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The thermodynamics of a magnetized Kerr-Newman black hole is studied to all orders in the appended
magnetic fieldB. The asymptotic properties of themetric and other fields are dominated by themagnetic flux
that extends to infinity along the axis, leading to subtleties in the calculation of conserved quantities such as
the angular momentum and the mass. We present a detailed discussion of the implementation of aWald-type
procedure to calculate the angular momentum, showing how ambiguities that are absent in the usual
asymptotically flat casemay be resolved by the requirement of gauge invariance.We also present a formalism
from which we are able to obtain an expression for the mass of the magnetized black holes. The expressions
for themass and the angularmomentum are shown to be compatiblewith the first law of thermodynamics and
a Smarr-type relation. Allowing the appended magnetic fieldB to vary results in an extra term in the first law
of the form −μdB where μ is interpreted as an induced magnetic moment. Minimizing the total energy with
respect to the total chargeQ at fixed values of the angular momentum and energy of the seedmetric allows an
investigation of Wald’s process. The Meissner effect is shown to hold for electrically neutral extreme black
holes. We also present a derivation of the angular momentum for black holes in the four-dimensional STU
model, which is N ¼ 2 supergravity coupled to three vector multiplets.
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I. INTRODUCTION

Understanding the behavior of rotating black holes and
their ergoregions when immersed in magnetic fields forms
a central part of astrophysical theories of quasars, active
galactic nuclei and other objects containing black holes
(see, for example, [1–3]). Typically the magnetic fields,
which contribute a negligible amount of energy density
near the black hole, are treated as test fields on the
background of the Kerr solution of the vacuum Einstein
equations, as, for example, in the work of Wald [4]. While
perfectly justified astrophysically, it is not without interest
to treat the energy exchange between black hole and
magnetic field at the fully nonlinear level, and in particular
to ask to what extent the ideas of black hole thermody-
namics, which have proved so useful in the study of
quantum processes near black holes, may be extended to
this more general setting. This seems especially appropriate
since rotating black holes are believed to drag magnetic
field lines, inducing electric fields to flow and hence
currents to flow. For sufficiently strong magnetic fields
this may lead to the breakdown of the vacuum due to pair
creation [5,6].
These thoughts motivated a recent study [7] of the exact

metric and electromagnetic field of a magnetized Kerr-
Newman black hole, constructed using solution-generating
methods pioneered by Ernst [8]. Contrary to the widespread
belief that the asymptotic metric was approximately static
and Melvin-like, it was found that generically the metric

has ergoregions that extend all the way to infinity. The
complicated nature of the metric at infinity presented
difficulties in evaluating the total energy and angular
momentum of the system and in the treatment of the
thermodynamics. In this paper, we are able partially to
overcome these problems and to present expressions for the
total angular momentum J and total energy E of the system,
together with a form of the relevant Smarr relation and first
law in which variations of the appended magnetic field B
are fully taken into account. (The thermodynamics of the
Schwarzschild-Melvin black hole were discussed in [9].)
The plan of the paper is as follows. In Sec. II we discuss

the Wald procedure for evaluating the total angular
momentum J, and some subtleties that can arise in cases
such as the magnetized black holes that were not present for
the asymptotically flat geometries considered by Wald.
These lead to potential ambiguities in the definition of the
angular momentum. We argue that these may be resolved
by a careful consideration of the behavior of the conserved
angular momentum under gauge transformations. In
Sec. III we show how the electric charge and the angular
momentum may be conveniently evaluated by first per-
forming a Kaluza-Klein reduction on the azimuthal coor-
dinate ϕ, and then expressing the conserved Wald charge in
terms of three-dimensional quantities.
The definition of the mass of a black hole in an external

magnetic field is also somewhat problematical, on account
of the unusual asymptotic behavior of the metric and the

PHYSICAL REVIEW D 89, 044029 (2014)

