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We consider the decay rate for scalar fields in Kerr spacetime. We consider pure initial (azimuthal)
multipoles l0 with respect to the class that includes Boyer-Lindquist coordinates, and focus attention on the
decay rate of the multipole l. We use an iterative method proposed by Gleiser, Price, and Pullin, and identify
the mode-coupling mechanism through the iterations in powers of the square of the Kerr black hole’s
specific angular momentum that gives rise to a decay rate formula recently proposed by Zenginoğlu,
Khanna, and Burko. Modes lmay be excited through different channels, each leading to its own decay rate.
The asymptotic decay rate of the mode l is the slowest of the decay rate of the various channels. In some
cases, more than one channel leads to the same decay rate, and then the amplitude of the mode is the sum of
the amplitudes of the partial fields generated by the individual channels. We also show that one may identify
the asymptotically dominant channel of mode excitations and obtain approximate results for the mode of
interest by studying the dominant channel. The results of the dominant channel approximation approach the
full-mode results at late times, and their difference approaches zero quadratically in inverse time.
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I. INTRODUCTION AND SUMMARY

The decay rate of late-time tails in black hole spacetime
has been at the focus of much interest. The late-time decay
rate in Schwarzschild spacetime is well understood [1–4],
and was confirmed numerically both in linearized [5] and
fully nonlinear [6,7] setups. Of current interest is the
detailed behavior of perturbation fields of spinning, or
Kerr black holes for scalar fields [8–19] and higher spin
fields [20–22]. Very recently, a modification to the formula
that described the late-time decay rate for scalar fields was
proposed by Zenginoğlu, Khanna, and Burko (ZKB) [23].
Denoting by l0 the multipole moment of the initial
perturbation and by l the multipole moment of the mode
of interest, it is known that the late-time behavior of the
field is given by ψ ∼ tn. Based on ð2þ 1ÞD numerical
simulations, ZKB proposed that with the exception of the
case in which l0 is the slowest decaying mode (for which
case the decay rates are given by −n ¼ l0 þ lþ 3), all
other azimuthal modes even or odd appear to decay along
r ¼ const according to −n ¼ l0 þ lþ 1. 1

The ZKB proposal differs from other numerically based
predictions in several key elements. Specifically, focusing
on the azimuthal modes (m ¼ 0), in [17] it was proposed
that −n ¼ l0 þ lþ 3 for l ≥ l0 and −n ¼ l0 þ lþ 1 for

l < l0. The ZKB formula coincides with the formula in
[17] for all cases that l < l0 (“down excitations”).
However, for cases with l ≥ l0 (“up excitations”) the
two formulas agree only when l0 is the lowest excitable
mode, that is if l0 ¼ 0, 1. Specifically, ZKB find a slower
decay rate for “up” excitations. The main difference in the
numerical work of ZKB and [17] is the technological code
development, specifically the double hyperboloidal layers
[24] and compactification at both infinity and at the
horizon, that allowed ZKB to run to much later times than
in [17]. It is the much later evolutions that allowed ZKB to
identify certain decay rates as intermediate rather than
asymptotic. More recently, Spilhaus and Khanna further
developed the ð2þ 1ÞD numerical technology, and con-
firmed the numerical results of ZKB for more values of the
multipoles, up to l0, l ¼ 16 [25].
ZKB further proposed, without proof, a mechanism for

mode coupling that produces the numerically observed
decay rates. However, the ð2þ 1ÞD approach, that was so
effective in determining the asymptotic decay rate, is not
very effective in determining the mode-coupling mecha-
nism. In this Paper we adopt a different approach, that
allows us to (i) independently check the ZKB decay–rate
formula, and (ii) identify and corroborate the mode-
coupling mechanism that explains the ZKB formula.
The approach we undertake is the approach first

proposed by Gleiser, Price, and Pullin (GPP) [26].
GPP expand the field and the wave operator in powers
of ða=MÞ2, where M is the Kerr black hole’s mass and a

1We are interested in this Paper mostly in the tail behavior
along r ¼ const, approaching future timelike infinity iþ. ZKB
also found the decay rate along future null infinity ℐþ,
specifically, −nℐþ ¼lþ2 if l ≥ l0, and −nℐþ ¼l if l ≤ l0 − 2.
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is its specific spin angular momentum, and solve the field
equations iteratively. The greatest benefit of the GPP
approach is that the principal symbol of the resulting
partial differential equations is just that of wave evolution
in Schwarzschild spacetime, so that one may readily cast
the field equations in ð1þ 1ÞD, using, e.g., the character-
istic methods that proved to be very effective for
Schwarzschild wave evolution. The iterations couple
modes of different multipoles l, and the effective
potential at each iteration depends only on the multipole
of the mode for which one solves. The coupling to other
modes takes place only in the source term of the
individual mode equations. These great benefits of the
GPP approach are met with a practical difficulty: for each
initial mode–final mode pair of interest, one needs to
write the field equations of the various modes ad hoc.
Therefore, the elegance of the approach and the simpler
numerical framework are offset by the analytical deriva-
tion of the equations to solve. Notably, the evolution of
any multipole mode l can be found accurately using
modern ð2þ 1ÞD approaches, such as those used recently
by [18,22,23,25]. The benefit of the GPP approach that
we employ here is that it allows us to track the intricate
mode-coupling mechanism in order to better understand
the results proposed by ZKB, and determine the decay
rate of subdominant modes that would become dominant
at asymptotically late times.
The source term in each GPP partial differential equation

is a sum of terms that typically involve several modes of
lower–order in the iterative scheme. One may view each
inhomogeneous equation as an effective equation that sums
the contributions of excitations through various channels,
each channel going through a different route in an iteration
order—multipole chart. There are multiple channels
through which a particular mode is excited. Each channel
leads to a particular asymptotic decay rate. Sometimes more
than just one channel leads to the same asymptotically–
dominant decay rate, in which case all such channels need to
be considered simultaneously. In other cases there is a
unique asymptotically–dominant channel. Understanding
the general features of the mode-coupling mechanism
allows us also to identify the dominant channel of exci-
tation. We propose an approximation to the full mode-
coupling scheme that utilizes the dominant channel only,
neglecting asymptotically subdominant channels. We jus-
tify the use of the dominant channel approximation and

show that its results approach asymptotically the results of
the full-mode scheme. The latter approach makes the GPP
formalism from the computational point of view a very
efficient one.
This Paper is organized as follows. In Sec. II we review

the GPP formalism, in Sec. III we apply the GPP formalism
to a specific explicit case, specifically the case l0 ¼ 2, and
in Sec. IV we propose the dominant channel approach, and
apply it to the cases l0 ¼ 2, 4, and 6.

