
AMℵ − ðρAMℵ

Lω A�
Mℵ þ c:c:Þ

�
; (3.26)

where we have defined [recalling (3.5)] as

R−
1 ¼ l

ðlþ d̂Þ ; (3.27)

AMℵ ¼ lAVℵ

r
; ρAMℵ

Lω ¼ lNl;d̂Ωd̂þ1r
2lþd̂þ2ρVLωðrÞ ¼ lrd̂þ1

Z
J⃗wðr⃗Þ · ð�ðr⃗∧∇⃗ÞÞℵxLdΩd̂þ1: (3.28)

The action (3.26) is again identical to (2.12) up to a prefactor of R−
1 , with a source similar to (2.13). The propagator,

therefore, is [compare (2.16) and (3.20)]

GAMℵ
ret ðr0; rÞ ¼ −iω2lþd̂Ml;d̂R

−
1
~jαðωr1Þ ~hþα ðωr2ÞδLL0 ; r1 ≔ minfr0; rg; r2 ≔ maxfr0; rg: (3.29)

We find these sources QðM;ℵÞ
Lω by again matching ΦAMℵ

Lω ðrÞ for large r and from the diagrammatic representation [in analogy
with (2.19), (2.20), (2.21), (3.21), (3.22), and (3.24)], to find

QðM;ℵÞ
Lω ¼

Z
dDx~jαðωrÞð�ðr⃗∧J⃗wðr⃗ÞÞÞℵðklxL−1Þ; (3.30)

where we have used (3.5) and (3.9). In the time domain, we find the magnetic radiation source multipoles [compare (2.21)
and (3.24)]

QL
ðM;ℵÞ ¼

Z
dDx~jαðir∂tÞ½ð�ðr⃗∧J⃗ðr⃗ÞÞÞklxL−1ℵ �STF; (3.31)

Q̂L
ðM;ℵÞ ¼

δQL
ðM;ℵÞ
δJi

Ĵi ¼
δQL

ðM;ℵÞ
δxi

x̂i: (3.32)

Presenting ~jα as a series expansion using (B8), these coincide with Eq. (48) of [35].
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A. Outgoing EM radiation and the RR effective action

Outgoing EM radiation can now be found diagrammatically [compare (2.27)] as

(3.33)

In the time domain, for even d, we find [where ϵ is ðþÞ=ð−;ℵÞ for the electric/magnetic part/s]

Aϵðr⃗; tÞ ¼
1

d̂!!
r−d̂þ1

2

X
L

Rϵ
1n

L∂lþd̂−1
2

t Qϵ
Lðt − rÞ: (3.34)

The EM double field effective action is a sum of the scalar and vector action diagrams and can be written using our Feynman
rules, similarly to (2.31) and (2.33),

(3.35)

where QL
ðEÞ; Q̂

L
ðEÞ; Q

L
ðMÞ; Q̂

L
ðMÞ were given by (3.24), (3.25), (3.31), and (3.32), respectively. In even d, we can transform to

the time domain and use (2.17), (3.19), (3.27), and (2.33) explicitly to find

ŜEM ¼
Z

dt
X
L

ð−Þlþd̂þ1
2

d̂!!ð2lþ d̂Þ!!

�
lþ d̂
l

Q̂ðEÞ
L · ∂2lþd̂

t QL
ðEÞ þ

l2d̂

ðlþ 1Þðlþ d̂ − 1Þ Q̂
ðMÞ
L · ∂2lþd̂

t QL
ðMÞ

�
; (3.36)

where we have also summed over the ℵ indices, defining the bivector multipoles

QL
ðMÞ ¼

Z
dDx~jαðir∂tÞðr⃗∧J⃗ðr⃗ÞÞðklxL−1Þ; (3.37)

defining Q̂L
ðMÞ accordingly, and incurring a factor of

Dlðd̂þ 1; 1Þ
Dlðd̂þ 1; 0Þ ¼

ld̂ðlþ d̂Þ
ðlþ 1Þðlþ d̂ − 1Þ (3.38)

from summing over the different ℵ combinations.
The case of the EM field in noneven (and in particular odd) spacetime dimensions is treated in a similar manner to the

scalar case (Sec. 2.3), and similar nonlocal tail expressions appear [compare with (2.43)]:
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ŜEM ¼
Z

dt
X
L

ð−Þlþd̂þ1
2

d̂!!ð2lþ d̂Þ!!

�
lþ d̂
l

SðEÞðtÞ þ l2d̂

ðlþ 1Þðlþ d̂ − 1Þ S
ðMÞðtÞ

�
; (3.39)

SðE=MÞðtÞ ¼ Q̂ðE=MÞ
L ðtÞ

��
1

2
Hð2lþ d̂Þ −H

�
lþ d̂

2

��
∂2lþd̂
t QL

ðE=MÞðtÞ−
Z

t

−∞
dt0

�
1

t − t0
∂2lþd̂
t0 QL

ðE=MÞðt0Þ
�				

regularized

�
:

(3.40)

B. Applications and tests

1. Perturbative expansion of the RR force and comparison with ALD

For the RR force on a single accelerating electric charge we have the ALD formula [11] in 4d,

Fμ
ALD ≡ dpμ

dτ
¼ 2

3
q2
�
d3xμ

dτ3
− d3xν

dτ3
dxν
dτ

dxμ

dτ

�
: (3.41)

Our expressions, specialized to d ¼ 4, can be seen to be identical to those given in paper I (Sec. III B 2), already shown to
reproduce the ALD result. We test here for d ¼ 6, comparing the force with Galt’sov’s result [25]:

fμflat ¼ −ðημν þ _xμ _xνÞ
�
4

45
xð5Þν − 2

9
ẍ2x
:::
ν

�
þ 2

3
ðx:::ẍÞẍμ: (3.42)