1550-7998=2014=89(4)=044029(14) 044029-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.044029
http://dx.doi.org/10.1103/PhysRevD.89.044029
http://dx.doi.org/10.1103/PhysRevD.89.044029
http://dx.doi.org/10.1103/PhysRevD.89.044029


other fields. We discuss this in Sec. IV, where we present a
formalism, again based on the Kaluza-Klein reduction to
three dimensions, within which we are able to obtain an
expression for the mass. In Sec. V we evaluate our general
expressions for the angular momentum and the mass in the
case of the magnetized Kerr-Newman black holes. We
show that these results are consistent with the first law of
thermodynamics, in the case that the appended magnetic
field B is held fixed. In doing so, we essentially use the first
law to derive expressions for the angular velocity Ω and the
electrostatic potential Φ. 1 We then extend the discussion,
treating B also as a thermodynamic variable by introducing
an extra contribution −μdB in the first law, where μ has an
interpretation as an induced magnetic moment. The explicit
expressions for Ω, Φ and μ may be calculated exactly, but
their forms are rather complicated. However they simplify
considerably if one works to low orders in B or q. We show
also that the thermodynamic variables in the extended
system obey a Smarr-type relation.
In Sec. VI, we attempt to compare our thermodynamic

formalism with some work of Wald [10,11]. We minimize
the total energy Ewith respect to the total chargeQ, at fixed
values of the energy, angular momentum and magnetic field
of the black hole. Our result resembles that of Wald in
general form, but differs in detail.
In Sec. VII we examine some further properties of the

magnetized black holes, including the Meissner effect
whereby as one approaches extremality, the magnetic flux
penetrating the horizon vanishes. In other words, flux is
expelled [12]. We find, that if the total charge on the holeQ
vanishes, then the magnetic field on the horizon does
indeed vanish as one approaches extremality, consistent
with earlier work.
In Sec. VIII we extend our discussion of the conserved

angular momentum to the case of the STU supergravity
model, which comprises four-dimensional N ¼ 2 super-
gravity coupled to three vector multiplets. We apply our
results to the case of the magnetization of certain four-
charge static black holes that have been investigated
recently in [13]. The paper ends with conclusions
in Sec. IX.

II. CONSERVED CHARGES IN EINSTEIN-
MAXWELL THEORY

Here we present a discussion of some aspects of theWald
procedure Wald2 for calculating conserved charges,
applied to the case of the four-dimensional Einstein-
Maxwell theory. Our motivation for doing so will be as
part of an investigation of the thermodynamics of the

magnetized Kerr-Newman black holes that were recently
studied in [7]. We shall find that some subtleties arise in this
context that make it necessary to pay close attention to
some of the details of the Wald procedure.
Starting from the Einstein-Maxwell Lagrangian

L4 ¼
1

16π
ðR � 1 − 2 � F∧FÞ; (2.1)

and following a calculation developed by Wald [10,11],
one can use the Noether procedure to derive a current J ,
given by

J ¼ −d � dξ − 4 � F∧dðξμAμÞ; (2.2)

where ξ ¼ ξμdxμ and ξμ∂μ is a Killing vector. 2 Since
dJ ¼ 0, we can write J ¼ −dP and hence derive the
conserved charge

Q½ξ� ¼ 1

16πG

Z
S2
P: (2.3)

From this point on we shall work in units where G ¼ 1.
One way to obtain a local expression for P is to note that

the Maxwell equation d � F ¼ 0 allows us to extract an
exterior derivative from the second term in (2.2) and write

P ¼ �dξþ 4 � FðξμAμÞ: (2.4)

This is the the form in which the conserved charge was
obtained in [10].
An objection one may raise to the expression (2.4) is that

it is not invariant under gauge transformations of A.
Specifically, if we send A → Aþ dλ, then we shall have

P → P þ 4 � Fðξμ∂μλÞ: (2.5)

Since the Killing vector ξμ generates a symmetry of the
solution, it follows that the Lie derivative of F will vanish,
LξF ¼ 0. We may assume that a gauge choice for A is made
so that LξA ¼ 0 also. However, there can still remain a
residual gauge freedom that preserves this choice, namely
when the gauge parameter λ satisfies

ξμ∂μλ ¼ c; (2.6)

where c is a constant. This can be seen from the fact
that gauge transformations preserving LξA ¼ 0 must sat-
isfy Lξdλ ¼ ðiξdþ diξÞdλ ¼ diξdλ ¼ dðξμ∂μλÞ ¼ 0. 3 The
conserved charge in (2.3) will then undergo a gauge
transformation of the form

1To be precise, Ω and Φ represent the differences Ω ¼ ΩH −
Ω∞ andΦ ¼ ΦH − Φ∞ between the values on the horizon and the
values at infinity.ΩH andΦH are easily computed directly, but the
asymptotics of the magnetized black hole solutions make it
difficult to define Ω∞ and Φ∞ directly.