II. THE GLEISER-PRICE-PULLIN
(GPP) FORMALISM

The Kerr metric in Boyer-Lindquist coordinates
ðt; r; θ;φÞ reads

ds2BL ¼ −
�
1 − 2Mr

Σ

�
dt2 − 4aMr

Σ
sin2θdtdφþ Σ

Δ
dr2

þ Σdθ2 þ
�
r2 þ a2 þ 2Ma2rsin2θ

Σ

�
sin2θdφ2;

(1)

where Σ≔ r2 þ a2 cos θ2, and Δ≔ r2 þ a2 − 2Mr. We
denote the mass of the Kerr spacetime by M, and its
specific angular momentum by a. We use geometrized units
in which G ¼ c ¼ 1.
The original Boyer-Lindquist radial coordinate r is

uncomfortable to work with numerically in the GPP
framework, as certain source terms diverge approaching
the EH, rendering corresponding evolution equations
divergent. Following GPP we introduce a new radial
coordinate ρðr; aÞ, defined by

r≔M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 2MρþM2 − a2

q
; (2)

for which the event horizon (EH) is always located at
ρEH ¼ 2M, independently of a. In Appendix Awe list some
of the mathematical properties of working with the ρ
coordinate.
We next specialize to even modes (odd modes are not

excited by an even initial data mode), although a similar
framework can readily be written for odd modes too. The
scalar field (s ¼ 0) azimuthal (m ¼ 0) wave equation is
given by the Teukolsky equation Lðt; ρ; θÞ½ψ � ¼ 0, where
the Teukolsky operator

Lðt; ρ; θÞ ¼
�ðρ2 − 2Mρþ 2M2 þ 2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 2MρþM2 − a2

p
Þ2

ρ2ð1 − 2M
ρ Þ

− a2sin2θ

� ∂2

∂t2

− ð1 − 2M
ρ Þ

ð1− M
ρ Þ2

ðρ2 − 2MρþM2 − a2Þ ∂2

∂ρ2 −
1

ρ

�ð1 − 2M
ρ Þ

ð1 − M
ρ Þ3

a2 þ 2
ρ2 − 2MρþM2 − a2

1− M
ρ

� ∂
∂ρ −

1

sin θ
∂
∂θ

�
sin θ

∂
∂θ

�
:

(3)
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Following GPP we expand the field in powers of a2 to order
N as

ψ ¼
XN
n¼0

�
a
M

�
2n
ψ ð2nÞ þ � � � ; (4)

and the Teukolsky operator is correspondingly expanded as

L ¼
XN
n¼0

�
a
M

�
2n
Lð2nÞ þ � � � : (5)

The iterations satisfy

XN
n¼0

Lð2nÞ½ψ ð2N−2nÞ� ¼ 0; (6)

where N is the iteration order (such that we have N þ 1
evolution equations), or explicitly to N ¼ 6

Lð0Þ½ψ ð0Þ� ¼ 0 (7)

Lð0Þ½ψ ð2Þ� ¼ −Lð2Þ½ψ ð0Þ� (8)

Lð0Þ½ψ ð4Þ� ¼ −Lð2Þ½ψ ð2Þ� − Lð4Þ½ψ ð0Þ� (9)

Lð0Þ½ψ ð6Þ� ¼ −Lð2Þ½ψ ð4Þ� − Lð4Þ½ψ ð2Þ� − Lð6Þ½ψ ð0Þ� (10)

Lð0Þ½ψ ð8Þ� ¼ −Lð2Þ½ψ ð6Þ� − Lð4Þ½ψ ð4Þ�
− Lð6Þ½ψ ð2Þ� − Lð8Þ½ψ ð0Þ� (11)

Lð0Þ½ψ ð10Þ� ¼ −Lð2Þ½ψ ð8Þ� − Lð4Þ½ψ ð6Þ� − Lð6Þ½ψ ð4Þ�
− Lð8Þ½ψ ð2Þ� − Lð10Þ½ψ ð0Þ� (12)

Lð0Þ½ψ ð12Þ� ¼ −Lð2Þ½ψ ð10Þ� − Lð4Þ½ψ ð8Þ�
− Lð6Þ½ψ ð6Þ� − Lð8Þ½ψ ð4Þ�
− Lð10Þ½ψ ð2Þ� − Lð12Þ½ψ ð0Þ�; (13)

and the differential operators Lð2nÞ are listed in Appendix B.
The main properties of these operators are that, as pointed
out by GPP, only the Lð2Þ operator depends on the angular
coordinate θ (and therefore is the only operator that is
responsible for the coupling of different multipoles), that
only Lð0Þ includes the angular differential operator, and that
all operators Lð2nÞ with n ≥ 2 are homogeneous temporal
differential operators.
We write each mode ψ ð2nÞ

l as ψ ð2nÞ
l ¼

1
ρ f

ð2nÞ
l ðt; ρÞPlðcos θÞ. The operator Lð0Þ½ψ ð2nÞ

l � is then
given by

Lð0Þ
�
1

ρ
fð2nÞl PlðcosθÞ

�

¼
�

ρ

1− 2M
ρ

□fð2nÞl þ 1

ρ

�
lðlþ 1Þþ 2M

ρ

�
fð2nÞl

�
PlðcosθÞ;

(14)

where we denote □≔ ∂2
∂t2 − ∂2

∂ρ2� (see Appendix A). We
further write

Lð2Þ
�
1

ρ
fð2nÞl

�
≡−M2

ρ
sin2θ

∂2fð2nÞl

∂t2 þM2

ρ

1

1 − 2M
ρ

Δ2fð2nÞl ;

(15)

where the second-order, inhomogeneous differential
operator Δ2 is given by

Δ2≔
X4
j¼1

Δ2
ðjÞ ¼ − 2M

ρ

1

1 − M
ρ

∂2
t

þ 1

ð1 − M
ρ Þ2

∂2
ρ� −

1

ρ

1 − 2M
ρ

ð1 − M
ρ Þ3

∂ρ�

þ 1

ρ2

�
1 − 4M

ρ
þ 2M2

ρ2

�
1 − 2M

ρ

ð1 − M
ρ Þ3

; (16)

and define

D4 ≔ − 1

2

�
M
ρ

�
5 1 − 2M

ρ þ 2M2

ρ2

ð1 − M
ρ Þ3

; (17)

D6 ≔ − 1

4

�
M
ρ

�
7 1 − 2M

ρ þ 2M2

ρ2

ð1 − M
ρ Þ5

; (18)

D8≔ − 5

32

�
M
ρ

�
9 1 − 2M

ρ þ 2M2

ρ2

ð1 − M
ρ Þ7

: (19)

The way in which the Lð2Þ operator couples modes
is through the term proportional to sin2 θ. Specifically,
when operating on a multipole moment l, the product
sin2θPlðcos θÞ can be expanded to pure multipoles lþ 2,
l, and l − 2. We list useful identities in Appendix C.

