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Green and Wald have presented a mathematically rigorous framework to study, within general
relativity, the effect of small-scale inhomogeneities on the global structure of space-time. The framework
relies on the existence of a one-parameter family of metrics that approaches the effective background
metric in a certain way. Although it is not necessary to know this family in an exact form to predict
properties of the backreaction effect, it would be instructive to find explicit examples. In this paper, we
provide the first example of such a family of exact nonvacuum solutions to the Einstein equations. It
belongs to the Wainwright-Marshman class and satisfies all of the assumptions of the Green-Wald
framework.
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I. INTRODUCTION

There is an ongoing debate on the effect of small-scale
inhomogeneities on the global structure of space-time, i.e.,
backreaction. This is especially interesting in light of
cosmological observations which indicate an accelerated
expansion of the Universe. Many approaches to the
problem have been proposed. Some of them are math-
ematically rigorous but hardly tractable. Others are trac-
table but not mathematically rigorous. The approach
presented by Green and Wald [1] seems to be, in our
opinion, a promising line of research. It is based on
Burnett’s approach [2] and extends it to nonvacuum
space-times. The Burnett scheme is itself a mathematically
rigorous version of the Isaacson work [3,4].
The Green-Wald framework relies on the existence of a

one-parameter family of metrics gabðλÞ. Such a family
depends on a single parameter λ and converges uniformly

to the background metric gð0Þab≔limλ→0gabðλÞ. However, in
contrast to the standard perturbation theory, the derivatives of

[gabðλÞ − gð0Þab ] are only required to be bounded and do not
necessarily vanish in the limit λ → 0. This may give rise to
additional terms that are interpreted as a contribution to the

energy-momentum tensor in the Einstein equations for gð0Þab .

In other words, the background metric gð0Þab does not
necessarily solve the Einstein equations with the original
energy content. Remaining terms, if any, arise from the
averaging of inhomogeneities and may be moved to the
right-hand side of the Einstein equations. It has been proved
[1] that this additional contribution to the energy-momentum

tensor, denoted with tð0Þab , is traceless and satisfies the weak
energy condition. Hence, the effect of small inhomogeneities
reduces to the effect of high-frequency gravitational

radiation. This has profound consequences for cosmology.
The small-scale inhomogeneities cannot mimic dark energy
and cannot be the source of accelerated expansion.
The Green-Wald result contradicts another popular

approach to the problem of backreaction (Buchert [5,6]).
The Buchert approach indicates that inhomogeneities may
mimic dark energy. Therefore, at least one of these
approaches has to be wrong or the application range is
different. Objections have been raised [7] that the Green-
Wald framework is ultralocal and therefore too restrictive to
represent well averaging over finite volumes. However, the
issue is far from being settled, and more clarification is
needed. In particular, the Green-Wald framework has been
invented to treat nonvacuum space-times, but no non-
vacuum examples of exact solutions that satisfy Green-
Wald assumptions have been presented so far. Our paper
fills this gap. To date, only two examples of exact solutions
compatible with the Green-Wald framework are available in
the literature, and these are vacuum space-times; i.e., the
Einstein tensor Gab½gðλÞ� vanishes for λ > 0. The first
vacuum family was provided by Burnett in his original
paper [2] (high-frequency plane waves).1 The second
example of vacuum solutions has been found recently
[8] (the polarized vacuum Gowdy space-times on a torus).2

In this paper, we provide a family of exact nonvacuum
solutions to the Einstein equations that satisfies all of the
assumptions of the Green-Wald framework.

II. WAINWRIGHT-MARSHMAN SOLUTIONS

The Wainwright-Marshman class [9] is a stiff fluid
family of inhomogeneous nondiagonal solutions to the

*Corresponding author.
Sebastian.Szybka@uj.edu.pl

1Note a misprint in Ref. [2]. The factor 2 is missing in the
exponents in the metric (1) there.

2In Ref. [8], one more family of solutions is presented, but it
violates the weak energy condition as indicated therein.

