
Relativistic fluids, superfluids, solids, and supersolids from
a coset construction

Alberto Nicolis, Riccardo Penco, and Rachel A. Rosen
Physics Department and Institute for Strings, Cosmology, and Astroparticle Physics,

Columbia University, New York, New York 10027, USA
(Received 15 August 2013; published 4 February 2014)

We provide a systematic coset construction of the effective field theories governing the low-energy
dynamics of relativistic fluids and solids and of their “super” counterparts. These effective theories agree
with those previously derived via different techniques. As an application of our methods, we rederive the
Wess-Zumino term relevant for anomalous charge-carrying fluids in (1þ 1) dimensions.

DOI: 10.1103/PhysRevD.89.045002 PACS numbers: 11.30.Qc

I. INTRODUCTION

Hydrodynamics is usually studied at the level of its
equations of motion, which are nothing but the local
conservation laws for energy, momentum, and possibly
additional conserved charges carried by the fluid in
question. Recently, however, it has been realized that an
effective field theory treatment in terms of a local action
functional might be more convenient for certain applica-
tions. This is partially due to the fact that long-wavelength
hydrodynamical modes can be thought of as the Goldstone
excitations associated with certain spontaneously broken
spacetime symmetries, and effective field theory is at
present the most efficient tool we have to characterize
systematically the low-energy dynamics of Goldstone
excitations. In fact, this logic was probably first explored
for the dynamics of phonons in solids [1] and only later
generalized to zero-temperature superfluids [2], supersolids
[3], ordinary fluids [4,5], finite-temperature superfluids [6],
and supersymmetric fluid systems [7,8].
The power of this new approach lies partially in its

economy. One functional of the fields, i.e., the action,
encodes all the information about the theory: the equations
of motion, the stress-energy tensor, the other conserved
currents, quantum phenomena, etc. The power of this
approach also lies in how systematic it is. The action one
writes down should be the most general local functional
compatible with the symmetries, organized at low energies
as a perturbative expansion in the fields’ derivatives.
For Goldstones associated with standard spontaneous

symmetry breaking in particle physics, the celebrated coset
construction [9,10] is the most exhaustive technique we
have to write down such low-energy effective actions.
Such a technique has been generalized to spontaneously
broken spacetime symmetries in [11,12], but so far it has
not been applied directly to the systems of our interests:
fluids, solids, and variations thereof.
Our perhaps modest goal in this paper is to carry out this

application. The motivation is twofold. On the one hand,

we want to confirm that the effective theories that have
been written down so far for these systems are indeed the
most general ones compatible with the appropriate
symmetries to lowest order in the derivative expansion
(it turns out that they are). On the other hand, we hope that
the formalism we develop here will turn out to be useful in
overcoming certain stumbling blocks that have been
encountered in trying to extend effective theories to higher
orders—regarding for instance the inclusion of Wess-
Zumino terms in dimensions higher than (1þ 1) [13],1

and the inclusion of dissipative effects to nonlinear order
in the hydrodynamical modes [15].
We will start with the coset construction for an ordinary

fluid that carries a conserved charge. In a sense that will be
clear in what follows, this is the most complicated system
among those in our title. Then, by gradually removing
symmetries, we will be able to generalize such a con-
struction to the other systems as well. For simplicity wewill
not consider the supersymmetric versions of our systems.
Moreover, when covering solids and supersolids, we will
only consider isotropic systems that realize the full SOð3Þ
symmetry rather than one of its discrete subgroups, as
would be more appropriate for actual crystals.
To describe a generic system featuring spontaneous

symmetry breaking, the only input needed by the coset
construction is the symmetry breaking pattern. For the
systems that we are interested in, the corresponding
symmetry breaking patterns have been discussed exten-
sively in the literature cited above. Wewill thus not rederive
them here, but rather build on these previous results. It is
worth mentioning that all these symmetry breaking patterns
feature a crucial interplay between spacetime symmetries
and internal ones, whereby certain unbroken symmetries
are linear combinations of both types. This further com-
plicates the already subtle coset construction for broken
spacetime symmetries.

