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We construct a theory of particles moving in both curved momentum space and spacetime, being a
generalization of relative locality. We find that in order to construct such a theory, with desired symmetries,
including the general coordinate invariance, we have to use nonlocal position variables. It turns out that free
particles move on geodesics and momentum dependent translations of relative locality are replaced with
momentum dependent geodesic deviations.
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I. INTRODUCTION

In recent years the largely forgotten idea that momentum
space may have a nontrivial geometric structure, known
under the name of Born reciprocity [1], has been revived in
many different guises in the context of quantum gravity. It
was noticed in [2] that there is a one-to-one correspondence
between spacetime noncommutativity, expected to be one
of the features of quantum gravity, and nontrivial geometric
structures in momentum space. This general observation is
supported by explicit calculations done in the context of
gravity in 2þ 1 dimensions [3], [4]. A few years later it was
realized that many nontrivial features of the doubly special
relativity class of theories [5–7] can be conveniently
described in terms of the geometry of de Sitter momentum
space [8]. Recently, Born reciprocity has been also
explored in the context of string theory [9].
Relative locality [10–12] is a theoretical framework that

has its roots in Born reciprocity. In this framework the
momentum space is brought to the foreground. It is first
observed that most, if not all, physical measurements
correspond, in fact, to momentum-space data. Second, it
is noticed that the emergence of a nontrivial geometry in
momentum space requires, as a prerequisite, the presence
of a mass scale. Such a scale must be provided by a
fundamental theory, and it was assumed that there exists a
regime of quantum gravity, in which the length scale, the
Planck length, is negligibly small, while the mass scale, the
Planck mass, remains finite.
In the couple of years that passed since relative locality

was first proposed the bulk of research investigated systems
defined on flat Minkowski spacetime. The question arises,
however, if curved momentum space could coexists with a
nontrivial geometry of spacetime. This possibility is par-
ticularly intriguing from the phenomenological perspec-
tives of doubly special relativity (DSR) and relative
locality, since many of the opportunities that have been

proposed in recent years rely on tests of (Planck-scale)
deformation of kinematics of particles coming from cos-
mological distances [13,14]. The incredibly small size of
such effects (1=Mp ∼ 10−19 GeV) could be within the
reach of present observations thanks to the huge amplifi-
cation provided by the cosmological distances. In such a
context it is clear that the effects of spacetime curvature
cannot be ignored. Some preliminary results on the inter-
play between spacetime expansion and relativity of locality
have been presented in paper [15] for the case of a de Sitter-
like spacetime expansion.
Recently two of the present authors proposed the action

of a particle moving in curved spacetime whose geometry is
given by the tetrad eaμðxÞ, with curved momentum space,
provided by the tetrad Eα

aðpÞ [16]. While the framework
presented in [16] reproduces the correct action in both the
complementary limits of flat spacetime/curved momentum
space and curved spacetime/flat momentum space, the
theory described by the action proposed in [16] is not
manifestly invariant under general coordinate transforma-
tions (at least in their classical form). This, by itself, may
not be very problematic, because the scale governing the
effects related to this loss of invariance would be, in this
theory, presumably of order of the Planck scale, and
therefore they may not lead to relevant phenomenological
consequences. However, from the theoretical perspective,
one may find annoying the fact that the violation of the
general coordinate invariance would lead to the presence of
a preferred spacetime coordinate system, in which the
particle action has the form proposed in [16]. The problem
would be then to find out what this coordinate system is: is
it indeed the system of Cartesian coordinates in Minkowski
space, in the case of flat spacetime, as implicitly assumed in
the construction of relative locality? And, more impor-
tantly, how do we find such system, and the form of the
particle action, in the case of an arbitrary spacetime?
One possibility to avoid this conflict could be to look for

a generalized class of coordinate transformations under
which the action presented in [16] is still invariant. This
would lead inevitably to coordinate transformations mixing
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spacetime and momentum space. Taking into account that
the existence of such kinds of transformations is not
guaranteed, it may also be conceptually compelling to
explore the implications of having a theory of both curved
spacetime and momentum space, in which invariance under
general coordinate transformation is lost at the Planck
scale. While we postpone these analyses to future studies,
we feel, however, that the option of a coordinate invariant
theory is still the most desirable road to pursue in the search
of generalizing relative locality to curved spacetime.
Thus, in this paper we present a novel formulation of the

