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We use the conditional symmetry approach to study the r evolution of a minisuperspace spherically
symmetric model both at the classical and the quantum level. After integration of the coordinates t, θ and ϕ
in the gravitational plus electromagnetic action the configuration space dependent dynamical variables turn
out to correspond to the r-dependent metric functions and the electrostatic field. In the context of the
formalism for constrained systems (Dirac-Bergmann, Arnowitt-Deser-Misner) with respect to the radial
coordinate r, we set up a pointlike reparametrization invariant Lagrangian. It is seen that, in the constant
potential parametrization of the lapse, the corresponding minisuperspace is a Lorentzian three-dimensional
flat manifold which obviously admits six Killing vector fields plus a homothetic one. The weakly vanishing
r Hamiltonian guarantees that the phase space quantities associated to the six Killing fields are linear
holonomic integrals of motion. The homothetic field provides one more rheonomic integral of motion.
These seven integrals are shown to comprise the entire classical solution space, i.e. the space-time of a
Reissner-Nordström black hole, the r-reparametrization invariance since one dependent variable remains
unfixed, and the two quadratic relations satisfied by the integration constants. We then quantize the model
using as supplementary conditions acting on the wave function, the quantum analogues of the various
subalgebras of the classical conditional symmetries. We find that, as a semiclassical analysis shows, in all
but one allowed case the ensuing solutions to the Wheeler-DeWitt equation exhibit a good correlation with
the classical regime. In the remaining case, the emerging semiclassical geometry is a four-dimensional
homogeneous space-time, thus exhibiting no curvature singularity.
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I. INTRODUCTION

Symmetry considerations have acquired a very promi-
nent role in all branches of theoretical physics. This is
probably due to the fact that all conservation laws in
physics are the result of some kind of symmetry in the
corresponding physical system. In this sense a symmetry is
a kind of variation of the Lagrangian of a dynamical system
that leaves the equations of motion invariant. One of the
most important types of such symmetries which has

lots of applications in classical mechanics and quantum
field theory is the well-known Noether symmetry.
Mathematically, the famous Noether theorem states that
a vector field X is a symmetry for a given dynamical system
if the Lie derivative of its Lagrangian along this vector field
vanishes LXL ¼ 0 [1,2]. The first application, to the best of
our knowledge, of this criterion in constrained systems is
given in [3]. Under this condition the vector field X
generates the conserved currents from which the integrals
of motion can be obtained (see [4–10] for the applications
of the Noether symmetry approach in various cosmological
models and black hole physics). More generally, the
symmetries of a Riemannian space may also be represented
by a vector field X which satisfies an equation of the form
LXA ¼ B, where A and B are some geometric objects
[11]. For instance, in a Riemannian space with metric Gμν,
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X is a conformal Killing vector if A ¼ Gμν and
B ¼ ϕðxαÞGμν. In the case where ϕðxαÞ ¼ 0 the vector X
is known as a Killing vector and when ϕðxαÞ is a non-
vanishing constant X is a homothetic vector. There are also
other kinds of such symmetries that we will not mention
here but a classification of them can be found in [12].
In the canonical formulation of general relativity the

space of all Riemannian three-dimensional metrics and
matter fields on the spatial hypersurfaces form an infinite-
dimensional space, the so-called superspace, which is the
basic configuration space of quantum gravity. However, in
cosmology due to the many symmetries of the underlying
cosmological models the infinite degrees of freedom of the
corresponding superspace are truncated to a finite number
and thus a particular minisuperspace model is achieved. It
is easy to show that the evolution of such a system, when
the equations of motion are obtained from an action
principle, can be produced by a Lagrangian of the follow-
ing form:

L ¼ 1

2n
GαβðqÞ _qα _qβ − nVðqÞ; (1.1)

where qα and n are the dependent dynamical variables and
the lapse function representing the coordinates of the
minisuperspace with metric GαβðqÞ, VðqÞ is a potential
function and an overdot indicates derivation with respect to
some independent dynamical parameter. Since the dynam-
ics of the system in this formalism resembles the motion of
a point particle with coordinates qα in a Riemannian space
with metricGαβ, many interesting features may occur when
this space has some symmetries. In particular, one can
define a conditional symmetry generated by a vector field ξ
which is a simultaneous conformal Killing vector field
of the metric GαβðqÞ and the potential function VðqÞ,
that is [13]

LξGαβ ¼ ϕðqÞGαβ; LξVðqÞ ¼ ϕðqÞVðqÞ: (1.2)

As noted above, each symmetry corresponds to a phase-
space quantity representing an integral of motion. In [13], it
is shown that the integrals of motion resulting from (1.2)
can be written as

QI ¼ ξαI pα; (1.3)

where pα ¼ ∂L
∂ _qα is the momentum conjugate to qα. In order

to pass to the quantum theory associated with these models,
one should note that the variation of (1.1) with respect to n
yields

1

2n2
Gαβ _qα _qβ þ VðqÞ ¼ 0 (1.4)

which, being the zero-energy condition, leads to the
Hamiltonian constraint

H ¼ n

�
1

2
Gαβpαpβ þ VðqÞ

�
¼ nH ¼ 0: (1.5)

Therefore, following the canonical quantization method,
this Hamiltonian gives rise to the Wheeler-DeWitt (WDW)
equation ĤΨðqÞ ¼ 0, where ΨðqÞ is the wave function of
the quantized system and Ĥ should be written in a suitable
operator form. Now, it is easy to see that the Poisson
brackets of (1.3) with the Hamiltonian vanish weakly on the
constrained surface. In the lapse parametrization n ¼ N

V,
where the potential is constant, the aforementioned Poisson
brackets vanish identically. The quantum counterpart of
this statement is that the operator forms of (1.3) and the
scaled Hamiltonian commute with each other which
means that Q̂I and Ĥ have simultaneous eigenfunctions.
In summary, the quantum counterpart of the theory with the
aforesaid symmetry can be described by the following
equations (more details are presented in the following
sections):

ĤΨðqÞ ¼ 0; Q̂IΨðqÞ ¼ κIΨðqÞ; (1.6)

where κI are the eigenvalues of QI.
In this paper we study the behavior of a static, spherically

symmetric space-time in the framework of the presence of
conditional symmetries in minisuperspace constrained
systems. The phase-space variables turn out to correspond
to the r-dependent metric functions and to an electrostatic
field with which the action of the model is augmented.
In Sec. II we follow [13–15] and construct a minisuper-

space Lagrangian, in the form of (1.1), using the canonical
decomposition along the radial coordinate r which now
plays the role of a dynamical variable. We then deal with
some considerations on this minisuperspace constrained
system possessing conditional symmetries and by passing
to the Hamiltonian formalism we reveal six conditional
symmetries and a rheonomic integral of motion. Under
these conditions we show that the classical solution of such
a system can be identified with the space-time of a
Reissner-Nordström (RN) black hole [16,17] (for higher
dimensions see [18]).
In Sec. III we consider the quantization of the system in

which we adopt the quantum analogues of the linear
integrals of motion as supplementary conditions imposed
on the wave function, the latter also satisfying, of course,
the Wheeler-DeWitt quantum constraint. To see how we
can recover the classical solutions from the quantum wave
functions, we present a semiclassical analysis of the model
above described in Sec. IV. The curious and interesting
situation of the vanishing quantum potential is investigated
and fully explained in Sec. V. Finally, some concluding
remarks are included in the discussion.
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II. CLASSICAL FORMULATION AND
CONDITIONAL SYMMETRIES

The general form of a static, spherically symmetric line
element is

ds2 ¼ −a2ðrÞdt2 þ n2ðrÞdr2 þ b2ðrÞðdθ2 þ sin2 θdϕ2Þ;
(2.1)

with nðrÞ playing the role of the r-lapse function, while
aðrÞ and bðrÞ are the “dynamical” dependent variables in
the r foliation. In order to acquire the RN solution we need
to consider an electrostatic field minimally coupled to
gravity. Thus, the full action is written as