III. EXPLICIT TREATMENT OF A SPECIFIC CASE

We now specialize to an explicit test case. We choose the
initial multipole l0 ¼ 2, and focus attention on the multi-
poles l ¼ 0, 2,4, 6. We list in Appendix D the evolution
equations. Each equation has the form

□fð2nÞl þ VlðρÞfð2nÞl ¼ Sð2nÞl ; (20)
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where the effective potential is given by

VlðρÞ ¼
1

ρ2

�
1 − 2M

ρ

��
lðlþ 1Þ þ 2M

ρ

�
; (21)

and Sð2nÞl is a sum of terms involving differential operators
operating on lower–order iteration modes with multipoles
l − 2, l and lþ 2. This set of inhomogeneous wave
equations has the following property. Each inhomogeneous
equation, like any other linear differential equation, has a
solution which has the form of a general solution of the
homogeneous equation plus a particular solution of the
inhomogeneous equation. The only equation in the set that
has a nontrivial, nonzero homogeneous solution is the one
corresponding with the mode present in the initial data. In
this case that is Eq. (D1). Therefore, all excited modes [given
by Eqs. (D2)-(D19)] have as their solution only the particular
solutions of the inhomogeneous differential equations.
There are ten possible channels of excitation from the

initial fð0Þ2 mode to the final fð6Þ2 mode. The ten channels are

as follows: (i) fð0Þ2 → fð2Þ0 → fð4Þ0 → fð6Þ2 , (ii) fð0Þ2 →

fð2Þ0 → fð4Þ2 → fð6Þ2 , (iii) fð0Þ2 → fð2Þ2 → fð4Þ2 → fð6Þ2 ,

(iv) fð0Þ2 → fð2Þ2 → fð4Þ0 → fð6Þ2 , (v) fð0Þ2 → fð2Þ4 →

fð4Þ4 → fð6Þ2 , (vi) fð0Þ2 → fð2Þ4 → fð4Þ2 → fð6Þ2 , (vii) fð0Þ2 →

fð2Þ2 → fð4Þ4 → fð6Þ2 , (viii) fð0Þ2 → fð4Þ2 → fð6Þ2 , (ix)

fð0Þ2 → fð2Þ2 → fð6Þ2 , and (x) fð0Þ2 → fð6Þ2 . The ten channels
are shown schematically in Fig. 1. Notice that channels

(viii), (ix), and (x) include direct coupling between modes
that are separated by more than one order.
The numerical evolution scheme used in this paper is

based on a characteristic grid that utilizes the ρ� [see
Eq. (A2)] and t coordinates. Such a characteristic approach
utilizes no boundary conditions. The code converges
globally with second order. The grid separation that was
used in this work take values given by, Δρ� ¼ Δt ¼ 0.035
horizon radii with the overall mass-scale set in practice as
M ¼ 0.5 horizon radius. The initial data for the zeroth order
field in all studied cases, was chosen to be a smooth
Gaussian distribution centered at ρ� ¼ 0with a width of 8.0
horizon radii. For all higher-order fields, the initial data
were set equal to zero. All fields were evolved simulta-
neously using the same characteristic evolution scheme. All
l0 ¼ 2 cases were performed in quadruple precision
(128 bit). The l0 ¼ 4, 6 cases were performed in octal
precision (256 bit).
The quadrupole field f2 is given to order N by

f2 ¼
XN
n¼0

�
a
M

�
2n
fð2nÞ2 : (22)

The fields fð2nÞ2 are shown in Fig. 2 for ð2nÞ ¼ 0, 2, 4, 6.
Notice in Fig. 2 that the full l ¼ 2 multipole decays at the
same rate as the mode fð0Þ2 does, because the evolution is
not long enough to show the dominance of the fð4Þ2 at very
late times. It is only the slower decay rate of fð4Þ2 that shows
that at very late times it would be the dominant mode. This
is one of the benefits of the GPP approach: it allows us to
find the ultimate dominant mode even when it is still

FIG. 1 (color online). The ten possible channels of excitations
leading from the initial fð0Þ2 to the final fð6Þ2 . The dominant
channels (shown with solid arrows; see discussion below in
Sec. IV) have one leg through fð4Þ0 that excites through k ¼ 1
[channel (i)], and a second leg through fð4Þ2 that excites through
k ¼ 4ð2Þ, 4(3) and 4(4) [channel (ii)]. The thin curves are
excitations that couple directly modes separated by more than
one order [channels (viii), (ix), and (x)]. In the dominant channel
approximation we compute only the channels indicated by solid
arrow, and neglect all other channels.

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5

log
10

 ( t / M )

lo
g 10

 | 
f (

2n
)

   
   

  2
 |

 (0) 2
 (2) 2
 (4) 2
 (6) 2

−25

−20

−15

−10

−5

0

FIG. 2 (color online). The fields fð2nÞ2 for ð2nÞ ¼ 0 (thin solid
curve), 2 (dashed curve), 4 (dash-dotted curve), and 6 (thick solid
curve). At late times the mode corresponding to ð2nÞ ¼ 4
dominates. The asymptotic decay rate of the ð2nÞ ¼ 6 mode is
the same as that of the ð2nÞ ¼ 4, but this evolution is not long
enough to show that. The eventual dominant mode is shown with
a thicker curve.
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subdominant. A ð2þ 1ÞD approach would require much
longer evolution times for the same initial data set to find
the dominant mode, as the f2 field is dominated here until

high values of the time parameter by its initial mode fð0Þ2 .
We write the late–time behavior of the mode fð2nÞl ∼ tn.

We find the decay rates 2 shown in Table I.
For each multipole l, the field is given by

ψl ¼ ψ ð0Þ
l þ

�
a
M

�
2

ψ ð2Þ
l þ

�
a
M

�
4

ψ ð4Þ
l þ

�
a
M

�
6

ψ ð6Þ
l

þ
�
a
M

�
8

ψ ð8Þ
l þ � � � (23)

so that clearly ψl is dominated at late time by the
slowest decaying ψ ð2nÞ

l . This table is fully consistent
with the proposal of ZKB, that is it suggests that the
dominant decay rate for the l mode is given
by −n ¼ l0 þ lþ 1.
Specifically, in order to track the mode-coupling mecha-

nism, we separate the various source terms, and solve
independently for each source term. The full solution is
then just the sum of the solutions of the individual source
terms for each equation. We choose to demonstrate the

tracking of the excitation of the mode fð6Þ2 for two reasons:
first, because in Fig. 2 we were unable to find its asymptotic
decay rate, and second, because we expect it to have two
dominant sources that contribute comparably. Specifically,

both the source term that couples to f̈ð4Þ0 and the source term

that couples to Δ2fð4Þ2 decay at late times like t−5, and
therefore will dominate at late times (all the other source
terms decay faster).
We therefore split the equation for the fð6Þ2 mode into

seven separate equations, one homogeneous equation and
six inhomogeneous equations, each one with a single
source term. The homogeneous equation must have an
identically zero solution (for the vanishing initial data for
modes that are not at (0) order), and therefore the full

solution of each equation is the particular solution of the
inhomogeneous equation. The sum of the six particle
solutions should equal the solution of the full equation
for the fð6Þ2 mode. Specifically, we write

fð6Þ2 ¼
X6
k¼0

fð6Þ
2½k�; (24)

where fð6Þ
2½0� ¼ 0 identically. The equations of motion for the

partial fields fð6Þ
2½k� of the mode fð6Þ2 are listed explicitly in

Appendix E. The partial fields fð6Þ
2½k� are shown in Fig. 3.

Notice that while clearly the partial field fð6Þ
2½1� dominates at

late times, the evolved tail portion of the field is dominated

by the fð6Þ
2½6� partial field. Longer evolution is needed in order

to have the mode fð6Þ2 dominated by the partial field fð6Þ
2½1�.