Expanded to leading and next-to-leading order, we find

Fi
Galt0sov ¼ −

�
4

45
ai000 þ 8

45
v2ai000 þ 8

9
ðv⃗ · a⃗Þai00 þ 8

9
ða⃗0 · v⃗Þai0þ 4

45
ða⃗000 · v⃗Þvi þ 4

9
ða⃗00 · v⃗Þai þ 2

3
a2ai0 þ 2

3
ða⃗0 · a⃗Þai

�
;

(3.43)

from which we also find an expression for the emitted power:

PGalt0sov ¼ −v⃗ · F⃗Galt0sov

¼ 4

45
ðv⃗ · a⃗000Þ þ 4

15
v⃗2ðv⃗ · a⃗000Þ þ 4

3
ðv⃗ · a⃗Þðv⃗ · a⃗00Þ þ 8

9
ðv⃗ · a⃗0Þ2 þ 2

3
a⃗2ða⃗0 · v⃗Þ þ 2

3
ða⃗0 · a⃗Þðv⃗ · a⃗Þ: (3.44)

For our RR force calculation on a point charge q along a path x⃗ðtÞ, we rewrite the action

ŜEM ¼
Z

dtL̂EM; L̂EM ¼ L̂S
EM þ L̂V

EM; (3.45)

as a PN series expansion. With (3.24), (3.31), (3.35), and (B8) we find for every (even) dimension

L̂S
EM ¼ q2

X
L

ð−Þlþd̂þ1
2 ð2lþ d̂Þ!!

lðlþ d̂Þd̂!! ·
X∞
p̂¼0

∂2p̂
t

ð2p̂Þ!!ð2lþ 2p̂þ d̂Þ!!
δ

δxi
½ð2p̂þ lþ d̂Þr2p̂xL − ∂tðr2p̂xLv⃗ · r⃗Þ�x̂i

· ∂2lþd̂
t

X∞
p¼0

∂2p
t

ð2pÞ!!ð2lþ 2pþ d̂Þ!! ½ð2pþ lþ d̂Þr2pxL − ∂tðr2pxLv⃗ · r⃗Þ�STF; (3.46)

for the scalar part and

L̂V
EM ¼ q2

X
L

ð−Þlþd̂þ1
2 l2ð2lþ d̂Þ!!

ðd̂ − 1Þ!!ðlþ 1Þðlþ d̂ − 1Þ
X∞
p̂¼0

∂2p̂
t

ð2p̂Þ!!ð2lþ 2p̂þ d̂Þ!! x̂
i δ

δxi
½r2p̂ðr⃗∧v⃗ÞðklxL−1Þ�

· ∂2lþd̂
t

X∞
p¼0

∂2p
t

ð2pÞ!!ð2lþ 2pþ d̂Þ!! ½r
2pðr⃗∧v⃗ÞðklxL−1Þ�STF; (3.47)

for the vector part.
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Similarly to the scalar RR computation, we integrate by
parts to move the 2p (or 2pþ 1) time derivatives from the x̂L

multipoles to the xL multipoles, and use the EOM (2.49)
found from variation with respect to x̂j. We thus find the
leadingRRforce, arising from the electric dipole term (l ¼ 1,
p ¼ p̂ ¼ 0, sources ρ, ρ̂) at every (even) dimension d to be

F⃗ðdÞ
LO ¼ q2

ð−Þd2ðd − 2Þ
ðd − 1Þ!!ðd − 3Þ!! ∂

d−1
t x⃗: (3.48)

The term for d ¼ 4 of course matches ALD; the term for
d ¼ 6 is recorded in Table III andmatches that expected from
Galt’sov (3.43). In fact, in every even dimension this
expression matches exactly the leading-order PN (vc ≪ 1)
which can be derived from Kazinski, Lyakhovich and
Sharapov [[16], Eqs. (26) and (30)], found in a very different
method [17,18]. We find the exact match to significantly
support the validity of both our method and Kazinski,
Lyakhovich and Sharapov’s.
The next-to-leading order includes five contributions to

the scalar sector, summarized for6d inTable IV, aswell as the
leading vector contribution (Table V). Their sum is identical
with Galt’sov’s result (3.43)4. We have also tested these
expressions using MATHEMATICA code [48] for dimensions
(8, 10, 12, 14, 16), finding in every case nontrivial cancella-
tions of all nonphysical terms (the terms involving explicit
position coordinates, breaking translation invariance).
We remark also that at d ¼ 2 the only STF tensor is x

(l ¼ 1), and we reproduce the expected null result for the
action, radiation and self-force identically to any order.

2. Dissipated power

Similarly to (2.54), we compute the power of the RR
force on the accelerating charge, now using (3.35):

PRR ¼ −v⃗ · F⃗ ¼ − dxi

dt
δL̂
δxi

				
ˆ⃗x→x⃗

¼
X
L

ð−Þlþd
2

ð2lþ d̂Þ!!d̂!!

�
lþ d̂
l

dxi

dt

δQL
ðEÞ

dxi
· ∂2lþd̂

t QðEÞ
L

þ l2d̂

ðlþ 1Þðlþ d̂ − 1Þ
dxi

dt

δQL
ðMÞ

dxi
· ∂2lþd̂

t QðMÞ
L

�				
ˆ⃗x→x⃗

:

(3.49)

The time-averaged power is found using

Z
dt

dxi

dt

∂QL
ðEÞ

∂xi ¼
Z

dt
dQL

ðEÞ
dt

;

Z
dt

dxi

dt

δQL
ðMÞ

δxi
¼

Z
dt

dQL
ðMÞ
dt

; (3.50)

followed by lþ d̂−1
2
integrations by parts (and recalling d̂ is

odd), to be

hPRRi ¼
X
L

1

ð2lþ d̂Þ!!d̂!!

�
Rþ
1 ð∂lþd̂þ1

2
t QL

ðEÞÞ
2

þ R−
1

Dlðd̂þ 1; 1Þ
Dlðd̂þ 1; 0Þ ð∂

lþd̂þ1
2

t QL
ðMÞÞ

2
�

¼
X
L

ðlþ d̂Þ
lð2lþ d̂Þ!!d̂!! hð∂

lþd̂þ1
2

t QL
ðEÞÞ

2i

þ
X
L

l2

ðlþ 1Þðlþ d̂ − 1Þð2lþ d̂Þ!!ðd̂ − 1Þ!!