2We shall present a detailed derivation in Sec. VIII of the
analogous result in the more complicated context of the STU
supergravity model.

3Here iξ denotes the interior product of ξ ¼ ξμ∂μ with a p-form
ω ¼ ð1=p!Þωμ1…μpdx

μ1∧ � � �∧dxμp . Its action is defined by
iξω ¼ ð1=ðp − 1Þ!Þξμ1ωμ1…μpdx

μ2∧ � � �∧dxμp . Note that if ω
and ν are a p-form and a q-form, then
iξðω∧νÞ ¼ ðiξωÞ∧νþ ð−1Þpω∧ðiξνÞ. The Lie derivative of
any p-form is given by Lξω ¼ ðdiξ þ iξdÞω.
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Q½ξ� → Q½ξ� þ cQ; (2.7)

where Q ¼ 1=ð4πÞ R �F is the electric charge.
An alternative way of extracting an exterior derivative

from the expression (2.2) for J is to introduce a dual gauge
potential ~A such that �F≡ ~F ¼ d ~A, and then write
J ¼ −d ~P, where

~P ¼ �dξþ 4 ~A∧dðξμAμÞ: (2.8)

It is evident that the corresponding conserved charge ~Q½ξ�
obtained by substituting ~P into (2.3) will be invariant under
the residual gauge transformations of A, which satisfy (2.6).
Our principle interest in this paper will be to apply the

Wald construction to the calculation of the angular momen-
tum. The two alternative expressions (2.4) and (2.8) for a
2-form whose exterior derivative gives J then essentially
correspond to the standard Wald expressions that one
obtains by using either the original Lagrangian (2.1)
[leading to (2.4)] or else the dual Lagrangian 4

~L4 ¼
1

16πG
ðR � 1 − 2 � ~F∧ ~FÞ; (2.10)

where ~F ¼ �F ¼ d ~A. To see this, consider the analogue of
the Wald expression (2.4) that one would derive from the
dual Lagrangian (2.10):

Pdual ¼ �dξþ 4 � ~Fðξμ ~AμÞ: (2.11)

The difference between this and ~P [defined in (2.8)] is
therefore

Pdual − ~P ¼ 4 � ~Fiξ ~A − 4 ~A∧diξA: (2.12)

Assuming that ξμ is a Killing vector, so that the Lie
derivative of the field strength F in a solution vanishes,
LξF ¼ ðdiξ þ iξdÞF ¼ 0, we may choose gauges where
LξA ¼ 0 and Lξ

~A ¼ 0. In particular, this means that
diξA ¼ −iξdA ¼ −iξF. Using also that � ~F ¼ −F, we
see that

Pdual − ~P ¼ −4iξ ~AF þ 4 ~A∧iξF;
¼ −4iξð ~A∧FÞ: (2.13)

In particular, if we consider the case when ξ ¼ ∂=∂ϕ
is the Killing vector that generates azimuthal rotations, then
it follows from the final line of (2.13) that ðPdual − ~PÞ
has no pullback onto the 2-sphere over which we integrate
to obtain a conserved charge. This means that Pdual
and ~P would give identical expressions for the angular
momentum.
In the following section, we shall discuss the dimen-

sional reduction of the theory, and its solutions, on the
azimuthal Killing vector ∂=∂ϕ. This will provide us with a
formalism that is particularly well adapted to computing the
angular momentum for the solutions we are interested in.