The evolution shown, which may be naively thought of as
sufficiently long, only shows an intermediate behavior if

data are collected only for the full mode fð6Þ2 . The benefit of
the GPP approach is that it allows us to recognize a
subdominant partial field, that would become dominant

at asymptotic times. Notice also that the partial field fð6Þ
2½4� in

itself is not yet asymptotic, but rather is shown in a regime

which is intermediate. We discuss the partial field fð6Þ
2½4� in

greater detail below.

We find that Δ2
ð2Þf

ð4Þ
2 , Δ2

ð3Þf
ð4Þ
2 and Δ2

ð4Þf
ð4Þ
2 (which are

defined in Appendix E) decay asymptotically in time at the
same rate (see Figs. 4, 5). When the partial wave arising
from Eq. (E5) dominates at late time, all three need to be
considered. Figure 4 does not include information about the
case k ¼ 4ð2Þ, because it is too noisy due to the second

TABLE I. The asymptotic decay rates of the field modes with
l0 ¼ 2. At each expansion order in a=M we list the asymptotic
decay rate n of each l mode. In bold face we show the
dominating order for each l mode. In brackets we show
expected decay rates we cannot resolve numerically with quad
precision.

ð2nÞ ⃥ l 0 2 4 6 8 10

0 � � � −7
2 −3 −7 −9
4 −3 −5 −9 −11
6 −3 −5 −7 −11 −13
8 −3 −5 (−7) (−9) (−13) (−15)

1 1.5 2 2.5 3 3.5
−35

−30

−25

−20

−15

−10

−5

log
10

 ( t / M )

lo
g 10

 | 
f (

6)
   

   
 2

  [
k]

 |

k=1

k=2

k=3

k=4
k=5

k=6

FIG. 3 (color online). The partial fields fð6Þ
2½k� as functions of

time. Shown are the cases k ¼ 1 (thick solid curve), k ¼ 2
(dashed curve), k ¼ 3 (dotted curve), k ¼ 4 (thin solid curve),
k ¼ 5 (dashed curve), and k ¼ 6 (thick dashed curve),

2Notice that there is no confusion between the decay rate n and
the iteration order ð2nÞ as the latter is always written in brackets.
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spatial derivative in the source. We present in Fig. 5 the
result that the k ¼ 4ð2Þ case decays with the same rate as
the three cases shown in Fig. 4 by plotting the ratios

fð6Þ
2½k�=f

ð6Þ
2½ð4ð4Þ� for k ¼ 1, 4(2) and 4(3). When this ratio

approaches a nonzero constant as M=t → 0, the two decay
rates are asymptotically equal, and the limiting ratio is the
ratio of amplitudes. We therefore infer that the late–time

partial field fð6Þ2 is dominated by k ¼ 1, and that the
contributions of k ¼ 4ð2Þ, 4(3) and 4(4) are an order of
magnitude smaller than the contribution of k ¼ 1.
However, to find the full partial field, one needs to include
those contributions too.
In Table II we show the asymptotic decay rates of the

partial fields, and also the decay rates of the respective

source terms in Eqs. (E2)–(E7) and Eqs. (E9)–(E12). We
find correspondence of the decay rate of the partial field
and the decay rate of the source term. As expected for linear
differential equations, the same decay rate of the source
term leads to the same decay rate of the partial field.
Notably, the field in the source term that couples to the
k ¼ 1 case is different from the field in the source term that
couples to the k ¼ 4ðjÞ cases. Therefore, the dominant
channel of excitation bifurcates, and exhibits a more
complex structure than that proposed by GPP. (One may
also say that there are two dominant channels with the same
asymptotic decay rates.) Figure 1 shows the dominant
channel of mode excitation for the mode fð6Þ2 . Although the
modes fð4Þ2 and fð4Þ0 decay asymptotically at different rates,
they contribute to partial fields of fð6Þ2 that decay asymp-
totically at equal rates. The reason of this behavior is that
the differential operator for the case k ¼ 1 is a second-order
temporal differential operator, whereas the differential
operator for the case k ¼ 4 [more specifically, the cases
k ¼ 4ð2Þ, 4(3), 4(4)] includes terms with no temporal
differentiation.
Based on our reasoning, we predict that a similar

analysis of the mode fð4Þ2 would produce results analogous
to those appearing in Table II. These predicted values
appear in Table III. We were able to check only in part the
entries in Table III due to the high level of numerical noise.

IV. SPECIALIZING TO THE
DOMINANT CHANNEL

Our discussion in the preceding section allows us to
identify the dominant channel given the initial multipole l0
and the multipole of interest l. Evolving the field equations
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FIG. 4 (color online). The local power indices for fð6Þ
2½1� (thick

solid curve), fð6Þ
2½4ð3Þ� (dash-dotted curve), and fð6Þ

2½4ð4Þ� (dashed
curve). Thick curves are the local power indices. The thin curves
are quadratic extrapolations to asymptotically late time.
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FIG. 5 (color online). The ratios fð6Þ
2½1�=f

ð6Þ
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2½4ð2Þ�=
fð6Þ
2½4ð4Þ�, and fð6Þ

2½4ð3Þ�=f
ð6Þ
2½4ð4Þ�. Thick curves are the computed ratios.

The thin curves are quadratic extrapolations to asymptotically
late time.

TABLE II. The asymptotic decay rates of the different terms

contributing to fð6Þ2 . The index n corresponds to the decay rate of

the fð6Þ
2½k� partial field. The indexm corresponds to the decay rate of

the source term Sð6Þ
2½k�.

k 1 2 3 4(1) 4(2) 4(3) 4(4) 5 6

n −5 −7 −9 −7 −5 −5 −5 −7 −7
m −5 −7 −11 −7 −5 −5 −5 −9 −9

TABLE III. The asymptotic decay rates of the different terms

contributing to fð4Þ2 . The index n corresponds to the decay rate

of the fð4Þ
2½k� partial field. The index m corresponds to the decay

rate of the source term Sð4Þ
2½k�. In brackets we show estimated

values. The combination of all the terms in brackets decay with
rate of −7.
k 1 2 3 4(1) 4(2) 4(3) 4(4) 5

n −5 −7 −9 (−9) (−7) (−7) (−7) −7
m −5 −9 −11 −9 −7 −7 −7 −9
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for the dominant channel only is much simpler, as there are
fewer equations, and the structure of the equations is
simpler. On the other hand, by analyzing the dominant
channel only, one may find the correct decay rate at
asymptotically late time, but only an approximation for
the amplitude of the field. Below, we show that this
approximation is improving fast at very late times.
We illustrate the method to identify the dominant

channel with an explicit example. Consider l0 ¼ 2 and
l ¼ 2. In this case we showed above that the asymptotic
decay rate is −n ¼ 5, and that this rate is first achieved at
order ð2nÞ ¼ 4. At zeroth [ð2nÞ ¼ 0] and first [ð2nÞ ¼ 2]

orders we find that the decay rates are given by −nð0Þ2 ¼ 7,

−nð2Þ0 ¼ 3, −nð2Þ2 ¼ 7, and −nð2Þ4 ¼ 9. When examining the
equation for the mode of interest, Eq. (D6) for the mode