1See however [14] for a different approach to anomalies in
hydrodynamics.
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II. SYMMETRIES OF PERFECT FLUIDS

In D ¼ dþ 1 spacetime dimensions, the low-energy
behavior of perfect fluids can be described using d scalar
fields ϕIðx⃗; tÞ [5,13]. These fields give the comoving
(Lagrangian) coordinates ϕI of the fluid as a function of
the physical spatial coordinates x⃗ and of time t. The action
for these scalars is invariant under internal volume-
preserving diffeomorphisms, i.e.,

ϕI → ξIðϕJÞ; detð∂ξI=∂ϕJÞ ¼ 1: (1)

Physically, such a large internal symmetry group encodes
the insensitivity of a perfect fluid’s dynamics to adiabati-
cally slow deformations that do not change the volume of
the individual fluid elements. Among an infinite number
of symmetries, this group includes most notably shifts and
rotations of the comoving coordinates ϕI.
To describe a perfect fluid with a conserved charge, we

introduce an additional scalar field ϕ0 that shifts under
the associated Uð1Þ symmetry. We demand that the charge
be separately conserved within each volume element of
the fluid, which is equivalent to demanding that the charge
“flow with the fluid,” jμ ¼ nuμ. This corresponds to
requiring that the action be invariant under shifts of ϕ0

that depend on the comoving coordinates ϕI, i.e.,

ϕ0 → ϕ0 þ fðϕIÞ; (2)

where f is an arbitrary function [5,16]. This symmetry is
referred to as the “chemical shift” symmetry. We call this
field ϕ0 for notational convenience, but no internal Lorentz
invariance rotating ϕ0 into the ϕI’s is implied.
When the fluid is in equilibrium, its comoving coor-

dinates can be chosen to coincide with the physical
coordinates, and ϕ0 with time, up to proportionality
constants which we omit for simplicity:

hϕii ¼ xi; hϕ0i ¼ t: (3)

Such a field configuration spontaneously breaks all of the
above internal symmetries as well as boosts, spacetime
translations, and spatial rotations and is left invariant only
by a linear combination of internal and spacetime trans-
lations and rotations. At sufficiently low energies, the only
relevant excitations around the equilibrium configuration
(3) are the Goldstone bosons associated with this symmetry
breaking.
In what follows, we will derive a low-energy effective

action for these Goldstone bosons. In order to successfully
carry out such a construction, we will use an approxima-
tion. The internal volume-preserving diffeomorphisms (1)
and the chemical shift (2) are potentially unwieldy as they
are described by an infinite number of generators. To
handle this, we restrict the transformation (1) to constant
shifts, generated by QI, and special linear transformations

(i.e., unit determinant 3 × 3 matrices), generated by MIJ.
The antisymmetric part of MIJ generates internal rotations
and we will denote it by LIJ. Similarly, we will restrict the
chemical shift symmetry (2) to a constant shift, generated
byQ0, as well as a shift linear in ϕI , generated by FI. As we
will see, by demanding invariance under this restricted set
of symmetries, our action will be accidentally invariant
under the full transformations (1) and (2) to lowest order in
derivatives. In fact, at present it is not clear yet whether the
infinite-dimensional symmetries postulated above should
survive beyond lowest order in the derivative expansion.
For instance, dissipative effects associated with shear
viscosity and heat conduction apparently violate (1) and
(2) [15]. This further indicates that these symmetries might
not be fundamental but only accidental, in which case they
should not enter the coset construction.
Finally, we will denote the generators of spacetime

translations, rotations, and Lorentz boosts by Pμ, Jij and
Ki, respectively. Therefore, the pattern of symmetry break-
ing that we will consider can be summarized as follows:

unbroken ¼
(
P̄μ ≡ Pμ þQμ translations;

J̄ij ≡ Jij þ Lij rotations;

broken ¼

8>>><
>>>:

Ki boosts;

Qμ constant shifts;

Fi chemical shifts;

Mij special linear.

In what follows, we will denote the full symmetry group by
G and the unbroken subgroup by H. In D ¼ 4 dimensions
there are 25 generators in total, 18 of which are broken by
the field configuration (3).
Notice that since Lorentz invariance is spontaneously

broken, the μ ¼ 0 and μ ¼ i components should be treated
as independent here and in what follows. Moreover, we
have stopped differentiating between the internal I; J;…
indices and the spatial i; j;… ones, since the only index
contractions that make sense at the level of the coset
construction are those associated with the unbroken sym-
metries. So, from here on out all quantities carrying i; j;…
indices transform as tensors under the unbroken rotations
generated by J̄ij.