Sgþem ¼
Z

LGRd4xþ
Z

LEMd4x

¼
Z ffiffiffiffiffiffi−gp

Rd4x −
Z ffiffiffiffiffiffi−gp

FμνFμνd4x; (2.2)

where Fμν ¼ Aμ;ν − Aν;μ is the antisymmetric electromag-
netic tensor and Aμ is the potential with A0 ¼ fðrÞ and
A1 ¼ A2 ¼ A3 ¼ 0. In (2.2) we have chosen the units
c ¼ 1, G ¼ 1

4π. The variation of this action with respect
to the space-time metric gμν leads to Einstein’s field
equations,

Eμν ¼ 2Tμν; (2.3)

where Eμν ¼ Rμν − 1
2
Rgμν is the Einstein tensor and

Tμν ¼ FμκFν
κ − 1

4
gμνFκλFκλ is the stress-energy tensor

associated with the electromagnetic field.
The variation of action (2.2) with respect to the field Aμ

leads to the equations of motion,

Fμν
;μ ¼ 0; (2.4)

which together with the consistency conditions

Fμν;κ þ Fκμ;ν þ Fνκ;μ ≡ 0; (2.5)

comprise the complete set of Maxwell’s equations in the
absence of electromagnetic sources (Jμ ¼ 0). Of course,
(2.5) is identically satisfied due to the defining form
adopted for the field strength tensor Fμν ¼ Aμ;ν − Aν;μ.
As for (2.4), it is satisfied by virtue of the assumption of
staticity and spherical symmetry, i.e. by the form of both
the line element (2.1) and of Aμð¼ ðfðrÞ; 0; 0; 0ÞÞ: One
must first solve algebraically the reduced constraint equa-
tion Err ¼ 2Trr for nðrÞ. The substitution of this solution
into the rest of equation (2.3) yields a system that can be
solved algebraically for a00ðrÞ and f00ðrÞ. Final substitution
of all three relations into the left-hand side of the reduced
equation (2.4) results in the zero four-vector Fμν

;ν. Thus,
the adopted symmetry assumption is seen to be compatible

with action (2.2), i.e. the assumption of absence of
electromagnetic sources.
Apart from the field theory approach, one can be led to

effectively the same equations of motion by integration of
the redundant degrees of freedom in action (2.2), i.e.
integrating over t, θ and ϕ and ignoring a multiplica-
tive (infinite) constant. All system information is then
contained in a reduced, pointlike action S ¼R
Lða; b; f; a0; b0; f0; nÞdr with the following Lagrange

function:

L ¼ 1

2n

�
8ba0b0 þ 4ab02 þ 4

b2

a
f02
�
þ 2na; (2.6)

where 0 denotes differentiation with respect to the spatial
coordinate r. It is easy to verify that the Euler-Lagrange
equations ensuing from (2.6) are equivalent to the reduced
Einstein’s equations obtained by the substitution of the
line element (2.1) and Aμ ¼ ðfðrÞ; 0; 0; 0Þ in (2.3). The
Lagrangian (2.6) belongs to a particular form of singular
Lagrangians: L ¼ 1

2nGμνq0μq0ν þ nVðqÞ. If one uses the
freedom to reparametrize the lapse, then (2.6) can be
brought to a form in which the potential V is constant.
In our case we choose to set n ¼ N

2a, which leads to

L ¼ 1

2N
ð16aba0b0 þ 8a2b02 þ 8b2f02Þ þ N; (2.7)

or, in a more concise form, L ¼ 1
2N Ḡμνq0μq0ν þ N with

q0μ ¼ ða0; b0; f0Þ and

Ḡμν ¼
 

0 8ab 0

8ab 8a2 0

0 0 8b2

!
: (2.8)

As shown in [13], it is in this particular lapse para-
metrization that the conditional symmetries of the phase
space, as defined in [19], become Killing vector fields of
the supermetric (2.8) in the configuration space. As it can
be straightforwardly verified, the above given metric Ḡμν is
flat and admits the following six Killing vectors:

ξ1 ¼ ∂f; ξ2 ¼
1

2ab
∂a; ξ3 ¼

f
2ab

∂aþ
1

2b
∂f;

ξ4 ¼−a∂aþb∂b− f∂f; ξ5 ¼−a2þf2

2ab
∂aþ ∂b−f

b
∂f;

ξ6 ¼−af∂aþbf∂b−a2þf2

2
∂f: (2.9)

These form an algebra under the Lie bracket; the non-
vanishing structure constants of this algebra are
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C2
31¼−C2

13¼C1
14¼−C1

41¼C4
61¼−C4

16¼1;

C2
24¼−C2

42¼C3
26¼−C3

62¼C5
45¼−C5

54¼C6
46¼−C6

64¼1;

C3
15¼−C3

51¼2; C5
63¼−C5

36¼
1

2
:

Additionally, the supermetric Ḡμν exhibits a homothetic
symmetry (£ξh Ḡμν ¼ Ḡμν) generated by

ξh ¼
a
4

∂
∂aþ b

4

∂
∂bþ f

4

∂
∂f ; (2.10)

which will be used in order to completely integrate the
system of the Euler-Lagrange equations:

ðELÞN ≔ − ∂L
∂N ; (2.11a)

ðELÞqi ≔
d
dr

�∂L
∂q: i
�
− ∂L
∂qi : (2.11b)

Let us now turn to the Hamiltonian formulation; invoking
the usual definition of the momenta

pN ≔
∂L
∂N0 ¼ 0; (2.12a)

pa ≔
∂L
∂a0 ¼

8abb0

N
; (2.12b)

pb ≔
∂L
∂b0 ¼

8aðba0 þ ab0Þ
N

; (2.12c)

pf ≔
∂L
∂f0 ¼

8b2f0

N
; (2.12d)

and following Dirac’s algorithm [20], we acquire one first
class primary constraint pN ≈ 0, the Hamiltonian

H ¼ NH ¼ N

�
− p2

a

16b2
þ papb

8ab
þ p2

f

16b2
¼ 1

�
; (2.13)

and the first class secondary constraint fpN;Hg ≈ 0 ⇒
H ≈ 0. If we associate the phase-space quantities
QI ≔ ξμI pμ with the six Killing vector fields (2.9), we
are provided with six linear integrals of motion,

Q1¼pf; Q2¼
1

2ab
pa; Q3¼

f
2ab

paþ
1

2b
pf;

Q4¼−apaþbpb−fpf; Q5¼−a2þf2

2ab
paþpb−f

b
pf;

Q6¼−afpaþbfpb−a2þf2

2
pf; (2.14)

which form a Poisson bracket algebra with the previously
mentioned structure constants. As also stated in [13], under
the given lapse parametrization (in which the potential is
constant) the Poisson brackets of the QI’s with the
Hamiltonian H are exactly equal to zero and not just
weakly vanishing, fQI;Hg ¼ 0, for I ¼ 1;…; 6. More-
over, since H ≈ 0, the constancy of the potential part is
carried over to the quadratic in the momenta kinetic term,
leading inevitably the latter to become a Casimir invariant
of the Lie algebra formed by the QI’s. In the case we are
studying this is

QC ¼ 1

4
ðQ2Q5 þQ2

3Þ ¼ Hþ 1: (2.15)

As it is known, the integrals of motion, QI’s, become
constants, say κI’s, on the solution space. However, these
are not the only existing integrals of motion. As shown in
[21], in principle, all conformal Killing vectors of the
supermetric define rheonomic integrals of motion. For
example, the relation £ξḠμν ¼ ωḠμν implies that if we
define the phase-space quantity Qξ ¼ ξμpμ, then

dQξ

dr
¼ fQξ; Hg ¼ ωðqÞN

2
Ḡμνpμpν ¼ ωðqÞN (2.16)

holds. The latter equality is valid since
H ¼ 1

2
Ḡμνpμpν − 1 ≈ 0. Thus, by integration over r the

above equation is turned into the rheonomic integral,

Qξ −
Z

ωðqðrÞÞNdr ¼ const: (2.17)

