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The increasing role of general relativity in the dynamics of stellar systems with central massive black
holes, in the generation of extreme mass-ratio inspirals and tidal disruption events, and in the evolution of
hierarchical triple systems inspires a close examination of how post-Newtonian effects are incorporated
into N-body dynamics. The majority of approaches incorporate relativity by adding to the Newtonian
N-body equations the standard two-body post-Newtonian terms for a given star around the black hole or for
the close binary in a triple system. We argue that, for calculating the evolution of such systems over time
scales comparable to the relativistic pericenter advance time scale, it is essential to include “cross terms” in
the equations of motion. These are post-Newtonian terms in the equation of motion of a given body that
represent a coupling between the potential of the central black hole and the potential due to other stars in the
system. For hierarchical triple systems, these are couplings between the potential of the inner binary and
that of the distant third body. Over pericenter precession time scales, the effects of such terms can actually
be “boosted” to amplitudes of Newtonian order. We write down the post-Newtonian N-body equations of
motion including a central black hole in a truncated form that includes all the relevant cross terms, in a
format ready to use for numerical implementation. We do the same for hierarchical triple systems, and
illustrate explicitly the effects of cross terms on the orbit-averaged equations of evolution for the orbit
elements of the inner binary for the special case where the third body is on a circular orbit. We also describe
in detail the inspiration for this investigation: the seemingly trivial problem of the motion of a test body
about a central body with a Newtonian quadrupole moment, including the relativistic pericenter advance,
whose correct solution for the conserved total Newtonian energy requires including post-Newtonian cross
terms between the mass monopole potential and the quadrupole potential.
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I. INTRODUCTION AND SUMMARY

The effects of general relativity on the evolution of
systems with more than two bodies have been studied
intermittently for over 75 years. Einstein [1] considered a
crude model of a spherically symmetric star cluster where
all the stars resided on circular orbits, in order to explore
whether what we now call the event horizon could occur in
nature. The discovery of quasars in the early 1960s led to
the suggestion [2] that their large redshifts were due, not to
cosmological expansion, but to the intrinsic redshift of light
from the vicinity of a compact object. One candidate was a
highly relativistic stellar cluster. However, detailed analyses
revealed that they were subject to instabilities leading to
catastrophic collapse at values of their central redshifts that
were far lower than those being measured for many quasars
[3]. In the end, the cosmological interpretation prevailed.
In recent years, there has been renewed attention to the

relevance of general relativity to multiple-star systems
because of the observation that many galaxies, including
our own, appear to harbor massive black holes in their cores
(see [4–6] for reviews). The capture or tidal disruption of

stars passing close to such black holes could have important
observational signatures in theelectromagnetic spectrum[7].
Inspiralling relativistic orbits of stars or stellar-mass black
holes around massive black holes (extreme mass-ratio
inspirals, or EMRIs) or the inspiral of two massive black
holes could generate gravitational radiation in the low-
frequency regime detectable by a space-based laser interfer-
ometer (see [8] for a review).Measurementsof theprecessing
orbits of stars very close to the black hole SgrA* at the center
of theMilkyWay could yield tests of the “no-hair” theorems
of general relativity [9]. While the examples just cited are
essentially two-body problems, they cannot be discussed in
complete isolation from the many-body context.
Galactic cores contain many stellar objects (to say

nothing of gas, dust and dark matter), and these objects
have interacted and continue to interact with any two-body
system that one might wish to study. Whether tidal
disruption events or stellar captures are frequent enough
to be observable depends on whether interactions of a given
star with the surrounding cluster have been sufficiently
effective in diverting the star’s orbit toward what is an
extremely tiny target on galactic scales—the black hole.
Likewise, whether a stellar-mass black hole can be aimed
sufficiently close to the central massive black hole to allow*cmw@physics.ufl.edu
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gravitational radiation reaction to take over and induce an
inspiral depends sensitively on the history of its interactions
with the other stars and the black hole. Whether two
massive black holes are able to “find” each other following
the merger of two galaxies that hosted each of them
depends on their interactions with the other stars in the
merged galaxy. Finally, the ability to test general relativity
at the galactic center depends on whether the cluster of stars
that is likely to reside there perturbs the orbit of a given star
so strongly as to swamp the relativistic precession effects
being explored.
Generally speaking, stars are sufficiently far from the

black hole that relativistic effects are much smaller than
their mutual gravitational perturbations. So what role does
general relativity play in such an N-body context? One
recent example illustrates a potential role.
Repeated interactions of a given star in a dominantly

Keplerian orbit about the black hole with the other stars in a
cluster lead to torques that cause the eccentricity of the orbit
to perform a quasirandom walk, while its orbital energy is
roughly constant, a phenomenon known as resonant relax-
ation [10]. In some cases, this can lead to very large
eccentricities, which can place the star on an orbit with a
small enough pericenter relative to the central black hole that
it is capable of losing energy to gravitational radiation and
becoming an EMRI. Hopman and Alexander [11] showed
that the relativistic precession of the pericenter could act to
suppress such torques. In a series of numerical N-body
simulations, Merritt et al. [12] studied this effect in detail.
The buildup of eccentricity of a given Keplerian orbit
depends on the repeated coherent interactions with a set
of starswhose orbits are in the “vicinity” of the eccentric orbit
of the target star, and this buildup occurs over a long time
scale.However, the relativistic pericenter advance produces a
nonrandom, secular precession of the orbit within its plane
that renders these stellar torques ineffective. This destroys the
coherence that was driving the eccentricity toward high
values, and leads to a cap on the eccentricity. This occurs
when the pericenter precession time scale, which decreases
with increasing eccentricity, becomes comparable to the time
scale for changes in angular momentum due to stellar
torques. Merritt et al. dubbed this the “Schwarzschild
barrier,” and showed that it had a significant effect on the
rate of production of EMRI orbits. The point was that, while
relativistic effects are typically small, over a relativistic
precession time scale, they can have significant effects in
such N-body systems, because their time scales can be
shorter than the other important time scales in the problem.
In [12], general relativity was taken into account using

the post-Newtonian (PN) approximation. The first PN
approximation is adequate for studying the overall evolu-
tion of such systems; higher PN effects, such as those due
to gravitational radiation reaction, do not come into play
until the star is well into its inspiral evolution. Incorporating
1PN effects in an N-body evolution would appear to be

straightforward—simply replace Newtonian equations of
motion with the post-Newtonian N-body equations of
motion commonly known as the EIH equations, named
for Einstein, Infeld and Hoffmann, who published them in
1938 [13], although equivalent equations were derived by
Lorentz and Droste in 1917 [14]. However, these equations
of motion contain three-body interactions, and as the
number N of bodies grows, the computational burden of
including these interactions becomes prohibitive. An alter-
native approach might be to incorporate PN effects into the
collisionless Boltzmann equation [15,16], but this would be
purely statistical in nature. Accordingly, to our knowledge,
all current N-body codes containing a central black hole
include only the PN effects on each star due to the black
hole, as if the star and black hole were a two-body system.
The purpose of this paper is to show that there is reason

to believe that this may not be sufficient. We will argue that,
for problems involving evolutions over many relativistic
precession time scales, it may be necessary to include PN
“cross terms” in the equations of motion in order to capture
properly the relativistic effects of the black hole. While the
direct PN terms in the acceleration aa of body a caused by
the black hole are proportional toM2, whereM is the mass
of the black hole, these cross terms are proportional to
M ×mb, where mb is the mass of one of the stars. The
remaining PN terms in aa that are computationally trouble-
some, proportional to mb ×mc, are dropped.
The basic idea is this: in dimensionless terms, a relativistic