× hð∂lþd̂þ1
2

t QL
ðMÞÞ

2i
¼ Prad: (3.51)

In the 4d case, we recognize this result as Ross’ Eq. (52)
[35] (with a 4π normalization factor, and reintroducing the
1
l! factor for comparison, see Appendix (B1)).

IV. SUMMARY OF RESULTS

In this section we summarize the essential definitions
and main results obtained in the paper. We use Bessel-like
functions defined (B8) as

~jα ≔ Γðαþ 1Þ2α JαðxÞ
xα

¼ 1þ � � � ; (4.1)

where JαðxÞ is the Bessel function of the first kind. xTFL ¼
½xk1…xkl �TF are trace-free tensor products of spatial posi-
tion vectors (2.6), using the summation conventions of
(B1). We write the RR effective action Ŝ in terms of the
system’s multipoles QL and their doubled counterparts
Q̂ ¼ δQ

δρ ρ̂ (1.2) and find the EOM by variation of Ŝ with
respect to hatted fields (1.1).
For a massless scalar field coupled to sources

SΦ ¼ 1

2Ωd̂þ1G

Z
ð∂μΦÞ2ddx −

Z
ρΦddx; (4.2)

we find the radiative multipoles to be

TABLE III. Leading-order contribution to the 6d EM self-force
(only electric ϵ ¼ þ).

l p p̂ Src L̂=q2 Fj=q2

1 0 0 ρ ρ̂ − 4
45
x̂i∂5

t xi − 4
45
a
���j

4Kosyakov [21] gives a result for the power at d ¼ 6 that
seems to agree at LO but disagree at NLO with our and with
Galt’sov’s result.
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QL ¼
Z

dDx~jlþd̂
2

ðir∂tÞxTFL ρðr⃗; tÞ: (4.3)

In even-dimensional spacetime, outgoing radiation is
given by

Φðr⃗; tÞ ¼ G

d̂!!
r−d̂þ1

2

X
L

nL∂lþd̂−1
2

t QLðt − rÞ; (4.4)

and the power dissipated through it is

_E ¼
X
L

G

d̂!!ð2lþ d̂Þ!! hð∂
lþd̂þ1

2
t QLÞ2i

¼
X
L

G

l!d̂!!ð2lþ d̂Þ!! hð∂
lþd̂þ1

2
t QSTF

k1k2…kl
Þ2i: (4.5)

Elimination of system and radiation zone fields gives the
RR effective action

ŜΦ ¼ G
Z

dt
X
L

ð−Þlþd̂þ1
2

d̂!!ð2lþ d̂Þ!! Q̂
L∂2lþd̂

t QL: (4.6)

In odd-dimensional spacetime, frequency domain results
are similar to those of the even-dimensional case. In the
time domain, outgoing radiation is given by

Φðr⃗; tÞ¼ −Gffiffiffiffiffiffi
2π

p
d̂!!

r−d̂þ1
2

X
L

nL∂lþd̂
2

t

Z
t−r

−∞
QLðt0Þ

jt−r− t0j1=2dt
0;

(4.7)

and the RR effective action by

ŜΦ¼G
Z

∞

−∞
dt
X
L

ð−Þlþd̂
2

d̂!!ð2lþ d̂Þ!!Q̂
LðtÞ

��
1

2
Hð2lþ d̂Þ−H

�
lþ d̂

2

��
∂2lþd̂
t QLðtÞ−

Z
t

−∞
dt0

�
1

t− t0
∂2lþd̂
t0 QLðt0Þ

�				
regularized

�
;

(4.8)

where the regularization is discussed in Sec. 2.3. The coefficient of the local term in (4.8) above is not universal but depends
on the short-distance details of the system.
For an EM field coupled to sources

S ¼ − 1

4Ωd̂þ1

Z
FμνFμνrd̂þ1ddx −

Z
AμJμrd̂þ1ddx; (4.9)

we find the following electric and magnetic multipoles:

QL
ðEÞ ¼

1

lþ d̂

Z
dDxxLTF

�
1

rlþd̂−1 ðr
lþd̂~jαðir∂tÞÞ0ρðx⃗Þ − ~jαðir∂tÞ∂tJ⃗ðx⃗Þ · x⃗

�
;

QLℵ
ðMÞ ¼

Z
dDx~jlþd̂−1

2

ðir∂tÞ½εklℵab r
aJbxL−1�STF; (4.10)

where ℵ is an antisymmetric multi-index (3.3). Radiation in even spacetime dimensions is given by

TABLE IV. Next-to-leading-order contribution to the 6d EM self-force, scalar (electric ϵ ¼ þ) sector.

l p p̂ Src L̂=q2 Fj=q2

2 0 0 ρ ρ̂ 1
252

x̂j δ
δxj ½xixk�∂7

t ½xixk − 1
5
x2δik� 1

126
½xi∂7

t ðxixjÞ − 1
5
xj∂7

t x2�
1 1 0 ρ ρ̂ − 1

105
x̂j δ

δxj ½x2xi�∂7
t xi − 1

105
½x2∂7

t xj þ 2xjxi∂7
t xi�

1 0 1 ρ ρ̂ − 1
105

x̂i∂7
t ðxix2Þ − 1

105
∂7
t ðx2xjÞ

1 0 0 jr ρ̂ 1
45
x̂i∂6

t ½vkxkxi� 1
45
∂6
t ðxjxiviÞ

1 0 0 ρ ĵr − 1
45
x̂j δ

δxj ½vkxkxi�∂6
t xi − 1

45
½xivi∂6

t xj þ vjxi∂6
t xi − d

dt ðxjxi∂6
t xiÞ�

TABLE V. Next-to-leading-order contribution to the 6d EM self-force, from vector (magnetic ϵ ¼ −) sector.
l p p̂ L̂=q2 Fj=q2