action for particles in both curved spacetime and momen-
tum space, which is manifestly invariant under general
coordinate invariance. We also show that in this theory the
particles are described to move along worldlines coinciding
with the standard spacetime geodesics. In the next section
we show how one can construct such an action for free
particles. In Sec. III we discuss symmetries of that so-
defined theory. In Sec. IV we show how, starting from this
action, one can also introduce particle interactions in the
spirit of relative locality. The final section is devoted to
discussion.
When this work was being completed we learned about

an interesting complementary results presented in [17].

II. CONSTRUCTION OF THE ACTION

The action of a free relativistic particle with curved
momentum space has the form reciprocal, in a sense, to the
one of the standard free relativistic particle moving in
curved spacetime, with flat momentum space. The
Lagrangian of the latter reads

L ¼ _xμðτÞeaμðxðτÞÞpaðτÞ − Nðηabpapb −m2Þ; (1)

where xμðτÞ is the position of the particle at time τ, paðτÞ is
the particle momentum, and eaμ is the tetrad, characterizing
the geometry of spacetime

eaμebνηab ¼ gμν; eaμebνgμν ¼ ηab: (2)

Finally, N is the Lagrange multiplier enforcing the mass-
shell constraint p2 ¼ m2. To write the Lagrangian (1)
we use two kind of indices: the curved spacetime index
μ and the index a related to the orthonormal coordinate
system in the ambient Minkowski space, to which the tetrad
eaμ maps. It can be checked by direct calculation that the
Euler-Lagrange equations following from (1) reduce, after
solving for p, to the standard geodesic equation.
The action (1) is the first order form of the better known

second order action. The latter can be obtain from (1) by
solving the momentum equation of motion and substituting
it back to (1); as a result one obtains

L ∼ gμνðxðτÞÞ_xμðτÞ_xνðτÞ:

Beforewe proceed, let us recall the basic properties of the
tetrads. It follows from the defining equation that tetrads are
spacetime vectors, transforming under diffeomorphisms as

δξeaμðxÞ ¼ ξν∂νeaμ þ eaν∂μξ
ν: (3)

Moreover the relations (2) are invariant under infinitesimal
local Lorentz transformations

δλeaμðxÞ ¼ λabebμ; λab ¼ −λba: (4)

These two symmetries commute ½δξ; δλ�eaμ ¼ 0. In addition,
assuming vanishing torsion, the tetrad satisfies

∂ ½μeaν� þ ω½μabe
b
ν� ¼ 0; (5)

where ω is a gauge field for local Lorentz symmetry,
transforming as

ω0
μ ¼ Λ−1∂μΛþ Λ−1ωμΛ; (6)

where Λ is the matrix of a finite Lorentz transformation
Λ ¼ expðλabTabÞ, with Tab being the matrix generators of
the Lorentz group. Finally, the tetrads satisfy the tetrad
postulate, according to which they are covariantly constant

∂μeaν þ ωμ
a
be

b
ν − Γα

νμeaα ¼ 0: (7)

It follows from the Born reciprocity idea that the kinetic
part of the relativistic particle Lagrangian in the case of
curved momentum space should look like (1) with the
roles of x and p exchanged. One also has to replace the
mass-shell condition with its curved momentum-space
counterpart CðpÞ −m2 ¼ 0, where CðpÞ is the square of
the geodesic distance between the point with coordinates
pα and the origin of the momentum space, obtaining as a
result [11,19]

LRL ¼ _pαðτÞEα
aðpðτÞÞxaðτÞ þ NðCðpÞ −m2Þ: (8)

It should be recalled at this point that although the action
(8) looks much more complex than the one of the standard
relativistic particle moving in flat space, the equations of
motion following from it are remarkably similar: they say
that momentum pα and velocity _xa are both constant. What
makes the action (8) different from its standard counterpart
is the relation between momentum and velocity, which
becomes in the case of (8) highly nonlinear. Moreover,
when interactions between particles are introduced, the
effects of relative locality starts being visible.
Generalizing these considerations, we want now to

construct an action for a particle with momentum space
and spacetime both possessing nontrivial geometries. Of
course, we want the action to reproduce the two limiting
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cases of flat momentum space/flat spacetime discussed
above. We require moreover the new action to be still
manifestly invariant under general coordinate transforma-
tions. In order to meet these requirements, we introduce
nonlocal variables which we denote Xa. We will describe
their construction in the following subsection.

