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Incorporating post-Newtonian effects in N-body dynamics
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The increasing role of general relativity in the dynamics of stellar systems with central massive black
holes, in the generation of extreme mass-ratio inspirals and tidal disruption events, and in the evolution of
hierarchical triple systems inspires a close examination of how post-Newtonian effects are incorporated
into N-body dynamics. The majority of approaches incorporate relativity by adding to the Newtonian
N-body equations the standard two-body post-Newtonian terms for a given star around the black hole or for
the close binary in a triple system. We argue that, for calculating the evolution of such systems over time
scales comparable to the relativistic pericenter advance time scale, it is essential to include “cross terms” in
the equations of motion. These are post-Newtonian terms in the equation of motion of a given body that
represent a coupling between the potential of the central black hole and the potential due to other stars in the
system. For hierarchical triple systems, these are couplings between the potential of the inner binary and
that of the distant third body. Over pericenter precession time scales, the effects of such terms can actually
be “boosted” to amplitudes of Newtonian order. We write down the post-Newtonian N-body equations of
motion including a central black hole in a truncated form that includes all the relevant cross terms, in a
format ready to use for numerical implementation. We do the same for hierarchical triple systems, and
illustrate explicitly the effects of cross terms on the orbit-averaged equations of evolution for the orbit
elements of the inner binary for the special case where the third body is on a circular orbit. We also describe
in detail the inspiration for this investigation: the seemingly trivial problem of the motion of a test body
about a central body with a Newtonian quadrupole moment, including the relativistic pericenter advance,
whose correct solution for the conserved total Newtonian energy requires including post-Newtonian cross

terms between the mass monopole potential and the quadrupole potential.
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I. INTRODUCTION AND SUMMARY

The effects of general relativity on the evolution of
systems with more than two bodies have been studied
intermittently for over 75 years. Einstein [1] considered a
crude model of a spherically symmetric star cluster where
all the stars resided on circular orbits, in order to explore
whether what we now call the event horizon could occur in
nature. The discovery of quasars in the early 1960s led to
the suggestion [2] that their large redshifts were due, not to
cosmological expansion, but to the intrinsic redshift of light
from the vicinity of a compact object. One candidate was a
highly relativistic stellar cluster. However, detailed analyses
revealed that they were subject to instabilities leading to
catastrophic collapse at values of their central redshifts that
were far lower than those being measured for many quasars
[3]. In the end, the cosmological interpretation prevailed.

In recent years, there has been renewed attention to the
relevance of general relativity to multiple-star systems
because of the observation that many galaxies, including
our own, appear to harbor massive black holes in their cores
(see [4-6] for reviews). The capture or tidal disruption of
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stars passing close to such black holes could have important
observational signatures in the electromagnetic spectrum [7].
Inspiralling relativistic orbits of stars or stellar-mass black
holes around massive black holes (extreme mass-ratio
inspirals, or EMRISs) or the inspiral of two massive black
holes could generate gravitational radiation in the low-
frequency regime detectable by a space-based laser interfer-
ometer (see [8] forareview). Measurements of the precessing
orbits of stars very close to the black hole SgrA* at the center
of the Milky Way could yield tests of the “no-hair”’ theorems
of general relativity [9]. While the examples just cited are
essentially two-body problems, they cannot be discussed in
complete isolation from the many-body context.

Galactic cores contain many stellar objects (to say
nothing of gas, dust and dark matter), and these objects
have interacted and continue to interact with any two-body
system that one might wish to study. Whether tidal
disruption events or stellar captures are frequent enough
to be observable depends on whether interactions of a given
star with the surrounding cluster have been sufficiently
effective in diverting the star’s orbit toward what is an
extremely tiny target on galactic scales—the black hole.
Likewise, whether a stellar-mass black hole can be aimed
sufficiently close to the central massive black hole to allow
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gravitational radiation reaction to take over and induce an
inspiral depends sensitively on the history of its interactions
with the other stars and the black hole. Whether two
massive black holes are able to “find” each other following
the merger of two galaxies that hosted each of them
depends on their interactions with the other stars in the
merged galaxy. Finally, the ability to test general relativity
at the galactic center depends on whether the cluster of stars
that is likely to reside there perturbs the orbit of a given star
so strongly as to swamp the relativistic precession effects
being explored.

Generally speaking, stars are sufficiently far from the
black hole that relativistic effects are much smaller than
their mutual gravitational perturbations. So what role does
general relativity play in such an N-body context? One
recent example illustrates a potential role.

Repeated interactions of a given star in a dominantly
Keplerian orbit about the black hole with the other stars in a
cluster lead to torques that cause the eccentricity of the orbit
to perform a quasirandom walk, while its orbital energy is
roughly constant, a phenomenon known as resonant relax-
ation [10]. In some cases, this can lead to very large
eccentricities, which can place the star on an orbit with a
small enough pericenter relative to the central black hole that
it is capable of losing energy to gravitational radiation and
becoming an EMRI. Hopman and Alexander [11] showed
that the relativistic precession of the pericenter could act to
suppress such torques. In a series of numerical N-body
simulations, Merritt ef al. [12] studied this effect in detail.
The buildup of eccentricity of a given Keplerian orbit
depends on the repeated coherent interactions with a set
of stars whose orbits are in the “vicinity” of the eccentric orbit
of the target star, and this buildup occurs over a long time
scale. However, the relativistic pericenter advance produces a
nonrandom, secular precession of the orbit within its plane
that renders these stellar torques ineffective. This destroys the
coherence that was driving the eccentricity toward high
values, and leads to a cap on the eccentricity. This occurs
when the pericenter precession time scale, which decreases
with increasing eccentricity, becomes comparable to the time
scale for changes in angular momentum due to stellar
torques. Merritt et al. dubbed this the “Schwarzschild
barrier,” and showed that it had a significant effect on the
rate of production of EMRI orbits. The point was that, while
relativistic effects are typically small, over a relativistic
precession time scale, they can have significant effects in
such N-body systems, because their time scales can be
shorter than the other important time scales in the problem.

In [12], general relativity was taken into account using
the post-Newtonian (PN) approximation. The first PN
approximation is adequate for studying the overall evolu-
tion of such systems; higher PN effects, such as those due
to gravitational radiation reaction, do not come into play
until the star is well into its inspiral evolution. Incorporating
1PN effects in an N-body evolution would appear to be
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straightforward—simply replace Newtonian equations of
motion with the post-Newtonian N-body equations of
motion commonly known as the EIH equations, named
for Einstein, Infeld and Hoffmann, who published them in
1938 [13], although equivalent equations were derived by
Lorentz and Droste in 1917 [14]. However, these equations
of motion contain three-body interactions, and as the
number N of bodies grows, the computational burden of
including these interactions becomes prohibitive. An alter-
native approach might be to incorporate PN effects into the
collisionless Boltzmann equation [15,16], but this would be
purely statistical in nature. Accordingly, to our knowledge,
all current N-body codes containing a central black hole
include only the PN effects on each star due to the black
hole, as if the star and black hole were a two-body system.