1 0 0 − 1
90
x̂i δ

δxi ½rjvk�∂5
t ðrjvk − rkvjÞ − 1

90
ð2vi∂5

t ½xjvi − xivj� þ xi∂5
t ½xjai − xiaj�Þ
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Aϵðr⃗; tÞ ¼
1

d̂!!
r−d̂þ1

2

X
L

Rϵ
1n

L∂lþd̂−1
2

t Qϵ
Lðt − rÞ; (4.11)

where ϵ is (þ) for the electric sector and ð−;ℵÞ for the magnetic sectors and

Rþ
1 ¼ lþ d̂

l
; R−

1 ¼ l

lþ d̂
: (4.12)

The RR effective action in even spacetime dimensions is

ŜEM ¼
Z

dt
X
L

ð−Þlþd̂þ1
2

d̂!!ð2lþ d̂Þ!!

�
lþ d̂
l

Q̂ðEÞ
L · ∂2lþd̂

t QL
ðEÞ þ

l2d̂

ðlþ 1Þðlþ d̂ − 1Þ Q̂
ðMÞ
L · ∂2lþd̂

t QL
ðMÞ

�
: (4.13)

The case of the EM field in noneven (and in particular odd) spacetime dimensions is treated in a similar manner to the scalar
case, and similar nonlocal tail expressions appear:

ŜEM ¼
Z

dt
X
L

ð−Þlþd̂þ1
2

d̂!!ð2lþ d̂Þ!!

�
lþ d̂
l

SðEÞðtÞ þ l2d̂

ðlþ 1Þðlþ d̂ − 1Þ S
ðMÞðtÞ

�
; (4.14)

SðE=MÞðtÞ¼ Q̂ðE=MÞ
L ðtÞ

��
1

2
Hð2lþ d̂Þ−H

�
lþ d̂

2

��
∂2lþd̂
t QL

ðE=MÞðtÞ−
Z

t

−∞
dt0

�
1

t− t0
∂2lþd̂
t0 QL

ðE=MÞðt0Þ
�				

regularized

�
: (4.15)

V. DISCUSSION

In this paper we formulated an EFT describing radiative
effects in scalar and EM theories in general spacetime
dimensions and applied it to solve for the radiation and
radiation reaction effective action in these cases, thereby
generalizing the 4d treatment of paper I. We found that the
method devised there naturally generalizes to higher dimen-
sions, providing new results even in these linear,well studied
theories (see Sec. 4) and laying a solid foundation for the
study of such effects in higher dimensional GR.
Some dimension-dependent issues that need to be

handled with care appeared. One of them is the tail effect
in odd spacetime dimensions (and, formally, in all noneven
d), which is due to indirect propagation—propagation not
restricted to the light cone. We found that while frequency
domain analyses of any spacetime dimensions are similar,
time-domain results are substantially different. From our
analysis’ point of view, the difference is all due to different
analytic properties of the fields and effective actions in the
complex frequency plane. It appears only when trans-
forming the results into the time domain. In particular, we
find that in odd d the RR effective action is composed of a
nonlocal part, which contains all the dissipative effects, and
a local conservative part, while in even d the RR effective
action contains only a local part which is purely dissipative.
We remark that there has been debate [14–19,21,22] over

the very possibility of defining and regularizing self-force
and radiation reaction even in general even dimensions. We
hope our independent method and results for scalar and EM
fields in any dimension help shed new light on the matter.

Another important issue appeared when treating fields
with nonzero spin, namely the issue of having multiple
fields, and the associated question of gauges. Here these
arose in the case of the EM field of spin 1. One of the main
ideas of our method is the use of gauge-invariant spherical
fields and the reduction of the problem to 1d. This was
done with a vector spherical harmonic decomposition. In
4d, the electric field (which behaves like a scalar on the
sphere) and magnetic field (which behaves like a vector on
the sphere) are very similar—one is a vector field and the
other an axial vector field. However, the magnetic field is
more generally a two-form field. This is more visible when
working in d > 4, where for example one obtains essen-
tially different multipoles for these two sectors, which live
in different representations of the rotation group. Going to
higher spins in higher dimensions, more sectors appear—a
rank-2 tensor sector in GR, etc.
The main complication that arises in the gravitational

case is the theory’s nonlinearity. Although for the leading
order the linearized theory suffices, just as in 4d, going to
higher order one would need to include nonlinear
interactions—a þ1PN correction from first system zone
nonlinearities, þ1.5PN from first radiation zone nonlinear-
ities, and so on. Also, there is a PN order hierarchy between
the different sectors: only the scalar sector is needed for
leading order, for next-to-leading (þ1PN) order the vector
sector must also be accounted for, and at next-to-next-to-
leading (þ2PN) order the tensor sector also begins to
contribute. We treat the general d gravitational two-body
problem and its nonlinearities separately in [49].
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It would be interesting to use and enhance our method in
the study of higher order radiation zone effects (first in 4d).
For example, one can replace the Bessel functions in our
propagators with Regge-Wheeler or Zerilli functions (sol-
utions for gravitational perturbations around nonrotating
black holes) and compare results for an observable—e.g.,
emitted radiation—to those obtained by the usual EFT sum
of diagrams for scattering of waves off the total mass of the
system. This could both improve the EFT and give insight
on the problem from a new angle.
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APPENDIX A: SOLUTION WITHOUT ZONE
SEPARATION

1. Scalar field

Looking back at the field equation for a scalar field Φ
(2.2) using the spherical decomposition (2.4), (2.5), (2.10),
(2.11), and (2.13), we see that it can be solved using the
propagator (2.16), yielding (r > r0)

Φωðr⃗Þ ¼
X
L

xLΦLwðrÞ ¼
X
L

xL
Z

dr0GΦ
retðr; r0ÞρΦLωðr0Þ

¼ −iG
X
L

ω2lþd̂Ml;d̂x
L ~hþα ðωrÞ

×
Z

dDx0 ~jαðωr0Þx0Lρωðr⃗0Þ: (A1)

Restricting to even integer spacetimes d (odd d̂), the self-
force arises only from the time-asymmetric part of the
propagator. Since ~yα contains only odd powers of ω and ~jα
only even powers, by expanding the spherical Bessel
functions as series we find the time-asymmetric propagator
is given by

Godd
ω ðr⃗; r⃗0Þ ¼ −iGX

L

ω2lþd̂Ml;d̂x
L~jαðωrÞ~jαðωr0Þx0L

¼ G
X
L

ð−Þlþd̂−1
2 ð2lþ d̂Þ!!
d̂!!