A. Nonlocal variables

Let us denote by Γ the C∞ curve x ¼ xðτÞ for τ ∈ ½t1; t2�
and consider the subcurves Γτ∶x ¼ xðσÞ with σ ∈ ½t1; τ�
which coincide with Γ up to xðτÞ.
As discussed above, given the background spacetime

metric gμν, there exists a whole family of tetrads satisfying
Eq. (2), which differ from one another by the action of local
Lorentz transformations. We can now gauge fix the local
Lorentz transformations in such a way that the Lorentz
connection ωa

μb
vanishes along a given curve x ¼ xðτÞ and

then it follows from (5) that on this curve we can construct a
tetrad ēaμ with ēaμēbνηab ¼ gμν such that

ð∂νēaμðxÞ − ∂μēaνðxÞÞjx¼xðτÞ ¼ 0: (9)

The existence of the Lorentz connection with these
properties can be proved as follows. We first show that
the component of ωμ along the worldline Γ, ωa

τb
≡ _xμωa

μb

can be gauge fixed to zero. To this end we have to solve the
equation [cf. (6)] 0 ¼ Λ−1 _Λþ Λ−1ωτΛ. But this equation
is solved by a time ordered Wilson line (holonomy),
Λ ¼ T exp ðR dτωτÞ. Having fixed ωτ ¼ 0 we are left with
the gauge transformations that are constant along Γ. Let us
now consider an arbitrary constant time surface, corre-
sponding to some particular value of the parameter τ
on Γ.1 Then in the vicinity of the point in which the
worldline crosses the surface we have Λðτ; xiÞ ¼ Λð0Þþ
Λð1Þ
i ðτÞxi þOðx2Þ. This is sufficient freedom to gauge fix

to zero the spacial components of Lorentz connection
Λð0Þ−1Λð1Þ

i ðτÞ ¼ −Λð0Þ−1ωiðτÞΛð0Þ. This can be done for
any τ and therefore all the components of Lorentz connection
can be gauge fixed to zero along a curve. After gauge fixing
ωi ¼ 0 on Γ, we are left with the gauge freedom
Λðτ; xiÞ ¼ Λð0Þ þOðx2Þ. Therefore, once we gauge fix the
connectionalongonecurve, ingeneral,wecannotdo the same
for another curve in its small neighborhood.
The tetrads ēaμ (9) are determined modulo a global

Lorentz transformation Λð0Þ, which can be used to fix
them equal to an arbitrary tetrad eaμ at one point of Γ,

ēaμðxðτ̄ÞÞ ¼ eaμðxðτ̄ÞÞ: (10)

Since the construction of the tetrads ēaμ recalls the one of
Fermi coordinates, in what follows we will call them Fermi
tetrads.

With these prerequisites we are ready to define the
nonlocal variable Xa as

XaðΓ; xðτÞÞ ¼
Z
Γτ

dσēaμðxðσÞÞ
dxμ

dσ
¼

Z
τ

0

dσēaμðxðσÞÞ_xμ:

(11)

The variable XaðΓ; xðτÞÞ depends, in general, on the curve
Γ along which it is calculated.
In order to calculate the variation of the action below, we

will have to evaluate the difference between variables Xa

calculated along different curves Γ and Γ0 lying infinitesi-
mally close to each other, with appropriate Fermi tetrads
associated with each of them. Thus (see Fig. 1)

δXa ¼
Z
Γ0
ēaμΓ0 ðxþ δxÞð_xμ þ δ_xμÞdσ −

Z
Γ
ēaμΓðxÞ_xμdσ;