The purpose of this paper is to show that there is reason
to believe that this may not be sufficient. We will argue that,
for problems involving evolutions over many relativistic
precession time scales, it may be necessary to include PN
“cross terms” in the equations of motion in order to capture
properly the relativistic effects of the black hole. While the
direct PN terms in the acceleration a, of body a caused by
the black hole are proportional to M?, where M is the mass
of the black hole, these cross terms are proportional to
M x my,, where m,, is the mass of one of the stars. The
remaining PN terms in @, that are computationally trouble-
some, proportional to m; x m,, are dropped.

The basic idea is this: in dimensionless terms, a relativistic
effect induced by the black hole, such as the pericenter
advance, is proportional to GM/ac?, where a is the semi-
major axis of the body’s orbit, and G and c are the gravita-
tional constant and speed of light, respectively. A Newtonian
effect due to other stars is proportional to (my,/m,)(a/ra,)",
where 7 is some power which depends on the relative size of a
and r, (n is positive if a < r,;,, negative if a > r,;,). A PN
effect due to the cross terms described above would be
proportional to (GM /ac?) x (m,/m,)(a/r.,)". On the face
of it, this is a smaller effect than either the pure black hole
effect or the stellar effect, when (a/r,;,)" < 1. However, if it
is a secular effect, and if one is interested in how this effect
grows over a relativistic time scale induced by the black hole,
which is proportional to 1/(GM /ac?), then the effect could
be “boosted” from a PN level effect to a Newtonian level
effect. This could have hitherto unforeseen consequences in
long-term evolutions of such systems.

In this paper, we explicitly write down the truncated 1PN
equations of motion for an N-body system with a central
(nonrotating) black hole, including the cross terms to a
consistent order, and display them in a ready-to-use form.
The equations include the appropriate equation of motion
for the central black hole, and the appropriate expressions
for globally conserved quantities such as energy, momen-
tum and the center of mass. These equations can be used in
numerical experiments to explore the impact of including
PN cross terms.
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Another system where relativistic effects have been
studied is the hierarchical three-body system, where a
close binary system is in orbit with a distant third body.
In Newtonian theory, such systems exhibit the remarkable
Kozai-Lidov effect, in which there is an interchange
between the eccentricity of the two-body orbit and its
inclination relative to the plane of the third body. Under
certain circumstances, the system can exhibit the Kozai
resonance, in which the pericenter of the two-body orbit
oscillates about either z/2 or 3z/2, while the eccentricity
and inclination oscillate about values related by
5cos?t = 3(1 — ¢?). However, the pericenter precession
of the two-body orbit induced by general relativity can
force the system out of the resonant state. Here again is a
problem which mixes a Newtonian effect and a relativistic
effect, in which the relativistic precession time scale is
relevant. Could PN cross terms play a role here? In this case
the dimensionless size of the expected cross terms is
proportional to (Gm/ac?) x (m3/m)(a/R)?, where m is
the total mass of the two-body system, and R is the distance
of the third body.

Efforts to include relativity in Kozai-Lidov systems have
taken three approaches. One is to include the standard PN
terms in the dynamics of the inner binary, to an order as
high as 2.5PN order, but without cross terms [17-22]. Here
it is possible to solve the orbit perturbation equations in the
same manner as in the Newtonian Kozai problem, by
averaging over an orbit of both the inner system and the
third body. The result is a set of average equations for the
evolution of the orbit elements whose long-term evolution
can be studied numerically.

Another approach [23] begins with the full EIH three-
body PN equations of motion, frequently expressed in
Hamiltonian form. After expressing the Hamiltonian in
Delaunay variables and averaging over both inner and outer
orbits, one obtains average equations of evolution for the
orbit elements. While this approach automatically incor-
porates all PN terms initially, we shall see in the next
section that there are subtleties in the averaging procedure
that may have been overlooked.

The third approach carries out a full numerical integra-
tion of the complete three-body PN equations of motion. In
[24,25], the equations were in fact complete and correct
through 2.5PN order. While this approach in principle
captures all the relevant effects, it requires performing
many numerical experiments and carefully analyzing the
output data. As complete as this approach may be, it does
not easily lend itself to exploring the underlying physical
phenomena.

In this paper, we write down the truncated post-
Newtonian equations of motion for hierarchical triple
systems including the relevant cross terms for both the
two-body system and the third body relative to the two-
body center of mass. We then carry out the standard double
average of the orbit perturbation equations for the special
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case of a circular third-body orbit (with an important
caveat, to be discussed below), finding averaged equations
for the orbit elements of the two-body system that are
amenable to numerical integration. Exploration of the
impact of PN cross terms on these averaged equations
will be left to future work.

We begin in Sec. II by describing the simple physical
problem that inspired these considerations: the motion of a
body in the field of a central object with a mass and a
quadrupole moment, including PN effects. This seemingly
trivial problem was the origin of a conundrum encountered
during the work leading to Ref. [12]. The resolution of this
conundrum absolutely required the incorporation of the
relevant PN cross terms. In Sec. III we display the truncated
equations of motion for an N-body system and a central
black hole, along with the relevant conserved quantities.
Section IV displays the equations for hierarchical three-
body systems and derives the orbit averaged equations for
the evolution of the orbit elements, including all cross-term
effects. Concluding remarks are made in Sec. V.

II. AN OBJECT LESSON: THE QUADRUPOLE
CONUNDRUM

The origin of the idea that it may be important to
incorporate appropriate PN cross terms in long-term
evolutions of orbital dynamics was a series of numerical
simulations of N-body orbits with a central massive
rotating black hole carried out by Merritt et al. [12].
One set of long-term numerical integrations involved
single-particle orbits around a rotating black hole, with
the relativistic effects due to the hole expanded in the post-
Newtonian approximation. In fact the essential effects that
lead to the conundrum of the title of this section were
seen by turning off the frame-dragging terms, and keeping
only the quadrupole moment of the black hole. The orbit
of the particle was chosen to have a large eccentricity,
and the integrations were carried out over several preces-
sions of the orbital pericenter @, induced dominantly
by the standard “point-mass” pericenter advance of
62GM/a(l — e*)c?* per orbit.

It was found that the semimajor axis a of the orbit varied
as sin’w, was proportional to sin’z, where 1 is the
inclination of the orbit relative to the equatorial plane of
the black hole, and had an anomalously large amplitude, so
large as to suggest potentially important observable effects
in N-body systems orbiting a rotating black hole with a
quadrupole moment.