For ω ¼ 0, there is no explicit r dependence and the
corresponding integrals are just the QI’s generated by the
six Killing vector fields. In the case of a nonvanishing ω,
the usefulness of (2.17) is limited, since one needs to know
a priori the trajectories qðrÞ that solve the Euler-Lagrange
equation (2.11). Nevertheless, for the homothetic Killing
field the previous problem is circumvented since
ω ¼ constant; another choice would be to pick up a
particular conformal Killing vector field and properly
gauge fix the lapse, i.e. choose N ¼ 1

ω. In what follows
we will use the homothetic vector field ξh and avoid any
gauge fixing of the lapse N. We thus write the following
seven relations, that are valid on the solution space:

QI ¼ κI; I ¼ 1;…; 6 (2.18a)
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Qh −
Z

Ndr¼ ch ⇒
1

4
ðapa þ bpb þ fpfÞ−

Z
Ndr¼ ch

(2.18b)

with κI’s and ch being constants. It is quite interesting that
the above relations completely determine the entire
classical solution space along with the two relations
quadratic in the κI’s emanating from the two Casimir
invariants of the algebra. Indeed, after substitution of
(2.12), if we choose to algebraically solve the system of
equations consisting of (2.18a) for I ¼ 1;…; 5 and (2.18b)
with respect to aðrÞ, a0ðrÞ, fðrÞ, f0ðrÞ, R Ndr and NðrÞ, we
obtain the relations

a ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−4bðκ1κ3 þ κ2κ4Þ þ 4b2ðκ2κ5 þ κ23Þ þ κ21

p
2κ2b

;

(2.19a)

a0 ¼ ∓ b0ðκ21 − 2bðκ1κ3 þ κ2κ4ÞÞ
2κ2b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−4bðκ1κ3 þ κ2κ4Þ þ 4b2ðκ2κ5 þ κ23Þ þ κ21
p ;

(2.19b)

f ¼ κ3
κ2

− κ1
2κ2b

; (2.19c)

f0 ¼ κ1b0

2κ2b2
; (2.19d)

Z
Ndr ¼ 4bðκ2κ5 þ κ23Þ − ð4chκ2 þ 2κ1κ3 þ 3κ2κ4Þ

4κ2
(2.19e)

N ¼ 4b0

κ2
; (2.19f)

with b remaining an arbitrary function of r. The consis-
tency conditions a0 ¼ da

dr and f0 ¼ df
dr are identically

satisfied, while N ¼ d
dr

R
Ndr leads to the requirement

κ2κ5 þ κ23 ¼ 4; (2.20)

which is valid due to the Casimir invariant (2.15), since the
Hamiltonian (also known as the quadratic constraint) is
zero. Additionally, and somewhat unexpectedly, if one
substitutes (2.19) into the equation we have not used, i.e.
Q6 ¼ κ6, one is led to the following relation between
constants:

κ1κ5 þ 2κ2κ6 − 2κ3κ4 ¼ 0: (2.21)

This relation is also valid on the solution space, because of
the existence of the second Casimir invariant,

~QC ¼ Q1Q5 þ 2Q2Q6 − 2Q3Q4: (2.22)

If the form of the QI’s (2.14) is substituted into ~QC we find
that it vanishes identically, irrespectively of the classical
solution. Therefore, Eq. (2.21) is retrieved on the solu-
tion space.
It is an easy task to check that (2.19) together with (2.20)

is the solution of the equations of motion (2.11). By a
convenient reparametrization of the constants κI [four of
which are arbitrary because of the requirements (2.20) and
(2.21)]

κ1 ¼ −4Q; κ2 ¼
2

c
; κ3 ¼

2c3
c

;

κ4 ¼ 4 cmþ c3Q; κ5 ¼ 2c − 2c23
c

;

κ6 ¼ 2ðQðc2 þ c23Þ þ 2cc3mÞ; (2.23)

the corresponding space-time line element in (2.1) turns out
to be

ds2 ¼ −c2
�
1 − 2m

bðrÞ þ
Q2

b2ðrÞ
�
dt2

þ
�
1 − 2m

bðrÞ þ
Q2

b2ðrÞ
�−1

db2ðrÞ þ b2ðrÞdθ2

þ b2ðrÞsin2θdϕ2 (2.24)

which, of course, is the well-known RN metric involving
only two essential parameters: the mass m and the charge
Q; c is absorbable by a rescaling of the time coordinate, i.e.
t → t

c ,

ds2RN ¼ −
�
1 − 2m

r
þQ2

r2

�
dt2 þ

�
1 − 2m

r
þQ2

r2

�−1
dr2

þ r2dθ2 þ r2sin2θdϕ2: (2.25)

The solution is valid in the region r > 0 and exhibits a
curvature singularity at r ¼ 0. At a physical level, one can
interpret the resulting geometry outside the singularity as a
consequence of the existence of a motionless point particle
carrying a charge Q and a mass M residing at the origin
r ¼ 0. It is to be noted that one could start from this
physical setup by including appropriate terms with Dirac-
delta functions in the right-hand side of (2.3) and (2.4).
Then, by restricting attention to the region outside the
support of the delta function, the equations to be solved
would be identical to those here considered; thus the same
classical solution would be reached.
Some remarks are in order:
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(i) κ1, and therefore Q1, is the only linear integral of
motion depending solely on an essential constant.

(ii) The quantities Q2, Q3 and Q5 incorporate the non-
essential constants c and c3. Therefore, these can be
claimed to be completely gauged fixable, since one
can utilize the arbitrariness of c and c3 to change their
values.

(iii)Q4 and Q6 depend on both essential and nonessential
constants, but still their values are gauge dependent.

(iv) The value of the Casimir invariant,QC, on the solution
space is

1

4
ðκ2κ5 þ κ23Þ ¼ 1; (2.26)

as expected by (2.15), since the Hamiltonian con-
straint H is weakly zero.

We can add here that the constant c can be set equal to one
but not zero. On the other hand, c3 can be taken equal to
zero since it is absorbed additively. Moreover, c3 is
connected to the gauge freedom of the electrostatic scalar
potential, since by using (2.23) one can see that
fðrÞ ¼ c3 − cQ

bðrÞ.
By setting c ¼ 1, and c3 ¼ 0 the values of the six κI’s

become

κ1 ¼ −4Q; κ2 ¼ 2; κ3 ¼ 0;

κ4 ¼ 4m; κ5 ¼ 2; κ6 ¼ 2Q (2.27)

which are the values one would obtain if solution (2.25) had
been taken as the starting point for the computation of the
linear integrals of motion.