(12)

where ēaμΓ denotes a tetrad field, defined in spacetime,
which becomes a Fermi tetrad on the curve Γ. The variation
of the tetrads ēaμ can be decomposed into two parts:

δēaμΓðxÞ ¼ δ1ēaμðxÞ þ δ2ēaμðxÞ; (13)

with

δ1ēaμΓðxÞ ¼ ēaδμΓ0 ðxþ δxÞ − ēaμΓðxþ δxÞ; (14)

and

δ2ēaμΓðxÞ ¼ ēaμΓðxþ δxÞ − ēaμΓðxÞ ¼ δxνēaμ;νΓ: (15)

In order to evaluate the expression (14) we need to compare
the Fermi tetrads associated with different curves. Since
they are both tetrads of the same spacetime metric, there
exists a local Lorentz transformation Λ relating them

ēaμΓ0 ðxÞ ¼ Λa
bðxÞēbμΓðxÞ; (16)

FIG. 1 (color online). The curves Γ∶xμðσÞ and
Γ0∶xμðσÞ þ ξμðσÞ.

1We assume that the worldline is timelike, but an analogous
construction works in the case of null worldlines.
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and the associated Lorentz connections are related by the
local Lorentz gauge transformation

ω̄μΓ0 ðxÞ ¼ Λ−1ðxÞω̄μΓðxÞΛðxÞ þ Λ−1ðxÞ∂μΛðxÞ: (17)

We know that the Lorentz connection ω̄Γ0 vanishes on Γ0
and ω̄Γ vanishes on Γ; thus, we have

0 ¼ ω̄μΓ0 ðxþ δxÞ ¼ Λ−1ω̄μΓΛðxþ δxÞ þ Λ−1∂μΛðxþ δxÞ
¼ Λ−1ðxÞðδxνω̄μ;νΓðxÞÞΛðxÞ þ Λ−1∂μΛðxþ δxÞ: (18)

For an infinitesimal local Lorentz gauge transformation
ΛðxÞ≃ I þ λðxÞ, keeping the leading order terms we obtain

0 ¼ δxνω̄μ;νΓðxÞ þ ∂μλðxÞ; (19)

from which, multiplying by _xμ and adding a term propor-
tional to ω̄ab

μΓ ¼ 0, we get

dλab

dσ
¼ −δxνω̄ab

μ;νΓ _x
μ − ω̄ab

μΓδ_x
μ

¼ − d
dσ

ðδxμω̄ab
μΓÞ − Rab

νμδxμ _xν; (20)

where in the last line we used an expression for the
curvature tensor that holds on Γ

Rab
νμðσÞ ¼ ω̄ν;μΓ − ω̄μ;νΓ:

Equation (20) is solved by

λab ¼ −δxμω̄ab
μΓ þ ~λab ¼ ~λab;

where we used again the fact that ω̄ab
μΓ vanishes on Γ and

~λabðσÞ ¼
Z

σ
Rab
νμðσ0Þδxμðσ0Þ_xμdσ0:

Hence, the total variation reads

δXaðτÞ ¼
Z
Γ
dσ ~λabēbμ _xμ þ

Z
Γ
dσðēμ;νδxν þ ēaνδxν;μÞ_xμ

¼
Z
Γ
dσ ~λabēbμ _xμ þ

Z
Γ
dσðēν;μδxν þ ēaνδxν;μÞ_xμ

¼
Z
Γ
dσ ~λabēbμ _xμ þ

Z
Γ
dσ

d
dσ

ðēaνδxνÞ

¼ ēaνðxðτÞÞδxνðxðτÞÞ þ
Z
Γ
dσ ~λabēbμ _xμ; (21)

where we used δxμðt1Þ ¼ 0.
Notice that when δxμðτÞ ¼ xμðτ þ dτÞ − xμðτÞ ¼ _xμdτ,

~λ vanishes and one gets

dXa

dτ
¼ ēaμðxðτÞÞ_xμ: (22)