fð4Þ2 , we notice there are five source terms. The source terms
decay at different rates at late times, so that we may

evaluate which one dominates. Specifically, fð2Þ0;tt ∼ t−5,
fð2Þ2;tt ∼ t−9, fð2Þ4;tt ∼ t−11, Δ2fð2Þ2 ∼ t−7, and fð0Þ2;tt ∼ t−9.
Clearly, at late times the mode fð4Þ2 is dominated by the

first source term, that is by the fð2Þ0 mode. Therefore, the

dominant channel for this case is fð0Þ2 → fð2Þ0 → fð4Þ2 . Similar
considerations allow us to identify the dominant channel in
all other cases too. We comment that at earlier times other
channels may overwhelm the asymptotically dominant
channel. The latter dominates only at very late times.
We focus attention on three test cases: first, the case

l0 ¼ 2, l ¼ 0, 2, 4, 6, second l0 ¼ 4, l ¼ 4, and third, the
case l0 ¼ 6, l ¼ 0, 2, 4, 6. Table IV presents our results for
the asymptotic decay rates for the cases of interest.

A. The case l0 ¼ 2, l ¼ 0, 2, 4, 6

Our first case is l0 ¼ 2, and l ¼ 2, 4 or 6. For the
channel of interest we take

ψ ð0Þ ¼ 1

ρ
fð0Þ2 ðt; ρÞP2ðcos θÞ (25)

ψ ð2Þ ¼ 1

ρ
fð2Þ0 ðt; ρÞP0ðcos θÞ (26)

ψ ð4Þ ¼ 1

ρ
fð4Þ2 ðt; ρÞP2ðcos θÞ (27)

ψ ð6Þ ¼ 1

ρ
fð6Þ4 ðt; ρÞP4ðcos θÞ (28)

ψ ð8Þ ¼ 1

ρ
fð8Þ6 ðt; ρÞP6ðcos θÞ: (29)

The field equations are listed in Appendix H.
This case is of particular interest, because it allows us

to compare the accuracy of the dominant channel approxi-
mation with the full set of equations studied in Sec. III.
Naturally, the fields ψ ð0Þ

2 and ψ ð2Þ
0 are each identical

between the full and approximate calculations, because
their respective field equations are exactly the same. We do
not expect a good agreement between the dominant branch
fields and the full fields at early times. Indeed, the essence
of the approximation is to evaluate the dominant contri-
bution to the source term based on the asymptotic behavior,
and discarding the source terms that are subdominant
asymptotically. As is clearly the case, asymptotically
subdominant fields may be important at earlier times.

In Fig. 6 we show the ψ ð4Þ
2 field from the full compu-

tation of Sec. III and from the dominant channel approach
we are using here. Clearly, they both have the same
asymptotic decay rate. Indeed the two fields are very
different at early times, but converge at late times. To
quantify the agreement we define the relative difference of

the two results, specifically, Rð2nÞ
l ≔ 1 − ψ ð2nÞ

l;dominant=ψ
ð2nÞ
l;full,

and plot in Fig. 7 Rð2nÞ
l as a function of (inverse) time for the

TABLE IV. The asymptotic decay rates of the fields of the
dominant channels described in Secs. IV A (curly brackets),
IV B (square brackets) and IV C (no brackets). In round
brackets we show expected decay rates we cannot obtain due to
numerical errors.

ð2nÞ ⃥ l 0 2 4 6

0 {7} [11] 15
2 {3} [7] 11
4 [5] 9, {5}
6 7 [7] {7}
8 9 [9] {9}
10 (11)
12 (13)
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(dashed).

MODE COUPLING MECHANISM FOR LATE-TIME KERR TAILS PHYSICAL REVIEW D 89, 044037 (2014)

044037-7



three nontrivial fields. We find that at late times the

difference between the two fields, Rð2nÞ
l , approaches zero

like t−2 (see Fig. 8). We infer that at very late time indeed
the dominant channel approach is very useful not just in
finding the decay rate of the field of interest, but also in
finding its amplitude.

B. The case l0 ¼ 4, l ¼ 4

We are looking for the case l0 ¼ 4, l ¼ 4. The dominant
channel of excitations includes the following fields:

ψ ð0Þ ¼ 1

ρ
fð0Þ4 ðt; ρÞP4ðcos θÞ (30)

ψ ð2Þ ¼ 1

ρ
fð2Þ2 ðt; ρÞP2ðcos θÞ (31)

ψ ð4Þ ¼ 1

ρ
fð4Þ0 ðt; ρÞP0ðcos θÞ (32)

ψ ð6Þ ¼ 1

ρ
fð6Þ2 ðt; ρÞP2ðcos θÞ (33)

ψ ð8Þ ¼ 1

ρ
fð8Þ4 ðt; ρÞP4ðcos θÞ: (34)

The respective equations governing these fields are listed in
Appendix F. The fields are shown in Fig. 9. This case was
already studies in ð2þ 1ÞD by ZKB, who found −n ¼ 9
for the mode of interest. Our GPP approach allows us
to track how this asymptotic decay rate of −n ¼ 9
comes about. The initial data with multipole l0 ¼ 4, or
zeroth order field ψ ð0Þ decays asymptotically as
−n ¼ 2 × 4þ 3 ¼ 11. At order ð2nÞ ¼ 2 the field ψ ð2Þ
decays asymptotically as −n ¼ 4þ 2þ 1 ¼ 7, at order
ð2nÞ ¼ 4 the field ψ ð4Þ decays asymptotically as
−n ¼ 4þ 0þ 1 ¼ 5, at order ð2nÞ ¼ 6 the field ψ ð6Þ
decays asymptotically as−n ¼ 4þ 2þ 1 ¼ 7, and at order
ð2nÞ ¼ 8 the field ψ ð8Þ decays asymptotically as
−n ¼ 4þ 4þ 1 ¼ 9. Both the fields ψ ð0Þ and ψ ð8Þ are
multipoles with l ¼ 4, but the latter decays slower at late
times, and therefore will asymptotically dominate, even
though it is many orders of magnitude smaller in amplitude
than the former over the length of our numerical simulation,
as shown in Fig. 9. In Fig. 10 we show the local decay rates
of the five modes computed in the dominant channel.
Again, the GPP approach allows us to determine the
asymptotic decay rate even though the mode in question
is subdominant. If one were to solve for the full l ¼ 4
multipole, the required evolution would have to be much
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longer to find the asymptotic behavior instead of an
intermediate behavior.