III. COSET CONSTRUCTION FOR FLUIDS

As per the usual construction [9–12], we parameterize
the space of (left) cosets G=H by introducing one
Goldstone field for each broken generator:

ΩðxÞ ¼ eix
μP̄μeiη

iðxÞKieiπ
μðxÞQμeiθ

iðxÞFieiα
ijðxÞMij : (4)

In order to construct an effective action that is invariant
under the full symmetry group G, one considers the
Maurer-Cartan form expanded in the basis of generators
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Ω−1dΩ ¼ iωμ
PP̄μ þ iωij

J J̄ij þ iωi
KKi þ iωμ

QQμ

þ iωi
FFi þ iωij

MMij: (5)

The one-forms ωμ
P are related to the spacetime vielbeins,

ωμ
P ¼ eαμdxα: (6)

The one-forms associated with the broken generators, ωi
K ,

ωμ
Q, ω

i
F and ωij

M, are related to the covariant derivatives of
the Goldstone fields,

ωμ
Q ¼ eανDνπ

μdxα; ωi
F ¼ eανDνθ

idxα ;

ωij
M ¼ eανDνα

ijdxα; ωi
K ¼ eανDνη

idxα: (7)

These forms transform covariantly and can thus be used as
building blocks of the invariant Lagrangian. An action that
is constructed to be manifestly invariant under the unbro-
ken group H will automatically be invariant under the full
group G.
Given the coset parametrization (4), we can use the

Poincaré algebra [17] as well as the commutation relations

½Mij;Mkl� ¼ iðδilMkj − δjkMilÞ; (8a)

½Mij;Qk� ¼ i

�
δikQj − 1

d
δijQk

�
; (8b)

½Mij; Fk� ¼ i

�
1

d
δijFk − δjkFi

�
; (8c)

½Fi;Qj� ¼ iδijQ0 (8d)

to calculate the Maurer-Cartan form (5). We obtain

Ω−1∂μΩ ¼ iΛμ
νP̄ν þ e−iηiKi∂μeiη

jKj

þ i½δμ0 þ ∂μπ
0 þ ðδμi þ ∂μπ

iÞθi − Λμ
0�Q0

þ i½ðδμi þ ∂μπ
iÞξij − Λμ

j�Qj þ i∂μθ
iξi

jFj

þ e−iαijMij∂μeiα
klMkl ;

where ξi
j ¼ ξi

jðαÞ is a special linear transformation and
Λμ

ν ¼ Λμ
νðηÞ is a Lorentz transformation of rapidity η⃗. We

have not expanded the terms involving the K and M
generators. Since the nested K commutators only generate
K’s and J’s, and the nested M commutators only generate
M’s, these will not contribute to the coefficients of
the generators Qμ, which are our primary interest at the
moment for reasons that we will explain towards the end of
this section. These coefficients give the following covariant
derivatives for the πμ Goldstones:

Dμπ
0 ¼ −δμ0 þ Λν

μð∂νϕ
0 þ ∂νϕ

iθiÞ; (9a)

Dμπ
i ¼ −δμi þ Λν

μ∂νϕ
jξj

i; (9b)

where we have simplified the notation by introducing the
fields ϕμ ¼ xμ þ πμ. It will turn out that these fields are
exactly the ϕi, ϕ0 fields described in the previous section.
Not all of the Goldstone bosons we have introduced

necessarily describe independent degrees of freedom
[11,18–20]. Depending on the symmetry breaking mecha-
nism, there may be some gauge transformations acting on
the Goldstones that do not affect the physical fluctuations
of the order parameter [21]. When that is the case, one can
remove the redundant Goldstone fields by imposing gauge-
fixing conditions that respect all the global symmetries.2

There is a simple rule of thumb to determine whether
such gauge redundancies may exist in the first place [19].
One simply needs to consider the commutators of the
unbroken translation generators with a broken symmetry
generator. In our case, the relevant commutators are

½P̄0; Ki� ¼ −iðP̄i −QiÞ; (10a)

½P̄i; Fj� ¼ −iδijðP̄0 −Q0Þ; (10b)

½P̄k;Mij� ¼ −i
�
δikQj − 1

d
δijQk

�
: (10c)

Since the broken generators on the right-hand sides of
these equations are independent of the broken generators
on the left-hand sides, the Goldstone fields associated with
the latter—namely ηi, θi and αij—may be redundant.
Whether they are, is a question that cannot be answered
without further information on the symmetry breaking
mechanism [21]. To proceed we will assume that they
are, and we will thus construct the effective theory for the
minimal set of Goldstones required to realize all the
symmetries. Nonminimal choices where not all the poten-
tially redundant Goldstones are redundant will be studied
elsewhere [22].
The gauge-fixing conditions that eliminate the redundant

Goldstones while preserving all the symmetries are

D0π
i ¼ 0; (11a)

Diπ
0 ¼ 0; (11b)

Diπj − 1

d
δijDkπ

k ¼ 0: (11c)

In (3þ 1) dimensions, these gauge-fixing conditions
allow one to eliminate 14 out of 18 Goldstone fields.