The total variation can be rewritten via an integration by
part as

δXa ¼ ēaνðxðτÞÞδxνðxðτÞÞ þ
Z
Γ
dσ ~λabðσÞ _XbðσÞ

¼ ēaνðxðτÞÞδxνðxðτÞÞ þ ~λabðτÞXbðτÞ

−
Z
Γ
dσXbðσÞ d

dσ
~λab

¼ ēaνðxðτÞÞδxνðxðτÞÞ

þ
Z

τ

0

dσðXbðτÞ − XbðσÞÞRab
μνδxμðσÞ_xμ: (23)

This expression provides a linear map between the varia-
tions δxμ and δXa. Since the basic physical variable of the
particle model is the position of the worldline xμðτÞ, and
because the expression (23) is very complex and nonlocal,
to make sure that the equations of motion following from
varying XaðτÞ and xμðτÞ are identical, we must show that
the linear mapping (23) is invertible. This is done in
Appendix A. Equations (22) and (23) contain all the
information we need to construct the action of a free
particle moving in curved spacetime and momentum space,
and compute the corresponding equations of motion from
the variational principle.

B. The action and equations of motion

Using the nonlocal variable Xa discussed in the preced-
ing subsection we define the action of a particle moving in
curved spacetime and momentum spaces as follows:

S ¼
Z

t2

t1

dτfXa½xðτÞ�Eα
a _pα þ NðCðpÞ −m2Þg; (24)

where Xa½xðτÞ� is calculated along the same curve Γ as the
integral in (24). Before turning to the discussion of the
properties of this action it is worth checking if it acquires
the desired form in the limiting cases of flat spacetime/
momentum space, respectively.
In the case of flat spacetime, to evaluate (11) we have to

find the form of the associated Fermi tetrad. It follows from
the tetrad postulate (7) that since both ωμ

a
b and Γα

μν vanish
such a tetrad must satisfy ∂μēaν ¼ 0, and thus ēaμ ¼ δaμ (up to
a global Lorentz transformation). Then

Xa ¼ xμðτÞδaμ − xμðt1Þδaμ:

It can be checked that the second (constant) term produces
neither a contribution to the equation of motion nor a
boundary term, and thus for flat spacetime the action
reproduces the one of relative locality.
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In the opposite case, when the momentum space is flat,
Eα
a ¼ δαa. We integrate (24) by parts and use (22) to obtain

the standard curved spacetime particle action (up to a
boundary term), with the only difference being that now we
have to do with the Fermi tetrad instead of the generic one.
However, the equations of motion are the same in both
cases, so we may conclude that the actions are equivalent,
the only difference being that the Lagrangian (1) is
invariant under local Lorentz symmetry, while in the action
(24) only the global Lorentz symmetry remains.2

Now we can turn to the equations of motion following
from the action (24). Its variation reads

δS ¼
Z

t2

t1

dτ

�
δXaEα

a _pα þ XaδðEα
a _pαÞ þ N

∂C
∂pα

δpα

þ δNðCðpÞ −m2Þ
�

¼ 0: (25)

Since we demonstrated that the map (23) is invertible, we
know that the equations of motion we get from the
stationarity of the action (δS ¼ 0) with respect to arbitrary
variations δxμ are equivalent to the ones obtained by
considering arbitrary variations δXa. Hence, we get

Eα
a _pα ¼ 0; _XaEα

a ¼ N
∂C
∂pα

; CðpÞ −m2 ¼ 0;

(26)

which are equivalent to (for constant N)

_pα ¼ 0; Ẍa ¼ 0: (27)

In particular, from the second relation in (27) one finds

d
dτ

ð_xμēaμÞ ¼ 0 → ẍμ þ Γμ
νρ _xν _xρ ¼ 0; (28)

where we used the expression of the Christoffel symbols
in terms of the tetrads ēaμ, that follows from the tetrad
postulate (7)

Γμ
νρ ¼ ēμa∂ðρēaνÞ: (29)

Therefore, the trajectory in spacetime is a geodesic,
independent of the geometry in momentum space.