C. The case l0 ¼ 6, l ¼ 0, 2, 4, 6

Our next case is l0 ¼ 6, and l ¼ 0, 2, 4 or l ¼ 6. For the
channel of interest we take

ψ ð0Þ ¼ 1

ρ
fð0Þ6 ðt; ρÞP6ðcos θÞ (35)

ψ ð2Þ ¼ 1

ρ
fð2Þ4 ðt; ρÞP4ðcos θÞ (36)

ψ ð4Þ ¼ 1

ρ
fð4Þ2 ðt; ρÞP2ðcos θÞ (37)

ψ ð6Þ ¼ 1

ρ
fð6Þ0 ðt; ρÞP0ðcos θÞ (38)

ψ ð8Þ ¼ 1

ρ
fð8Þ2 ðt; ρÞP2ðcos θÞ (39)

ψ ð10Þ ¼ 1

ρ
fð10Þ4 ðt; ρÞP4ðcos θÞ (40)

ψ ð12Þ ¼ 1

ρ
fð12Þ6 ðt; ρÞP6ðcos θÞ: (41)

The field equations are listed in Appendix G. The fields are
shown in Fig. 11 and the corresponding local decay rates
are shown in Fig. 12. The small amplitude of high-order
excitations is shown here in a sharp way: numerical noise is
obtained early for the fð10Þ4 field and even earlier for the
fð12Þ6 field, so that we cannot determine with much accuracy
the respective asymptotic decay rates with our computation.
The decay rates for the fields we can compute are all in
agreement with the proposed formula: the mode includes
the initial data decays at late times as−n ¼ 2l0 þ 3, and all
other excited modes decay as −n ¼ l0 þ lþ 1.
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APPENDIX A: PROPERTIES OF THE ρ
COORDINATE

The radial coordinate ρ is defined in Eq. (2) as

r≔M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 2MρþM2 − a2

q
: (A1)

The following relations prove to be useful:

∂
∂ρ ≔

1

1 − 2M
ρ

∂
∂ρ� (A2)

(which defines the “tortoise” coordinate, ρ� ¼ ρþ
2M log ð ρ

2M − 1Þ.

∂2

∂ρ2 ¼
1

ð1 − 2M
ρ Þ2

� ∂2

∂ρ�2 −
2M
ρ2

∂
∂ρ�

�
(A3)

dρ
dr

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 2MρþM2 − a2

p
ρ −M

¼ r −M
ρ −M

(A4)

d2ρ
dr2

¼ a2

ðρ −MÞ3 (A5)

∂
∂r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 2MρþM2 − a2

p
ρ −M

∂
∂ρ (A6)

∂2

∂r2 ¼
ρ2 − 2MρþM2 − a2

ðρ −MÞ2
∂2

∂ρ2 þ
a2

ðρ −MÞ3
∂
∂ρ (A7)

∂ρ�

�
1

ρ
f

�
¼ 1

ρ
∂ρ�f − 1

ρ2

�
1 − 2M

ρ

�
f (A8)

∂2
ρ�

�
1

ρ
f
�
¼ 1

ρ
∂2
ρ�f − 2

ρ2

�
1 − 2M

ρ

�
∂ρ�f

þ 2

ρ3

�
1 − 2M

ρ

��
1 − 3M

ρ

�
f: (A9)

APPENDIX B: THE DIFFERNTIAL OPERATORS

The differential operators that appear in Eq. (6) are
given by

Lð0Þ½ϕ� ¼ ρ3

ρ − 2M
∂2ϕ

∂t2 − ρðρ − 2MÞ ∂
2ϕ

∂ρ2 − 2ðρ −MÞ ∂ϕ∂ρ
− 1

sin θ
∂
∂θ

�
sin θ

∂ϕ
∂θ

�
(B1)

¼ ρ2

1 − 2M
ρ

�∂2ϕ

∂t2 − ∂2ϕ

∂ρ2�
�

− 2ρ
∂ϕ
∂ρ� −

1

sin θ
∂
∂θ

�
sin θ

∂ϕ
∂θ

�
(B2)

Lð2Þ½ϕ� ¼ M2

�
−
�
2M
ρ

1

1 − M
ρ

1

1 − 2M
ρ

þ sin2θ

� ∂2ϕ

∂t2

þ
1 − 2M

ρ

ð1 − M
ρ Þ2

∂2ϕ

∂ρ2 þ
1

ρ

1 − 2M
ρ þ 2M2

ρ2

ð1 − M
ρ Þ3

∂ϕ
∂ρ

�
(B3)

¼ M2

�
−
�
2M
ρ

1

1 − M
ρ

1

1 − 2M
ρ

þ sin2θ

� ∂2ϕ

∂t2

þ 1

ð1 − 2M
ρ Þð1 − M

ρ Þ2
∂2ϕ

∂ρ2� þ
1

ρ

1 − 2M
ρ

ð1 − M
ρ Þ3

∂ϕ
∂ρ�

�
(B4)

Lð4Þ½ϕ� ¼ − 1

2

M5

ρ3
1

ð1 − M
ρ Þ3

1 − 2M
ρ þ 2M2

ρ2

1 − 2M
ρ

∂2ϕ

∂t2 (B5)

Lð6Þ½ϕ� ¼ − 1

4

M7

ρ5
1

ð1 − M
ρ Þ5

1 − 2M
ρ þ 2M2

ρ2

1 − 2M
ρ

∂2ϕ

∂t2 (B6)

Lð8Þ½ϕ� ¼ − 5

32

M9

ρ7
1

ð1 − M
ρ Þ7

1 − 2M
ρ þ 2M2

ρ2

1 − 2M
ρ

∂2ϕ

∂t2 (B7)

Lð10Þ½ϕ� ¼ − 7

64

M11

ρ9
1

ð1 − M
ρ Þ9

1 − 2M
ρ þ 2M2

ρ2

1 − 2M
ρ

∂2ϕ

∂t2 (B8)

Lð12Þ½ϕ� ¼ − 21

256

M13

ρ11
1

ð1 − M
ρ Þ11

1 − 2M
ρ þ 2M2

ρ2

1 − 2M
ρ

∂2ϕ

∂t2 : (B9)

APPENDIX C: USEFUL IDENTITIES

In construction of the field equations, the following
identities are useful. These are the identities that govern the
mode coupling.

sin2θP0ðcos θÞ ¼ − 2

3
P2ðcos θÞ þ

2

3
P0ðcos θÞ (C1)

sin2θP2ðcos θÞ ¼ − 12

35
P4ðcos θÞ þ

10

21
P2ðcos θÞ

− 2

15
P0ðcos θÞ (C2)
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sin2θP4ðcos θÞ ¼ − 10

33
P6ðcos θÞ þ

38

77
P4ðcos θÞ − 4

21
P2ðcos θÞ (C3)

sin2θP6ðcos θÞ ¼ − 56

195
P8ðcos θÞ þ

82

165
P6ðcos θÞ − 30

143
P4ðcos θÞ (C4)

sin2θP8ðcos θÞ ¼ − 90

323
P10ðcos θÞ þ

142

285
P8ðcos θÞ − 56

255
P6ðcos θÞ: (C5)

APPENDIX D: THE EVOLUTION EQUATIONS FOR l0 ¼ 2

The full equations for the modes for l0 ¼ 2 are given by

□fð0Þ2 þ 1

ρ2

�
1 − 2M

ρ

��
6þ 2M

ρ

�
fð0Þ2 ¼ 0 (D1)

□fð2Þ0 þ 1

ρ2

�
1 − 2M

ρ

��
2M
ρ

�
fð2Þ0 ¼ − 2

15

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð0Þ2;tt (D2)

□fð2Þ2 þ 1

ρ2

�
1 − 2M

ρ

��
6þ 2M

ρ

�
fð2Þ2 ¼ 10

21

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð0Þ2;tt −

�
M
ρ

�
2

Δ2fð0Þ2 (D3)