III. CONSERVED CHARGE, ANGULAR
MOMENTUM AND MASS VIA DIMENSIONAL

REDUCTION

A convenient way of calculating the conserved charges is
to perform a Kaluza-Klein dimensional reduction on the ϕ
coordinate. Thus we write 5

ds24 ¼ e2φds̄23 þ e−2φðdϕþ 2ĀÞ2;
A ¼ Āþ χðdϕþ 2ĀÞ; (3.1)

where, whenever there is an ambiguity, we place a “bar”
on three-dimensional quantities to distinguish them from
the unbarred four-dimensional ones. Note that F ¼
F̄ þ dχ∧ðdϕþ 2ĀÞ. The equations of motion for the
three-dimensional fields then follow from the dimension-
ally reduced Lagrangian

L3 ¼
Δϕ
16π

ffiffiffiffiffiffi−ḡp ½R̄ − 2ð∂φÞ2 − 2e2φð∂χÞ2
− e−4φF̄ 2 − e−2φF̄2�; (3.2)

F̄ ¼ dĀ; F̄ ¼ dĀþ 2χdĀ; (3.3)

where Δφ is the period of the azimuthal coordinate φ. The
equations of motion for Ā and Ā imply that we can write

e−2φ�F̄ ¼ dψ ; e−4φ�F̄ ¼ dσ − 2χdψ : (3.4)

Here, ψ and σ are the axionic scalar duals of the 1-form
potentials Ā and Ā.

A. Conserved electric charge

Since �F ¼ e−2φ�̄ F̄∧ðdϕþ 2ĀÞ þ e2φ�̄dχ, the con-
served electric charge is given by

4The dual Lagrangian can be obtained by adding a Lagrange
multiplier term to (2.1) and writing

L ¼ 1

16πG
ðR � 1 − 2 � F∧F þ 4d ~A∧FÞ; (2.9)

where now F and ~A are viewed as fundamental fields. The
equation of motion for ~A implies the usual Bianchi identity for F.
If instead we eliminate F via its (algebraic) equation of motion,
we obtain (2.10). The original and the dual Lagrangian differ on
shell by the total derivative term −4ðd ~A∧dAÞ=ð16πGÞ.

5Note that the reduction ansatz for A is compatible with the
partial gauge condition LξA ¼ 0 that we discussed previously,
since iξA ¼ χ and iξdA ¼ −dχ, so ðdiξ þ iξdÞA ¼ 0.
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Q ¼ 1

4π

Z
S2
�F ¼ Δϕ

4π

Z
e−2ϕ�̄F̄;

¼ Δϕ
4π

Z
dψ ¼ Δϕ

4π
½ψ �θ¼π

θ¼0: (3.5)

Note that here, and henceforth, we are allowing for the
possibility that the periodΔφ of the azimuthal coordinate ϕ
might be different from 2π. In particular, this happens in the
case of the magnetized black hole solutions that we shall be
considering in this paper.

B. Conserved angular momentum

We first calculate the angular momentum J ¼ Q½ξ� using
(2.3) with P given by (2.4), and with ξ ¼ ∂=∂ ~ϕ where ~ϕ is
the canonically normalized azimuthal angular coordinate
with period 2π. It will, in general, be related to φ by
φ ¼ α ~φ, with α ¼ Δϕ=ð2πÞ. As a 1-form, ξ will be given,
in terms of the three-dimensional quantities, by

ξ ¼ αe−2φðdϕþ 2ĀÞ; (3.6)

and furthermore ξμAμ ¼ αχ, so from (2.4)

P ¼ �½2αe−2φF̄ þ 4αχF̄

− 2αðe−2φdφ − 2χdχÞ∧ðdϕþ 2ĀÞ�: (3.7)

Thus using (3.4) we have

P ¼ 2αðe−4ϕ�̄F̄ þ 2χe−2ϕ�̄ F̄Þ∧ðdϕþ 2ĀÞ
− 2αð�̄dϕ − 2χe2ϕ�̄dχÞ;

¼ 2αdσ∧ðdϕþ 2ĀÞ − 2αð�̄dϕ − 2χe2ϕ�̄dχÞ: (3.8)

Only the first term has a nonzero pullback onto the
2-sphere, and so this gives a conserved angular momentum

J ¼ 1

16π

Z
S2
P ¼ αΔϕ

8π

Z
dσ ¼ ðΔϕÞ2

16π2
½σ�θ¼π

θ¼0: (3.9)