effect induced by the black hole, such as the pericenter
advance, is proportional to GM=ac2, where a is the semi-
major axis of the body’s orbit, and G and c are the gravita-
tional constant and speed of light, respectively. A Newtonian
effect due to other stars is proportional to ðmb=maÞða=rabÞn,
wheren is somepowerwhich depends on the relative size ofa
and rab (n is positive if a < rab, negative if a > rab). A PN
effect due to the cross terms described above would be
proportional to ðGM=ac2Þ × ðmb=maÞða=rabÞn. On the face
of it, this is a smaller effect than either the pure black hole
effect or the stellar effect, when ða=rabÞn ≪ 1. However, if it
is a secular effect, and if one is interested in how this effect
grows over a relativistic time scale induced by the black hole,
which is proportional to 1=ðGM=ac2Þ, then the effect could
be “boosted” from a PN level effect to a Newtonian level
effect. This could have hitherto unforeseen consequences in
long-term evolutions of such systems.
In this paper, we explicitly write down the truncated 1PN

equations of motion for an N-body system with a central
(nonrotating) black hole, including the cross terms to a
consistent order, and display them in a ready-to-use form.
The equations include the appropriate equation of motion
for the central black hole, and the appropriate expressions
for globally conserved quantities such as energy, momen-
tum and the center of mass. These equations can be used in
numerical experiments to explore the impact of including
PN cross terms.
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Another system where relativistic effects have been
studied is the hierarchical three-body system, where a
close binary system is in orbit with a distant third body.
In Newtonian theory, such systems exhibit the remarkable
Kozai-Lidov effect, in which there is an interchange
between the eccentricity of the two-body orbit and its
inclination relative to the plane of the third body. Under
certain circumstances, the system can exhibit the Kozai
resonance, in which the pericenter of the two-body orbit
oscillates about either π=2 or 3π=2, while the eccentricity
and inclination oscillate about values related by
5cos2ι ¼ 3ð1 − e2Þ. However, the pericenter precession
of the two-body orbit induced by general relativity can
force the system out of the resonant state. Here again is a
problem which mixes a Newtonian effect and a relativistic
effect, in which the relativistic precession time scale is
relevant. Could PN cross terms play a role here? In this case
the dimensionless size of the expected cross terms is
proportional to ðGm=ac2Þ × ðm3=mÞða=RÞ3, where m is
the total mass of the two-body system, and R is the distance
of the third body.
Efforts to include relativity in Kozai-Lidov systems have

taken three approaches. One is to include the standard PN
terms in the dynamics of the inner binary, to an order as
high as 2.5PN order, but without cross terms [17–22]. Here
it is possible to solve the orbit perturbation equations in the
same manner as in the Newtonian Kozai problem, by
averaging over an orbit of both the inner system and the
third body. The result is a set of average equations for the
evolution of the orbit elements whose long-term evolution
can be studied numerically.
Another approach [23] begins with the full EIH three-

body PN equations of motion, frequently expressed in
Hamiltonian form. After expressing the Hamiltonian in
Delaunay variables and averaging over both inner and outer
orbits, one obtains average equations of evolution for the
orbit elements. While this approach automatically incor-
porates all PN terms initially, we shall see in the next
section that there are subtleties in the averaging procedure
that may have been overlooked.
The third approach carries out a full numerical integra-

tion of the complete three-body PN equations of motion. In
[24,25], the equations were in fact complete and correct
through 2.5PN order. While this approach in principle
captures all the relevant effects, it requires performing
many numerical experiments and carefully analyzing the
output data. As complete as this approach may be, it does
not easily lend itself to exploring the underlying physical
phenomena.
In this paper, we write down the truncated post-

Newtonian equations of motion for hierarchical triple
systems including the relevant cross terms for both the
two-body system and the third body relative to the two-
body center of mass. We then carry out the standard double
average of the orbit perturbation equations for the special

case of a circular third-body orbit (with an important
caveat, to be discussed below), finding averaged equations
for the orbit elements of the two-body system that are
amenable to numerical integration. Exploration of the
impact of PN cross terms on these averaged equations
will be left to future work.
We begin in Sec. II by describing the simple physical

problem that inspired these considerations: the motion of a
body in the field of a central object with a mass and a
quadrupole moment, including PN effects. This seemingly
trivial problem was the origin of a conundrum encountered
during the work leading to Ref. [12]. The resolution of this
conundrum absolutely required the incorporation of the
relevant PN cross terms. In Sec. III we display the truncated
equations of motion for an N-body system and a central
black hole, along with the relevant conserved quantities.
Section IV displays the equations for hierarchical three-
body systems and derives the orbit averaged equations for
the evolution of the orbit elements, including all cross-term
effects. Concluding remarks are made in Sec. V.

II. AN OBJECT LESSON: THE QUADRUPOLE
CONUNDRUM

The origin of the idea that it may be important to
incorporate appropriate PN cross terms in long-term
evolutions of orbital dynamics was a series of numerical
simulations of N-body orbits with a central massive
rotating black hole carried out by Merritt et al. [12].
One set of long-term numerical integrations involved
single-particle orbits around a rotating black hole, with
the relativistic effects due to the hole expanded in the post-
Newtonian approximation. In fact the essential effects that
lead to the conundrum of the title of this section were
seen by turning off the frame-dragging terms, and keeping
only the quadrupole moment of the black hole. The orbit
of the particle was chosen to have a large eccentricity,
and the integrations were carried out over several preces-
sions of the orbital pericenter ω, induced dominantly
by the standard “point-mass” pericenter advance of
6πGM=að1 − e2Þc2 per orbit.
It was found that the semimajor axis a of the orbit varied

as sin2 ω, was proportional to sin2 ι, where ι is the
inclination of the orbit relative to the equatorial plane of
the black hole, and had an anomalously large amplitude, so
large as to suggest potentially important observable effects
in N-body systems orbiting a rotating black hole with a
quadrupole moment.
Physically, there is nothing mysterious about a variation

of a with ω. The Newtonian conserved energy per unit
mass of a body orbiting a mass M with a Newtonian
quadrupole moment Q2 is given by

E ¼ −GM
2a

−GQ2

2

�
1þ e
p

�
3

ð3sin2ιsin2ω − 1Þ; (2.1)
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where p ¼ að1 − e2Þ is the semilatus rectum. Because the
osculating orbit elements are in general functions of orbital
phase in any non-Keplerian motion, they are defined in this
example at pericenter.Whenω ¼ 0, the long axis of the orbit
lies along the line of nodes, the intersection of the orbit plane
with the equatorial plane of the central body, and both the
pericenter and apocenter of the orbit occur on the equator of
the central body. For a highly eccentric orbit, the orbit is
displaced only a small distance above or below the equa-
torial plane. But when ω ¼ π=2, the long axis is
perpendicular to the nodal line, and the pericenter occurs
over one of the hemispheres, where the body sees a very
different potential because of the nonzero Q2, while the
apocenter occurs far away in the opposite hemisphere. Thus
the quadrupole interaction energy is very different between
the two cases. Therefore, in order to keepE constant whileω
varies, a must vary to compensate for the varying quadru-
pole interaction energy. In fact it is easy to see fromEq. (2.1)
that a must vary, to first order in Q2=Ma20, according to

a ¼ a0 þ 3
Q2

Ma0ð1 − e0Þ3
sin2ι0sin2ω; (2.2)

where the subscripts denote values of the orbit elements at an
initial value of ω.
However, this result presents us with two conundra:
(i) In first-order perturbation theory, for motion in the

field of a point mass, with point-mass 1PN corrections,
plus a Newtonian quadrupole term, the net change in a
over one orbit vanishes identically, so what is the
origin of this variation over a precession time scale?

(ii) The amplitude of variation in a that emerges from this
argument disagrees with the amplitude that emerged
from the numerical simulations in [12].