PHYSICAL REVIEW D 89, 044033 (2014)

1550-7998=2014=89(4)=044033(4) 044033-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.044033
http://dx.doi.org/10.1103/PhysRevD.89.044033
http://dx.doi.org/10.1103/PhysRevD.89.044033
http://dx.doi.org/10.1103/PhysRevD.89.044033


Einstein equations. It is usually interpreted as cosmological
models with gravitational waves. The metric is given by

g ¼ t2menð−dt2 þ dz2Þ

þ t1=2
�
dx2 þ ðtþ w2Þdy2 þ 2wdxdy

�
; (1)

where t is a time coordinate, x, y, and z are spatial
coordinates

t > 0; −∞ < x; y; z < þ∞; (2)

and m is a parameter. The symbols n and w denote
functions of a single null variable u ¼ t − z. The
Einstein equations reduce to

n0 ¼ ðw0Þ2; (3)

and hence one of the functions n ¼ nðuÞ or w ¼ wðuÞ may
be chosen arbitrarily. The energy-momentum tensor has a
form of a perfect fluid energy-momentum tensor with a stiff
equation of state3

ρ ¼ p ¼ 1

8π
ðmþ 3=16Þt−2ðmþ1Þe−n: (4)

The weak energy condition is satisfied for m ≥ −3=16.
The four-velocity of the fluid has a single nonzero
component vt ¼ t−me−n=2.
The equation of state ρ ¼ p implies that the velocity of

sound equals the velocity of light; hence, no material in the
Universe could be more stiff [10]. This kind of fluid was
probably first proposed by Zeldovich [11,12] to model the
Universe at very high densities just after the big bang. The
Wainwright-Marshman solutions are A2 symmetric accord-
ing to the Wainwright classification scheme [13]. There are
two spacelike commuting Killing fields: ∂x and ∂y. The
stiff fluid solutions with such a symmetry may be generated
from vacuum solutions with the same symmetry [14].

III. INHOMOGENEITY EFFECT

In order to construct a one-parameter family of metrics
satisfying all of the assumptions4 of the Green-Wald
framework, we choose

w ¼ λ sin
t − z
λ

; (5)

where λ > 0 is a free parameter. Using the Einstein
equation (3), we have

n ¼ 1

2

�
t − zþ 1

2
λ sin

2ðt − zÞ
λ

�
; (6)

where the additive integration constant was set to zero for
simplicity.
The Wainwright-Marshman metric (1) with w given

by (5), n given by (6), and m ≥ −3=16 constitutes a
one-parameter family of solutions to the Einstein equations.
It is parametrized by a single parameter λ, and we will
denote it with gabðλÞ. For m ¼ −3=16 it corresponds to a
vacuum solution.5 For m > −3=16 it corresponds to stiff
fluid solutions with the weak energy condition satisfied.

The background metric gð0Þab≔limλ→0gabðλÞ has a
diagonal form:

gð0Þ ¼ t2meðt−zÞ=2ð−dt2 þ dz2Þ þ t1=2ðdx2 þ tdy2Þ;

and it does not belong to the Wainwright-Marshman
class, because the functions wð0Þ≔limλ→0w ¼ 0 and
nð0Þ≔limλ→0n ¼ t−z

2
do not satisfy (3). This implies that

onemay expect a nonzero backreaction effect here (tð0Þab ≠ 0).
It is a well-known fact that taking limits is a gauge-

dependent procedure [16]. Therefore, it is instructive to
explain in which sense the effective energy-momentum
tensor tð0Þ is gauge independent [2].6 As an example, let us
consider a coordinate transformation that is valid for λ > 0
but changes the background metric gð0Þ and the effective
energy-momentum tensor tð0Þ. This coordinate transforma-
tion alters the physical meaning of the limit λ → 0. In the
new coordinates, the one-parameter family of solutions
does not model small-scale inhomogeneities anymore (for
λ ≪ 1). Let us rewrite gðλÞ [the Wainwright-Marshman
solution (1) with w and n given by (5) and (6)] by using the
following change of coordinates:

t ¼ λ~t;

x ¼ λ−1=4 ~x;
y ¼ λ−3=4 ~y;
z ¼ λ~zþ 4ðmþ 1Þ ln λ; (7)

where λ > 0. The range of the new coordinates ð~t; ~x; ~y; ~zÞ is
the same as in (2). The metric in the new coordinates is
denoted with ~gðλÞ. The metric ~gðλÞ has the Wainwright-
Marshman form (1) with t, x, y, z, w, n substituted by ~t, ~x, ~y,
~z, ~w, ~n, where