III. SYMMETRIES OF THE ACTION

Having discussed the form of the action, let us now
consider its symmetries. First of all, the action is manifestly
invariant under general coordinate transformations, in both

momentum space3 and spacetime, since Xa is a spacetime
scalar. Second, it is invariant under residual, global Lorentz
transformations that leave invariant the condition that the
connection vanishes along the curve ωjΓ ¼ 0.
From the relative locality perspective we are especially

interested in translational symmetries: in the case of the
model of a particle moving in flat spacetime, the main
features of relativity of spacetime locality are encoded in
that the fact that the translations become momentum
dependent [11,18,19]. As we will see, an analogous effect
takes place in the case of curved spacetime.
Like in the case of relative locality in flat spacetime

[11,18,19], the action (24) is invariant (up to a boundary
term) under the translation

δXa ¼ Ea
αðpÞξα; _ξα ¼ 0: (30)

In the flat-spacetime relative locality, this symmetry trans-
lates rigidly a (straight) particle worldline by an amount
that depends on the momentum carried by the particle. As
we will see, an analogous effect takes place in curved
spacetime.
To see this we must find out what is the infinitesimal shift

of the particle trajectory δxμ corresponding to the trans-
lation (30). Since we are interested in the effect that the
transformation (30) has on trajectories, we assume that the
equations of motion are satisfied.
We start with (23)

Ea
αðpÞξαðτÞ ¼ ēaνðxðτÞÞδxνðxðτÞÞ

þ
Z

τ

t1

dσðXbðτÞ − XbðσÞÞRab
μνδxμðσÞ_xν:

(31)

At τ ¼ t1 we have

Ea
αðpÞξα ¼ ēaνðxðt1ÞÞδxνðxðt1ÞÞ: (32)

This defines the first initial condition for δxνðxðt1ÞÞ. Next,
let us differentiate (31) over τ

0 ¼ d
dτ

ðēaνðτÞδxνðτÞÞ þ _XbðτÞ
Z

τ

t1

dσRab
μνδxμðσÞ_xν; (33)

so that at τ ¼ t1,

�
d
dτ

ðēaνðτÞδxνðτÞÞ
�
t1

¼ 0: (34)

2Notice also that, with the same caveat, the action (24) differs,
up to a boundary term, from the action presented in [16] (written
for Fermi tetrads) by the term ðR _xμēaμ − xμēaμÞ _Eα

apα.

3While the invariance under spacetime diffeomorphisms has a
clear physical interpretation already in the flat momentum-space
limit of action (24), the invariance under momentum-space
diffeomorphisms, which could be a mere formal invariance,
has no classical counterpart, and we postpone its discussion to
future studies.
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Taking the second derivative of (31) over τ we find

0 ¼ d2

dτ2
ðēaνðτÞδxνðτÞÞ þ ẌbðτÞ

Z
τ

t1

dσRab
μνδxμðσÞ_xν

þ _XbðτÞRab
μνðτÞδxμðτÞ_xνðτÞ: (35)

Since Ẍa is zero by equations of motion, the second term in
the above expression disappears and we are left with

ēaρ
d2

dτ2
ðēaνδxνÞ þ Rμνρσδxμ _xν _xσ ¼ 0: (36)

As shown in Appendix B, this equation can be rewritten as

D2

Dτ2
δxμ − Rμ

νρσ _xν _xρδxσ ¼ 0; (37)

where D=Dτ≡ _xμ∇μ is the covariant derivative projected
along the worldline, subject to the initial conditions

δxμðt1Þ ¼ ēμaðxðt1ÞÞEa
αðpÞξα;

D
Dτ

δxμjt1 ¼ 0: (38)

Equation (37) is an equation of geodesic deviation and
therefore we see that the translational symmetry (30) maps
the original geodesic, being the particle worldline, to
another one, with the magnitude of translation depending
on the momentum carried by the particle. This is exactly the
effect one could foresee from the flat-spacetime relative
locality, where straight lines (geodesics) are translated by a
constant, momentum dependent amount.
It follows from (38) that δxμ has the momentum

dependence encoded by the initial condition. Let us
define another variable ζα, which describes the momentum
independent translation

δxμ ¼ ēμaðxÞEa
αðpÞζα: (39)

Since, as shown in Appendix B, both first and second
covariant derivatives of the tetrad ē along the worldline
vanish, we can rewrite (37) as

D2

Dτ2
ζα − ðēaμðxÞEα

aðpÞRμ
νρσēσbðxÞEb

βðpÞÞ_xν _xρζβ ¼ 0: (40)

This equation describes a congruence of particle world-
lines in the spacetime whose curvature is momentum
dependent. It might serve as a starting point of more
phenomenologically oriented investigations.