Physically, there is nothing mysterious about a variation
of a with w. The Newtonian conserved energy per unit
mass of a body orbiting a mass M with a Newtonian
quadrupole moment Q, is given by

GM GQ, (1+e
2a 2

3
E—_2"_ ) (3sin%isin’w — 1),  (2.1)
p
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where p = a(l — ¢?) is the semilatus rectum. Because the
osculating orbit elements are in general functions of orbital
phase in any non-Keplerian motion, they are defined in this
example at pericenter. When @ = 0, the long axis of the orbit
lies along the line of nodes, the intersection of the orbit plane
with the equatorial plane of the central body, and both the
pericenter and apocenter of the orbit occur on the equator of
the central body. For a highly eccentric orbit, the orbit is
displaced only a small distance above or below the equa-
torial plane. But when w = z/2, the long axis is
perpendicular to the nodal line, and the pericenter occurs
over one of the hemispheres, where the body sees a very
different potential because of the nonzero Q,, while the
apocenter occurs far away in the opposite hemisphere. Thus
the quadrupole interaction energy is very different between
the two cases. Therefore, in order to keep E constant while @
varies, a must vary to compensate for the varying quadru-
pole interaction energy. In fact it is easy to see from Eq. (2.1)
that @ must vary, to first order in Q,/Ma}, according to

0>

— 3 %2
@zt May(1 — o)’

sin?1ysin’, (2.2)
where the subscripts denote values of the orbit elements at an
initial value of w.
However, this result presents us with two conundra:
(i) In first-order perturbation theory, for motion in the
field of a point mass, with point-mass 1PN corrections,
plus a Newtonian quadrupole term, the net change in a
over one orbit vanishes identically, so what is the
origin of this variation over a precession time scale?

(i1) The amplitude of variation in a that emerges from this
argument disagrees with the amplitude that emerged
from the numerical simulations in [12].

A resolution to this conundrum is suggested by the
following fallacious argument. Using the first-order orbital
perturbation equations, evaluate the change in a not after a
complete orbit (a change 27 in the true anomaly f of the
orbit), where the change vanishes, but after one orbit plus the
small advance of pericenter 6xGM / pc?. This gives a change
in a that actually has the correct dependence on the variables.
It is fallacious because a remains strictly periodic, with no
net variation over a pericenter precession time scale. But it
gives a fractional change in a over one “orbit” that is
proportional to the product (GM/ pc?) x (Q,/M p?), which
represents a cross term between the quadrupole and rela-
tivistic perturbations. This suggests that, in order to find the
full solution to the problem of the long-term evolution of a
with quadrupole and PN effects together, one must include
the cross terms in the equations of motion. In this section, we
verify that this is correct with a straightforward analytical
calculation.

We begin with the 1PN equation of motion

d 1 4
L = VU + 5 VU@ —4U) — S - VU,
C C

7 (2.3)
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where the gravitational potential contains both a point mass
and a quadrupole term,

_ oM, 160,

U
r 2 P

[3(e-n)*>—1], (2.4)

where M and Q, are the mass and quadrupole moment of
the source, e is a unit vector along the source’s symmetry
axis, n = x/r, and v is the velocity of the particle.

These equations admit the conserved orbital energy and
conserved e component of angular momentum (per unit
mass)

1 1/3 3 1
E:§y2—U+?<gv4+§v2U+§U2>, (2.5a)
— _ 2 s2N\1)2 4
he=h-e=r(v>—i*)/?cost(1+—=U]|, (2.5b)
C

where 1 is the orbital inclination.

Then, to 1PN order, and including the Newtonian
quadrupole and the quadrupole-PN cross terms, the equa-
tions of motion take the form

dv  GMn[ 1 , GM GM .
E—— r2 1+?(7) —47):|+4er
—%ng [Sn(e-n)> —2e(e-n) —n]
,
3G0, AGM
——"=215n(e-n)* —2e(e -n) — 2 _
32 [Sn(e-n) e(e-n)—nj (v . )
6GQ, . .
5i(e-n)? —2(v- .n) —
2,4 v[5i(e-n) (v-e)(e-n)—17]
2G*MQ

The first line of Eq. (2.6) shows the Newtonian and PN
point-mass terms, the second line shows the Newtonian
quadrupole term, and the remaining lines show the mixed
PN-quadrupole terms; it is useful to recall that v> ~ GM/r.
Terms proportional to Q3 have been dropped.

We use standard orbital perturbation theory to compute
the secular changes in the semilatus rectum p, eccentricity
e, inclination 7, nodal angle € and pericenter angle w. For a
general orbit, the osculating Keplerian orbit is defined by
the following set of equations:

r=p/(1+ecosf),
n = [cos Qcos(w + f) —cosisinQsin(w + f)]ex

X =rn,

+ [sinQcos(w + ) + cosicos Qsin(w + f)]ey
+ sinzsin(w + f)ey,
A=dn/df, h=nxA,

hExXVE\/GMpil,

(2.7)
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where f is the orbital phase, or true anomaly, and where e
are chosen reference basis vectors, with e, parallel to the
symmetry axis of the central mass. From the given
definitions, it is evident that v =in+ (h/r)A and
i = (he/p)sin f. One then defines the radial R, cross-
track S and out-of-plane VW components of the perturbing
acceleration da, defined respectively by R =n -da, S =
A-da and W =h-éa, and writes down the “Lagrange
planetary equations” for the evolution of the orbit elements,

dp _, [P S
dt “VGM1+ecosf’
de  [p . 2cos f + e + ecos’ f
dr G—M{SmfR—i_ 1+ ecosf 5|
do 1 )4 24ecosf .
@ e Gm[‘“’sf“—HemSﬁmﬁ
_ecotlww,
1+ecosf

di p cos(w+ f) W

dt - \\GM1+ecosf
. dQ [ p sin(w+ f)
M T VoM + ecost‘
To first order in either the PN or quadrupole perturba-
tions, we can substitute d/dt = (h/r*)d/df and
integrate these equations over f between 0 and 2z, holding
the orbit elements on the right-hand side fixed to their
initial values. The result is Ap=0, Ae=0, Ai=0, AQ=
37(Q2/Mp?)cost, and Aw = 62GM /c*p — 61(Q,/ M p?)
(1 —5sin?1/4).

In order to find the changes in the orbit elements induced
by the PN-quadrupole cross terms in the equations of
motion, we must incorporate higher-order effects in the
perturbation equations themselves, as follows:

(1) We must carry out the orbital perturbation theory
carefully. The orbit elements a, e, i, Q and @ vary
periodically during the orbit. Thus the PN-induced
variations in these elements must be inserted back
into the perturbation terms generated by the quadru-
pole moment, and the quadrupole-induced variations
must be inserted back into the perturbation terms
generated by PN effects. These will produce cross-
term contributions of the same order as those from
the equations of motion.

(2) In converting from d/dt in the perturbation equa-

tions to d/df, we must not use df/dt = h/r*, but
instead must use

(2.8)

(2.9)

The added terms come from the fact that, while 7 is
measured from a fixed moment of time, f is measured
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from the pericenter, which changes via both @ and Q.
These terms will also generate cross-term effects
between PN and quadrupole terms.