~w ¼
ffiffiffi
λ

p
sin

�
~t − ~z − 4ðmþ 1Þ ln λ

λ

�
;

~n ¼ λ

2

�
~t − ~zþ 1

2
sin

�
2

�
~t − ~z − 4ðmþ 1Þ ln λ

λ

���
:

3We use geometrized units c ¼ G ¼ 1.
4Assumptions (i)–(iv) of Sec. II in Ref. [1].

5The Wainwright-Marshman solutions with m ¼ −3=16, w ¼
const belong to the Kasner class [15].

6The standard perturbation theory is gauge independent in a
similar way.
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We calculate ~wð0Þ≔limλ→0 ~w ¼ 0, ~nð0Þ≔limλ→0 ~n ¼ 0, and
finally ~gð0Þab≔limλ→0 ~gabðλÞ:

~gð0Þ ¼ ~t2mð−d~t2 þ d~z2Þ þ ~t1=2ðd~x2 þ ~td~y2Þ:

Therefore, ~gð0Þab ≠ gð0Þab and both metrics are not related by a
coordinate transformation as it follows from their forms and
their Ricci scalars (the Ricci scalars will be analyzed

below). Since the metric ~gð0Þab belongs to the Wainwright-
Marshman family, the backreaction effect is absent and
~tð0Þab ¼ 0 [the metric functions ~wð0Þ and ~nð0Þ satisfy (3)]. The
Green-Wald formalism is gauge independent provided the
coordinate transformations do not change the physical
meaning of the limit λ → 0. This seems to be a very
natural restriction—Burnett’s proof [2] of the gauge inde-

pendence of tð0Þab is restricted to the one-parameter family of
diffeomorphisms ϕλ that reduce to identity for λ ¼ 0. This
condition has been violated by the transformation (7).
In the remaining part of this section, we analyze proper-

ties of the metrics gðλÞ and gð0Þ and calculate the back-
reaction effect. The determinants and the Ricci scalars of
these metrics may be written in the form

det½gðλÞ� ¼ −t2ð2mþ1Þe2n;

R ¼ − 1

8
ð16mþ 3Þt−2ðmþ1Þe−n;

where the function n should be substituted by nð0Þ for gð0Þ.
The determinants are strictly negative in the region of our
interest [given by (2)]. The components of these metrics are
obviously nonsingular there; hence, they are smooth
metrics of Lorentzian signature on (2). The Ricci scalars
and the energy density (4) blow up in the limit t → 0 for all
nonvacuum solutions that satisfy the weak energy condition
m > −3=16 [assuming that zðtÞ is bounded from below in
this limit which is true along any causal curve]. The nature
of this initial big bang singularity depends on the value of
m; see [17].
For our choice of w function, the Ricci scalar blows up

also for t − z → −∞. This put some doubts on a cosmo-
logical interpretation of these solutions; however, we do not
insist on having one. The framework we are interested in
should work for any space-time. For t ¼ const hyper-
surfaces z ¼ þ∞ are at a finite spatial distance from
any finite z ¼ z0, because

Z þ∞

z0

tmen=2dz

is finite. Therefore, one may suspect that the space-time is
singular there. However, the limit t − z → −∞ cannot be
achieved along any causal curve, because t > 0 (we have
the big bang singularity at t ¼ 0). The Ricci scalar blows up
at z ¼ þ∞. The space-times with metrics gðλÞ and gð0Þ

seem to be geodesically future complete with a curious
property of curvature blowing up at z ¼ þ∞. All causal
geodesics are past incomplete and terminate at the curva-
ture singularity t ¼ 0. The nature of the hypersurfaces z ¼
�∞ needs further investigation, but these studies are not in
the scope of this paper.

Finally, we calculate tð0Þab and show that it does not vanish.