X∞
p¼0

X∞
p̂¼0

ð−iωÞ2lþ2pþ2p̂þd̂r2p̂xLr02px0L
ð2p̂Þ!!ð2lþ 2p̂þ d̂Þ!!ð2pÞ!!ð2lþ 2pþ d̂Þ!! ; (A2)

and

Φωðr⃗Þ ¼
Z

dDx0Godd
ω ðr⃗; r⃗0Þρωðr⃗0Þ: (A3)

Here we find it more direct to use the fr; r0g basis rather than the Keldysh basis. The Lagrangian for the self-interactions of a
scalar-charged point particle q described by (2.46) is given by

Lω ¼
Z

dDxρ̂wðr⃗ÞΦwðr⃗Þ ¼
Z

dDxdDx0ρ̂wðr⃗ÞGodd
w ðr⃗; r⃗0Þρwðr⃗Þ

¼ Gq2
X
L

ð−Þlþd̂−1
2 ð2lþ d̂Þ!!
d̂!!

X∞
p¼0

X∞
p̂¼0

X∞
s¼0

X∞
ŝ¼0

Cpp̂sŝ
l;d̂

ð−iωÞ2lþ2pþ2p̂þd̂ðr2pv2sxLÞðr02p̂v02ŝx0LÞ; (A4)

Cpp̂sŝ
l;d̂

¼ ð2s − 3Þ!!ð2ŝ − 3Þ!!
ð2p̂Þ!!ð2lþ 2p̂þ d̂Þ!!ð2pÞ!!ð2lþ 2pþ d̂Þ!!ð2ŝÞ!!ð2sÞ!! ; (A5)

similarly to the one given by (2.48), and where an l!−1 is implied by the summation convention. The self-force on the
particle is found using the E-L equation by first varying according to the difference in trajectories r − r0 (equivalent to the
hatted trajectory of the Keldysh basis) and then setting r0 → r; we see immediately that the force found in (2.49) is
recovered exactly.

2. Electromagnetic self-force in the Lorentz gauge

We examine the EM action for the field Aμ in d spacetime dimensions (3.1), with a source d current:

jμ ¼ ðρ; j⃗Þ; (A6)
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ρ ¼ qδðDÞðx − xpðtÞÞ; (A7)

j⃗ ¼ qv⃗pδðDÞðx − xpðtÞÞ: (A8)

Under the Lorenz gauge condition, the wave equation (2.2)
is replaced for the electromagnetic field Aμ ¼ ðϕ; A⃗Þ by

□Aμ ¼ Ωd̂þ1j
μ: (A9)

These d independent equations are each of the form (2.2),
except for an opposite overall sign (and G ¼ 1). We can
thus use the same propagator (A2), and we solve the d
equations using the same method as in the scalar case: we
Fourier transform each equation along with its source,
integrate using this propagator Godd in the frequency

domain, and transform back to find the d EM components,
analogously to (A3):

Aμ
ωðr⃗Þ ¼

Z
dDx0Godd

ω ðr⃗; r⃗0Þjμwðx⃗0Þ: (A10)

We note that for the scalar potential term A0 ¼ ϕ, this is just
Eq. (A3) again, where the only difference from the scalar
case is the simpler source term (A7) instead of (2.46), or in
other words the absence of the γ term. This means we will
find the same contributions to this potential term as we have
found for the scalar potential, but without s > 0 correc-
tions. For Ak (k ¼ 1…D), solving (A10) is similar to
solving (A3), but with an additional v0k present in jk:

ϕωðr⃗Þ ¼ q
X
L

ð−Þlþd̂þ1
2 ð2lþ d̂Þ!!
d̂!!

X∞
p¼0

X∞
p̂¼0

ð−iωÞ2lþ2pþ2p̂þd̂r2p̂xLr
2p
p xLp

ð2p̂Þ!!ð2lþ 2p̂þ d̂Þ!!ð2pÞ!!ð2lþ 2pþ d̂Þ!! ; (A11)

Ak
ωðr⃗Þ ¼ q

X
L

ð−Þlþd̂þ1
2 ð2lþ d̂Þ!!
d̂!!

X∞
p¼0

X∞
p̂¼0

ð−iωÞ2lþ2pþ2p̂þd̂r2p̂xLr
2p
p xLpvkp

ð2p̂Þ!!ð2lþ 2p̂þ d̂Þ!!ð2pÞ!!ð2lþ 2pþ d̂Þ!! ; (A12)

and an l!−1 is implied by the summation convention.

TABLE VI. Leading-order contributions from A0 and Ak.

l p p̂ A0=q ¼ ϕ=q Fj=q2

1 0 0 ð−Þd2 1
D!!d̂!!

xiðxipÞðDÞ ð−Þd2þ1 1
D!!d̂!!