A resolution to this conundrum is suggested by the
following fallacious argument. Using the first-order orbital
perturbation equations, evaluate the change in a not after a
complete orbit (a change 2π in the true anomaly f of the
orbit), where the changevanishes, but after one orbit plus the
small advance of pericenter 6πGM=pc2. This gives a change
ina that actually has the correct dependence on thevariables.
It is fallacious because a remains strictly periodic, with no
net variation over a pericenter precession time scale. But it
gives a fractional change in a over one “orbit” that is
proportional to the product ðGM=pc2Þ × ðQ2=Mp2Þ, which
represents a cross term between the quadrupole and rela-
tivistic perturbations. This suggests that, in order to find the
full solution to the problem of the long-term evolution of a
with quadrupole and PN effects together, one must include
the cross terms in the equations ofmotion. In this section, we
verify that this is correct with a straightforward analytical
calculation.
We begin with the 1PN equation of motion

dv
dt

¼ ∇U þ 1

c2
∇Uðv2 − 4UÞ − 4

c2
vv ·∇U; (2.3)

where the gravitational potential contains both a point mass
and a quadrupole term,

U ¼ GM
r

þ 1

2

GQ2

r3
½3ðe · nÞ2 − 1�; (2.4)

where M and Q2 are the mass and quadrupole moment of
the source, e is a unit vector along the source’s symmetry
axis, n ¼ x=r, and v is the velocity of the particle.
These equations admit the conserved orbital energy and

conserved e component of angular momentum (per unit
mass)

E ¼ 1

2
v2 −U þ 1

c2

�
3

8
v4 þ 3

2
v2U þ 1

2
U2

�
; (2.5a)

he ≡ h · e ¼ rðv2 − _r2Þ1=2 cos ι
�
1þ 4

c2
U

�
; (2.5b)

where ι is the orbital inclination.
Then, to 1PN order, and including the Newtonian

quadrupole and the quadrupole-PN cross terms, the equa-
tions of motion take the form

dv
dt

¼ −GMn
r2

�
1þ 1

c2
ðv2 − 4

GM
r

Þ
�
þ 4

GM
c2r2

_rv

−
3

2

GQ2

r4
½5nðe · nÞ2 − 2eðe · nÞ − n�

−
3

2

GQ2

c2r4
½5nðe · nÞ2 − 2eðe · nÞ − n�

�
v2 − 4GM

r

�

þ 6GQ2

c2r4
v½5_rðe · nÞ2 − 2ðv · eÞðe · nÞ − _r�

þ 2G2MQ2

c2r5
n½3ðe · nÞ2 − 1�: (2.6)

The first line of Eq. (2.6) shows the Newtonian and PN
point-mass terms, the second line shows the Newtonian
quadrupole term, and the remaining lines show the mixed
PN-quadrupole terms; it is useful to recall that v2 ∼ GM=r.
Terms proportional to Q2

2 have been dropped.
We use standard orbital perturbation theory to compute

the secular changes in the semilatus rectum p, eccentricity
e, inclination ι, nodal angle Ω and pericenter angle ω. For a
general orbit, the osculating Keplerian orbit is defined by
the following set of equations:

r≡ p=ð1þ e cos fÞ; x≡ rn;

n≡ ½cosΩ cosðωþ fÞ − cos ι sinΩ sinðωþ fÞ�eX
þ ½sinΩ cosðωþ fÞ þ cos ι cosΩ sinðωþ fÞ�eY
þ sin ι sinðωþ fÞeZ;

λ≡ dn=df; ĥ ¼ n × λ;

h≡ x × v≡ ffiffiffiffiffiffiffiffiffiffiffi
GMp

p
ĥ; (2.7)
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where f is the orbital phase, or true anomaly, and where eA
are chosen reference basis vectors, with eZ parallel to the
symmetry axis of the central mass. From the given
definitions, it is evident that v ¼ _rnþ ðh=rÞλ and
_r ¼ ðhe=pÞ sin f. One then defines the radial R, cross-
track S and out-of-plane W components of the perturbing
acceleration δa, defined respectively by R≡ n · δa, S ≡
λ · δa and W ≡ ĥ · δa, and writes down the “Lagrange
planetary equations” for the evolution of the orbit elements,

dp
dt

¼ 2

ffiffiffiffiffiffiffiffi
p3

GM

r
S

1þ e cos f
;

de
dt

¼
ffiffiffiffiffiffiffiffi
p

GM

r �
sin fRþ 2 cos f þ eþ ecos2f

1þ e cos f
S
�
;

dω
dt

¼ 1

e

ffiffiffiffiffiffiffiffi
p

GM

r �
− cos fRþ 2þ e cos f

1þ e cos f
sin fS

− e cot ι
sinðωþ fÞ
1þ e cos f

W
�
;

dι
dt

¼
ffiffiffiffiffiffiffiffi
p

GM

r
cosðωþ fÞ
1þ e cos f

W;

sin ι
dΩ
dt

¼
ffiffiffiffiffiffiffiffi
p

GM

r
sinðωþ fÞ
1þ e cos f

W: (2.8)

To first order in either the PN or quadrupole perturba-
tions, we can substitute d=dt ¼ ðh=r2Þd=df and
integrate these equations over f between 0 and 2π, holding
the orbit elements on the right-hand side fixed to their
initial values. The result is Δp¼0, Δe¼0, Δι¼0, ΔΩ¼
3πðQ2=Mp2Þcosι, and Δω ¼ 6πGM=c2p − 6πðQ2=Mp2Þ
ð1 − 5 sin2 ι=4Þ.
In order to find the changes in the orbit elements induced

by the PN-quadrupole cross terms in the equations of
motion, we must incorporate higher-order effects in the
perturbation equations themselves, as follows:
(1) We must carry out the orbital perturbation theory

carefully. The orbit elements a, e, i, Ω and ω vary
periodically during the orbit. Thus the PN-induced
variations in these elements must be inserted back
into the perturbation terms generated by the quadru-
pole moment, and the quadrupole-induced variations
must be inserted back into the perturbation terms
generated by PN effects. These will produce cross-
term contributions of the same order as those from
the equations of motion.

(2) In converting from d=dt in the perturbation equa-
tions to d=df, we must not use df=dt ¼ h=r2, but
instead must use

df
dt

¼ h
r2

− _ω − _Ω cos ι: (2.9)

The added terms come from the fact that, while t is
measured from a fixed moment of time, f is measured

from the pericenter, which changes via both _ω and _Ω.
These terms will also generate cross-term effects
between PN and quadrupole terms.

Choosing a fiducial true anomaly f0 as the orbital phase
where the initial values of the orbit elements are prescribed,
we integrate the orbit perturbation equations over f from f0
to F, to obtain the instantaneous values of the elements.
The expressions are too complicated to display, but we use
them to verify that the energy is independent of true
anomaly F, to order G2MQ2=p4c2, given by

E¼−GM
2a

−GQ2

2

�
1þecosf0

p

�
3

ð3sin2ιsin2ðωþf0Þ−1Þ

þ 1

c2

�
3

8

�GM
a

�
2þ

�GM
p

�
2ð1þecosf0Þð2þ5ecosf0þ3e2Þ

−
1

4

G2MQ2

pr30
ð5þ8ecosf0þ3e2Þð3sin2ιsin2ðωþf0Þ−1Þ

�
;

(2.10)

where

r0 ¼
p

1þ e cos f0
; (2.11)

and all orbit elements are evaluated at f0. We also verify
that he is independent of F, through the analogous order.
Choosing F ¼ f0 þ 2π, we then find expressions for the

secular variation of p, e and i over one complete orbit:

Δp ¼ 12π
GQ2

p2c2
sin2 ιP0; (2.12a)

Δe ¼ −3π
GQ2

p3c2
sin2ι½3ð1þ e cos f0Þ3 sin 2ðωþ f0Þ

þ 2ð1 − e2ÞP0�; (2.12b)