Following Ref. [1], we introduce habðλÞ≔gabðλÞ − gð0Þab . It
may be verified by inspection that the Green-Wald frame-
work assumptions (i)–(iv) (see [1]) are satisfied for gabðλÞ
and habðλÞ.
The easiest way to determine the effective energy-

momentum tensor tð0Þab is to calculate

tð0Þab ¼ 1

8π
Gabðgð0ÞÞ − Tð0Þ

ab ;

where Tð0Þ
ab ¼ w-limλ→0TabðλÞ.7 The nonzero components

of Tð0Þ
ab are

Tð0Þ
tt ¼ Tð0Þ

zz ¼ mþ 3
16

8π
t−2;

Tð0Þ
xx ¼ 1

t
Tð0Þ
yy ¼ e−½ðt−zÞ=2�t½−2mþð1=2Þ�Tð0Þ

tt ;

and, hence, for tð0Þab we have

tð0Þtt ¼ tð0Þzz ¼ −tð0Þtz ¼ −tð0Þzt ¼ 1

32πt
: (8)

The remaining components of tð0Þab vanish. Therefore, the

effective energy-momentum tensor tð0Þab is traceless and
satisfies the weak energy condition, as expected (see
theorems in Ref. [1]).
One of the assumptions of the Green-Wald formalism is

the existence of a smooth tensor field μabcdef:

μabcdef ¼ w- lim
λ→0

�
∇ahcdðλÞ∇bhefðλÞ

�
: (9)

It has the following symmetries [1]:

μabcdef ¼ μðabÞðcdÞðefÞ ¼ μabefcd: (10)

This tensor field encodes the inhomogeneity effect and
provides an alternative but more laborious procedure to

calculate the effective energy-momentum tensor tð0Þab .
Following Refs. [1,2],8

7The symbol w-lim denotes the weak limit in the sense defined
in Ref. [1]. For our TabðλÞ, it reduces to the ordinary limit.

8Note a misprint in Ref. [1]. The metric gð0Þab is missing there.
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8πtð0Þab ¼ 1

8
ð−μccdede − μcc

d
d
e
e þ 2μcdc

e
deÞgð0Þab

þ 1

2
μcdacbd − 1

2
μcca

d
bd þ

1

4
μab

cd
cd − 1

2
μcðabÞcdd

þ 3

4
μccab

d
d − 1

2
μcdabcd: (11)

One may find μabcdef using (9) by a direct calculation.
After some algebra we find that the nonzero independent
components of μabcdef are

μtttttt ¼ μttzzzz ¼ −μttttzz ¼ μzztttt ¼ μzzzzzz ¼ −μzzttzz
¼ −μtztttt ¼ −μtzzzzz ¼ μtzttzz ¼

1

8
t4met−z;

μttxyxy ¼ μzzxyxy ¼ −μtzxyxy ¼ t
2
: (12)

The remaining components follow from symmetries (10) or
vanish. It is easy to check that (12) and (11) lead to (8).
One may repeat the calculations in a gauge that leads to a

different background space-time ~gð0Þ. Similarly, we have
~habðλÞ≔~gabðλÞ − ~gð0Þab . Again, it may be verified by inspec-
tion that the Green-Wald framework assumptions (i)–(iv)
(see Ref. [1]) are satisfied for ~gabðλÞ and ~habðλÞ (this time
they are trivially satisfied). We obtain ~tð0Þab ¼ 0 as predicted
before.
Our calculations have been verified with the help of the

computer algebra system MATHEMATICA.

IV. SUMMARY

We have presented the first explicit example of a one-
parameter family of exact nonvacuum metrics that satisfies
all of the Green-Wald assumptions [1]. This example
illustrates the backreaction effect and its description within
the Green-Wald framework. It provides a convenient setting
to study the effect of small-scale inhomogeneities on the
large-scale structure of space-time. The effective energy-
momentum tensor is traceless and satisfies the weak energy
condition, in accord with the theorems of Green and Wald.
In particular, the effect of small inhomogeneities on the
global structure of space-time cannot mimic a positive
cosmological constant or other hypothetical forms of dark
energy. This conclusion is not surprising, because there
exist other arguments [17] to support the hypothesis that
inhomogeneities in the model are due only to gravitational
waves. Our example provides a starting point for further
analysis.
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