ðxjpÞðDÞ

Ak=q Fj=q2

0 0 0 ð−Þd2−1 1
d̂!!2

vkpðd̂Þ ð−Þd2 1
d̂!!2

ðxjpÞðDÞ

TABLE VII. Next-to-leading-order contributions from A0.

l p p̂ A0=q ¼ ϕ=q Fj=q2

0 1 1 ð−Þd2−1
4D!!2

x2ðx2pÞðdþ1Þ ð−Þd2
2D!!2

xjpðx2pÞðdþ1Þ

1 0 1 ð−Þd2
2d̂!!ðdþ1Þ!! x

2xiðxipÞðdþ1Þ ð−Þd2−1
2d̂!!ðdþ1Þ!! ½2x

j
pxpiðxipÞðdþ1Þ þ x2pðxjpÞðdþ1Þ�

1 1 0 ð−Þd2
2d̂!!ðdþ1Þ!! xiðx2pxipÞðdþ1Þ ð−Þd2−1

2d̂!!ðdþ1Þ!! ðx
j
px2pÞðdþ1Þ

2 0 0 ð−Þd2−1
2d̂!!ðdþ1Þ!! ½xixkðxipxkpÞðdþ1Þ − 1

D x
2ðx2pÞðdþ1Þ� ð−Þd2

d̂!!ðdþ1Þ!! ½xpiðxipx
j
pÞðdþ1Þ − 1

D x
j
pðx2pÞðdþ1Þ�

TABLE VIII. Next-to-leading-order contributions from Ak.

l p p̂ Ak=q Fj=q2

0 0 1 ð−Þd2−1
2D!!d̂!!

x2ðvkpÞðDÞ ð−Þd2−1
2D!!d̂!!

½2xjpvpkvkpðDÞ − x2pv
j
p
ðdÞ − 2ðr⃗p · v⃗pÞvjpðDÞ�

0 1 0 ð−Þd2−1
2D!!d̂!!

ðx2pvkpÞðDÞ ð−Þd2
2D!!d̂!!

ðx2pvjpÞðdÞ

1 0 0 ð−Þd2
D!!d̂!!

xiðxipvkpÞðDÞ ð−Þd2
D!!d̂!!

½vpkðvkpxjpÞðDÞ − xpiðvjpxipÞðdÞ − vpiðvjpxipÞðDÞ�
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We again solve order by order. The leading and next-to-
leading orders are recorded in Tables VI–VIII.
We derive the EM force from the action for the particle

trajectory in the EM field:

S ¼ Sworldline þ SEM ¼ −m
Z

dτ −
Z

dτjμAμ: (A13)

When deriving the E-L equation, the first part introduces
the m ̈x⃗ term, while

SEM ¼
Z

dtqðA⃗ · v⃗ − ϕÞ ¼
Z

dtLEM (A14)

gives the EM force. We thus find

Fj
EM ¼ q

�
vk

∂Ak

∂xj −
_Aj − ∂ϕ

∂xj
�

¼ Fj
A þ Fj

ϕ: (A15)

The leading and next-to-leading contributions to the self-
force are recorded in Tables VI–VIII. Summed together, we
find the two leading orders of the total self-force on an EM
charge q in d spacetime dimensions to be

F⃗LO ¼ ð−Þd2 D − 1

ðD − 2Þ!!D!!
q2x⃗ðDÞ

p ; (A16)

F⃗d¼4
NLO¼þq2

�
2

3
v2p _⃗apþ2ðv⃗p · a⃗pÞa⃗pþ

2

3
ðv⃗p · _⃗apÞv⃗p

�
; (A17)

F⃗d¼6
NLO ¼ −q2

�
2

3
ða⃗2Þ _⃗aþ 2

3
ða⃗ · _⃗aÞa⃗þ 8

9
ðv⃗ · a⃗Þ ̈a⃗þ 8

9
ðv⃗ · _⃗aÞ _⃗a

þ 4

9
ðv⃗ · ̈a⃗Þa⃗þ 8

45
ðv⃗2Þa⃗

���
þ 4

45
ðv⃗ · a⃗

���
Þv⃗
�
: (A18)

We see that the leading order matches ALD for d ¼ 4 and
Galt’sov for d ¼ 6 (the numerical factors are þ 2

3
and − 4

45
,

correspondingly) and that the next-to-leading order also
exactly matches the expected ALD result for d ¼ 4 and
Galt’sov’s result for d ¼ 6 (3.43) [25]. We also record the
emitted power for d ¼ 6 (LO and NLO):

Pd¼6¼−v⃗ · ðF⃗d¼6
LO þ F⃗d¼6

NLOÞ

¼ q2
�
4

45
ðv⃗ · a⃗

���
Þþ2

3
a⃗2ðv⃗ · _⃗aÞþ2

3
ðv⃗ · a⃗Þða⃗ · _⃗aÞ

þ4

3
ðv⃗ · a⃗Þðv⃗ · ̈a⃗Þþ8

9
ðv⃗ · _⃗aÞ2þ 4

15
v⃗2ðv⃗ · a⃗

���
Þ
�
: (A19)

The code for computing the self-force for any even
dimension is available on our Web server [48].

APPENDIX B: USEFUL DEFINITIONS AND
CONVENTIONS

In this Appendix we collect several definitions and
conventions used in this paper.

1. Multi-index summation convention

Multi-indices are denoted by uppercase Latin letters:

I ≡ Il ≔ ði1…ilÞ: (B1)

Here each ik ¼ 1;…; D is an ordinary spatial index, and
l is the total number of indices. We define a slightly
modified summation convention for multi-indices by

PIQJ ≔
X
l

PIlQJl ≔
X
l

1

l!
Pi1…ilQj1…jl ; (B2)

so repeated multi-indices are summed over as in the
standard summation convention, but an additional division
by l! is implied. When l is unspecified the summation is
over all l.
In addition a multi-index deltalike function is defined

through

δIlJl ≔ l!δi1j1…δiljl : (B3)

These definitions are such that factors of l! are
accounted for automatically.