IV. INTERACTIONS

In the spirit of the relative locality framework
introduced in [11] (see also [18] for an extensive
discussion of the properties of these boundary terms),
in order to describe particle processes (at a semiclassical,

nonquantum, level), we introduce in the action (9)
boundary terms enforcing constraints on the endpoints
of the particles worldlines. To illustrate how such a
constraint may be introduced in our framework, suppose
that we want to describe an idealized process depicted in
Fig. 2, with two incoming particles labeled respectively
by momenta and coordinates pα, xμ, qα, yμ and the
outgoing one labeled by rα, zμ.
The action for this process is

S ¼
Z

t

−∞
dτ½XaEα

a _pα þNpðCðpÞ−m2
pÞ�

þ
Z

t

−∞
dτ½YaEα

a _qα þNqðCðqÞ−m2
qÞ�

þ
Z

∞

t
dτ½ZaEα

a _rα þNrðCðrÞ−m2
rÞ�− kαKαðp;q; rÞjτ̄:

(41)

In this formula kα is a Lagrange multiplier enforcing
the constraint Kαðp; q; rÞ on the worldlines endpoints,
which plays a role of a (in general) deformed law of
energy-momentum conservation at the vertex. Typically,
Kαðp; q; rÞ ¼ ðp ⊕ q ⊕ ð⊖rÞÞα, with the symbol ⊕ (⊖)
encoding the connection on the momentum-space geom-
etry, characterizing the (in general nonlinear) law of
summation for momenta [11]. In addition to the equations
of motion for the bulk part, Eqs. (26), (28), the boundary
term contributes with the constraints

Kαðp; q; rÞjt ¼ ðp ⊕ q ⊕ ð⊖rÞÞαjt ¼ 0; (42)

XaðtÞ ¼ kβEa
αðpÞ ∂Kβ

∂pα

���
t
; (43)

YaðtÞ ¼ kβEa
αðqÞ ∂Kβ

∂qα
���
t
: (44)

ZaðtÞ ¼ kβEa
αðrÞ ∂Kβ

∂rα
���
t
: (45)

FIG. 2 (color online). A process with two incoming particles
of momenta p, q and one outgoing particle of momentum r.
Kðq; p; rÞ is a function of the particles’ momenta enforcing
energy-momentum conservation at the vertex. The graphic must
not be intended as a spacetime representation but just as a
qualitative picture illustrating the combination of momenta in the
process.
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When kα changes, the Xa transforms as

δXajt ¼ Ea
αðpÞ

∂ðp ⊕ q ⊕ ð⊖rÞÞβ
∂pα

δkβjt; (46)

with analogous relations holding for the other particles.
Assuming that we take the initial condition for the geodesic
deviation equation (38) at the interaction point, we find that

δxμjt ¼ ēμaEa
αðpÞ

∂ðp ⊕ q ⊕ ð⊖rÞÞβ
∂pα

δkβjt: (47)

We see therefore that the structure of the interaction vertex
in the case of curved spacetime is essentially the same as in
the flat-spacetime case of relative locality [11].

V. CONCLUSIONS

In this paper we generalized relative locality, originally
defined [11] in flat spacetime, to the case of an arbitrary,
curved background spacetime, preserving invariance under
general coordinate transformations. It turns out that on the
formal level this latter theory is a natural generalization of
the former one: free particle trajectories are now geodesics
instead of flat-spacetime straight lines, and rigid, momen-
tum dependent translations of the flat case are replaced with
geodesic deviations, sensitive to curvature.
In spite of the apparent similarities there are, however,

some major differences between the flat and curved
spacetime cases. In the latter we were forced to use
nonlocal variables Xa to define the action that had desired
symmetry properties. This might be just a technical artifact,
but it may also signal a presence of some deeper layer
present in theories with a nontrivial geometry in both
momentum space and spacetime. Furthermore, in flat
spacetime the symmetries of the action are associated with
some transformations (rigid translations) defined in the
whole spacetime manifold. On the contrary, in the curved
case we have to solve the equation of geodesic deviation on
a given geodesic to find the symmetry. This implies that the
transformation δxμ which leaves the action invariant (up to
a boundary term) depends on each particular solution of
equations of motion and generically, because of curvature,
it cannot be extended to the whole spacetime.
Aside from its conceptual relevance, our result opens