Choosing a fiducial true anomaly f, as the orbital phase
where the initial values of the orbit elements are prescribed,
we integrate the orbit perturbation equations over f from f
to F, to obtain the instantaneous values of the elements.
The expressions are too complicated to display, but we use
them to verify that the energy is independent of true
anomaly F, to order G?M Q?/p*c?, given by

E——%—GQZ <1+ecosf0
p

3
2D _
572 ) (3sin*ssin®(w+ fo) — 1)

- [3 (5 (57) (1+ecosfo) 2+ Secos o3¢

c“ |18\ a

1G*M
— 3Q2 (5+8ecos fo+3e?)(3sinisin® (w+ fo) —1)] ,

4 pry
(2.10)

where
V4

. 2.11
70 1 + ecos f, e

and all orbit elements are evaluated at f,,. We also verify

that A, is independent of F, through the analogous order.
Choosing F' = f, + 2z, we then find expressions for the

secular variation of p, e and i over one complete orbit:

G
ap = 12252262 1 (2.12a)
pc
GO, .
Ae = —3ﬂp3QC§s1n21[3(1 + ecos fo)? sin2(w + fo)
+2(1-e%)P, (2.12b)
G
At = 6 ng sinzcos P, (2.12¢)
pc

where P is a function of ¢y, f, and w, given by

P(eg, fo.@) = (eg+3cos fo + 2eocos’fo) sinwsin(w + fo)

1
—Z(6+4eocosf0—3e(2))sin2a), (2.13)

with P'=0P/0w. The presence of both Q, and c?
indicates that these are PN—cross-term effects. These are
the secular changes in p, e and 7 over one orbit. Nominally
they would grow linearly in time, except for the fact that the
angle of pericenter w is changing with time at the rate per
orbit dominated by the Schwarzschild mass term, namely
Aw = 62GM/pc*. Thus we can combine this with
Eq. (2.12), to obtain the equation, for each element Z,

044043-5



CLIFFORD M. WILL

Z=27+ / (AZ/Af)dt = Zy + / (AZ/Aw)dw. (2.14)

Given that p, e and 1 are constant to lowest order at this
level of approximation, these equations integrate to the
expressions,

2
p=po+ e sinZi, P, (2.15a)
Mp,
e=e, —f—l 2_sin%1y[3(1 + ¢q cos fo)°
2Meop%
x (sin?(w + fo) — sin*fy) —2(1 — €3)P], (2.15b)
1=1+ MQ—;%sin 19 cos 1P, (2.15¢)

where py, e, 1, are to be evaluated at f,,. Notice that ¢ =2
has disappeared from the expressions, so that the pertur-
bations over the precession time scale are now of a
Newtonian quadrupole order. Combining the results for
p and e, we obtain for the semimajor axis,

)
Mpo(1 — e5)*

X (sin?(@ + fo) — sin®fy).

a=ay+3 sin?1y(1 + eq cos f)?

(2.16)

The variations in the orbital elements depend on the fiducial
phase f, because the orbital elements vary over an orbital
time scale. Thus the orbit elements a, e, 1, w and Q inferred
from a given set of initial conditions x, and v, depend on
the choice of f(, which here is a proxy for the sixth orbit
element, the time of pericenter passage. For f, = 0, the
variation in a agrees with Eq. (2.2)

Notice that, with this variation of a over a pericenter
advance time scale, the Newtonian and quadrupole energy
together in Eq. (2.10) are independent of w, taking the form

E_ GM GQ2<1+ecosfo
Po

3
a2 ) (3sin%isin®f — 1).

(2.17)

It was essential to find the post-Newtonian solution for Ap,
Ae, Ai and Aa consistently to O(GQ,/c?) in order to
conserve the energy to Newtonian quadrupole order over
the pericenter advance time scale. Basically the secular PN
pericenter advance promotes the PN-quadrupole cross-term
perturbations to a lower order of approximation. It was also
essential to carry out the orbital perturbation theory care-
fully, following points 1 and 2 above; a failure to do so
would not have given a variation in a that would lead to a
conserved energy. A number of earlier works that included
the cross terms in the equations of motion failed to heed
those two points [26,27] and thus did not obtain the correct
long-term evolution of the orbit elements.
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Because a and e vary with @, the inclination must also
vary, in order to keep /, constant. This is a kind of Kozai
mechanism, induced again by the relativistic precession
of w.

The contributions to the energy proportional to
G*MQ,/p* in Eq. (2.10), while independent of F, cannot
be shown to be independent of w; to do so would require a
calculation of the orbit-element evolutions through
O(G’M*Q,/p°).

For the special case of f, = =z, the variations in the orbit
elements are given by

p=Dpo+ 25;0 (6 — 8eq + 3e3)sin’yysin’w,  (2.18a)
1

e=ey— ZMQ—;(Z) (2 —ep)(5 —3ep)(1 — ep)sin?zysin’w,

(2.18b)
1
1=+ ZMQ—;% (6 — 8ey + 3e3) sinyg cos psin’w, (2.18¢)
1—

a=ay+3 ) €0 gin2isin2w. (2.18d)

Mpq (1 + eg)?

The variation of a in Eq. (2.18d) still does not agree with
the large amplitude variation found in the numerical
evolutions carried out in the course of the work by
Merritt et al. [12]. (In those simulations, the orbit elements
were inferred from the particle’s position and velocity at
apocenter, f, = x.) The numerical codes did yield a
variation in a over a pericenter precession time scale,
notwithstanding the fact that first-order perturbation theory
yields nothing, because, being exact integrations of the
equations of motion, they inherently incorporated the
higher-order effects discussed in points 1 and 2 above.
However, it turns out that the codes used in those simula-
tions did not initially contain the direct PN-quadrupole terms
of Eq. (2.6). When those terms were added to the codes, the
integrations yielded variations in a in perfect agreement with
Eq. (2.18d).

The lesson learned from this is that, when carrying out
integrations of the dynamics of bodies with relativistic
effects over time scales comparable to the pericenter
precession time, it is necessary to include cross terms
between the relativistic perturbations and the perturbations
from the other source, whether it be a quadrupole pertur-
bation, or a perturbation due to one or more distant bodies.
It is to this latter context that we now turn.