As we discussed in Sec. II, a different choice for the
definition of the angular momentum is to perform a
dualization of the four-dimensional field strength F, and
work instead with ~F ¼ �F as the fundamental electro-
magnetic field strength. As discussed in [7], in the
three-dimensional language this dualization amounts to
interchanging the three-dimensional fields χ and ψ . At the
same time, the field σ must be redefined, so that in the dual
formulation we shall have tilded fields given in terms of the
original ones by [7]

~χ ¼ ψ ; ~ψ ¼ χ; ~σ ¼ σ − 2χψ : (3.10)

It follows that in this dualized formalism, the angular
momentum defined in (3.9) would be replaced by

~J ¼ ðΔϕÞ2
16π2

½ ~σ�θ¼π
θ¼0: (3.11)

It is instructive to look at the behavior of the two
expressions under gauge transformations. The quantity P
defined in (2.3) which we used in order to calculate the
angular momentum (3.9) is in general gauge dependent,
since the potential Aμ appears explicitly in its construction.
This can be seen in the three-dimensional language as
follows. If we perform a gauge transformation A → A0 ¼
Aþ dλ on the four-dimensional gauge potential, then this
will be compatible with the Kaluza-Klein reduction ansatz
(3.1) for A provided that λ is restricted to have the form

λ ¼ λ̄þ cϕ; (3.12)

where λ̄ depends only on the three-dimensional coordinates
and c is a constant. Specifically, comparing with the
reduction ansatz

A0 ¼ Ā0 þ χ0ðdϕþ 2Ā0Þ; (3.13)

we see that the three-dimensional fields will transform as

χ0 ¼ χ þ c; Ā0 ¼ Ā − 2cĀþ dλ̄; Ā0 ¼ Ā:

(3.14)

Since F̄ ¼ dĀþ 2χdĀ, it follows that

F̄0 ¼ dĀ0 þ 2χ0dĀ ¼ dĀþ 2χdĀ ¼ F̄; (3.15)

and therefore from (3.4) we see that

ψ 0 ¼ ψ : (3.16)

Since we also have F̄ 0 ¼ F̄ it also follows from (3.4) that

dσ0 − 2χ0dψ 0 ¼ dσ − 2χdψ ; (3.17)

and so using χ0 ¼ χ þ c and ψ 0 ¼ ψ we see that

σ0 ¼ σ þ 2cψ : (3.18)

It follows from (3.18) that if we perform the gauge
transformation in (3.12) that is parametrized by the constant
c, then the angular momentum given by (3.9) will trans-
form to

J0 ¼ J þ cQ
Δϕ
2π

; (3.19)

where Q is the conserved electric charge given by (3.5).
If, on the other hand, we consider the angular momentum

~J defined by (3.11), then we see that under the gauge
transformations parametrized by c we shall have
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~σ0 ¼ σ0 − 2χ0ψ 0 ¼ σ þ 2cψ − 2χψ − 2cψ

¼ σ − 2χψ ¼ ~σ; (3.20)

and so ~J is gauge invariant. To be more precise, the
expression (3.11) for ~J is invariant under gauge trans-
formations of the original potential A. Conversely, the
expression (3.9) for J is invariant under gauge trans-
formations of the dual potential ~A. Correspondingly, J
does depend on gauge transformations of A, whilst ~J
depends on gauge transformations of ~A.
In the reduced three-dimensional description, the

residual gauge transformations of the dual potential ~A,
preserving Lξ

~A ¼ 0, correspond to sending

ψ → ψ þ b; χ → χ; σ → σ; (3.21)

where b is a constant parameter. This implies that the
~σ ≡ σ − 2χψ , which is invariant under the original residual
gauge transformations, will transform as

~σ → ~σ − 2bχ (3.22)

under the dual residual gauge transformations. However, if
there is no magnetic charge, and thus ½χ�θ¼π

θ¼0 ¼ 0, then the
angular momentum ~J calculated using (3.11) will be
invariant also under (3.21).
It should be noted also that if we are able to make a

gauge transformation of the form (3.14) that sets χ to zero
on the z axis, then the gauge-invariant expression (3.11) for
the angular momentum of an electrically charged solution
will coincide with the expression, in general gauge depen-
dent, following from (3.9).