2These covariant gauge-fixing conditions usually go under the
name of “inverse Higgs constraints.” We will use instead the
terminology and the interpretation introduced in [21], which
emphasizes their being, in general, optional gauge choices.

RELATIVISTIC FLUIDS, SUPERFLUIDS, SOLIDS, AND … PHYSICAL REVIEW D 89, 045002 (2014)

045002-3



D0π
i ¼ 0—We can use the first gauge-fixing condition to

eliminate the η Goldstones in favor of the π Goldstones or,
equivalently, in favor of the ϕ’s. To do so, we use the
covariant derivatives given in Eqs. (9). It is convenient to
parameterize Λμ

ν in terms of the usual velocity vector βi and
solve for βi rather for ηi. Defining the 4-vector βμ ≡ ð1;−βiÞ,
we find that D0π

i ¼ 0 implies βμ∂μϕ
i ¼ 0. This equation is

solved by

βμ ¼ Jμ=J0; (12)

where Jμ ≡ ϵμα1…αd∂α1ϕ
1…∂αdϕ

d is the identically con-
served current of [4,5].
Diπ

0 ¼ 0.—The second gauge-fixing condition can be
used to eliminate the θ Goldstones. Again using Eqs. (9),
we find

θi ¼ −½ðΛ∂ϕÞ−1�ijΛν
j∂νϕ

0; (13)

where Λ∂ϕ stands for Λμ
i∂μϕ

j.
Diπ

j − 1
d δ

j
iDkπ

k ¼ 0.—The remaining gauge-fixing
condition can be used to eliminate the α Goldstones. In
this case, it is easier (and sufficient) to solve for ξjiðαÞ.
The gauge-fixing condition (11c) implies that Dkπ

i ∝ δik.
Hence,

Dkπ
i ¼ −δki þ Λν

k∂νϕ
jξj

i ¼ Cδik; (14)

for some function of the fields C. Solving for ξ gives

ðξ−1Þkj ¼
Λν

k∂νϕ
j

1þ C
: (15)

Finally, using that, by definition, det ξ ¼ 1, we can solve
for C:

C ¼ −1þ ðdet Λν
k∂νϕ

jÞ1=d: (16)

By combining Eqs. (12), (15) and (16), the ξj
iðαÞ can now

be expressed solely in terms of the ϕ’s.
Returning to the covariant derivatives (9) for the π

Goldstones, we can now write them in terms of the π
(or ϕ) fields alone. After imposing the gauge-fixing
conditions (11), the only nonzero components are D0π

0

and D1π
1 ¼ � � � ¼ Ddπ

d ¼ C. The latter can be simplified
using that for any matrix A one has det A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ATA

p
,

which, combined with the properties of βi, yields

D1π
1 ¼ ðdet ∂μϕ

i∂μϕjÞ1=ð2dÞ − 1≡ b1=d − 1: (17)

By combining Eqs. (9a), (12) and (13), we can rewrite also
D0π

0 in a fairly compact form:

D0π
0 ¼ βμ∂μϕ

0ffiffiffiffiffiffiffiffiffiffiffiffiffi−βνβνp − 1 ¼ Jμ∂μϕ
0

b
− 1≡ y − 1: (18)

One may in principle consider also the covariant derivatives
of the η, θ, and α Goldstones, expressed in terms of the π’s.
However, the solutions (12), (13) and (15) show that these
fields necessarily start at first order in derivatives of the π’s,
which means that their covariant derivatives can only enter
the action at higher orders in the derivative expansion.
Thus, at lowest order in derivatives, the covariant

derivatives (17) and (18) are the only invariant building
blocks of the low-energy action for the perfect fluid, which
therefore can be written as

S ¼
Z

dDxFðb; yÞ; (19)

where F is a generic function. Notice that for notational
convenience we have removed the fractional 1=d power in
(17), as well as the −1 offsets in (17) and (18). This is
consistent since F is a completely generic function anyway.
We should keep in mind however that this action should be
interpreted as a perturbative series about b ¼ y ¼ 1, and we
have no guarantee that the same effective field theory holds
for background values of b and y that are much different
than this.3 In many physical systems one will encounter
phase transitions at critical values for these quantities.
Identical considerations apply to the generalizations that we
will analyze below.
This action coincides with that extensively studied in

[5,13]. This supports our earlier claim that the fields ϕi are
indeed the comoving coordinates of the fluid. Also, notice
that the action (19) is invariant under the full group of
volume-preserving diffeomorphisms (1) as well as the full
chemical shift symmetry (2), even though only the linear-
ized version of these symmetries was imposed to carry
out the coset construction. The reason is that at this order
the action only involves the first derivatives of the ϕ fields,
which—unlike the ϕ fields themselves—transform cova-
riantly under (1) and (2), that is, linearly.