2. Normalizations of Bessel functions

We find it convenient to define an origin-biased nor-
malization of Bessel functions. We start with convention-
ally normalized solutions of the Bessel equation

�
∂2
x þ

1

x
∂x þ 1 − ν2

x2

�
BνðxÞ ¼ 0; (B4)

where B≡ fJ; Y;H�g, namely B represents Bessel (of the
first or second kind) and Hankel functions, and ν denotes
their order. Given α, we define

~bα ≔ Γðαþ 1Þ2α BαðxÞ
xα

; (B5)

the “origin normalized” Bessel functions ~bα, which satisfy
the equation [compare (2.15)]

�
∂2
x þ

2αþ 1

x
∂x þ 1

�
~bαðxÞ ¼ 0: (B6)

The purpose of this definition is to have a simple behavior
of ~jα in the vicinity of the origin x ¼ 0:

~jαðxÞ ¼ 1þOðx2Þ: (B7)
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More precisely, the series expansion for ~jαðxÞ around x ¼ 0 is given by the even series

~jαðxÞ ¼
X∞
p¼0

ð−Þpð2αÞ!!
ð2pÞ!!ð2pþ 2αÞ!! x

2p: (B8)

The asymptotic form of our solutions for x → ∞ is best stated in terms of Hankel functions ~h� ≔ ~j� i~y:

~h�α ðxÞ ∼ ð∓iÞαþ1=2 2
αþ1=2Γðαþ 1Þffiffiffi

π
p e�ix

xαþ1=2 : (B9)

Around x ¼ 0 the Bessel function of the second kind for α noninteger is

~yαðxÞ ¼
Γðαþ 1Þ2α

xα
cosðαπÞJαðxÞ − J−αðxÞ

sinðαπÞ ¼ Γðαþ 1Þ2α
sinðαπÞ

X∞
p¼0

ð−Þp
ð2pÞ!!

x2p

2p

�
cosðαπÞ

2αΓðpþ αþ 1Þ −
2αx−2α

Γðp − αþ 1Þ
�
; (B10)

while for integer α ¼ n, using [cf. Eq. (9.1.11) of [50]] it is given by

~ynðxÞ ¼ − 2ð2nÞ!!
π

Xn
m¼1

ð2m − 2Þ!!
ð2n − 2mÞ!! x

−2m þ 2

π
ln

�
x
2

�
~jnðxÞ −

ð2nÞ!!
π

X∞
k¼0

½ψðkþ 1Þ þ ψðnþ kþ 1Þ� ð−Þk
ð2kÞ!!ð2nþ 2kÞ!! x

2k;

(B11)

where ψ is the digamma function, defined for integers using the harmonic numbers HðNÞ and the Euler-Mascheroni
constant γ:

ψðN þ 1Þ ¼ HðNÞ − γ: (B12)

[1] O. Birnholtz, S. Hadar, and B. Kol, Phys. Rev. D 88, 104037
(2013).

[2] W. D. Goldberger and I. Z. Rothstein, Phys. Rev. D 73,
104029 (2006); W. D. Goldberger, arXiv:hep-ph/0701129.

[3] W. D. Goldberger and I. Z. Rothstein, Phys. Rev. D 73,
104030 (2006).

[4] W. D. Goldberger and A. Ross, Phys. Rev. D 81, 124015
(2010).

[5] C. R. Galley and M. Tiglio, Phys. Rev. D 79, 124027
(2009).

[6] S. Foffa and R. Sturani, Phys. Rev. D 87, 044056 (2013).
[7] C. R. Galley and A. K. Leibovich, Phys. Rev. D 86, 044029

(2012).
[8] C. R. Galley, Phys. Rev. Lett. 110, 174301 (2013).
[9] V. Cardoso, O. J. C. Dias, and P. Figueras, Phys. Rev. D 78,

105010 (2008).
[10] M. Abraham, Theorie der Elektrizität (Springer, Leipzig,

1905), Vol. II.
[11] P. A. M. Dirac, Proc. R. Soc. A 167, 148 (1938).
[12] J. D. Jackson, Classical Electrodynamics (Wiley, New York,

1998), 3rd ed.
[13] E. Poisson, arXiv:gr-qc/9912045.
[14] B. P. Kosyakov, Teor. Mat. Fiz. 119, 119 (1999) [Theor.

Math. Phys. 119, 493 (1999)].

[15] D. V. Gal’tsov, Phys. Rev. D 66, 025016 (2002).
[16] P. O. Kazinski, S. L. Lyakhovich, and A. A. Sharapov, Phys.

Rev. D 66, 025017 (2002).
[17] D. V. Gal’tsov and P. Spirin, Gravitation Cosmol. 12, 1

(2004).
[18] P. O. Kazinski, S. L. Lyakhovich, and A. A. Sharapov,

arXiv:hep-th/0405287.
[19] D. Galakhov, JETP Lett. 87, 452 (2008).
[20] B. P. Kosyakov, Introduction to the Classical Theory of

Particles and Fields (Springer, Berlin, 2007).
[21] B. P. Kosyakov, Int. J. Mod. Phys. A 23, 4695 (2008).
[22] E. Shuryak, H.-U. Yee, and I. Zahed, Phys. Rev. D 85,

104007 (2012).
[23] A. Mironov and A. Morozov, Theor. Math. Phys. 156, 1209

(2008).
[24] A. Mironov and A. Morozov, Int. J. Mod. Phys. A 23, 4677

(2008).
[25] D. V. Gal’tsov and P. A. Spirin, Gravitation Cosmol. 13, 241

(2007).
[26] D. Gal’tsov, Fundam. Theor. Phys. 162, 367 (2011).
[27] V. Asnin and B. Kol, Classical Quantum Gravity 24, 4915

(2007).
[28] J. S. Schwinger, J. Math. Phys. (N.Y.) 2, 407 (1961); K. T.