III. QUANTIZATION THROUGH SYMMETRIES

The identification of the linear integrals of motion as
physical quantities leads to the need of expressing them as
operators. The algebra defined by these operators has to
match the classical Lie algebra and, moreover, one has to
determine which of them can be applied at the same time on
the wave function together with the constraints mentioned
in the previous section. These issues have been clearly
addressed in [13]. In a quick view, we start with the usual
definition of the momenta (ℏ ¼ 1) as operators,

pα → p̂α ≔ − i
∂
∂qα ; (3.1)

where qα is any one of a, b, f, N. After that, the quantum
analogues of the conditional symmetries QI are expressed
in the most general form of a linear Hermitian (under an
arbitrary measure μ) differential operator of the first order:

Q̂I ≔ − i
2μ

ðμξαI ∂α þ ∂αμξ
α
I Þ: (3.2)

It has been proved in [13] that operators Q̂I defined as in
(3.2) satisfy the same algebra as do the classical quantities
QI , i.e. ½Q̂I; Q̂J�F ¼ CK

IJQ̂KF for any function F for which
the action of the operators is well defined. It is noteworthy
that this happens for any arbitrary measure μða; b; fÞ.
Apart from the primary constraint

p̂N ¼ −i ∂
∂NΨ ¼ 0 ⇒ Ψ ¼ Ψða; b; fÞ; (3.3)

the main operator one has to apply is the quantum analogue
of the Hamiltonian constraint or, equivalently in the
particular lapse parametrization, of the Casimir invariant
(Q̂C), since

ĤΨ ¼ ðQ̂C − 1ÞΨ ¼ 0: (3.4)

In order to fix the kinetic part of the Hamiltonian
operator we demand Hermiticity under the same measure
μ; we thus have [22]

ĤcΨ ¼
�
− 1

2μ
∂αðμḠαβ∂βÞ − 1

�
Ψ ¼ 0: (3.5)

The addition of a term proportional to the Ricci
scalar of the supermetric Ḡαβ is not needed since the
superspace is flat. In what follows we will, invoking
a sense of naturality, choose the measure μ to be equal

to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det Ḡαβj

q
¼ 16

ffiffiffi
2

p
ab2. This choice ensures that the

derivative part of the quadratic constraint operator becomes
the Laplace-Beltrami operator which is also scalar under
general configuration space transformations. Further, it also
renders the linear operators (3.2) pure derivations, i.e. it
makes them have the derivatives acting on the far right
since ðμξβI Þ;β vanishes for every I ¼ 1;…; 6.
Apart from Ĥ, we also have at our disposal the condi-

tional symmetries. They too can act on the wave function
and provide the connection to the solution space of the
classical theory. The wave function of the system is to be
realized as an eigenstate of those physical quantities that
can be measured together:

Q̂IΨ ¼ κIΨ; (3.6)

for all the subsets ofQI ’s forwhich the structure constants of
the subalgebra they form, satisfy the integrability conditions

CI
JKκI ¼ 0: (3.7)

Equation (3.7) has been proven as an integrability condition
in [13,23], and gives a selection rule for determining those
operators which can be applied at the same time on thewave
function. The results of the use of (3.7) can be summarized,
according to the various subalgebras, as follows:
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(1) For the entire algebra and for all five- and four-
dimensional subalgebras (3.7) is not valid.

(2) For the non-Abelian three-dimensional subalgebra
fQ1; Q4; Q6g, the integrability condition (3.7) im-
plies that all the corresponding κI , I ¼ 1; 4; 6 must
be zero (since the algebra is semisimple). For a
generic configuration this is unacceptable in view of
the fact that, for instance, κ1 corresponds to the
essential constant Q.

(3) For the three non-Abelian two-dimensional subal-
gebras fQ2; Q4g, fQ4; Q5g and fQ4; Q6g, the re-
sults of the application of (3.7) are similar to the
previous case. For the first of them (3.7) implies that
κ2 ¼ 0, a condition that cannot be met in view of
κ2 ¼ 2

c [see (2.23)]. For the other two κ5 or κ6
respectively must be zero, a fact implying a kind
of gauge fixing for the constants c and c3, hence
restricting the generality.

We are thus led to consider the following Abelian
subalgebras:
(1) the three-dimensional subalgebra made up by Q2,

Q3, and Q5

(2) the two-dimensional subalgebras:
(a) Q1, Q2

(b) Q2, Q3

(c) Q2, Q5

(d) Q3, Q4

(e) Q3, Q5

(f) Q5, Q6.
Of course, there are also six one-dimensional subalge-

bras but these cannot be considered on account of the
existence of two essential constants needed to describe the
underlying geometry. Cases (2a), (2d) and (2f) of the two-
dimensional subalgebras are of particular interest, since
they involve integrals that are connected with essential
constants (those are Q1, Q4, and Q6). Let us proceed with
the examination of each case.

A. The three-dimensional subalgebra and
the marginal cases (2b), (2c) and (2e)

In considering the three-dimensional Abelian subalgebra
spanned by Q2, Q3 and Q5, and with the choice of
measureμ ¼ 16

ffiffiffi
2

p
ab2, thegivenξI’s in (2.9) anddefinitions

(3.2), we obtain the following set of differential equations:

Q̂2Ψ ¼ κ2Ψ ⇒
i

2ab
∂aΨþ κ2Ψ ¼ 0; (3.8a)

Q̂3Ψ¼ κ3Ψ⇒ i

�
f

2ab
∂aΨþ 1

2b
∂fΨ

�
þ κ3Ψ¼ 0; (3.8b)

Q̂5Ψ ¼ κ5Ψ

⇒ i

��
a2 þ f2

2ab

�
∂aΨ − ∂bΨþ f

b
∂fΨ

�
− κ5Ψ ¼ 0;

(3.8c)

together with the Hamiltonian constraint

ĤΨ¼ 1

8b

�
1

2b
ð∂aaΨ−∂ffΨÞ− 1

a
∂abΨ

�
−Ψ¼ 0: (3.9)

By solving successively from (3.8a) to (3.8c), the
dependence of Ψða; b; fÞ on its arguments is completely
determined:

Ψ ¼ λeibðκ2ða2−f2Þþ2κ3fþκ5Þ; (3.10)

with λ being an arbitrary constant. By substituting solution
(3.10) into (3.9) we get

κ2κ5 þ κ23 − 4 ¼ 0; (3.11)

which is an identity in view of (2.26).
The state of the system described by (3.10) resembles the

situation that arose in [13] for the case of Schwarzschild
geometry. There too, the enforcement of the maximal
Abelian subgroup led to a plane wave solution.
Furthermore, that algebra was also spanned by integrals
of motion which had no connection to essential constants of
the underlying geometry.
If we now choose to consider the two-dimensional cases

that are made up from Q2, Q3 and Q5, namely (2b), (2c)
and (2e), we are led to essentially the same solution for Ψ.
(i) The set of Eqs. (3.8a), (3.8b) and (3.9) leads to a

solution that differs from (3.10) by a phase κ2κ5þκ2
3
−4

κ2
which, however, is zero due to (2.26).

(ii) If we now consider equations (3.8a), (3.8c) and (3.9),
we end up with the following wave function:

Ψ25 ¼ λ1e
2bf

ffiffiffiffiffiffiffiffiffiffiffi
κ2κ5−4

p
eibðκ2ða2−f2Þþκ5Þ

þ λ2e
−2bf ffiffiffiffiffiffiffiffiffiffiffi

κ2κ5−4
p

eibðκ2ða2−f2Þþκ5Þ; (3.12)

that seems quite different from (3.10). Nevertheless, as
we have previously mentioned, there is a nonessential
constant [the constant c3 which refers to the freedom
of the scalar potential fðrÞ] that can be set to zero by a
gauge transformation. Then, κ3 becomes zero and
(2.26) leads to κ2κ5 ¼ 4. Under this condition, (3.12)
becomes (3.10).

(iii) Lastly, we take into account the set of Eqs. (3.8b),
(3.8c) and (3.9). The common solution of this set is
different from (3.10) by a phase a2−f2

κ5
ðκ2κ5 þ κ23 − 4Þ,

which again is zero because of (2.26).
So, as it is evident from the above considerations, all three
cases are connected to each other, giving the same plane
wave solution that emerges from the consideration of the
maximal Abelian algebra.

B. The two-dimensional case (2a) (Q1, Q2)

This subalgebra contains Q1 whose value on the solu-
tion space is proportional to the essential constant Q
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(κ1 ¼ −4Q), meaning that Q1 is purely connected to a
quantity referring to the geometry of space-time. We
consider equation

Q̂1Ψ ¼ κ1Ψ ⇒ i∂fΨþ κ1Ψ ¼ 0; (3.13)

together with (3.8a) and (3.9). The common solution for the
given set of equations is

Ψ¼ λffiffiffi
b

p exp

�
i
κ21þ4bfκ1κ2þ4a2b2κ22þ16b2

4bκ2

�
; (3.14)

with λ being again an arbitrary constant. With this wave
function we are led to a probability density

μΨ�Ψ ∝ ab; (3.15)

that encompasses only the two scale factors and is
completely free of the variable f. The latter is only present
in the phase of the wave function.