IV. MASS OF THE KERR-NEWMAN-MELVIN
BLACK HOLES

In this section, we shall be describing an approach to
calculating the mass of the magnetized black holes by
means of a dimensional reduction to three dimensions. In
order to avoid a profusion of annotations on the three-
dimensional equations we shall, in this section only, adopt
the convention that four-dimensional quantities are denoted
with hats, while three-dimensional ones are unadorned.

A. Hamiltonian formalism

The original four-dimensional theory is given by

Î ¼ 1

16πG4

Z
M̂
ðR̂ − F̂2Þ

ffiffiffiffiffiffi−ĝp
d4xþ 1

8πG4

I
∂M̂

K̂
ffiffiffiffiffi
jγ̂j

p
d3x;

(4.1)

where K̂ is the extrinsic curvature of the three-dimensional
boundary ∂M̂, which has the induced metric γ̂μν. Upon
dimensional reduction on a circle using the standard
Kaluza-Klein ansatz

dŝ24 ¼ e2φds23 þ e−2φðdϕþ 2AÞ2;
Â ¼ Aþ χðdϕþ 2AÞ; (4.2)

we obtain the three dimensional theory

I ¼ 1

16πG3

Z
M
ðR − 2□φ − 2ð∂φÞ2 − 2e2φð∂χÞ2

− e−4φF 2 − e−2φF2Þ ffiffiffiffiffiffi−gp
d3x

þ 1

8πG3

I
∂M

ðK þ nμ∂μφÞ
ffiffiffiffiffi
jγj

p
d2x;

G4 ¼ ðΔϕÞG3; (4.3)

whereΔϕ is the period of the reduction coordinate φ. In the
following, we set G4 ¼ 1, and therefore G3 ¼ 1=ðΔϕÞ.
After integration by parts,

I ¼ Δϕ
16π

Z
M
ðR − 2ð∂φÞ2 − 2e2φð∂χÞ2 − e−4φF 2 − e−2φF2Þ

×
ffiffiffiffiffiffi−gp

d3xþ Δϕ
8π

I
∂M

K
ffiffiffiffiffi
jγj

p
d2x: (4.4)

Adding Lagrange multipliers 4dψ∧ðF − 2χF Þ þ 4dσ∧F
and eliminating F and F , we arrive at the dualized
Lagrangian describing three-dimensional gravity coupled
to a sigma model

I ¼ Δϕ
16π

Z
M
ðR − 2ΣABðϕÞ∂ϕA∂ϕBÞ ffiffiffiffiffiffi−gp

d3x

þ Δϕ
8π

I
∂M

K
ffiffiffiffiffi
jγj

p
d2x; (4.5)

where φA represents all the scalars. The sigma-model
metric is

dΣ2 ¼ dφ2 þ e2φðdχ2 þ dψ2Þ þ e4φðdσ − 2χdψÞ2: (4.6)

As stated before, the dualized action differs from the
original one by a total derivative term, and this will modify
the definition of energy. 6 The original Lagrangian cannot
easily be used to calculate the energy because the corre-
sponding Hamiltonian contains terms such as

H
S∞

Adψ andH
S∞

Adσ, whose evaluation is unclear. However, these term
are absent in the dualized Lagrangian, rendering the
calculation more well defined. We shall therefore carry
out our calculations, and give a thermodynamic interpre-
tation, using the dualized form of the Lagrangian. This can
be viewed as a choice of regularization scheme for giving a
definition of mass that is applicable in the rather unusual
asymptotic geometry of the magnetized black hole solution.

6It is easy to see this in the Wald procedure, where adding a
total derivative term dν to the Lagrangian will shift the canonical
charge associated with Killing vector ξ by iξν.
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In the ADM decomposition, the three-dimensional
metric is recast into the form

ds23 ¼ −N2dt2 þ hijðdxi þ NidtÞðdxj þ NjdtÞ: (4.7)

It follows that the Hamiltonian defined on the constant t
surface takes the form [14]

H ¼
Z
Σt
d2xðNHþ NiHiÞ

−
I
St∞

dx
ffiffiffi
σ

p �
Δϕ
8π

Nkþ 2ffiffiffi
h

p NiPijnj
�
; (4.8)

where H and Hi are the total Hamiltonian constraint and
the momentum constraint. Using the extrinsic curvature Kij
of Σt, the momentumPij, conjugate to hij, can be expressed
as