□fð2Þ4 þ 1

ρ2

�
1 − 2M

ρ

��
20þ 2M

ρ

�
fð2Þ4 ¼ − 12

35

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð0Þ2;tt (D4)

□fð4Þ0 þ 1

ρ2

�
1 − 2M

ρ

��
2M
ρ

�
fð4Þ0 ¼ 2

3

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð2Þ0;tt − 2

15

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð2Þ2;tt −

�
M
ρ

�
2

Δ2fð2Þ0 (D5)

□fð4Þ2 þ 1

ρ2

�
1 − 2M

ρ

��
6þ 2M

ρ

�
fð4Þ2

¼ − 2

3

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð2Þ0;tt þ

10

21

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð2Þ2;tt − 4

21

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð2Þ4;tt −

�
M
ρ

�
2

Δ2fð2Þ2 −D4f
ð0Þ
2;tt (D6)

□fð4Þ4 þ 1

ρ2

�
1 − 2M

ρ

��
20þ 2M

ρ

�
fð4Þ4 ¼ − 12

35

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð2Þ2;tt þ

38

77

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð2Þ4;tt −

�
M
ρ

�
2

Δ2fð2Þ4 (D7)

□fð4Þ6 þ 1

ρ2

�
1 − 2M

ρ

��
42þ 2M

ρ

�
fð4Þ6 ¼ − 10

33

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð2Þ4;tt (D8)

□fð6Þ0 þ 1

ρ2

�
1− 2M

ρ

��
2M
ρ

�
fð6Þ0 ¼ 2

3

�
M
ρ

�
2
�
1− 2M

ρ

�
fð4Þ0;tt − 2

15

�
M
ρ

�
2
�
1− 2M

ρ

�
fð4Þ2;tt −

�
M
ρ

�
2

Δ2fð4Þ0 −D4f
ð2Þ
0;tt (D9)
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□fð6Þ2 þ 1

ρ2

�
1 − 2M

ρ

��
6þ 2M

ρ

�
fð6Þ2

¼ − 2

3

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð4Þ0;tt þ

10

21

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð4Þ2;tt − 4

21

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð4Þ4;tt

−
�
M
ρ

�
2

Δ2fð4Þ2 −D4f
ð2Þ
2;tt −D6f

ð0Þ
2;tt (D10)

□fð6Þ4 þ 1

ρ2

�
1 − 2M

ρ

��
20þ 2M

ρ

�
fð6Þ4

¼ − 12

35

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð4Þ2;tt þ

38

77

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð4Þ4;tt − 30

143

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð4Þ6;tt −

�
M
ρ

�
2

Δ2fð4Þ4 −D4f
ð2Þ
4;tt

(D11)

□fð6Þ6 þ 1

ρ2

�
1 − 2M

ρ

��
42þ 2M

ρ

�
fð6Þ6 ¼ − 10

33

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð4Þ4;tt þ

82

165

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð4Þ6;tt −

�
M
ρ

�
2

Δ2fð4Þ6

(D12)

□fð6Þ8 þ 1

ρ2

�
1 − 2M

ρ

��
72þ 2M

ρ

�
fð6Þ8 ¼ − 56

195

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð4Þ6;tt (D13)

□fð8Þ0 þ 1

ρ2

�
1 − 2M

ρ

��
2M
ρ

�
fð8Þ0

¼ 2

3

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð6Þ0;tt − 2

15

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð6Þ2;tt −

�
M
ρ

�
2

Δ2fð6Þ0 −D4f
ð4Þ
0;tt −D6f

ð2Þ
0;tt (D14)

□fð8Þ2 þ 1

ρ2

�
1 − 2M

ρ

��
6þ 2M

ρ

�
fð8Þ2

¼ − 2

3

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð6Þ0;tt þ

10

21

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð6Þ2;tt − 4

21

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð6Þ4;tt

−
�
M
ρ

�
2

Δ2fð6Þ2 −D4f
ð4Þ
2;tt −D6f

ð2Þ
2;tt −D8f

ð0Þ
2;tt (D15)

□fð8Þ4 þ 1

ρ2

�
1 − 2M

ρ

��
20þ 2M

ρ

�
fð8Þ4

¼ − 12

35

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð6Þ2;tt þ

38

77

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð6Þ4;tt − 30

143

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð6Þ6;tt

−
�
M
ρ

�
2

Δ2fð6Þ4 −D4f
ð4Þ
4;tt −D6f

ð2Þ
4;tt (D16)

□fð8Þ6 þ 1

ρ2

�
1 − 2M

ρ

��
42þ 2M

ρ

�
fð8Þ6 ¼ − 10

33

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð6Þ4;tt

þ 82

165

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð6Þ6;tt − 56

255

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð6Þ8;tt −

�
M
ρ

�
2

Δ2fð6Þ6 −D4f
ð4Þ
6;tt (D17)

□fð8Þ8 þ 1

ρ2

�
1−2M

ρ

��
72þ2M

ρ

�
fð8Þ8 ¼− 56

195

�
M
ρ

�
2
�
1−2M

ρ

�
fð6Þ6;ttþ

142

285

�
M
ρ

�
2
�
1−2M

ρ

�
fð6Þ8;tt−

�
M
ρ

�
2

Δ2fð6Þ8 (D18)
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□fð8Þ10 þ 1

ρ2

�
1 − 2M

ρ

��
110þ 2M

ρ

�
fð8Þ10 ¼ − 90

323

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð6Þ8;tt: (D19)

APPENDIX E: EQUATIONS FOR THE PARTIAL FIELDS f ð6Þ2½k�
The partial differential equations for the partial fields fð6Þ

2½k� are

□fð6Þ
2½0� þ

1

ρ2

�
1 − 2M

ρ

��
6þ 2M

ρ

�
fð6Þ
2½0� ¼ 0 (E1)

□fð6Þ
2½1� þ

1

ρ2

�
1 − 2M

ρ

��
6þ 2M

ρ

�
fð6Þ
2½1� ¼ − 2

3

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð4Þ0;tt (E2)

□fð6Þ
2½2� þ

1

ρ2

�
1 − 2M

ρ

��
6þ 2M

ρ

�
fð6Þ
2½2� ¼

10

21

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð4Þ2;tt (E3)

□fð6Þ
2½3� þ

1

ρ2

�
1 − 2M

ρ

��
6þ 2M

ρ

�
fð6Þ
2½3� ¼ − 4

21

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð4Þ4;tt (E4)

□fð6Þ
2½4� þ

1

ρ2

�
1−2M

ρ

��
6þ2M

ρ

�
fð6Þ
2½4� ¼−

�
M
ρ

�
2

Δ2fð4Þ2

(E5)

□fð6Þ
2½5� þ

1

ρ2

�
1 − 2M

ρ

��
6þ 2M

ρ

�
fð6Þ
2½5� ¼ −D4f

ð2Þ
2;tt (E6)