C. The two-dimensional case (2d) (Q3, Q4)

The linear integral Q4 assumes the constant value
κ4 ¼ 4ðcmþ c3QÞ on the solution space. As we can
see, it bears a connection mainly to m, since c3 can
be set equal to zero. However, its value, in contrast to the
previous case, is somewhat gauge dependent due to the

involvementof nonessential constants. In this caseweuse the
equation

Q̂4Ψ ¼ κ4Ψ ⇒ iða∂aΨ − b∂bΨþ f∂fΨÞ − κ4Ψ ¼ 0;

(3.16)

as well as (3.8b) and the WDW equation (3.9). The
integration of (3.16) leads to a solution of the form

Ψða; b; fÞ ¼ a−iκ4ψ1

�
ab;

f
a

�
: (3.17)

It is useful to use the new variables u ¼ ba, v ¼ f
a and a,

for which the imposition of Eq. (3.8b) on the previous wave
function leads to

iððv2 − 1Þ∂vψ1 þ uv∂uψ1Þ þ ð2κ3uþ κ4vÞψ1: (3.18)

Even though κ3 can be set equal to zero through a gauge
transformation, we choose to carry it until the final result.
The solution of (3.18) reads

ψ1ðu; vÞ ¼ e2iκ3uvuiκ4ψ2

�
lnðu

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − 1

p
Þ
�
: (3.19)

At this stage, a new change of variables is in order;
setting u ¼ ewffiffiffiffiffiffiffiffi

v2−1p the WDW equation (3.9) becomes

ψ 00
2ðwÞ þ 2iκ4ψ 0

2ðwÞ þ 4e2wðκ23 − 4Þψ2ðwÞ ¼ 0: (3.20)

The general solution of this equation is

ψ2ðwÞ ¼ e−1
2
κ4ðπþ2iwÞ

h
λ1Iiκ4

�
2ew

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ23 − 4Þ

q �
þλ2I−iκ4

�
2ew

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ23 − 4Þ

q �i
; (3.21)

with λ1, λ2 being arbitrary constants while IνðxÞ is the modified Bessel function of the first kind. Thus, the final form of the
wave function Ψða; b; fÞ is

Ψ ¼ ða2 − f2Þ−1
2
ðiκ4Þe2ibfκ3

h
λ1Iiκ4

�
2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − f2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ23 − 4Þ

q �
þλ2I−iκ4

�
2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − f2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ23 − 4Þ

q �i
: (3.22)

D. The two-dimensional case (2f) (Q5, Q6)

The constant value of Q6 is κ6 ¼ 2ð2c3cmþ ðc23 þ c2ÞQÞ. Under the gauge conditions c3 ¼ 0 and c ¼ 1, κ6 equals to
2Q. Our starting point is the differential equation,

Q̂6Ψ ¼ κ6Ψ ⇒ i

�
af∂aΨ − bf∂bΨþ 1

2
ða2 þ f2Þ∂fΨ

�
− κ6Ψ ¼ 0; (3.23)

whose solution is

Ψða; b; fÞ ¼ e
−2iκ6f
a2−f2ψ1

�
ab;

f2

a
− a

�
: (3.24)

By defining as new variables u ¼ ab and v ¼ f2

a − a and substituting the above form of Ψ in Eq. (3.8c) we get

ivðv∂vψ1ðu; vÞ − u∂uψ1ðu; vÞÞ þ 2κ5uψ1ðu; vÞ ¼ 0: (3.25)

Its integration yields the function

ψ1ðu; vÞ ¼ e−i
κ5u
v ψ2ðuvÞ: (3.26)
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At this stage we introduce the new variable w ¼ uv. Subsequent substitution into the WDW equation (3.9) leads to

2iκ5w2ψ 0
2ðwÞ þ ð2κ26 þ ðiκ5 − 8wÞwÞψ2ðwÞ ¼ 0; (3.27)

admitting the solution

ψ2ðwÞ ¼
λffiffiffiffi
w

p exp
�
−i κ

2
6 þ 4w2

κ5w

�
: (3.28)

The wave function is written in the original variables as

Ψða; b; fÞ ¼ λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðf2 − a2Þ

p exp

�
ið4a4b2 þ 4b2f4 þ a2b2ð−8f2 þ κ25Þ − 2bfκ5κ6 þ κ26Þ

bða2 − f2Þκ5

�
; (3.29)

and leads to a probability density

μΨ�Ψ ∝
ab

f2 − a2
: (3.30)

At this point, one could think that we have attained two
different representations for the physical quantity Q: The
first was the case (2a) with the use of Q̂1 and Q̂2, where
classically κ1 ¼ 4Q. The second is this, with Q̂5 and Q̂6

(under gauge conditions c ¼ 1, c3 ¼ 0, κ6 ¼ 2Q).
However, the wave function (3.29), under the trans-

formation ða; b; fÞ → ðα; β;φÞ with

a¼ α

α2−ϕ2
; b¼ βðϕ2−α2Þ; f¼ ϕ

ϕ2−α2
; (3.31)

and κ5, κ6 expressed in the gauge c ¼ 1, c3 ¼ 0, is turned
into

Ψðα; β;ϕÞ ¼ λffiffiffi
β

p exp

�−2iðð1þ α2Þβ2 − 2QβϕþQ2Þ
β

�
:

(3.32)

In the same gauge, the wave function (3.14) becomes

Ψ12ða; b; fÞ ¼
λffiffiffi
b

p exp

�−2iðð1þ a2Þb2 − 2Qbf þQ2Þ
b

�
:

(3.33)

These two wave functions assume the same functional
form. What is important though is, that the very same
transformation transforms the Killing vector of the super-
metric ξ6 into 1

2
ξ1 in the new variables (the factor 1

2
expresses the fact that κ1 ¼ 4Q while κ6 ¼ 2Q under the
considered gauge).

IV. SEMICLASSICAL ANALYSIS

In this section we are going to present a semiclassical
analysis of the problem reviewed in the previous sections.
To accomplish this task, we examine a wave function of the
form

Ψða; b; fÞ ¼ Ωða; b; fÞeiSða;b;fÞ; (4.1)

in the WDW equation (3.9). Here Ωða; b; fÞ and Sða; b; fÞ
are some real functions representing the magnitude and the
phase of the wave function, respectively. Upon using this
expression for the wave function, the WDWequation leads
to the continuity equation,

1

16b2

�
2

�∂Ω
∂a

∂S
∂a − ∂Ω

∂f
∂S
∂f
�
þ Ω

�∂2S
∂a2 −

∂2S
∂f2
��

− 1

8ab

�∂Ω
∂a

∂S
∂bþ ∂Ω

∂b
∂S
∂aþ ∂2S

∂a∂b
�

¼ 0; (4.2)

and the modified Hamilton-Jacobi equation

− 1

16b2

�∂S
∂a
�

2

þ 1

8ab
∂S
∂a

∂S
∂bþ 1

16b2

�∂S
∂f
�

2 − 1þQ ¼ 0;

(4.3)

in which

Q ¼ 1

Ω

�
1

16b2

�∂2Ω
∂a2 − ∂2Ω

∂f2
�
− 1

8ab
∂2Ω
∂a∂b

�
(4.4)

is the quantum potential. A glance at Eq. (4.3) shows that it
is of the form

H
�
qμ; pμ ¼

∂S
∂qμ
�
þQ ¼ 0; (4.5)

where H is the Hamiltonian defined in (2.13), qμ ¼
ða; b; fÞ are the variables of the configuration space and
pμ ¼ ðpa; pb; pfÞ are the momenta conjugate to qμ given
by (2.12b–2.12d). Therefore, in the semiclassical picture,
the equations of motion can be written as

8>><
>>:

8
N abb

0 ¼ ∂S
∂a ;

8
N ðaba0 þ a2b0Þ ¼ ∂S

∂b ;
8
N b

2f0 ¼ ∂S
∂f :

(4.6)
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If the quantum potential (4.4) is nonzero, the solutions to
the above system differ from the classical solutions by
some correction terms coming from the quantum mechani-
cal considerations; in the cases where the quantum potential
is equal to zero, we expect that solving the system (4.6) will
reproduce the pure classical solutions. In the following
subsections we will deal with this issue with the help of the
wave functions obtained in the previous section.