IV. SUPERFLUIDS

The coset construction for perfect fluids carried out in
the previous section can be easily modified to describe
relativistic superfluids. It is well known that a superfluid at
finite temperatures can be thought of as an admixture of an
ordinary perfect fluid and a zero temperature superfluid
[23]. From our field-theoretic perspective, this means that a
finite-temperature superfluid in D ¼ dþ 1 spacetime
dimensions can once again be described using D scalars
ϕμðx⃗; tÞ: the d fields ϕI describe the ordinary component
whereas ϕ0 describes the superfluid one [6]. The action
must still be invariant under volume-preserving

3See, however, [21] for certain regularity conditions that can be
imposed on the Lagrangian of superfluid systems in order to keep
the theory consistent and weakly coupled all the way to zero
density.
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diffeomorphisms (1), but since the two components do not
need to “flow” together, the action is only invariant under
constant shifts

ϕ0 → ϕ0 þ c0 (20)

and not under the full chemical shift (2). The coset
construction carried out in the previous section can be
easily modified to take this into account. Setting θi ¼ 0 in
Eq. (4) or, equivalently, directly in the covariant derivatives
(9) is formally equivalent to not having introduced Fi
initially.
The only gauge-fixing conditions we can now impose

are those in Eqs. (11a) and (11c). Since both equations
involve only the covariant derivatives Dμπ

i, which did not
depend on the Goldstones θi, their solutions remain the
same. After eliminating the βi, the expression for D0π

0 in
terms of the π Goldstones also remains unchanged. Thus
the Lagrangian for a finite-temperature superfluid is still a
function of the quantities b and y defined in Eqs. (17) and
(18). In addition, there is one more invariant that we can
write down:

Diπ
0Diπ0 ¼ ∂μϕ

0∂μϕ0 − ðβμ∂μϕ
0Þ2

βνβν
¼ X þ y2; (21)

where X ≡ ∂μϕ
0∂μϕ0. Therefore, the low-energy effective

action for a finite-temperature superfluid is

S ¼
Z

dDxFðX; b; yÞ ðsuperfluids; T ≠ 0Þ; (22)

in agreement with [6].
One can recover the effective action for a superfluid at

T ¼ 0 by neglecting the ordinary component of a finite-
temperature superfluid. Following the same logic as above,
this amounts to setting ϕi ¼ 0 everywhere, in addition to θi.
Now there is one covariant derivative of the form

Dμπ
0 ¼ −δμ0 þ Λν

μ∂νϕ
0: (23)

None of our previous commutators (10) can now be used to
derive gauge-fixing conditions. Instead, we note that

½P̄i; Kj� ¼ −iδijðP̄0 −Q0Þ: (24)

Accordingly, we can set Diπ
0 ¼ 0 in order to eliminate the

boost Goldstones βi from the spectrum.4

We can solve this equation to get

βi ¼
∂iϕ

0

∂0ϕ
0
: (25)

By plugging the relation (25) into the expression for D0π
0

given above in Eq. (23), we get

D0π
0 ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∂μϕ

0∂μϕ0

q
≡ 1 − ffiffiffiffiffiffiffi−Xp

: (26)

Thus the effective action for the zero-temperature
superfluid can be written as

S ¼
Z

dDxFðXÞ ðsuperfluids; T ¼ 0Þ: (27)

This agrees with the effective action derived with alter-
native methods in [2]. Notice that the coset construction for
superfluids at T ¼ 0 can be trusted to all orders in the
derivative expansion. This is because the pattern of sym-
metry breaking involves only a finite number of generators
and hence we no longer need to restrict to a smaller subset
of generators for the coset construction.

V. SOLIDS AND SUPERSOLIDS

The coset construction for perfect fluids can also be
adapted to describe relativistic solids and supersolids. Let
us start with supersolids. In D spacetime dimensions, their
low-energy behavior is once again described by D scalar
fields ϕμðx⃗; tÞ [3]. However, the action for supersolids is
invariant only under a subset of the symmetries (1) and (2),
namely (constant) internal shifts and rotations:

ϕμ → ϕμ þ cμ; ϕi → Ri
jϕ

j: (28)

This changes the pattern of symmetry breaking associated
with the equilibrium field configuration (3). However, after
setting Fi ¼ 0 and replacing Mij with Lij in Eq. (4), it is
straightforward to repeat the construction carried out in
Sec. III. The covariant derivatives for the π fields are now