some interesting phenomenological perspectives. Indeed
most of the opportunities to test Planck-scale deformation
effects on particle kinematics, that have been proposed in
the recent literature, rely on some source of amplification of
the relevant effects due to cosmological distance of
astrophysical sources. Most of the results4 for theories
with curved momentum space (and earlier of the DSR

theories) have been discussed in the context of flat
spacetime, while in the proposed scenarios relevant for
Planck-scale phenomenology the effect of spacetime cur-
vature cannot be neglected. Our result can be taken then as
a starting point for further studies of relative locality effects
in the presence of spacetime curvature. Moreover, using the
results of the present work one may try to investigate the
relative locality effects in the case of a strong gravitational
field, for example, in the context of black hole physics
(see [20]).
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APPENDIX A: INVERTIBILITY OF δXa

To show that the map (23) is invertible we must show
that its kernel contains only δxμ ¼ 0, to wit

δXa ¼ 0 ⇒ δxμ ¼ 0: (A1)

In order to prove this let us note that since we assumed
xμ ¼ xμðτÞ to be a C∞ function of τ, XaðτÞ and δXaðτÞ are
C∞ too and the condition δXaðτÞ ¼ 0 for each τ is
equivalent to

�
dn

dτn
δXaðτÞ

�
j0 ¼ 0; ∀n ∈ N: (A2)

From the expression (23) we have

d
dτ

δXaðτÞ ¼ d
dτ

ðēaνðxðτÞÞδxνðxðτÞÞÞ

þ dXb

dτ

Z
τ

0

dσRab
μνδxμðσÞ_xμ; (A3)

and for τ ¼ 0 we get

0 ¼
�
d
dτ

δXaðτÞ
�����

0

¼
�
d
dτ

ðēaνδxνÞ
�����

0

; (A4)

which implies [we recall that δxμð0Þ ¼ 0]

�
d
dτ

δxμ
�����

0

¼ 0: (A5)

Similarly, one can show that

�
d2

dτ2
δXaðτÞ

�����
0

¼ 0 ⇒
�
d2

dτ2
δxμ

�����
0

¼ 0; (A6)
4In [15], a first investigation of the interplay between the

spacetime expansion and relativity of locality has been presented
for the case of de Sitter-like spacetime expansion.
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and by iterating one gets

�
dn

dτn
δxμðτÞ

�����
0

¼ 0; ∀n ∈ N; (A7)

which is equivalent to δxμðτÞ ¼ 0 for each τ ∈ ½t1; t2�.
Therefore we proved (A1) and the map (23) is invertible.

APPENDIX B: DERIVATION OF GEODESIC
DEVIATION

In this Appendix we show that Eq. (36) is equivalent to
the equation of geodesic deviation (37). To see this notice
that

δ_xa ¼ d
dτ

ðδxμēaμÞ ¼
�
D
Dτ

δxμ
�
ēaμ þ δxμ

D
Dτ

ēaμ; (B1)

and

δẍa ¼
�
D2

Dτ2
δxμ

�
ēaμ þ δxμ

D2

Dτ2
ēaμ þ 2

�
D
Dτ

δxμ
�

D
Dτ

ēaμ:

(B2)

It follows from the tetrad postulate (7) and the properties of
Fermi tetrads that

D
Dτ

ēaμ ¼ 0: (B3)

As for the second covariant derivative we get

D2

Dτ2
ēaμ ¼

D
Dτ

ð_xνēbμÞωa
bν þ _xνēbμ

D
Dτ

ωa
bν:

This expression is again zero for a Fermi tetrad, because
connection ω is zero everywhere on the worldline and thus
its derivative along it vanishes; therefore,

D2

Dτ2
ēaμ ¼ 0: (B4)

Using (B3) and (B4), one straightforwardly derives (37).
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