Mahanthappa, Phys. Rev. 126, 329 (1962); L. V. Keldysh,

OFEK BIRNHOLTZ AND SHAHAR HADAR PHYSICAL REVIEW D 89, 045003 (2014)

045003-22

http://dx.doi.org/10.1103/PhysRevD.88.104037
http://dx.doi.org/10.1103/PhysRevD.88.104037
http://dx.doi.org/10.1103/PhysRevD.73.104029
http://dx.doi.org/10.1103/PhysRevD.73.104029
http://arXiv.org/abs/hep-ph/0701129
http://dx.doi.org/10.1103/PhysRevD.73.104030
http://dx.doi.org/10.1103/PhysRevD.73.104030
http://dx.doi.org/10.1103/PhysRevD.81.124015
http://dx.doi.org/10.1103/PhysRevD.81.124015
http://dx.doi.org/10.1103/PhysRevD.79.124027
http://dx.doi.org/10.1103/PhysRevD.79.124027
http://dx.doi.org/10.1103/PhysRevD.87.044056
http://dx.doi.org/10.1103/PhysRevD.86.044029
http://dx.doi.org/10.1103/PhysRevD.86.044029
http://dx.doi.org/10.1103/PhysRevLett.110.174301
http://dx.doi.org/10.1103/PhysRevD.78.105010
http://dx.doi.org/10.1103/PhysRevD.78.105010
http://dx.doi.org/10.1098/rspa.1938.0124
http://arXiv.org/abs/gr-qc/9912045
http://dx.doi.org/10.4213/tmf732
http://dx.doi.org/10.1007/BF02557347
http://dx.doi.org/10.1007/BF02557347
http://dx.doi.org/10.1103/PhysRevD.66.025016
http://dx.doi.org/10.1103/PhysRevD.66.025017
http://dx.doi.org/10.1103/PhysRevD.66.025017
http://arXiv.org/abs/hep-th/0405287
http://dx.doi.org/10.1134/S0021364008080134
http://dx.doi.org/10.1142/S0217751X08041451
http://dx.doi.org/10.1103/PhysRevD.85.104007
http://dx.doi.org/10.1103/PhysRevD.85.104007
http://dx.doi.org/10.1007/s11232-008-0090-z
http://dx.doi.org/10.1007/s11232-008-0090-z
http://dx.doi.org/10.1142/S0217751X0804144X
http://dx.doi.org/10.1142/S0217751X0804144X
http://dx.doi.org/10.1088/0264-9381/24/20/002
http://dx.doi.org/10.1088/0264-9381/24/20/002
http://dx.doi.org/10.1063/1.1703727
http://dx.doi.org/10.1103/PhysRev.126.329


Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys. JETP 20,
1018 (1965)].

[29] M. A. Rubin and C. R. Ordonez, J. Math. Phys. (N.Y.) 25,
2888 (1984); 26, 65 (1985).

[30] A. Higuchi, J. Math. Phys. (N.Y.) 28, 1553 (1987); 43, 6385
(E) (2002).

[31] J. C. Maxwell, A Treatise on Electricity and Magnetism
(Clarendon, Oxford, 1873), Vol. 1; The Scientific Papers of
James Clerk Maxwell (Cambridge University Press,
Cambridge, England, 1890).

[32] C. Frye and C. J. Efthimiou, arXiv:1205.3548.
[33] H. Kalf, Bull. Belg. Math. Soc. Simon Stevin 2, 361 (1995).
[34] J. Applequist, J. Phys. A 22, 4303 (1989).
[35] A. Ross, Phys. Rev. D 85, 125033 (2012).
[36] L. Blanchet and T. Damour, Ann. I. H. P.: Phys. Theor. 50,

377 (1989).
[37] T. Damour and B. R. Iyer, Phys. Rev. D 43, 3259 (1991).
[38] S. L. Detweiler and B. F. Whiting, Phys. Rev. D 67, 024025

(2003).
[39] N. L.Balazs, Proc. Phys. Soc. LondonSect. A 68, 521 (1955).

[40] E. S. C. Ching, P. T. Leung, W.M. Suen, and K. Young,
Phys. Rev. D 52, 2118 (1995).

[41] D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric
Calculus: A Unified Language for Mathematics and Physics
(Reidel, Dordrecht, 1984).

[42] D. Hestenes, New Foundations for Classical Mechanics
(Kluwer Academic, Dordrecht, 1990).

[43] W. E. Baylis, Electrodynamics, A Modern Geometric
Approach (Birkhäuser, Boston, 1999).

[44] C. Doran and A. Lasenby, Geometric Algebra for Physicists
(Cambridge University Press, Cambridge, England,
2003).

[45] D. Hestenes, Am. J. Phys. 71, 104 (2003).
[46] D. R. Rowland, Am. J. Physiol. 78, 187 (2010).
[47] J. M. Chappell, A. Iqbal, and D. Abbott, arXiv:1010.4947.
[48] http://phys.huji.ac.il/∼ofek/PNRR/.
[49] O. Birnholtz and S. Hadar (to be published).
[50] M. Abramowitz and I. Stegun, Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical
Tables (Dover, Mineola, NY, 1972).

ACTION FOR REACTION IN GENERAL DIMENSION PHYSICAL REVIEW D 89, 045003 (2014)

045003-23

http://dx.doi.org/10.1063/1.526034
http://dx.doi.org/10.1063/1.526034
http://dx.doi.org/10.1063/1.526749
http://dx.doi.org/10.1063/1.527513
http://dx.doi.org/10.1063/1.1515382
http://dx.doi.org/10.1063/1.1515382
http://arXiv.org/abs/1205.3548
http://dx.doi.org/10.1088/0305-4470/22/20/011
http://dx.doi.org/10.1103/PhysRevD.85.125033
http://dx.doi.org/10.1103/PhysRevD.43.3259
http://dx.doi.org/10.1103/PhysRevD.67.024025
http://dx.doi.org/10.1103/PhysRevD.67.024025
http://dx.doi.org/10.1088/0370-1298/68/6/307
http://dx.doi.org/10.1103/PhysRevD.52.2118
http://dx.doi.org/10.1119/1.1522700
http://dx.doi.org/10.1119/1.3265546
http://arXiv.org/abs/1010.4947
http://phys.huji.ac.il/ofek/PNRR/
http://phys.huji.ac.il/ofek/PNRR/
http://phys.huji.ac.il/ofek/PNRR/
http://phys.huji.ac.il/ofek/PNRR/