Δι ¼ 6π
GQ2

p3c2
sin ι cos ιP0; (2.12c)

where P is a function of e0, f0 and ω, given by

Pðe0;f0;ωÞ≡ ðe0þ3cosf0þ2e0cos2f0Þsinωsinðωþf0Þ

−
1

4
ð6þ4e0 cosf0−3e20Þsin2ω; (2.13)

with P0 ≡ ∂P=∂ω. The presence of both Q2 and c2

indicates that these are PN–cross-term effects. These are
the secular changes in p, e and ι over one orbit. Nominally
they would grow linearly in time, except for the fact that the
angle of pericenter ω is changing with time at the rate per
orbit dominated by the Schwarzschild mass term, namely
Δω ¼ 6πGM=pc2. Thus we can combine this with
Eq. (2.12), to obtain the equation, for each element Z,
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Z ¼ Z0 þ
Z

ðΔZ=ΔtÞdt ¼ Z0 þ
Z

ðΔZ=ΔωÞdω: (2.14)

Given that p, e and ι are constant to lowest order at this
level of approximation, these equations integrate to the
expressions,

p ¼ p0 þ
2Q2

Mp0

sin2ι0P; (2.15a)

e ¼ e0 þ
1

2

Q2

Me0p2
0

sin2ι0½3ð1þ e0 cos f0Þ3

× ðsin2ðωþ f0Þ − sin2f0Þ − 2ð1 − e20ÞP�; (2.15b)

ι ¼ ι0 þ
Q2

Mp2
0

sin ι0 cos ι0P; (2.15c)

where p0, e0, ι0 are to be evaluated at f0. Notice that c−2
has disappeared from the expressions, so that the pertur-
bations over the precession time scale are now of a
Newtonian quadrupole order. Combining the results for
p and e, we obtain for the semimajor axis,

a ¼ a0 þ 3
Q2

Mp0ð1 − e20Þ2
sin2ι0ð1þ e0 cos f0Þ3

× ðsin2ðωþ f0Þ − sin2f0Þ: (2.16)

The variations in the orbital elements depend on the fiducial
phase f0 because the orbital elements vary over an orbital
time scale. Thus the orbit elements a, e, ι, ω and Ω inferred
from a given set of initial conditions x0 and v0 depend on
the choice of f0, which here is a proxy for the sixth orbit
element, the time of pericenter passage. For f0 ¼ 0, the
variation in a agrees with Eq. (2.2)
Notice that, with this variation of a over a pericenter

advance time scale, the Newtonian and quadrupole energy
together in Eq. (2.10) are independent of ω, taking the form

E ¼ −GM
2a0

−GQ2

2

�
1þ e cos f0

p0

�
3

ð3sin2ιsin2f0 − 1Þ:
(2.17)

It was essential to find the post-Newtonian solution for Δp,
Δe, Δi and Δa consistently to OðGQ2=c2Þ in order to
conserve the energy to Newtonian quadrupole order over
the pericenter advance time scale. Basically the secular PN
pericenter advance promotes the PN-quadrupole cross-term
perturbations to a lower order of approximation. It was also
essential to carry out the orbital perturbation theory care-
fully, following points 1 and 2 above; a failure to do so
would not have given a variation in a that would lead to a
conserved energy. A number of earlier works that included
the cross terms in the equations of motion failed to heed
those two points [26,27] and thus did not obtain the correct
long-term evolution of the orbit elements.

Because a and e vary with ω, the inclination must also
vary, in order to keep he constant. This is a kind of Kozai
mechanism, induced again by the relativistic precession
of ω.
The contributions to the energy proportional to

G2MQ2=p4 in Eq. (2.10), while independent of F, cannot
be shown to be independent of ω; to do so would require a
calculation of the orbit-element evolutions through
OðG3M2Q2=p5Þ.
For the special case of f0 ¼ π, the variations in the orbit

elements are given by

p ¼ p0 þ
Q2

2Mp0

ð6 − 8e0 þ 3e20Þsin2ι0sin2ω; (2.18a)

e ¼ e0 − 1

4

Q2

Mp2
0

ð2 − e0Þð5 − 3e0Þð1 − e0Þsin2ι0sin2ω;

(2.18b)

ι ¼ ι0 þ
1

4

Q2

Mp2
0

ð6 − 8e0 þ 3e20Þ sin ι0 cos ι0sin2ω; (2.18c)

a ¼ a0 þ 3
Q2

Mp0

1 − e0
ð1þ e0Þ2

sin2ι0sin2ω: (2.18d)

The variation of a in Eq. (2.18d) still does not agree with
the large amplitude variation found in the numerical
evolutions carried out in the course of the work by
Merritt et al. [12]. (In those simulations, the orbit elements
were inferred from the particle’s position and velocity at
apocenter, f0 ¼ π.) The numerical codes did yield a
variation in a over a pericenter precession time scale,
notwithstanding the fact that first-order perturbation theory
yields nothing, because, being exact integrations of the
equations of motion, they inherently incorporated the
higher-order effects discussed in points 1 and 2 above.
However, it turns out that the codes used in those simula-
tions didnot initially contain the direct PN-quadrupole terms
of Eq. (2.6). When those terms were added to the codes, the
integrations yielded variations ina in perfect agreementwith
Eq. (2.18d).
The lesson learned from this is that, when carrying out

integrations of the dynamics of bodies with relativistic
effects over time scales comparable to the pericenter
precession time, it is necessary to include cross terms
between the relativistic perturbations and the perturbations
from the other source, whether it be a quadrupole pertur-
bation, or a perturbation due to one or more distant bodies.
It is to this latter context that we now turn.

III. POST-NEWTONIAN EFFECTS OF A CENTRAL
BLACK HOLE IN N-BODY DYNAMICS

An important class of N-body problems where rela-
tivity may play a role involves stellar clusters around

CLIFFORD M. WILL PHYSICAL REVIEW D 89, 044043 (2014)

044043-6



massive black holes. From a relativistic point of view, a
naive approach to such problems would be simply to
apply the post-Newtonian N-body equations of motion,
which have been known since the 1917 work of Lorentz

and Droste [14], but are more commonly referred to as
the Einstein-Infeld-Hoffmann (EIH) equations of motion
[13]. In these equations, the acceleration of body a is
given by

aa ¼ −X
b≠a

Gmbxab
r3ab

þ 1

c2
X
b≠a

Gmbxab
r3ab

�
4
Gmb

rab
þ 5

Gma

rab
þ

X
c≠a;b

Gmc

rbc
þ 4

X
c≠a;b

Gmc

rac
−
1

2

X
c≠a;b

Gmc

r3bc
ðxab · xbcÞ − v2a þ 4va · vb

− 2v2b þ
3

2
ðvb · nabÞ2

�
−

7

2c2
X
b≠a

Gmb

rab

X
c≠a;b

Gmcxbc
r3bc

þ 1

c2
X
b≠a

Gmb

r3ab
xab · ð4va − 3vbÞðva − vbÞ; (3.1)

where nab ¼ xab=rab. These equations admit 1PN-accurate conserved orbital energy and linear momentum, given by

E ¼ 1

2

X
a

ma

�
v2a −

X
b≠a

Gmb

rab

�
þ 1

c2
X
a

ma

�
3

8
v4a þ

3

2
v2a
X
b≠a

Gmb

rab
þ 1

2

X
b≠a

X
c≠a

G2mbmc

rabrac

−
1

4

X
b≠a

Gmb

rab
ð7va · vb þ ðva · nabÞðvb · nabÞÞ

�
; (3.2a)

P ¼
X
a

mava þ
1

2c2
X
a

mava

�
v2a −

X
b≠a

Gmb

rab

�
− G
2c2

X
a

X
b≠a

mamb

rab
ðva · nabÞnab: (3.2b)