A. The three-dimensional subalgebra and
the two-dimensional marginal cases

We start with the wave function (3.10) which, with the
notation introduced in this section, yields

Sða;b;fÞ¼ b½κ2ða2−f2Þþ2κ3fþ κ5�; Ω¼ const:

(4.7)

It is clear that the quantum potential is zero, hence nothing
but the classical solutions may be retrieved by the semi-
classical analysis. Indeed, in this case the system (4.6) takes
the form8>><
>>:

8
N abb

0 ¼ 2κ2ab;
8
N ðaba0 þ a2b0Þ ¼ κ2ða2 − f2Þ þ 2κ3f þ κ5;
8
N b

2f0 ¼ 2bðκ3 − κ2fÞ:
(4.8)

To solve the above system of equations, let us for the
moment assume N ¼ 2 (this assumption will be justified
later) while we use the numerical values (2.27) for the κI’s.
Under these conditions, the first equation of (4.8) can be
immediately integrated giving

bðrÞ ¼ r; (4.9)

in which we have ignored an additive integration constant.
Using this result in the third equation of (4.8) we obtain

fðrÞ ¼ C1

r
; (4.10)

where C1 is an integration constant. Now, upon insertion of
these expressions for bðrÞ and fðrÞ in the second equation
of (4.8) we arrive at the following differential equation
for aðrÞ:

2raðrÞa0ðrÞ þ a2ðrÞ ¼ 1 − C2
1

r2
; (4.11)

which admits the solution

aðrÞ ¼
�
1þ C2

r
þ C2

1

r2

�
1=2

; (4.12)

where C2 is another constant of integration. A simple
calculation based on the above relations gives

2aba0b0 þ a2b02 þ b2f02 ¼ 1; (4.13)

which shows that the assumption N ¼ 2 is compatible with
the expression (2.19) for the lapse function. Now, if we
identify the integration constants with the charge and mass
parameters as C1 ¼ Q and C2 ¼ −2m, the line element
(2.1) takes the form of a RN black hole (2.25), as expected
in the case of vanishing quantum potential.

B. The two-dimensional subalgebra ðQ1;Q2Þ
In this subalgebra the wave function is given by (3.14)

for which again we have used the numerical values (2.27)
for the κI’s,

Sða; b; fÞ ¼ 2Q2 − 4Qbf þ 2a2b2 þ 2b2

b
;

Ωða; b; fÞ ¼ λffiffiffi
b

p : (4.14)

From (4.4) it is seen that the quantum potential is again
equal to zero. The equations of the system (4.6) become

8>><
>>:

8
N abb

0 ¼ 4ab;

8
N ðaba0 þ a2b0Þ ¼ 2þ 2a2 − 2Q2

b2 ;
8
N b

2f0 ¼ −4Q;

(4.15)

which, again after choosing N ¼ 2, can be easily integrated
providing the result

bðrÞ ¼ r; fðrÞ ¼Q
r
þC1; aðrÞ ¼

�
1þC2

r
þQ2

r2

�
1=2

:

(4.16)

We see that the standard form (2.25) of the classical RN
black hole solution can be recovered if one sets the
integration constant C1 ¼ 0 and identifies the integration
constant C2 with the mass parameter as C2 ¼ −2m. It
seems appropriate to mention that the solutions (4.9), (4.10)
and (4.12) of the three-dimensional subalgebra do not
contain any of the particular values of the essential
parameters of the RN black hole, but Q and m appear
as integration constants after solving the system. However,
in the solutions (4.16) the charge parameter enters directly
into the space-time geometry (not as an integration con-
stant) while the mass parameter is still an integration
constant. This is a reflection of the fact that none of the
constant values ðκ2; κ3; κ5Þ of the quantities ðQ2; Q3; Q5Þ
which span the three-dimensional subalgebra depends on
the essential constants, while in the two-dimensional case
ðQ1; Q2Þ, the constant κ1 is indeed essential.
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C. The two-dimensional subalgebra ðQ3;Q4Þ
In this case, the expression (3.22) gives the wave

function in terms of the Bessel functions. However, since
the Bessel functions can be written as a superposition of the
Hankel functions, we write the wave function as

Ψða; b; fÞ ¼ ða2 − f2Þ−2im½c1Hð1Þ
4imð4b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − f2

q
Þ

þ c2H
ð2Þ
4imð4b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − f2

q
Þ�; (4.17)

where Hð1Þ;ð2Þ
ν ðzÞ are the Hankel functions of the first and

second kind, respectively, and we have used the numerical
values (2.27) for κI’s. In the classical limit, i.e. for large
values of r, we have bðrÞ ∼ r, aðrÞ ∼ 1 and fðrÞ ∼ 0.
Under these conditions the argument of the aforesaid
Hankel functions takes a large value and therefore, in view
of the asymptotical behavior of the Hankel functions

which is Hð1Þ;ð2Þ
ν ðzÞ ∼ z−1=2e�i½z−ð2νþ1Þπ=4�, we can infer

the following form of the wave function in the semi-
classical approximation:

Ψða; b; fÞ ∼ 1ffiffiffi
b

p ða2 − f2Þ1=4 ða
2 − f2Þ−2ime4ib

ffiffiffiffiffiffiffiffiffi
a2−f2

p
:

(4.18)

Hence, comparing this expression with (4.1) we get

Ωða; b; fÞ ∼ 1ffiffiffi
b

p ða2 − f2Þ1=4 ; (4.19)

and

Sða; b; fÞ ¼ −2m lnða2 − f2Þ þ 4b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − f2

q
: (4.20)

From (4.19) and with the help of (4.4) one obtains the
quantum potential,

Qða; b; fÞ ¼ − 1

64b2ða2 − f2Þ ; (4.21)

thereby observing that, unlike the previous subsection, its
value is not equal to zero. Therefore, due to quantum
effects, some modifications are expected to appear upon
solving the system of equations (4.6). Using the expression
(4.20) this system takes the form8>>><

>>>:

8
N abb

0 ¼ 4abffiffiffiffiffiffiffiffiffi
a2−f2

p − 4ma
a2−f2 ;

8
N ðaba0 þ a2b0Þ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − f2

p
;

8
N b

2f0 ¼ − 4bfffiffiffiffiffiffiffiffiffi
a2−f2

p þ 4mf
a2−f2 :

(4.22)

If, as before, we choose the gauge N ¼ 2, the first and the
third equations of the above system give f0=f ¼ −b0=b
which can be immediately integrated to obtain

fðrÞ ¼ Q
bðrÞ ; (4.23)

where Q is an integration constant. With this relation at
hand, after some algebra with the first and the second
equations of (4.22), we get

8<
:

a0
a ¼ − Q2

a2b2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2b2−Q2

p þ m
a2b2−Q2 ;

b0
b ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

a2b2−Q2
p − m

a2b2−Q2 ;
(4.24)

which gives rise to

ðabÞ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2b2 −Q2

p
ab

; (4.25)

from which we obtain

a2b2 ¼ r2 þQ2; (4.26)

where a constant of integration has been set equal to zero.
Now, with a straightforward calculation based on the
system (4.24) and (4.23) we find

aðrÞ¼e−m=r

�
1þQ2

r2

�
1=2

; bðrÞ¼rem=r; fðrÞ¼Q
r
e−m=r:

(4.27)

Again we see that the essential constant m enters, in this
case, directly into the space-time metric while the essential
matter parameter Q appears as an integration constant. The
solutions (4.27) tend asymptotically to the RN line element
(2.25), however, unlike the RN solution, this one does not
exhibit a horizonlike singularity. Now, let us see what
happens in the limit of small r. In this limit the argument of
the Bessel functions in the wave function (3.22) is small.
According to the behavior zνðλ1 þ λ2z2 þOðz4ÞÞ for the
Bessel function with a small argument, the wave function
takes the form

Ψða; b; fÞ ¼ ½λ1 þ λ2b2ða2 − f2Þ�e4im ln b; (4.28)

which, with the notation of (4.1), gives

Ωða; b; fÞ ¼ ½λ1 þ λ2b2ða2 − f2Þ�; (4.29)

and

Sða; b; fÞ ¼ 4m ln b: (4.30)

Expression (4.29) yields a nonzero quantum potential of
the form

Qða; b; fÞ ¼ − λ2
4½λ1 þ λ2b2ða2 − f2Þ� (4.31)
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while with (4.30) the system (4.6) admits the solution

aðrÞ ¼ ð2mrþa0Þ1=2; bðrÞ ¼ βðconstÞ; fðrÞ ¼ const;

(4.32)

with a0 being an integration constant. This geometry
describes a homogeneous space-time whose Riemann
tensor has vanishing covariant derivative, and thus all its
higher derivative curvature scalars are zero. The Ricci
scalar is found to be 2

β2
while all other curvature scalars are

monomials of 2
β2
or zero. The classical curvature singularity

at r ¼ 0 is thus replaced by an innocuous coordinate
singularity, while the mass and the electric charge are
merged into the constant β uniquely describing the curva-
ture of the emerging semiclassical geometry.
At this point some further clarifications concerning the

interpretation of the above fact are in order. If someone
wished to attribute a meaning of singularity avoidance to it,
one should have at one’s disposal an appropriate Hilbert
space for the physical states of the model (solutions to the
Hamiltonian constraint), with a corresponding measure
which makes these states normalizable, and a set of
observables defined as linear operators on this space.
Since such a construction has not been carried out in this
work, we deter from adopting such a term.

D. The two-dimensional subalgebra ðQ5;Q6Þ
According to the wave function (3.29) we have

Sða;b;fÞ¼2a4b2þ2b2f4þ2a2b2ð1−2f2Þ−4Qbfþ2Q2

bða2−f2Þ ;

Ωða;b;fÞ¼ λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðf2−a2Þ

p ; (4.33)

in which we have used again the numerical values (2.27)
for the κI’s. A simple calculation based on the relation (4.4)
shows that Q ¼ 0, i.e. the quantum potential vanishes in
this case as well. Also, the system of equation (4.6) takes
the form

8>>><
>>>:

8
N abb

0 ¼ 4a½a4b2−2a2b2f2þb2f2ðf2−1Þþ2Qbf−Q2�
bða2−f2Þ2 ;

8
N ðaba0 þ a2b0Þ ¼ 2½a4b2þb2f4þa2b2ð1−2f2Þ−Q2�

b2ða2−f2Þ ;

8
N b

2f0 ¼ 4½−a4b2fþa2bðbfþ2bf3−QÞþfð−b2f4−QbfþQ2Þ�
bða2−f2Þ2 :

(4.34)

Because of the vanishing quantum potential, we expect that
the classical solutions satisfy the above equations. Indeed, a
combination of the first and third equations of the above
system gives

ðbfÞ0 ¼ bf −Q
bða2 − f2Þ ; (4.35)

in which we have chosen again the gauge N ¼ 2. If, for
the moment, we assume ðbfÞ0 ¼ 0, the above equation

yields bf ¼ Q. This condition is satisfied by the classical
solutions

bðrÞ ¼ r; fðrÞ ¼ Q
r
; (4.36)

whereby, using them in the second equation of (4.34),
we get

2raa0 þ a2 ¼ 1 −Q2

r2
; (4.37)

with the following solution for aðrÞ:

aðrÞ ¼
�
1þ A

r
þQ2

r2

�
1=2

: (4.38)

It is seen that after identifying the integration constant A
with the mass parameter as A ¼ −2m, we obtain the
standard form of the RN black hole line element (2.25).

V. EXPLANATION OF THE VANISHING OF THE
QUANTUM POTENTIAL

As it has become evident in the previous section, the
quantum potential Q is different from zero only in the
case where Q̂3 and Q̂4 are imposed as “simultaneous”
eigenoperators. In all other cases, the quantum potential
becomes zero. Since this vanishing can be considered as a
proof for a kind of consistency (since the semiclassical
solutions coincide with the classical ones), we are going, in
this section, to give an algebraic explanation for it.
Let us start with the eigenvalue problem

Q̂IΨ ¼ κIΨ ⇒ Q̂IðΩeiSÞ ¼ κIΩeiS

⇒ Q̂IΩþ iΩQ̂IS ¼ κIΩ: (5.1)

Due to the form ofQI (3.2), (5.1) can be split into a real and
an imaginary part,

iQ̂IS ¼ κI (5.2)

and

Q̂IΩ ¼ 0; (5.3)

respectively.
The quantum potential is just

Q ¼ 1

Ω
□Ω ¼ 1

Ω
Q̂cΩ ¼ 1

Ω
ðQ̂2

3 þ Q̂2Q̂5ÞΩ; (5.4)

where the last equation holds due to (3.4), (3.5) (which are
a consequence of both the constant potential parametriza-
tion and the measure which allows the linear operators to
have the derivatives on the far right). Thus, the first case of

T. CHRISTODOULAKIS et al. PHYSICAL REVIEW D 89, 044031 (2014)

044031-12



the Abelian 3 d subalgebra is clear: the Laplacian is zero
because (5.3) holds for each and every element of the
algebra (I ¼ 2; 3; 5), leading to a vanishing Q.
For the 2d subalgebras:
(1) (Q̂1, Q̂2).—It must hold that

Q̂1Ω ¼ 0 and Q̂2Ω ¼ 0: (5.5)

Thus, the quantum potential Q becomes (since
Q̂2Q̂5 ¼ Q̂5Q̂2)

Q ¼ 1

Ω
Q̂2

3Ω: (5.6)

By definition (3.2) and the choice of measure
(μ ¼

ffiffiffiffi
Ḡ

p
), the Q̂I’s have all derivations on the

far right. Moreover, by virtue of (2.14), we can see
thatQ3 can be written as a linear combination (with
functions) of Q1 and Q2, therefore dictating

Q̂3 ¼ fQ̂2 þ
1

2b
Q̂1: (5.7)

The latter relation means that also Q̂3Ω ¼ 0 and, as
a result, again Q ¼ 0.

(2) (Q̂2, Q̂3).—This case is straightforward: By
assumption

Q̂2Ω ¼ 0 and Q̂3Ω ¼ 0; (5.8)

which implies Q̂cΩ ¼ 0, thereby securing the van-
ishing of Q.

(3) (Q̂2, Q̂5).—In this case, one is left with Q ¼ 1
Ω Q̂

2
3Ω

and, apparently, a linear combination cannot be used
[i.e. Q3 ≠ AðqÞQ2 þ BðqÞQ5]. Nevertheless, the
situation can be resolved by invoking the existence
of the second Casimir invariant ~QC [Eq. (2.22)] of
the six-dimensional algebra [which, thankfully, is
identically zero in the differential representation
corresponding to (2.14), otherwise there would be
two quadratic constraints]:
Equation (5.3) holds for I ¼ 2 and I ¼ 5, i.e.