Pij ¼
Δϕ
16π

ffiffiffi
h

p
ðKij − KhijÞ;

Kij ¼
1

2N
ðh
:

ij − 2∇ðiNjÞÞ; (4.9)

where ∇i is defined with respect to hij. St∞, defined at
t ¼ const and r ¼ ∞, is a hypersurface inside Σt with
outward unit normal vector ni. The quantity k≡ hij∇inj is
the trace of the extrinsic curvature of St∞. In general, the
above expression for the Hamiltonian diverges. To obtain a
meaningful result, we must regularize the Hamiltonian by
making a subtraction in the surface term:

H¼
Z
Σt
d2xðNHþNiHiÞ

−
I
St∞

dx
ffiffiffi
σ

p �
Δϕ
8π

Nðk−k0Þþ
2ffiffiffi
h

p Nipijnj
�
; (4.10)

where k0 is the extrinsic curvature of St∞ embedded in a
certain two-dimensional reference background.

B. Mass of the Kerr-Newman black hole

Before computing the mass of the Kerr-Newman-Melvin
black hole, we first show how the three-dimensional
Hamiltonian we have derived reproduces the standard mass
for the Kerr-Newman black hole.
On shell, we have H ¼ Hi ¼ 0, and the Hamiltonian

receives contributions only from the boundary terms.
According to the reduction ansatz (4.2), the three-dimen-
sional metric induced from the four-dimensional Kerr-
Newman black hole is given by

ds23KN ¼ −Δsin2θdt2 þ Σsin2θ
�
dr2

Δ
þ dθ2

�
;

ρ2 ¼ r2 þ a2cos2θ;

Δ ¼ r2 − 2mrþ a2 þ q2;

Σ ¼ ðr2 þ a2Þ2 − a2Δsin2θ: (4.11)

This 3-metric is static, and so pij ¼ 0. The extrinsic
curvature of Str¼r0 in Σt can be computed, giving

k ¼ 1ffiffiffi
σ

p ∂ ffiffiffi
σ

p
∂n ¼ 1

2 sin θ

ffiffiffiffi
Δ
Σ

r ∂rΣ
Σ

����
r¼r0

; (4.12)

where σ ¼ gθθ is the determinant of the one-dimensional
boundary metric and ∂=∂n is the derivative with respect to
the unit normal in the radial direction at r ¼ r0.
To compute k0, we recall that the reference metric for the

four-dimensional Kerr-Newman black hole is the four-
dimensional Minkowski metric, which upon dimensional
reduction gives rise to the three-dimensional reference
metric

ds2 ¼ −R2sin2θdt2 þ R4sin2θ

�
dR2

R2
þ dθ2

�
: (4.13)

The calculation of k0 requires us to embed Str¼r0 into the
above background in such a way that the metric on Str¼r0
induced from the reference metric should be isometric to
the metric on Str¼r0 induced from Σt. Thus the t ¼ constant
boundary at R ¼ R0 in the reference metric should be
matched to the t ¼ constant boundary at r ¼ r0 in the
reduction of the Kerr-Newman metric, implying

R4
0 ¼ Σjr¼r0 : (4.14)

This gives

k0 ¼
1ffiffiffiffiffi
σ0

p ∂ ffiffiffiffiffi
σ0

p
∂n ¼ 2ffiffiffi

Σ
p

sin θ

����
r¼r0

; (4.15)

where σ0 ¼ gθθ is the determinant of the one-dimensional
boundary metric in the reference metric (4.13). Bearing in
mind that the azimuthal coordinate φ has period Δφ ¼ 2π
in the Kerr-Newman metric, we therefore find from (4.10)
that

EKN ¼ − 1

4

I
St∞

dx
ffiffiffi
σ

p
Nðk − k0Þ ¼ m; (4.16)

which reproduces the mass for the Kerr-Newman
black hole.