However, to incorporate these fully 1PN-accurate equations would not be practical, at least for large numbers of particles,
because of the computational burden of incorporating the three-body interactions represented by the terms involving sums
over c ≠ a, b. However, as the discussion of the previous section indicates, we are really interested only in the cross terms
between the mass of the central black hole and the mass of a given star, not in the PN star-star terms.
Accordingly we truncate the EIH equations of motion, keeping only the Newtonian terms from the black hole and the N

bodies, plus the 1PN terms from the black hole alone, i.e. terms proportional to G2M2=r31ac
2, or to ðGM=r1aÞðv2a=c2Þ,

whereM is the mass of the black hole, plus 1PN terms of the schematic formG2Mma=r3c2, where r here represents various
interparticle distances. Note that v2a ∼GM=r1a, while v1 ∼ ðma=MÞva, so we use the same argument when considering
velocity-dependent terms.
We denote the black hole (BH) by body #1, and we take into account the conservation of linear momentum at Newtonian

order, Mv1 þ
P

amava ¼ 0, in order to eliminate v1 from post-Newtonian terms in the equations of motion. The resulting
equations of motion have the form

aa ¼ −GMxa1
r3a1

−X
b

Gmbxab
r3ab

þ 1

c2
½aa�BH þ 1

c2
½aa�Cross þO

�
G2m2

b

c2r3

�
; (3.3)

where

½aa�BH ¼ GMxa1
r3a1

�
4
GM
ra1

− v2a

�
þ 4

GM
r3a1

ðva · xa1Þva; (3.4a)

½aa�Cross ¼ 5
G2maMxa1

r4a1
−Gma

r3a1
½4v2axa1 − 7ðva · xa1Þva� þ

X
b

G2mbMxa1
r3a1

�
4

rab
þ 5

4rb1
þ r2a1
4r3b1

− r2ab
4r3b1

�

þ
X
b

G2mbMxab
r3ab

�
4

ra1
þ 5

4rb1
− r2a1
4r3b1

þ r2ab
4r3b1

�
−
7

2

X
b

G2mbMxb1
r3b1

�
1

rab
− 1

ra1

�

−
X
b

Gmb

r3a1
½4ðva · vbÞxa1 − 3ðvb · xa1Þva − 4ðva · xa1Þvb� þ

X
b

Gmbxab
r3ab

½v2a − 2jvabj2 þ
3

2
ðvb · nabÞ2�

þ
X
b

Gmb

r3ab
½xab · ð4va − 3vbÞ�vab; (3.4b)
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where vab ≡ va − vb, and the sumoverb excludes both body
a and the black hole.We are basically ignoring PN terms that
involve only the star-star interactions; in this truncated form
the equations contain only two-body interactions, no worse

computationally than the original Newtonian equations plus
the PN terms from the central black hole.
The equation of motion for the black hole to the

equivalent order of approximation is given by

a1 ¼ −X
b

Gmbx1b
r31b

þ 1

c2
½a1�BH þ 1

c2
½a1�Cross þO

�
G2m3

a

Mc2r3

�
; (3.5)

where

½a1�BH ¼
X
b

Gmbx1b
r31b

�
5
GM
r1b

− 2v2b þ
3

2
ðvb · n1bÞ2

�
þ 3

X
b

Gmb

r31b
ðvb · x1bÞvb; (3.6a)

½a1�Cross ¼ 4
X
b

G2m2
bx1b

r41b
þ
X
b;c

G2mbmcx1b
r31b

�
4

r1c
þ 5

4rbc
− r21c
4r3bc

þ r21b
4r3bc

�
−
7

2

X
b;c

G2mbmcxbc
r3bcr1b

−
X
b;c

Gmbmc

Mr31b
½4ðvb · vcÞx1b − 3ðvb · x1bÞvc − 4ðvc · x1bÞvb�: (3.6b)

The grouping of terms in these expressions can be understood as follows: relative to the leading dominant Newtonian
acceleration,GM=r2 for body a andGmb=r2 for the black hole, the BH terms are of orderGM=c2r and involve the indirect
effect of interactions of stars with the black hole on its own motion, while the cross terms are of order Gmb=c2r [recall that
vb ∼ ðGM=rÞ1=2]. In addition the terms kept in the equation of motion for the black hole are necessary to ensure
conservation of total momentum. Although the terms neglected in each case are different in the context of the acceleration
[see Eqs. (3.3) and (3.5)], in the context of the force on each star,maaa and on the black holeMa1, the neglected terms are of
the same order, G2m3

a=c2r3, in each case. It is useful to point out that, in the case of two bodies, the terms involving
summation over b in Eq. (3.4) and those involving double summations in Eq. (3.6) drop out, and the remaining terms
correspond to suitably truncated versions of the two-body equations of motion found, for example, in [28,29], with the
replacement v1 ¼ −m2v2=M.
It is straightforward, though tedious to show that these equations of motion can be derived from the truncated Lagrangian

and Hamiltonian, given by

L ¼ 1

2

X
a

mav2a þ
1

2
Mv21 þ

1

2

X
a;b

Gmamb

rab
þ
X
a

GMma

r1a
þ 1

c2

�
1

8

X
a

mav4a þ
3

2

X
a

GMma

r1a
v2a − 1

2

X
a

G2M2ma

r21a

þ 1

2

X
a;b

Gmamb

rab
½3v2a − 7va · vb − ðnab · vaÞðnab · vbÞ� þ

1

2

X
a

GMma

r1a
½3v21 − 7v1 · va − ðn1a · v1Þðn1a · vaÞ�

−
X
a;b

G2Mmamb

rabr1a
− 1

2

X
a;b

G2Mmamb

r1ar1b

	
; (3.7a)

H ¼
X
a

p2
a

2ma
þ p2

1

2M
− 1

2

X
a;b

Gmamb

rab
−X

a

GMma

r1a
−

1

c2

�
1

8

X
a

p4
a

m3
a
þ 3

2

X
a

GM
r1a

p2
a

ma
− 1

2

X
a

G2M2ma

r21a

þ 1

4

X
a;b

G
rab

�
6
mb

ma
p2
a − 7pa · pb − ðnab · paÞðnab · pbÞ

�
þ 1

2

X
a

G
r1a

�
3
ma

M
p2
1 − 7p1 · pa − ðn1a · p1Þðn1a · paÞ

�

−
X
a;b

G2Mmamb

rabr1a
− 1

2

X
a;b

G2Mmamb

r1ar1b

	
: (3.7b)
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The first three PN terms in the Hamiltonian, Eq. (3.7b),
correspond to the post-Newtonian Hamilton HPN given in
Eq. (27) of [30].However it is important to note that, because
of the complex relationship between canonical momentum
and velocity, those terms yield not only the BH terms in the

acceleration of body a, but also cross terms. So a consistent
Hamiltonian requires including the explicit cross terms
which make up the remaining PN terms in Eq. (3.7b).
These equations admit the conserved total energy and

momentum, given to the appropriate order by

E ¼ 1

2
Mv21 þ

1

2

X
a

mav2a − 1

2

X
a;b

Gmamb

rab
−X

a

GMma

r1a
þ 1

c2

�
3

8

X
a

mav4a þ
3

2

X
a

GMma

r1a
v2a þ

1

2

X
a

G2M2ma

r21a

þ 1

4

X
a;b

Gmamb

rab
½6v2a − 7va · vb − ðnab · vaÞðnab · vbÞ� þ

1

2

X
a

GMma

r1a
½3v21 − 7v1 · va − ðn1a · v1Þðn1a · vaÞ�

þ
X
a;b

G2Mmamb

rabr1a
þ 1

2

X
a;b

G2Mmamb

r1ar1b

	
þO

�
G2m3

a

r2

�
; (3.8a)

P ¼ Mv1 þ
X
a

mava

�
1þ 1

2c2
v2a

�
− 1

2c2

�X
a

GMma

r1a
½va þ ðva · n1aÞn1a� þ

X
a

GMma

r1a
½v1 þ ðv1 · n1aÞn1a�

þ
X
a;b

Gmamb

rab
½va þ ðva · nabÞnab�

	
þO

�
Gm3

ava
c2Mr

�
; (3.8b)

where the sums exclude the black hole. These are the
appropriately truncated versions of Eq. (3.2). Note that, in
the PN terms in E and P, one could substitute the lowest-
order relation v1 ¼ −Pbmbvb=M. Finally the constant
center of mass of the system can be defined to the same
order:

M�X ¼ Mx1

�
1þ 1

2c2
v21

�
þ
X
a

maxa

�
1þ 1

2c2
v2a

�

− 1

2c2

�X
a

GMma

r1a
ðx1 þ xaÞ þ

X
a;b

Gmamb

rab
xa

	

þO

�
Gm3

axa
c2Mr

�
; (3.9)

where M� ¼ M þP
ama is the total mass of the system. It

is straightforward to show that M�dX=dt ¼ P.
With Kupi and Merritt, we have begun to devise possible

numerical experiments to study the importance of these
post-Newtonian cross terms in long-term evolutions of
N-body systems around a central black hole.