Q̂2Ω ¼ 0 and Q̂5Ω ¼ 0; (5.9)

additionally (2.22) can, demanding Hermiticity and
bearing in mind that ½Q̂3; Q̂4� ¼ 0, be written in
operator form as

Q̂2Q̂6 þ Q̂6Q̂2 þ
1

2
ðQ̂1Q̂5 þ Q̂5Q̂1Þ − 2Q̂4Q̂3 ≡ 0;

(5.10)

which, acting upon Ω yields [by virtue of (5.9)]

Q̂2Q̂6Ωþ 1

2
Q̂5Q̂1Ω − 2Q̂4Q̂3Ω ¼ 0: (5.11)

Due to the algebra satisfied by the QI’s (in
particular ½Q̂2; Q̂6� ¼ Q̂3, ½Q̂1; Q̂5� ¼ 2Q̂3) one
can bring Q̂2 and Q̂5 to the far right and thus
(5.11) reduces to

Q̂4Q̂3Ω ¼ 0: (5.12)

At this stage, it is easy to check that

Q̂4 ¼ ðf2 − a2ÞbQ̂2 þ bQ̂5; (5.13)

which means that also

Q̂4Ω ¼ 0: (5.14)

Thus, relations (5.12) and (5.14) imply that
Q̂3Ω ¼ iλΩ, with λ ∈ R since Q̂3Ω is imaginary
and Ω is real.
Let us now see what is the action of Q̂3 on the full
wave function Ψ:

Q̂3Ψ ¼ iλΨþ iΨQ̂3S: (5.15)

We also calculate [using (5.15)]

Q̂2
3Ψ ¼ −λ2Ψ − 2λΨQ̂3S −ΨðQ̂3SÞ2 þ iQ̂2

3S:

(5.16)

The quadratic constraint on the wave function is

Q̂2
3Ψþ Q̂2Q̂5Ψ − 4Ψ ¼ 0 (5.17)

(the order of Q̂2, Q̂5 is irrelevant since they
commute). By substitution of (5.16) into (5.17)
we get

− 2λΨQ̂3S −ΨðQ̂3SÞ2 þ iQ̂2
3S

þ ðκ2κ5 − 4 − λ2ÞΨ ¼ 0: (5.18)

If we break (5.18) into a real and an imaginary part,
we get

ðQ̂3SÞ2þ2λQ̂3Sþλ2þ4− κ2κ5 ¼ 0 and (5.19)

Q̂2
3S ¼ 0; (5.20)

respectively. Equation (5.20) indicates that Q̂3S is a
constant and therefore (5.20) is satisfied identically.
The trinomial (5.19) has the solution
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Q̂3S ¼ −λ� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − κ2κ5

p
: (5.21)

Under this, Eq. (5.15) becomes

Q̂3Ψ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − κ2κ5

p
Ψ ¼ κ3Ψ: (5.22)

So,Ψ is an eigenfunction of Q̂3 and (5.3) must hold
also for I ¼ 3, implying that Q̂3Ω ¼ 0 and
therefore Q ¼ 0.

(4) (Q̂3, Q̂5).—This is an easy case, since Q becomes
zero immediately by Q̂3Ω ¼ Q̂5Ω ¼ 0.

(5) (Q̂5, Q̂6).—Here Q̂5Ω ¼ Q̂6Ω ¼ 0, which means
that Q ¼ 1

Ω Q̂
2
3Ω. But, Q3 can be written as

Q̂3 ¼
f

a2 − f2
Q̂5 þ

1

bðf2 − a2Þ Q̂6; (5.23)

which leads to Q̂3Ω ¼ 0 and, consequently,
to Q ¼ 0.

VI. DISCUSSION

We have investigated the classical and quantum aspects
of a reparametrization invariant minisuperspace action
which describes the coupled Einstein-Maxwell system
under the assumption of spherical symmetry. We would
like to emphasize that our assumption of staticity is
somewhat redundant, since it is implied by spherical
symmetry in conjunction with the field equations (see
e.g. [24]). This is known as the generalized Birkhoff’s
theorem for electrovacuum. It states that solution (2.25) is
unique, and is valid outside any spherically symmetric,
charged matter distribution. Of course inside the aforesaid
distribution the equations of motion must be accordingly
modified and thus its solution is not (2.25) (see e.g. [25]).
At the classical level of our analysis, the independent

dynamical variable is the radial coordinate r while the two
unknown functions aðrÞ, bðrÞ appearing in the general
spherically symmetric line element, span, along with the
electromagnetic potential variable Aμ ¼ ðfðrÞ; 0; 0; 0Þ, the
configuration space of the (in principle) dynamical depen-
dent variables. The way the r-lapse function nðrÞ enters the
Lagrangian (2.6) and the line element (2.1) makes manifest
the invariance of the action under arbitrary parametrizations
r ¼ hð~rÞ. One can thus be led to the unique lapse para-
metrization nðrÞ ¼ NðrÞ

2a in which the potential VðqÞ
becomes constant, see (2.7). The corresponding super-
metric (2.8) describes a Minkowskian configuration space
manifold and admits the six Killing vector fields (2.9). With
their help we can, in the appropriate phase space, define the
conditional symmetries (2.14) which have a vanishing
Poisson bracket with the Hamiltonian (2.13) and are thus
constant on the constraint surface H ≈ 0 (2.18a). The

existence of the homothetic vector (2.10) provides us with
another rheonomic integral of motion (2.18b). It is note-
worthy and interesting that their counterparts in the velocity
phase space completely describe the classical solution
space as well as the two quadratic relations (2.20) and
(2.21) corresponding to the two existing Casimir invariants
(2.15) and (2.22) of the algebra spanned by the six QI’s.
Indeed, using (2.19) and the consistency relation
N ¼ d

dr

R
Ndr, we algebraically (i.e. without ever solving

the corresponding differential equations) acquire the
classical Reissner-Nordström solution (2.24), the quadratic
relations (2.20), (2.21) and the reparametrization invariance
since bðrÞ remains undefined. Thus, we have the general
solution of the Einstein-Maxwell equations purely in terms
of the symmetries of the corresponding minisuperspace
action.
At the quantum level, we demand Hermiticity under the

unique natural measure μ ¼
ffiffiffiffi
Ḡ

p
in order to turn the

conditional symmetries QI and the Hamiltonian constraint
H into operators (3.2), (3.5). In order to determine which of
the linear operators can be considered, we use the integra-
bility condition (3.7) which implies that only the elements
of certain subalgebras can be simultaneously applied on the
wave function Ψða; b; fÞ. We thus arrive at four distinct
families of quantum states (see the corresponding sub-
sections of Sec. III). Due to the well-known problems of
interpretation of the wave function, we turn, in Sec. IV, to
the semiclassical approximation in order to get a glimpse at
the fate of the classical singularity. We thus arrive at the
conclusion that the semiclassical equations of motion
corresponding to the asymptotic limit of the wave function
(4.17) (derived from the subalgebra Q̂3, Q̂4) give rise to
respective semiclassical geometries that contain no curva-
ture or horizonlike singularity (for similar results in the
context of loop quantum cosmology see [26]). A very
interesting occurrence is the vanishing of the quantum
potential Q in the other three cases, a fact that leads to the
semiclassical equations of motion giving rise to the
classical solution space. On the one hand, this is a negative
feature since it prohibits us from gaining some quantum
information at the semiclassical level; on the other hand, it
can also be considered as showing the consistency of the
quantum theory in consideration, and thus as a positive
occurrence. It is thus interesting to examine the reason for
this vanishing of the quantum potential. This is done in
Sec. V: The main reason is that the form of the wave
function Ψ ¼ ΩeiS dictates that whenever a first order
linear operator is applied as Q̂Ψ ¼ κΨ, the condition on Ω
is homogeneous, Q̂Ω ¼ 0. This, in conjunction with the
two Casimir invariants and the particular form of the
operators, fully explains the vanishing of the quantum
potential Q.
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