Dμπ
0 ¼ −δμ0 þ Λν

μ∂νϕ
0; (29a)

Dμπ
i ¼ −δμi þ Λν

μ∂νϕ
jRj

i; (29b)

where Rj
i ¼ Rj

iðαÞ is a d-dimensional rotation. The
relevant commutation relations to determine potential
gauge redundancies are

½P̄0; Ki� ¼ −iðP̄i −QiÞ; (30a)

½P̄k; Lij� ¼ iðδikQj − δjkQiÞ; (30b)

and the corresponding gauge fixing conditions are

4Notice that in the ordinary fluid case we were getting the same
Diπ

0 ¼ 0 gauge-fixing condition from the ½P̄i; Fj� commutator,
and we used it to eliminate the θi Goldstones, while the βi
Goldstones had been eliminated via the ½P̄0; Ki� gauge-fixing
condition. So, in the ordinary fluid case we did not need the
commutator (24), because it can be thought of as an alternative
gauge-fixing condition for βi with respect to the one we used.
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D0π
i ¼ 0; (31a)

Diπj −Djπi ¼ 0: (31b)

D0π
i ¼ 0.—This condition still implies βμ∂μϕ

i ¼ 0 and
therefore the solution (12) remains valid even for super-
solids. We can then easily express the covariant derivatives
of π0 as a function of the fields ϕμ only:

D0π
0 ¼ y − 1; Diπ

0 ¼ Λν
i∂νϕ

0: (32)

D½iπj� ¼ 0.—In order to solve this equation to eliminate
the α Goldstones, it is convenient to introduce the matrix
Ni

j ≡ Λμ
i∂μϕ

j. Then, from Eq. (37) we see that the
condition D½iπj� ¼ 0 is tantamount to requiring that
NR ¼ S with S some symmetric matrix. It follows that
RN ¼ RSRT ≡ S0 must also be a symmetric matrix and
that S02 ¼ NTN. After a few algebraic manipulations, we
find that ðS02Þij ¼ ∂μϕi∂μϕj, which implies

DðiπjÞ ¼ −δij þ
�
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂μϕ∂μϕ

q
N−1

�
ij
: (33)

The low-energy effective action for supersolids is therefore
a generic functional of the building blocks (32) and (33)
that is manifestly invariant under all unbroken symmetries.
We note that

Diπ
0 ¼ ðN−1Þji∂μϕ

0∂μϕj: (34)

Since all the indices must be contracted to preserve rota-
tional invariance, we can equivalently use as our building
blocks

Diπ
0 → Ai ≡ ∂μϕ

0∂μϕi;DðiπjÞ → Bij ≡ ∂μϕi∂μϕj: (35)

Therefore, the low-energy effective action for supersolids is

S ¼
Z

dDxFðAi; Bjk; yÞ ðsupersolidsÞ: (36)

This action is the straightforward relativistic generalization
of that derived by Son in [3].
The coset construction for solids is even simpler.

The low-energy effective action can be obtained directly
by setting ϕ0 ¼ 0 in the action (36). The only remaining
building block is then Bij, which should be contracted with
itself as to preserve rotational invariance. In d ¼ 3 spatial
dimensions, there are only three invariants one can write
down using a symmetric matrix such as Bij. Following
[24], we can choose them to be

W ¼ ½B�; Y ¼ ½B2�
½B�2 ; Z ¼ ½B3�

½B�3 ; (37)

where the brackets ½� � �� stand for the trace of the matrix
within. The low-energy effective action for solids is
therefore

S ¼
Z

dDxFðW;Y; ZÞ ðsolidsÞ: (38)

VI. THE ð1þ 1ÞD ANOMALY

The coset construction performed thus far has the
limitation that it only generates terms that are exactly
invariant under the chosen symmetries, as opposed to terms
that are invariant up to total derivatives. The latter are
known as Wess-Zumino terms and are necessary if one
wishes to consider anomalous symmetries. The logic is
that, upon gauging, the Wess-Zumino terms may no longer
be invariant, thus indicating an anomaly.
There is a straightforward prescription for constructing

such terms using the building blocks obtained from the
coset construction [25,26]. For a D-dimensional Wess-
Zumino term, one constructs an exact, invariant (Dþ 1)-
form in Dþ 1 dimensions, say α ¼ dβ. Now, the D-form β
itself is not necessarily invariant, but it can shift by a total
derivative since α is invariant and can thus be used as a
Wess-Zumino term in the D-dimensional action.
As an example, let us consider the Maurer-Cartan form

for a perfect fluid in (1þ 1) dimensions before imposing
any gauge-fixing conditions. For now, we will also treat the
Goldstone bosons as independent from the spacetime
coordinates so that we can construct an invariant three-
form. The Maurer-Cartan form is given by