IV. POST-NEWTONIAN EFFECTS IN
HIERARCHICAL THREE-BODY SYSTEMS

We now consider a three-body system in which two
bodies of mass m1 and m2 are in a close orbit with
separation r, and a third body of mass m3 is in a wide
orbit with separation R ≫ r. We define the relative
separation vector of the two-body system and the vector
from the center of mass of the two-body system to the third
body by

x≡ x1 − x2; X ≡ x3 − x0; (4.1)

where

x0 ≡m1x1 þm2x2
m

; (4.2)

where m≡m1 þm2 is the mass of the two-body system.
We work in the center of mass frame of the entire system,
where

m1x1 þm2x2 þm3x3 ¼ mx0 þm3x3 ¼ Oðc−2Þ; (4.3)

whereOðc−2Þ represents post-Newtonian corrections to the
center of mass. As a result of these definitions,

x1 ¼
m2

m
x −m3

M
X; x2 ¼ −m1

m
x −m3

M
X;

x3 ¼
m
M

X;
(4.4)

where M ¼ m1 þm2 þm3 is the total mass. The Oðc−2Þ
correction in Eq. (4.3) will not be relevant because only
differences between position vectors appear in the equa-
tions of motion. We define the velocities v≡ dx=dt,
V ≡ dX=dt, accelerations a≡ dv=dt, A≡ dV=dt, distan-
ces r≡ jxj, R≡ jXj, and unit vectors n≡ x=r and
N ≡ X=R. For future use we define the symmetric reduced
mass η≡m1m2=m2 and the dimensionless mass differ-
ence Δ≡ ðm1 −m2Þ=m.
We now turn to the EIH equations of motion (3.1),

truncated to three bodies. At Newtonian order, the relative
acceleration within the two-body system has terms of order
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Gm=r2 and Gm3r=R3, where we have expanded the effect
of the external body to only quadrupole order (in principle
the expansion can be carried out to higher orders). In the
post-Newtonian approximation, each of these terms would
be represented by a relativistic potential Gm=rc2 and
Gm3r2=R3c2. Thus we wish to keep the standard
Newtonian terms, plus PN correction terms from the
two-body system, of orderG2m2=r3c2, plus PN–third-body
cross terms of the form ðGm=r2Þ × ðGm3r2=R3c2Þ or
ðGm3r=R3Þ × ðGm=rc2Þ, both of which scale as
G2mm3=R3c2. Because the PN equations also contain
velocity-dependent terms, with v ∼ ðGm=rÞ1=2 and
V ∼ ðGm=RÞ1=2, there will also be cross terms that scale
as ðG2mm3=R3c2ÞðR=rÞn=2, where n ranges from 1 to 5.
All cross terms that scale as ðG2mm3r=R4c2Þ or higher
powers of r will be dropped.
For a consistent set of equations of motion that maintain

the globally conserved energy and linear momentum to the
appropriate order, we must also include the equations of
motion for body 3. Since momentum conservation requires
that ma ∼m3a3, we must therefore include in those
equations of motion terms that scale as m=m3 compared
to those in the two-body equations, in other words, terms
that scale as ðG2m2=R3c2ÞðR=rÞn=2, where n will turn out
to range from 0 to 4.

The interaction of the two bodies with the third body
depends on x13 and x23, which we will express as

x13 ¼ −X þ α2x ¼ −R½N − α2ðr=RÞn�;
x23 ¼ −X − α1x ¼ −R½N þ α1ðr=RÞn�; (4.5)

where αi ≡mi=m; we will use this to expand quantities
such as 1=r13 and 1=r23 as power series in r=R. The
resulting equations of motion for the binary system have
the form

a ¼ −Gmn
r2

−Gm3r
R3

½n − 3ðn · NÞN� þ 1

c2
½a�Binary

þ 1

c2
½a�Cross þO

�
G2mm3r
c2R4

�
; (4.6)

where we have expanded the Newtonian term from the third
body to quadrupole order, and where the binary and cross
terms are given by

½a�Binary ¼
Gmn
r2

½ð4þ 2ηÞGm
r

− ð1þ 3ηÞv2 þ 3

2
η_r2�

þ ð4 − 2ηÞGm_rv
r2

; (4.7a)

½a�Cross ¼
Gm3Δ
r2

½2nðv · VÞ þ vðn · VÞ� þ 5
G2mm3n

r2R
þGm3Δ

R2

h1
2

Gm
r

fN − 9ðn · NÞng þ 4vðN · vÞ − v2N
i

−
Gm3

R2
½4v × ðN × VÞ − 3vðN · VÞ� þ G2mm3

R3
½ð4 − ηÞfn − 3ðn · NÞNg − 1

2
ð4 − 13ηÞnf1 − 3ðn · NÞ2g�

þ Gm3r
R3

ð1 − 3ηÞ½4vf_r − 3ðn · NÞðv · Ng − v2fn − 3ðn · NÞNg�; (4.7b)

where _r≡ n · v. Recalling that v2 ∼Gm=r, and V2 ∼Gm=R we see that the six cross terms scale as
ðGmm3=R3c2Þ × ðR=rÞn=2, where n ¼ 5, 4, 2, 1, 0, 0, respectively.
Treating the third body in the analogous way and defining A≡ d2X=dt2, we obtain

A ¼ −GMN
R2

þ 3

2

GMηr2

R4
½Nð1 − 5ðn · NÞ2Þ þ 2nðn · NÞ� þ 1

c2
½A�Binary þ

1

c2
½A�Cross þO

�
G2m2r
c2R4

�
; (4.8)

where

½A�Binary ¼
GmN
R2

�
4Gm
R

− V2

�
þ 4GmðN · VÞV

R2
; (4.9)

½A�Cross ¼ −
GmηΔ
r2

�
n

�
Gm
r

− v2 þ 3

2
_r2
�
− _rv

�
þ 1

2

G2m2η

rR2
½Nð5 − 3ðn · NÞ2Þ − 6nðn · NÞ�

−
Gmη

R2

�
2v2N − 3

2
Nðv · NÞ2 − 3vðv · NÞ

�
−
1

4

G2m2ηΔ
R3

½nð1 − 15ðn · NÞ2Þ þ 3Nðn · NÞð7 − 5ðn · NÞ2Þ�

−
GmηΔr

R3

�
2v2ðn − 3Nðn · NÞÞ − 3

2
ðnðv · NÞ2 þ 2N_rðv · NÞ − 5Nðn · NÞðv · NÞ2Þ − 3vð_r − 3ðv · NÞðn · NÞÞ

�
:

(4.10)
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The binary-PN acceleration contains the standard terms
for a body in orbit around a point mass of massm, but in the
approximations used here it has the same scaling as the
cross terms shown in ½A�Cross. The first term in ½A�Cross
comes from the acceleration of the center of mass x0 of the
binary.
In order to illustrate the impact of the cross terms on the

dynamics, we apply these equations to a specific simple
case. We consider the third body to be in a circular orbit on
the X-Y plane, with R constant, angular frequency Ω3 ¼
ðGm=R3Þ1=2 and with X ¼ RN and V ¼ Ω3RΛ, where