□fð6Þ
2½6� þ

1

ρ2

�
1 − 2M

ρ

��
6þ 2M

ρ

�
fð6Þ
2½6� ¼ −D6f

ð0Þ
2;tt: (E7)

For each fð6Þ
2½k� partial field the initial data are zero field and

zero time derivative. It is only the nonzero source term that
makes the fields not be identically zero.
We further separate the four different terms in Δ2 in

Eq. (E5) as follows [see Eq. (16)],

fð6Þ
2½4� ≔

X4
j¼1

fð6Þ
2½4ðjÞ�; (E8)

so that explicitly

□fð6Þ
2½4ð1Þ� þ

1

ρ2

�
1−2M

ρ

��
6þ2M

ρ

�
fð6Þ
2½4� ¼−

�
M
ρ

�
2

Δ2
ð1Þf

ð4Þ
2

(E9)

□fð6Þ
2½4ð2Þ� þ

1

ρ2

�
1−2M

ρ

��
6þ2M

ρ

�
fð6Þ
2½4� ¼−

�
M
ρ

�
2

Δ2
ð2Þf

ð4Þ
2

(E10)

□fð6Þ
2½4ð3Þ� þ

1

ρ2

�
1−2M

ρ

��
6þ2M

ρ

�
fð6Þ
2½4� ¼−

�
M
ρ

�
2

Δ2
ð3Þf

ð4Þ
2

(E11)

□fð6Þ
2½4ð4Þ�þ

1

ρ2

�
1−2M

ρ

��
6þ2M

ρ

�
fð6Þ
2½4� ¼−

�
M
ρ

�
2

Δ2
ð4Þf

ð4Þ
2 ;

(E12)

where

Δ2
ð1Þ≔ − 2M

ρ

1

1 − M
ρ

∂2
t (E13)

Δ2
ð2Þ≔

1

ð1 − M
ρ Þ2

∂2
ρ� (E14)

Δ2
ð3Þ≔ − 1

ρ

1 − 2M
ρ

ð1 − M
ρ Þ3

∂ρ� (E15)

Δ2
ð4Þ ≔

1

ρ2

�
1 − 4M

ρ
þ 2M2

ρ2

�
1 − 2M

ρ

ð1 − M
ρ Þ3

: (E16)
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APPENDIX F: THE DOMINANT CHANNEL FOR THE l0 ¼ 4, l ¼ 4

For the case l0 ¼ 4, l ¼ 4 the field equations are

□fð0Þ4 þ 1

ρ2

�
1 − 2M

ρ

��
20þ 2M

ρ

�
fð0Þ4 ¼ 0 (F1)

□fð2Þ2 þ 1

ρ2

�
1 − 2M

ρ

��
6þ 2M

ρ

�
fð2Þ2 ¼ − 4

21

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð0Þ4;tt (F2)

□fð4Þ0 þ 1

ρ2

�
1 − 2M

ρ

��
2M
ρ

�
fð4Þ0 ¼ − 2

15

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð2Þ2;tt (F3)

□fð6Þ2 þ 1

ρ2

�
1 − 2M

ρ

��
6þ 2M

ρ

�
fð6Þ2 ¼ − 2

3

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð4Þ0;tt þ

1

2

�
M
ρ

�
5 1 − 2M

ρ þ 2M2

ρ2

ð1 − M
ρ Þ3

fð2Þ2;tt (F4)

□fð8Þ4 þ 1

ρ2

�
1 − 2M

ρ

��
20þ 2M

ρ

�
fð8Þ4 ¼ − 12

35

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð6Þ2;tt þ

5

32

�
M
ρ

�
9 1 − 2M

ρ þ 2M2

ρ2

ð1 − M
ρ Þ7

fð0Þ4;tt: (F5)

APPENDIX G: THE DOMINANT CHANNEL FOR l0 ¼ 6, l ¼ 0, 2, 4, 6

The evolution equations are

□fð0Þ6 þ 1

ρ2

�
1 − 2M

ρ

��
42þ 2M

ρ

�
fð0Þ6 ¼ 0 (G1)

□fð2Þ4 þ 1

ρ2

�
1 − 2M

ρ

��
20þ 2M

ρ

�
fð2Þ4 ¼ − 30

143

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð0Þ6;tt (G2)

□fð4Þ2 þ 1

ρ2

�
1 − 2M

ρ

��
6þ 2M

ρ

�
fð4Þ2 ¼ − 4

21

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð2Þ4;tt (G3)

□fð6Þ0 þ 1

ρ2

�
1 − 2M

ρ

��
2M
ρ

�
fð6Þ0 ¼ − 2

15

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð4Þ2;tt (G4)

□fð8Þ2 þ 1

ρ2

�
1 − 2M

ρ

��
6þ 2M

ρ

�
fð8Þ2 ¼ − 2

3

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð6Þ0;tt þ

1

2

�
M
ρ

�
5 1 − 2M

ρ þ 2M2

ρ2

ð1 − M
ρ Þ3

fð4Þ2;tt (G5)

□fð10Þ4 þ 1

ρ2

�
1 − 2M

ρ

��
20þ 2M

ρ

�
fð10Þ4 ¼ − 12

35

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð8Þ2;tt þ

5

32

�
M
ρ

�
9 1 − 2M

ρ þ 2M2

ρ2

ð1 − M
ρ Þ7

fð2Þ4;tt (G6)

□fð12Þ6 þ 1

ρ2

�
1 − 2M

ρ

��
42þ 2M

ρ

�
fð12Þ6 ¼ − 10

33

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð10Þ4;tt þ 21

256

�
M
ρ

�
13 1 − 2M

ρ þ 2M2

ρ2

ð1 − M
ρ Þ11

fð0Þ6;tt: (G7)

APPENDIX H: THE DOMINANT CHANNEL FOR l0 ¼ 2, l ¼ 0, 2, 4, 6

Next, we consider l0 ¼ 2, l ¼ 4 or l ¼ 6. For the channel of interest we take, the evolution equations are

□fð0Þ2 þ 1

ρ2

�
1 − 2M

ρ

��
6þ 2M

ρ

�
fð0Þ2 ¼ 0 (H1)
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□fð2Þ0 þ 1

ρ2

�
1 − 2M

ρ

��
2M
ρ

�
fð2Þ0 ¼ − 2

15

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð0Þ2;tt (H2)

□fð4Þ2 þ 1

ρ2

�
1 − 2M

ρ

��
6þ 2M

ρ

�
fð4Þ2 ¼ − 2

3

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð2Þ0;tt þ

1

2

�
M
ρ

�
5 1 − 2M

ρ þ 2M2

ρ2

ð1 − M
ρ Þ3

fð0Þ2;tt (H3)

□fð6Þ4 þ 1

ρ2

�
1 − 2M

ρ

��
20þ 2M

ρ

�
fð6Þ4 ¼ − 12

35

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð4Þ2;tt (H4)

□fð8Þ6 þ 1

ρ2

�
1 − 2M

ρ

��
42þ 2M

ρ

�
fð8Þ6 ¼ − 10

33

�
M
ρ

�
2
�
1 − 2M

ρ

�
fð6Þ4;tt: (H5)
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