Ω−1dΩ ¼ ωμ
PP̄μ þ ωKK þ ωμ

QQμ þ ωFF; (39)

where
ωμ
P ¼ Λν

μdxν; (40a)

ω0
Q ¼ dπ0 þ θdπ1 þ ðδν0 − Λν

0 þ θδν
1Þdxν; (40b)

ω1
Q ¼ dπ1 þ ðδν1 − Λν

1Þdxν; (40c)

ωF ¼ dθ; (40d)

ωK ¼ dη; (40e)

withΛν
μ ≡ Λν

μðηÞ.Bycombining the forms (40)wecanwrite
down 20 different three-forms that are manifestly invariant
under the unbroken symmetries,which in (1þ 1) dimensions
are just translations. Out of these three-forms, wewere able to
identify 11 linear combinations which are exact. However,
only three of themgive rise toWess-Zumino terms that have at
most onederivative per field andare exactlyLorentz invariant,
rather than invariant up to a total derivative.5 These are

5We want the Lagrangian to be exactly Lorentz invariant rather
than only up to total derivatives, because the latter option would
probably entail gravitational anomalies, i.e., Lorentz-invariance
violations in the presence of gravitational fields, which would be
inconsistent with dynamical gravity. Since in the real world
gravity is dynamical, we find it safer to retain exact Lorentz
invariance.
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ω0
P ∧ ω1

P ∧ ω1
Q ¼ dðπ1dx0 ∧ dx1Þ; (41a)

ω0
P ∧ ω1

P ∧ ωF ¼ dðθdx0 ∧ dx1Þ; (41b)

ω0
P ∧ ω1

Q ∧ ωF þ ω0
Q ∧ ω1

P ∧ ωF þ ω0
Q ∧ ω1

Q ∧ ωF

¼ d½θðdx0 ∧ dπ1 þ dπ0 ∧ dx1 þ dπ0 ∧ dπ1Þ�:
(41c)

After pulling back to the spacetime manifold and imposing
the gauge-fixing conditions to express θ in terms of the π
Goldstones, we find that the corresponding Wess-Zumino
terms are

Sð1ÞWZ ¼
Z

d2xðϕ1 − 1Þ; (42a)

Sð2ÞWZ ¼
Z

d2xθ

¼ −
Z

d2x
∂μϕ

0∂μϕ1

∂νϕ
1∂νϕ1

; (42b)

Sð3ÞWZ ¼ −
Z

d2x
∂μϕ

0∂μϕ1

∂νϕ
1∂νϕ1

½εμν∂μϕ
0∂νϕ

1 − 1�: (42c)

The first term is just a tadpole and therefore we will neglect
it. The second and third terms are instead more interesting.
By design, they are invariant under all the symmetries we
assumed as a starting point of our coset construction.
However, they are not invariant under the full chemical
shift (2). From the point of view of our construction, this
symmetry arises accidentally at lowest order in the
derivative expansion. Since the Wess-Zumino terms (42)
follow from the forms (41) which have more than one
derivative per field, it is not surprising that in general they
do not respect this accidental symmetry. What instead
is perhaps surprising is that there still exists a linear

combination of Sð2ÞWZ and S
ð3Þ
WZ that is invariant under the full

chemical shift, namely

Sð2ÞWZ þ Sð3ÞWZ ¼ −
Z

d2xϵμν∂μϕ
0∂νϕ

1
∂λϕ

1∂λϕ0

ð∂ϕ1Þ2 : (43)

This term was extensively discussed in [13]. Our analysis
shows that this is the only Wess-Zumino term for a perfect
fluid in (1þ 1) dimensions that is exactly invariant under
Lorentz transformations as well as invariant under the full
chemical shift, up to a total derivative.
This term (43) arises from an exact three-form of the

form

ϵμνω
μ ∧ ων ∧ ωF; (44)

where ωμ ≡ ωμ
P þ ωμ

Q. While it is not straightforward to
generalize, this structure may give some hint as to the form
of the Wess-Zumino term in higher dimensions, which is
still an open question [13].