N ¼ eX cosΩ3tþ eY sinΩ3t;

Λ ¼ −eX sinΩ3tþ eY cosΩ3t;

H ¼ N × Λ ¼ eZ: (4.11)

The relative osculating orbit of the two-body system is
governed by Eq. (2.7), with osculating orbit elements a, e,
ω, Ω and ι, with a ≪ R. We focus on perturbations of the
binary orbit induced by the third body. The radialR, cross-
track S and out-of-plane W components of the perturbing
acceleration are given by

R ¼ −Gm3r
R3

ð1 − 3ðn · NÞ2Þ þ Gm
r2c2

�
2ð2þ ηÞGm

r
− ð1þ 3ηÞv2 þ 1

2
ð8 − ηÞ_r2

�

þ Gm3

c2

�
Δ
r2
ð2v · V þ _rn · VÞ þ 5

Gm
r2R

− Δ
R2

��
4
Gm
r

þ v2
�
n · N − 4_rv · N

�

−
4

R2
ðn × vÞ · ðN × VÞ þ 4ð1 − 3ηÞ r_r

R3
ð_r − 3ðn · NÞðv · NÞÞ þ r

2R3

�
ð4þ 11ηÞGm

r
− 2ð1 − 3ηÞv2

�
ð1 − 3ðn · NÞ2Þ

	
;

(4.12a)

S¼ 3
Gm3r
R3

ðn ·NÞðλ ·NÞþ2ð2−ηÞGm
c2r2

h_rþGm3

c2

�
hΔ
r3

n ·Vþ Δ
R2

��
Gm
2r

−v2
�
λ ·Nþ4h

r
v ·N

�

−
4

R3
ðλ× vÞ · ðN×VÞþ4ð1−3ηÞ h

R3
ð_r−3ðn ·NÞðv ·NÞÞ− 3r

R3

�
ð4−ηÞGm

r
− ð1−3ηÞv2

�
ðn ·NÞðλ ·NÞ

	
; (4.12b)

W ¼ 3
Gm3r
R3

ðn · NÞðĥ · NÞ þ Gm3

c2

�
þ Δ
R2

�
Gm
2r

− v2
�
ĥ · N − 4

R3
ðĥ × vÞ · ðN × VÞ

−
3r
R3

�
ð4 − ηÞGm

r
− ð1 − 3ηÞv2

�
ðn · NÞðĥ · NÞ

	
; (4.12c)

where we recall that h≡ x × v, and v ¼ _rnþ ðh=rÞλ.
Because the orbital period of the inner binary is assumed

to be short compared to that of the third body, it is
customary to integrate the Lagrange planetary equations
holding the position of the third body fixed, and then to
average over one orbit of the third body. This yields a set of
averaged equations for the rates of change of the orbit
elements that can then be evolved over longer time scales.
Looking first at the Newtonian and post-Newtonian

binary terms we recover the standard results for the
Kozai problem, including the two-body pericenter advance:

hΔaiK ¼ 0; (4.13a)

hΔeiK¼
15π

2

m3

m

�
a
R

�
3

eð1−e2Þ1=2sin2ιsinωcosω; (4.13b)

hΔιiK¼−
15π

2

m3

m

�
a
R

�
3

e2ð1−e2Þ−1=2 sin ιcos ιsinωcosω;

(4.13c)

sin ιhΔΩiK ¼ −
3π

2

m3

m

�
a
R

�
3

e2ð1 − e2Þ−1=2

× ð1 − e2 þ 5e2sin2ωÞ sin ι cos ι; (4.13d)

hΔωiK ¼ 6πGm
c2að1−e2Þþ

3π

2

m3

m

�
a
R

�
3

ð1−e2Þ−1=2

× ½5cos2ιsin2ωþð1−e2Þð5cos2ω−3Þ�: (4.13e)

We determine the effect of the cross terms using the
method outlined in Sec. II. Taking the Newtonian and PN
binary contributions to the disturbing accelerations, we
calculate the instantaneous values of the osculating ele-
ments as a function of f, again holding the position of the
third body fixed. We insert these expressions back into the
formulas for r, v, n, h that appear in Eq. (4.12), and keep
contributions that involve cross terms between m3 and
1=c2. We also insert the Newtonian and PN binary
expressions for _ω and _Ω into the formula (2.9), used to
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convert derivatives with respect to time in the Lagrange
planetary equations to derivatives with respect to true
anomaly f, again keeping the appropriate cross terms.
These are combined with the explicit cross terms that

appear in Eq. (4.12). We then integrate over a complete
binary orbit and average over the position of the third body.
The resulting average changes in the orbit elements are
given by

hΔaiCross ¼ − 15π

2

Gm3

c2

�
a
R

�
3
�

eð1þ eÞ2
ð1 − eÞð1 − e2Þ3=2 ½7þ 3e − ηð3þ 4eÞ� þ 6

5

1 − e
1þ e

	
sin2ι sin 2ω; (4.14a)

hΔeiCross ¼ −
15π

8

Gm3

ac2

�
a
R

�
3
�� ð1þ eÞ2

ð1 − eÞð1 − e2Þ1=2 fð3þ 7eÞ − ð1þ 6eÞη − fðe; ηÞg þ 4

5

ð1 − eÞ2ð2þ 4e − 3e2Þ
e3

�

× sin 2ω − 12π
e

ð1 − e2Þ1=2 cos 2ω
	
sin2ι; (4.14b)

hΔιiCross ¼ −
15π

8

Gm3

ac2

�
a
R

�
3
��

eð1þ eÞ2
ð1 − eÞð1 − e2Þ3=2 fð3þ 7eÞ − ð1þ 6eÞηþ fðe; ηÞg − 8

5

ð1 − eÞ3ð1þ 3eÞ
e2ð1 − e2Þ

�

× sin 2ωþ 12π
e2

ð1 − e2Þ3=2 cos 2ω
	
sin ι cos ι; (4.14c)

sin ιhΔΩiCross ¼ 4π
Gm3

ac2

�
a
R

�
5=2

sin ι − 3π

8

Gm3

ac2

�
a
R

�
3 ð1þ eÞ
ð1 − eÞð1 − e2Þ3=2 gðe; ηÞ sin ι cos ιþ hΔιiCrossðω → ω − π=4Þ;

(4.14d)

where

fðe; ηÞ≡ 8 − 16e − 24e2 þ 109e3 þ 114e4 þ 43e5 þ 16e6 − ηe3ð15þ 47eþ 76e2 þ 37e3Þ
5e3ð1þ eÞ ;

gðe; ηÞ≡ 2ð2þ 3eÞð12þ 12eþ 11e2Þ − ηð24þ 40eþ 84e2 þ 86e3 þ 11e4Þ: (4.15)

The first three terms in aCross, corresponding to n ¼ 5, 4
and 2, do not generate a secular change in any orbital
element. The fourth term, corresponding to n ¼ 1, generates
the first term in sin ιhΔΩiCross. This term is the analogue of
the de Sitter precession, a relativistic contribution to the
nodal precession in the Earth-Moon system induced by the
Sun, which has been measured to a few percent using lunar
laser ranging. Only the final n ¼ 0 terms in aCross generate
other secular changes in orbit elements.
Notice that, unlike the standard Kozai case, where the

semimajor axis is constant over an orbit, including the cross
termsleadstoavariationinaproportionaltosin2 ιandtosin 2ω.
In the standard Kozai problem, LZ ≡ ðx × vÞ · eZ ¼