III. POST-NEWTONIAN EFFECTS OF A CENTRAL
BLACK HOLE IN N-BODY DYNAMICS

An important class of N-body problems where rela-
tivity may play a role involves stellar clusters around
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massive black holes. From a relativistic point of view, a
naive approach to such problems would be simply to
apply the post-Newtonian N-body equations of motion,
which have been known since the 1917 work of Lorentz

PHYSICAL REVIEW D 89, 044043 (2014)

and Droste [14], but are more commonly referred to as
the Einstein-Infeld-Hoffmann (EIH) equations of motion
[13]. In these equations, the acceleration of body a is
given by

Gm X Gmyx Gm Gm Gm Gm 1 Gm
=S O SR T s T 3 T a3 T 5 ) 1
ba o bia Tab Fab Fab  ‘Zgp The czap Tac czab Tbe
3 Gmy, Gm.x Gm
- 2‘% + 5 (vb ngp :| 2 Z Z bc 2 Z b Xab * (4va - 3vb)(va - V/,), (31)
b#a Tap c#a.b rbC b#a ab

where n,, = x,,/r,,- These equations admit 1PN-accurate conserved orbital energy and linear momentum, given by

1 Gm,, Gml7 G*mym,
_2;”1“(1}3_; rab) 22 |: 4+ ZZ ZZ TabTac

h;’:u c#a

1 Gm
- L (Ta v+ (Vo - ) (7 - 1)) | (3.2a)
4b7ﬁa Tab
1 Gm m,m
_ 2 b a b
P m+ﬁzm<_; ) 202;; 3, (3.2b)

However, to incorporate these fully 1PN-accurate equations would not be practical, at least for large numbers of particles,
because of the computational burden of incorporating the three-body interactions represented by the terms involving sums
over ¢ # a, b. However, as the discussion of the previous section indicates, we are really interested only in the cross terms
between the mass of the central black hole and the mass of a given star, not in the PN star-star terms.

Accordingly we truncate the EIH equations of motion, keeping only the Newtonian terms from the black hole and the N
bodies, plus the 1PN terms from the black hole alone, i.e. terms proportional to G*M?/r3 c?, or to (GM/ry,)(v%/c?),
where M is the mass of the black hole, plus 1PN terms of the schematic form G>Mm,, /> c?, where r here represents various
interparticle distances. Note that v2 ~ GM/r,,, while v, ~ (m,/M)v,, so we use the same argument when considering
velocity-dependent terms.

We denote the black hole (BH) by body #1, and we take into account the conservation of linear momentum at Newtonian
order, Mv| + > ,m.v, = 0, in order to eliminate v, from post-Newtonian terms in the equations of motion. The resulting
equations of motion have the form

Ganl Gmbxab 1 1 szb
a, = — r?zl - zb: er + C_z [aa]BH +— c2 [ ]Cross +0 2P ) (3.3)
where
GMx, GM GM
[aa]BH = 3 l (4— ) 4—( Va xal)vav (343)
ral Ta1 al
G*mMx, Gm G*m,Mx,, [ 4 5 r r
a, =5 a4 492 P 7(v, 7“ _ al __ "ab
[@a]cross rh r “[vaxa =70 o+ Z r Tap * 4ry, + 4r3, 4r21>
szbeab 4 5 }'%1 rib 7 G mbebl 1 1
Py Crltta (45 sy, ) Ty Pt (1L
A o, r rpr 4y, 4, ; r, Tap Tal
Gmypx, 3
Z 3 Vvp)Xar = 3(Vh  Xa1)Va — 4y - Xa1)vs] + Z rb 202 = 2[ve? +§(Vb ng)’]
b al ab
Gm
+y =50 =39 Vs (3.4b)
b ab
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wherev,, = v, — v, and the sum over b excludes both body
a and the black hole. We are basically ignoring PN terms that
involve only the star-star interactions; in this truncated form
the equations contain only two-body interactions, no worse

PHYSICAL REVIEW D 89, 044043 (2014)

computationally than the original Newtonian equations plus
the PN terms from the central black hole.

The equation of motion for the black hole to the
equivalent order of approximation is given by

Gm,x 1 1 G*m
= _Z b lb [al}BH +— o2 [al]Crm% + 0( ) (35)
rlb Mc*r
where
Gmypx GM 3 Gm
a1 ]gn = Z " <5— — 205+ 5 (v ‘"1b)2> + 32 T (v X1V, (3.62)
b b T1p 5 Ty
G*m3x G*mym.x 4 5 r? r? 7 G mym .x
4 b 1b bMteA1b T _Me T\ f b"ter be
ilerss = Z i ’ ; i e - 4ry.  4rp, - 4r), 24 TheT 1
Gmym,
- Z P Ay v, = 3y - X1p)v — A X)) (3.6b)

3
Mlb

The grouping of terms in these expressions can be understood as follows: relative to the leading dominant Newtonian
acceleration, GM /r* for body a and Gmy,, / r* for the black hole, the BH terms are of order GM /c?r and involve the indirect
effect of interactions of stars with the black hole on its own motion, while the cross terms are of order Gm,, / ¢?r [recall that
v, ~ (GM/r)'/?]. In addition the terms kept in the equation of motion for the black hole are necessary to ensure
conservation of total momentum. Although the terms neglected in each case are different in the context of the acceleration
[see Egs. (3.3) and (3.5)], in the context of the force on each star, m,a, and on the black hole Ma,, the neglected terms are of
the same order, G>m3 /c?r?, in each case. It is useful to point out that, in the case of two bodies, the terms involving
summation over b in Eq. (3.4) and those involving double summations in Eq. (3.6) drop out, and the remaining terms
correspond to suitably truncated versions of the two-body equations of motion found, for example, in [28,29], with the
replacement v, = —m,v, /M.

It is straightforward, though tedious to show that these equations of motion can be derived from the truncated Lagrangian
and Hamiltonian, given by

zzmv 41 le 2ZGm oMy ZGMm

GMm, G2M2
R WIEES) DR BEa

Gm,m GMm,
ZZ Fap b A ER (nab ' va)(nab ' vb)} + Eza: Fla [30% —Tvy v, — (nla : vl)(nla : Va)]
G’M G’M
- Zw _Zw}, (3.72)
Fabl1a 2 ab  al1p
Gm,m,, GMm, 1 (I1—p} 3—<GMp>2 1—G’M’m,
H = )N £fa T Pa_—
Z 2M 2 Tab ; g c? {8;1112 2 Tlg Mg 2 r,
1 m 1 G | m,
+Zaz;a [6m—bpi 0Py — (Rap Do) (Bap ‘Pb):| +§za:r_1a [3ﬁp% —p1-Pa— (014 P1) (M1 Pa)
G*’M G’M
g G My __Zﬂ} (3.7b)
apb Tablla 2 ap a1y
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The first three PN terms in the Hamiltonian, Eq. (3.7b),
correspond to the post-Newtonian Hamilton Hpy given in
Eq. (27) of [30]. However it is important to note that, because
of the complex relationship between canonical momentum
and velocity, those terms yield not only the BH terms in the

|

:—le

Zm o2 = ZZGmamh ZGMm

a

1

4 ab Tab

G*Mm,m, 1 G*Mm,m,, G*m’
+Z—+—Z—}+0< K )

2

a.b TabT1a a.b "1a’1p

P=Mv+) mpy, (1
a
Gm,m
Gy
a.b Tab

Gmlv
. O a~a ,
(va nab)"ab]} + ( AMr >

where the sums exclude the black hole. These are the
appropriately truncated versions of Eq. (3.2). Note that, in
the PN terms in E and P, one could substitute the lowest-
order relation v = —> ,m,v,/M. Finally the constant
center of mass of the system can be defined to the same

order:
+ —1 ’1)2 + E m,x 1+ —1 ’1)2
2“1 ata 2 2 Ya

_T;{ZGMm (6, +x,) +ZGmamb a}

a Ta Tab
Gmlx
O a’ra ,
* ( c*Mr )

where M* = M + ) ,m, is the total mass of the system. It

is straightforward to show that M*dX/dt = P
With Kupi and Merritt, we have begun to devise possible
numerical experiments to study the importance of these

post-Newtonian cross terms in long-term evolutions of
N-body systems around a central black hole.