VII. DISCUSSIONS AND OUTLOOK

We have applied the coset construction to the space-
time symmetry breaking patterns characterizing fluid
and solid systems. We thus confirm that the effective
field theories that have been considered so far for these
systems indeed describe the most general low-energy
Goldstone dynamics that are invariant under all the
symmetries.
We plan to apply this formalism to two problems that so

far have resisted a satisfactory resolution at the effective
field theory level. The first is how to include hydrody-
namical dissipative effects systematically. Reference [15]
argues that this should be done by coupling the Goldstones
to another sector that “lives in the fluid.” This sector stands
for the microscopic degrees of freedom that are averaged
over by the hydrodynamical description and which are
physically responsible for dissipation. The lowest-order
couplings have been written down, and they successfully
reproduce the standard dissipative effects due to shear
viscosity, bulk viscosity, and heat conduction, as well as
the associated Kubo relations. It is not obvious, however,
how to go beyond linear order in the Goldstones and,
more importantly, how to systematically implement the
symmetries, given that these “successful” lowest-order
couplings violate some of the symmetries [15]. We believe
that the coset construction—which provides systematic
rules for how to couple the Goldstones to other degrees
of freedom in all ways allowed by symmetries and to all
orders in perturbation theory—will shed light on these
issues.
The second problem we have in mind is how to

incorporate in the Goldstone effective theory Wess-
Zumino terms that correctly describe quantum anomalies
in (3þ 1)-dimensional hydrodynamics [27]. Reference [13]
constructed a Wess-Zumino term for (1þ 1)-dimensional
fluids carrying an anomalous charge. We reproduced that
term above via the coset construction and showed that in fact
it is the only possible Wess-Zumino term consistent with all
the symmetries. However, the (3þ 1)-dimensional case is
qualitatively more complicated, because it requires moving
to one higher order in the derivative expansion, since the
anomaly is expected to manifest itself at the one-derivative
level beyond the perfect fluid approximation [27]. Notice
that this is the same order in the derivative expansion at
which dissipative effects appear. It might well be that the two
problems are related—in particular, that the insistence that
has been placed so far on the infinite-dimensional sym-
metries (1) and (2) is misguided. On the one hand, the linear
couplings of [15] correctly reproduce the Kubo relations for
first order transport coefficients, yet they violate (1) and (2).
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On the other hand, one can show that the symmetry (2)
implies the existence of a conservation law that seems to be
incompatible with anomalous hydrodynamics [28]. It is thus
entirely possible that these symmetries have to be abandoned
beyond the lowest order in the derivative expansion.
However, one should make sure that there are enough
symmetries left that make them reemerge as accidental
symmetries at low enough momenta, for instance as is the
case for our “linearized” symmetries MIJ and FI .
From this viewpoint superfluids, solids, and supersolids

are cleaner systems: they realize finite-dimensional sym-
metries, and we expect all of these to survive to all orders in
the derivative expansion. It would be interesting per se—
and useful as a warmup for the fluid case—to use our coset
construction to characterize dissipation and anomalies in
these systems. We plan to carry out all these projects in the
near future.
To conclude, let us briefly discuss the so-called frame

ambiguity for fluids and its relevance to the work presented
here. From our field theory viewpoint, it is natural to define
the fluid four-velocity uμ as a vector field along which the
comoving coordinates ϕI do not change:

uμ∂μϕ
I ¼ 0; I ¼ 1;…; d: (45)

These d constraints plus the normalization condition
completely fix the uμ field as a functional of the ϕI fields
[4]. Switching frames in hydrodynamics, for instance from
the Eckart to the Landau frame, involves a redefinition of
the fluid four-velocity field uμ → uμ þ δuμ. Using (25) as a
definition for the fluid four-velocity, it is clear that in

our language this corresponds to a field redefinition
ϕI → ϕI þ δϕI . Our action is not invariant under generic
field redefinitions, and therefore different frame choices
correspond to different forms of the action. Or, equiva-
lently, our symmetries take different forms depending on
the frame chosen. Is it thus interesting to ponder which
frame our field theory naturally chooses, in the sense of
which frame corresponds to our choice of symmetries for
the ϕ fields.
To lowest order in derivatives, no frame ambiguity exists

except for fluids in 1þ 1 dimensions, where anomalies can
appear at this order [13]. In this case, the topologically
conserved current Jμ appearing in (12) is aligned with the
uμ defined here and is readily identified with the entropy
current [5]. Thus, the field theory naturally selects the
“entropy frame.”
At higher orders in derivatives we encounter the standard

frame ambiguity of first (and higher) order hydrodynamics.
We are not yet in a position to say which frame the field
theory selects in this case. As mentioned above, one should
first understand which symmetries get modified and which
in fact even survive at higher orders in the derivative
expansion. Determining the form of the symmetries at
higher order will allow us to unambiguously resolve
questions of frame ambiguity.
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