½Gmað1 − e2Þ�1=2 cos ι is constant, as can be seen from
Eqs. (4.13a), (4.13b) and (4.13c). But the cross terms now
induce a change in LZ over one orbit given, from
Eqs. (4.14a), (4.14b) and (4.14c) by

hΔLZiCross
LZ

¼ − 15π

2

Gm3

ac2

�
a
R

�
3 eð1þ eÞ2
ð1 − e2Þ3=2

× ð2 − ηÞsin2ι sin 2ω: (4.16)

Since we are averaging over the circular orbit of the third
body, we would expect the z component of the angular
momentum of the two-body system still to be conserved,
because of the axial symmetry of the “averaged” perturba-
tion. However the quantity that is conserved contains post-
Newtonian corrections, which must be taken into account.
Starting with x × dv=dt from the equations of motion (4.6)
and (4.7) and contracting itwithH ¼ eZ, it is straightforward
to show, after averaging over the orbit of the third body, that
the following quantity is a constant of the motion:

~LZ ¼ LZ

�
1þ 2

Gm
rc2

ð2 − ηÞ
�

− 2LZ
Gm3r2

R3c2
ð1 − 3ηÞ½1 − 3ðn · NÞ2�

− 2
Gm3r2Δ
R3c2

½1 − ðn · eZÞ2�: (4.17)

To the order of approximation considered, the second and
third terms of Eq. (4.17) are periodic or constant, so their
changeover oneorbit of thebinary is zero.However, the term
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Gm=rc2 in the first term is not strictly periodic. Because the
orbit element e changes over one orbit by an amount of order
ðm3=mÞða=RÞ3 from the standard Kozai mechanism, it
induces a net change in 1=r over an orbit. Thus, holding
~LZ fixed, and determining the variation between successive
pericenters we find that

hΔLZiCross
LZ

≈ −2Gm
c2

ð2 − ηÞΔ
�
1

r

�

¼ −2Gm
ac2

ð2 − ηÞΔ
�

1

1 − e

�

¼ −2Gm
ac2

ð2 − ηÞ Δe
ð1 − eÞ2 ; (4.18)

Substituting for Δe from Eq. (4.13b) yields Eq. (4.16).
Naoz et al. [23] used a complete three-body PN

Hamilton converted to Delaunay variables, followed by a
double orbit average to obtain evolution equations for the
variables that include cross-term effects of the same scaling
as those above. However, a comparison between the two
methods is not trivial, as the Delaunay variables and the
osculating orbit elements are very different. For example,
our LZ is defined relative to the reference XYZ system,
defined so that the third body is initially on the XY plane,
whereas the analogous Delaunay variable H1 is the
component along the total angular momentum vector of
the system. On the other hand, it is not clear whether the
double orbit average in the Delaunay method adequately
takes into account the feedback of periodic terms in the
first-order solutions for the Delaunay variables into the
cross-term effects, as discussed in points 1 and 2 in Sec. II.
This will be the subject of future investigations.
If the relativistic pericenter precession [the first term in

Eq. (4.13e)] dominates the Kozai precession (the second
term), then over a pericenter precession time scale, we can
integrate Eq. (4.16) using Eq. (2.14) to obtain

LZ ¼ ðLZÞ0
�
1 − 5

4

m3

m

�
a
R

�
3 eð1þ eÞ2
ð1 − e2Þ1=2

× ð2 − ηÞsin2ιsin2ω
�
: (4.19)

Just as in the quadrupole case of Sec. II, we find that post-
Newtonian cross terms induce a Newtonian-order variation
in an orbital quantity—here the angular momentum—over
a relativistic precession time scale. The amplitude is of the
same order as the per orbit variations in e, ι and Ω induced
by the Newtonian Kozai mechanism. Whether these var-
iations have important long-term consequences for the
complex three-body dynamics of Kozai systems can
probably only be answered by numerical experiments
using Eqs. (4.13) and (4.14).

V. CONCLUDING REMARKS

In this paper we have suggested that a proper approach to
including post-Newtonian relativistic effects in the dynam-
ics of N-body systems that include either a central massive
black hole or a close binary star system requires incorpo-
rating certain PN cross terms in the equations of motion.
There are two sides to this issue.
The first has to do with consistency. The underlying

problem is a mathematical one that is broader than N-body
gravitational dynamics. Here one begins with a simple
system with an exact solution—the Newtonian two-body
system of star and black hole, or the inner binary system of
a hierarchical triple—that is perturbed by two separate
mechanisms. A simple mathematical model that illustrates
this is the differential equation dx=dt ¼ ixþ ϵx2 þ δx3,
where ϵ and δ are small parameters. In the gravitational
problems discussed here, ϵ ∼ 1=c2 characterizes the rela-
tivistic perturbations, either due to the central black hole or
within the close binary system, while δ ∼mb characterizes
the Newtonian perturbation from the other body or bodies,
or the Newtonian quadrupole perturbation in the case of our
quadrupole conundrum. In the absence of the perturbation,
the solution of the differential equation with unit amplitude
is x ¼ eit. An “exact” solution of the full equation can be
provided by a numerical integration. But it is clear that, if
one seeks a perturbative solution by trying an expansion of
the form xðtÞ ¼ eit þ ϵx1 þ δx2 þ � � �, the series will nec-
essarily have terms proportional to the product ϵδ. This is
because changes in x induced by the δ-perturbing term, will
induce a change in the ϵ-perturbing term that will lead to a
perturbation of order ϵδ, and vice versa. We saw this
phenomenon in action already in Sec. II, where relativistic
effects on the orbit elements induced changes in the
quadrupole perturbing terms and vice versa. We saw it
again in Sec. IV. Now, for the simple differential equation
displayed above, a numerical integration will capture all
such effects automatically. However, if the equation to be
solved also has explicit terms of order ϵδ, then a failure to
include them in the numerical integration will lead to a
solution that is incomplete, and thus potentially incorrect.
We found exactly this phenomenon in the quadrupole
conundrum. A numerical integration of the equations that
included only the “monopole” PN terms (ϵ terms) and the
Newtonian quadrupole terms (δ terms) in the equations of
motion did give a variation in the semimajor axis, via the
mechanism described above. However the answer was
wrong. Only when the explicit PN-quadrupole ϵδ cross
terms in the equations of motion were included in the
numerical integration was the correct answer obtained.
Conversely, if one is handed an equation with explicit

cross terms, such as dx=dt ¼ ixþ ϵx2 þ δx3 þ ϵδfðxÞ,
and attempts a perturbative solution, it is essential to
plug the first order solution x ¼ eit þ ϵx1 þ δx2 back
into the equation, thereby generating the additional ϵδ
contributions.

INCORPORATING POST-NEWTONIAN EFFECTS IN N- … PHYSICAL REVIEW D 89, 044043 (2014)

044043-13



For problems involving N bodies orbiting a massive
black hole, we have accordingly written down the required
cross terms to an appropriate order, so as to guarantee
consistency in the numerical solutions at the level of ϵδ
effects. For hierarchical triple systems we have written
down the analogous equations and have also carried out the
orbital perturbation theory analytically for a simple case of
a circular third-body orbit, yielding doubly orbit-averaged
equations for the orbit elements of the inner binary,
including the ϵδ effects in a completely consistent way.
For triple systems, these ϵδ issues can be accounted for

automatically by simply integrating the full EIH three-body
equations of motion numerically. In other N-body situa-
tions, where N is sufficiently large, this may not be
computationally practical, and thus our truncated equations
may prove to be useful.
The second side to this issue is physical relevance: do

these cross terms produce physically interesting effects? In
principle they are smaller (of order ϵδ) than either the
relativistic (ϵ) or N-body (δ) effects, although we have seen
that in some cases, over a relativistic precession time scale,
they can be boosted to a size of order δ. The only way to
answer this question is to carry out suitable numerical

experiments. Given the complexity of all gravitating
N-body systems when N > 2, and given that seemingly
tiny effects can over time yield dramatic consequences
for the evolution of large systems, the cross terms empha-
sized in this paper could prove to have interesting
consequences.
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