M*X = Mx, <1

(3.9)

IV. POST-NEWTONIAN EFFECTS IN
HIERARCHICAL THREE-BODY SYSTEMS

We now consider a three-body system in which two
bodies of mass m; and m, are in a close orbit with
separation r, and a third body of mass m; is in a wide
orbit with separation R > r. We define the relative
separation vector of the two-body system and the vector
from the center of mass of the two-body system to the third
body by

G
+—ZM 605 = vy vy — (g, - Vo) (R - V3)] +

r 1 GMm,
) R PO R
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acceleration of body a, but also cross terms. So a consistent
Hamiltonian requires including the explicit cross terms
which make up the remaining PN terms in Eq. (3.7b).
These equations admit the conserved total energy and
momentum, given to the appropriate order by

{ Zm o ZZGMmu ) 2ZG2MZma

GM
N T a3 gy,

Vg — (nla 'vl)(nla ‘va)}

a "la
(3.8a)
GMm,
va'nla)nla]+z - {V] +(V1 'n]a)nla]
a la
(3.8b)
X=X; — X, X =x3; —Xx, “4.1)
where
xp = XL MYy 4.2)

m

where m = m; + m, is the mass of the two-body system.
We work in the center of mass frame of the entire system,
where

mix + myX, + msX3 = mx + msX3 = O(C_z), (43)
where O(c~?) represents post-Newtonian corrections to the
center of mass. As a result of these definitions,

ny ms
X =—x——X, = x
"Tm M m M
m
X3 = —X s

where M = m; + m, + ms is the total mass. The O(c~?)
correction in Eq. (4.3) will not be relevant because only
differences between position vectors appear in the equa-
tions of motion. We define the velocities v = dx/dft,
V = dX/dr, accelerations a = dv/dt, A = dV/dr, distan-
ces r=|x|, R=|X|, and unit vectors n=x/r and
N = X/R. For future use we define the symmetric reduced
mass 7 = m;m,/m? and the dimensionless mass differ-
ence A = (m; —m,)/m.

We now turn to the EIH equations of motion (3.1),
truncated to three bodies. At Newtonian order, the relative
acceleration within the two-body system has terms of order
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Gm/r* and Gmsr/R?, where we have expanded the effect
of the external body to only quadrupole order (in principle
the expansion can be carried out to higher orders). In the
post-Newtonian approximation, each of these terms would
be represented by a relativistic potential Gm/rc*> and
Gmsr?/R3c?. Thus we wish to keep the standard
Newtonian terms, plus PN correction terms from the
two-body system, of order G>m?/rc?, plus PN—third-body
cross terms of the form (Gm/r?) x (Gmsr*/R3c?) or
(Gmsr/R?) x (Gm/rc?), both of which scale as
G*mm;/R3*c?. Because the PN equations also contain
velocity-dependent terms, with v~ (Gm/r)"/?> and
V ~ (Gm/R)'/?, there will also be cross terms that scale
as (G*mm3/R3c*)(R/r)"/?, where n ranges from 1 to 5.
All cross terms that scale as (G*mmsr/R*c?) or higher
powers of r will be dropped.

For a consistent set of equations of motion that maintain
the globally conserved energy and linear momentum to the
appropriate order, we must also include the equations of

PHYSICAL REVIEW D 89, 044043 (2014)

The interaction of the two bodies with the third body
depends on x;3 and x,3, which we will express as

x;3 ==X+ a,x = —R[N — a,(r/R)n],

X3 = X — ax = —R[N + al(r/R)n}, (45)

where a; = m;/m; we will use this to expand quantities
such as 1/r;3 and 1/rp; as power series in r/R. The
resulting equations of motion for the binary system have
the form

Gmn  Gmsr
2R3

1
+ ? [a]Cross +0 <

a=— [n—3(n-N)N]+é[a}Binmy

G*mmsr
—— |, 4.6
2R* > (4.6)
where we have expanded the Newtonian term from the third
body to quadrupole order, and where the binary and cross

terms are given by

motion for body 3. Since momentum conservation requires Gmn Gm , 3,
that ma ~ mza;, we must therefore include in those @] pinary = 2 [(4+27) P (14 3n)v° + o ]
equations of motion terms that scale as m/m; compared Gmiv
to those in the two-body equations, in other words, terms +(4—2n)——. (4.7a)
that scale as (G>m?/R3c?)(R/r)"/?, where n will turn out r
to range from O to 4.
|
2

sy = 52 n(y- ) 4 vl V)] 5 T OB LOM (N (- Nym) + 49(N -v) — 12N

r r“R R 2 r

Gmy G*mmy 1 5

—?[41: X (NxV)=3p(N-V)| + 2 [(4—7n){n—3(n-N)N} —5(4 —13p)n{1 —3(n-N)*}|
GZ;r (1= 3n)[4v{i —3(n - N)(v - N} — v*{n — 3(n - N)N}], (4.7b)

where 7#=n-v. Recalling that 2> ~Gm/r, and V?>~Gm/R we see that the six cross terms scale as
(Gmms/R3c?) x (R/r)"/?, where n =5, 4, 2, 1, 0, 0, respectively.
Treating the third body in the analogous way and defining A = d*>X/dt?>, we obtain

_GMN  3GMyr?

I I Gm?
A== O SO N =S NP) 4 200 W]+ Wl + 3 Wl + O S ). 49
where
GmN [4G 4Gm(N - V)V
[A]Binary: ;nz [Tm_vz:| + 7”’1(]?2 ) > 4.9)
GmnA [ (G 3.\ L], 16w
[A] cross = — ”:2’7 [n<7m—vz+§r2>—rv]+§ r;"[zv(s—3(n-zv)2>—6n(n.zv)}
G 3 1 GmnA
- [MN — NN =3 'N)} g [n(1 = 15(n - N)?) +3N(n - N)(7 = 5(n - N)?)]
—G";ZM [2v2(n—3N(n-N)) —%(n(v-N)z +2Ni(v-N) =5N(n-N)(v-N)?) = 3v(i —3(»-N)(n-N))|.

(4.10)
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The binary-PN acceleration contains the standard terms
for a body in orbit around a point mass of mass m, but in the
approximations used here it has the same scaling as the
cross terms shown in [A]q The first term in [A]qo
comes from the acceleration of the center of mass x,, of the
binary.

In order to illustrate the impact of the cross terms on the
dynamics, we apply these equations to a specific simple
case. We consider the third body to be in a circular orbit on
the X-Y plane, with R constant, angular frequency Q3 =
(Gm/R?)'/? and with X = RN and V = Q;RA, where

|

PHYSICAL REVIEW D 89, 044043 (2014)
N = ey cos Q31 + ey sin Qst,
A = —ey sin Q37 + ey cos Qst,

H=NxA=¢ey,. (4.11)

The relative osculating orbit of the two-body system is
governed by Eq. (2.7), with osculating orbit elements a, e,
w, Q and 1, with @ < R. We focus on perturbations of the
binary orbit induced by the third body. The radial R, cross-
track S and out-of-plane VW components of the perturbing
acceleration are given by

G G G
R=-— IZ?r(l—3(n-N)2)+2—mz{2(2+ 0) (1 +3)0? + = (8 n)i }
rec r
Gmy [ A . Gm A Gm
T{ﬁ(ZvV+rnV)+5 2R R2 |:<4—+U

() (N % V) + 41— 30) (30N N)) [(4+ 1) ™ 21 —3;1)1;2}(1 ~3(n

) .N_m.zv}

(4.12a)
Gmsr Gm . Gmsy [hA Gm 4h
S:3R—33(n'N)(/I'N)+2(2—n)Wh 73{—3;1-V+R2 [(2——1) )x-N+7v-N}
4 h 3r Gm
—F(lxv) (NxV)+4(1 —311)—3( —3(m-N)(v-N)) B {(4—:1)7—(1 —317)112} (n-N)(A-N)}, (4.12b)
Gmsr A Gm A (Gm A 4
W=3 R33 (n-N)(h-N) +73{+F <?—vz>h N_F(h xv)-(NxV)
3r Gm N
- e- )__(1_3,7>v2}(n.zv>(h N)}, (4.120)
where we recall that h =x x v, and v = in + (h/r)A.
Because the orbital period of the inner binary is assumed ) 3nmy (a3 ) N1/2
to be short compared to that of the third body, it is sin(AQ)y = 2 m \R) € (1—e)
customary to integrate the Lagrange planetary equations ) y
holding the position of the third body fixed, and then to x (1 e+ 5eSsin“w) sinecoss,  (4.13d)
average over one orbit of the third body. This yields a set of
averaged equations for the rates of change of the orbit (Aw)yg = 6nGm 3” ns 3 (1—e?)1/2
elements that can then be evolved over longer time scales. K ca(1—e? R
Looking first at the Newtonian and post-Newtonian x [5cos?sin w—l—(l—ez)(Scos w—3). (413

binary terms we recover the standard results for the
Kozai problem, including the two-body pericenter advance:

(Aa)g =0, (4.13)
15 3
<A€>K:TH% (%) e(1—e?)'%sin’isinwcosw, (4.13b)
m
15 3
<A1>K:_2ﬂm3<R) e(1—e?)~12sinicosisinwcosw,
m

(4.13¢)

We determine the effect of the cross terms using the
method outlined in Sec. II. Taking the Newtonian and PN
binary contributions to the disturbing accelerations, we
calculate the instantaneous values of the osculating ele-
ments as a function of f, again holding the position of the
third body fixed. We insert these expressions back into the
formulas for r, v, n, h that appear in Eq. (4.12), and keep
contributions that involve cross terms between mj; and
1/c*. We also insert the Newtonian and PN binary
expressions for @ and Q into the formula (2.9), used to
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convert derivatives with respect to time in the Lagrange
planetary equations to derivatives with respect to true
anomaly f, again keeping the appropriate cross terms.
These are combined with the explicit cross terms that
|

e(l1+e)?
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appear in Eq. (4.12). We then integrate over a complete
binary orbit and average over the position of the third body.
The resulting average changes in the orbit elements are
given by

152 Gmy (a3 6
A - == < 74 3e— 4e)] + -
< a>Cross 2 CQ (R) {(1 _ e)<1 _ 62)3/2 [ + 3e 71(3 + e)] + 51

e}sinzz sin2w,  (4.14a)
+ e

_ 152Gms (a3 (1+e)? 4(1—e)?(2+4de—3e?)
<A6>Cross - _T ac? (E) { |:(1 — 6)(1 — 62)1/2 {(3 + 76) - (1 + 66)’7 _f<e, 77)} + g 23
x sin 20 — 12ﬂﬁcos 2a)}sin21, (4.14b)
152Gmy (a3 e(1+e)? 8(1—e)*(1+3e)
Al = ——F a 34 7e) — (1 +6e)y+ flen)) —on — VT ¢)
(Shcms == 522 (1) { [Ty (G +70) = (1 6o+ flean) -3 0
2
X sin 2w + 12ﬂ<lewcos 260} sinzcosz, (4.14¢)
—e
) Gms (a\5/? . 3nGmy (a3 (1+e) ,
(a8 =400 ()= S5 (3) Gy et meoss (el - 74
(4.144d)
where
Flen) 8 — 16e —24e? + 109¢> + 114e* + 43¢ + 16e° — ne® (15 + 47e + 76e> + 37¢3)
e =
1 5¢3(1+e) '
gle.n) =2(2+3e)(12 + 12¢ + 11e?) — (24 + 40e + 84> + 86¢> + 11¢*). (4.15)

The first three terms in @y, corresponding to n = 5, 4
and 2, do not generate a secular change in any orbital
element. The fourth term, corresponding to n = 1, generates
the first term in sin 1(AQ) - This term is the analogue of
the de Sitter precession, a relativistic contribution to the
nodal precession in the Earth-Moon system induced by the
Sun, which has been measured to a few percent using lunar
laser ranging. Only the final n = 0 terms in ac,,, generate
other secular changes in orbit elements.

Notice that, unlike the standard Kozai case, where the
semimajor axis is constant over an orbit, including the cross
terms leads to a variationin a proportional to sin? zand to sin 2.

In the standard Kozai problem, L, = (x xv)-e, =
[Gma(1 — €?)]'/?cost is constant, as can be seen from
Egs. (4.13a), (4.13b) and (4.13c). But the cross terms now
induce a change in L, over one orbit given, from
Egs. (4.14a), (4.14b) and (4.14c) by

(ALz)Cros 15 Gmy <a>3 e(l1+e)?

L, 2 a® \R) (1=¢2)3?

x (2 = n)sin’tsin 2w.

(4.16)

|

Since we are averaging over the circular orbit of the third
body, we would expect the z component of the angular
momentum of the two-body system still to be conserved,
because of the axial symmetry of the “averaged” perturba-
tion. However the quantity that is conserved contains post-
Newtonian corrections, which must be taken into account.
Starting with x x dv/dt from the equations of motion (4.6)
and (4.7) and contracting it with H = e, itis straightforward
to show, after averaging over the orbit of the third body, that
the following quantity is a constant of the motion:

~ G
rc

Gmar?
- 2LZR3—Z2 (1=3n)[1 —3(n-N)?
Gmar’A
4#[1 —(n-e5)Y. 4.17)

To the order of approximation considered, the second and
third terms of Eq. (4.17) are periodic or constant, so their
change over one orbit of the binary is zero. However, the term
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Gm/rc? in the first term is not strictly periodic. Because the
orbit element e changes over one orbit by an amount of order
(ms/m)(a/R)? from the standard Kozai mechanism, it
induces a net change in 1/r over an orbit. Thus, holding
L, fixed, and determining the variation between successive
pericenters we find that

AL " G 1
< Z>Cross ~ _2_;2/” (2 _ ”)A <_)
L, c r

=—2G—"§<2—n>A( : )

ac 1—e

Gm Ae
=2—02-1n)—, 4.18

ac2( ’7)<1_€)2 ( )

Substituting for Ae from Eq. (4.13b) yields Eq. (4.16).

Naoz et al. [23] used a complete three-body PN
Hamilton converted to Delaunay variables, followed by a
double orbit average to obtain evolution equations for the
variables that include cross-term effects of the same scaling
as those above. However, a comparison between the two
methods is not trivial, as the Delaunay variables and the
osculating orbit elements are very different. For example,
our L, is defined relative to the reference XYZ system,
defined so that the third body is initially on the XY plane,
whereas the analogous Delaunay variable H; is the
component along the total angular momentum vector of
the system. On the other hand, it is not clear whether the
double orbit average in the Delaunay method adequately
takes into account the feedback of periodic terms in the
first-order solutions for the Delaunay variables into the
cross-term effects, as discussed in points 1 and 2 in Sec. II.
This will be the subject of future investigations.

If the relativistic pericenter precession [the first term in
Eq. (4.13e)] dominates the Kozai precession (the second
term), then over a pericenter precession time scale, we can
integrate Eq. (4.16) using Eq. (2.14) to obtain

x (2 — n)sin*isin? ] : (4.19)

Just as in the quadrupole case of Sec. II, we find that post-
Newtonian cross terms induce a Newtonian-order variation
in an orbital quantity—here the angular momentum—over
a relativistic precession time scale. The amplitude is of the
same order as the per orbit variations in e, 1 and € induced
by the Newtonian Kozai mechanism. Whether these var-
iations have important long-term consequences for the
complex three-body dynamics of Kozai systems can
probably only be answered by numerical experiments
using Egs. (4.13) and (4.14).
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V. CONCLUDING REMARKS

In this paper we have suggested that a proper approach to
including post-Newtonian relativistic effects in the dynam-
ics of N-body systems that include either a central massive
black hole or a close binary star system requires incorpo-
rating certain PN cross terms in the equations of motion.
There are two sides to this issue.

The first has to do with consistency. The underlying
problem is a mathematical one that is broader than N-body
gravitational dynamics. Here one begins with a simple
system with an exact solution—the Newtonian two-body
system of star and black hole, or the inner binary system of
a hierarchical triple—that is perturbed by two separate
mechanisms. A simple mathematical model that illustrates
this is the differential equation dx/dt = ix + ex? + 6x°,
where ¢ and § are small parameters. In the gravitational
problems discussed here, € ~ 1/ ¢? characterizes the rela-
tivistic perturbations, either due to the central black hole or
within the close binary system, while  ~ m,, characterizes
the Newtonian perturbation from the other body or bodies,
or the Newtonian quadrupole perturbation in the case of our
quadrupole conundrum. In the absence of the perturbation,
the solution of the differential equation with unit amplitude
is x = e'’. An “exact” solution of the full equation can be
provided by a numerical integration. But it is clear that, if
one seeks a perturbative solution by trying an expansion of
the form x(f) = e + ex; + x, + - - -, the series will nec-
essarily have terms proportional to the product €§. This is
because changes in x induced by the é-perturbing term, will
induce a change in the e-perturbing term that will lead to a
perturbation of order €5, and vice versa. We saw this
phenomenon in action already in Sec. II, where relativistic
effects on the orbit elements induced changes in the
quadrupole perturbing terms and vice versa. We saw it
again in Sec. I'V. Now, for the simple differential equation
displayed above, a numerical integration will capture all
such effects automatically. However, if the equation to be
solved also has explicit terms of order ¢4, then a failure to
include them in the numerical integration will lead to a
solution that is incomplete, and thus potentially incorrect.
We found exactly this phenomenon in the quadrupole
conundrum. A numerical integration of the equations that
included only the “monopole” PN terms (e terms) and the
Newtonian quadrupole terms (0 terms) in the equations of
motion did give a variation in the semimajor axis, via the
mechanism described above. However the answer was
wrong. Only when the explicit PN-quadrupole €6 cross
terms in the equations of motion were included in the
numerical integration was the correct answer obtained.

Conversely, if one is handed an equation with explicit
cross terms, such as dx/dt = ix + ex® + 6x> + edf(x),
and attempts a perturbative solution, it is essential to
plug the first order solution x = el 4 ex; + dx, back
into the equation, thereby generating the additional ed
contributions.
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For problems involving N bodies orbiting a massive
black hole, we have accordingly written down the required
cross terms to an appropriate order, so as to guarantee
consistency in the numerical solutions at the level of €8
effects. For hierarchical triple systems we have written
down the analogous equations and have also carried out the
orbital perturbation theory analytically for a simple case of
a circular third-body orbit, yielding doubly orbit-averaged
equations for the orbit elements of the inner binary,
including the €6 effects in a completely consistent way.

For triple systems, these e issues can be accounted for
automatically by simply integrating the full EIH three-body
equations of motion numerically. In other N-body situa-
tions, where N is sufficiently large, this may not be
computationally practical, and thus our truncated equations
may prove to be useful.

The second side to this issue is physical relevance: do
these cross terms produce physically interesting effects? In
principle they are smaller (of order €d) than either the
relativistic (¢) or N-body () effects, although we have seen
that in some cases, over a relativistic precession time scale,
they can be boosted to a size of order 6. The only way to
answer this question is to carry out suitable numerical
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experiments. Given the complexity of all gravitating
N-body systems when N > 2, and given that seemingly
tiny effects can over time yield dramatic consequences
for the evolution of large systems, the cross terms empha-
sized in this paper could prove to have interesting
consequences.
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