C. Mass of the Kerr-Newman-Melvin black hole

We now turn to the calculation of the the mass of the
Kerr-Newman-Melvin black hole. The calculation closely
resembles the previous case, since the dimensionally
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reduced 3-metric of the Kerr-Newman-Melvin black hole is
identical to that for the Kerr-Newman case, given in (4.11).
The three-dimensional evaluation of the mass differs in
only one respect, namely that the period Δφ of the
azimuthal coordinate is no longer 2π, and so the mass is
now given by

EKNM ¼ Δϕ
2π

m: (4.17)

D. Euclidean action

The Lorentzian action is related to the Hamiltonian by

I ¼
Z

d4xðPijh
:

ij þ πAϕ
: AÞ −

Z
dtH: (4.18)

Therefore, for stationary solutions, the Euclidean action is
given by

IE ¼ βH: (4.19)

The Hamiltonian will include a contribution from the
horizon. The total on-shell Hamiltonian then takes the
form [14]

H ¼ −
I
St∞

dx
ffiffiffi
σ

p �
Δϕ
8π

Nðk − k0Þ þ
2ffiffiffi
h

p Nipijnj
�

−
I
StH

dx
ffiffiffi
σ

p �
Δϕ
8π

ni∂iN − 2ffiffiffi
h

p Nipijnj
�
: (4.20)

The first is equal to the energy E, and the second term gives
rise to −TS. Thus the Euclidean action of the dualized
action is equal to the Helmholtz free energy F ¼ E − TS,
suggesting that the dualized action provides a canonical
ensemble description for black-hole thermodynamics.

V. CONSERVED CHARGES FORKERR-NEWMAN-
MELVIN BLACK HOLES

A. Kerr-Newman black holes

Before turning to the magnetized black hole metric, let us
first illustrate the three-dimensional procedure for calculat-
ing the conserved charges by considering the original four-
dimensional Kerr-Newman solution itself, for which the
reduction to three dimensions gives 7

ds̄23 ¼ sin2θΣ
�
dr2

Δ
þ dθ2

�
− Δsin2θdt2;

χ ¼ aqr sin2θ
ρ2

; ψ ¼ −qðr2 þ a2Þ cos θ
ρ2

;

σ ¼ −
2am cos θ½r2ð3 − cos2θÞ þ a2ð1þ cos2θÞ�

ρ2

− 2a3q2r cos θsin4θ
ρ4

; (5.1)

where

ρ2 ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2mrþ a2 þ q2;

Σ ¼ ðr2 þ a2Þ2 − a2Δsin2θ: (5.2)

For the mass, we saw that (4.16) gave the expected result

E ¼ m: (5.3)

The angular velocity and the electrostatic potential on the
horizon are given, in the three-dimensional calculation, by

Ω ¼ −2ikĀjr¼rþ ¼ a
r2þ þ a2

;

ΦH ¼ −ikĀjr¼rþ ¼ qrþ
r2þ þ a2

: (5.4)

The electric charge and angular momentum, given by (3.5)
and (3.9), are

Q ¼ 1

2
½ψ �θ¼π

θ¼0 ¼ q; J ¼ 1

4
½σ�θ¼π

θ¼0 ¼ am;

~J ¼ 1

4
½ ~σ�θ¼π

θ¼0 ¼ am; (5.5)

since in this Kerr-Newman example the period Δφ of the
azimuthal coordinate φ is 2π.
As we discussed in Sec. III B, the expression for J given

in (3.9) is not invariant under the residual gauge trans-
formations

χ → χ þ c; σ → σ þ 2cψ ; ψ → ψ ; (5.6)

and in fact, from (3.19), we will have

J → J þ cQ (5.7)

in this case. Thus the fact that J in (5.5) has turned out to
give the correct result for the angular momentum is a
consequence of happy choice of gauge; as can be seen from
(5.1), it is the one in which χ goes to zero on the axis at
θ ¼ 0 and θ ¼ π, thus implying that it is regular there.
Furthermore, it goes to zero at infinity.
By contrast, as we discussed in Sec. III B, the expression

(3.11) for ~J is invariant under the residual gauge trans-
formations (5.6), and so it is not subject to the same
ambiguities.
Finally, we remark that a simple way to calculate the

angular momentum of a dyonically charged Kerr-Newman

7Expressions for the three-dimensional fields ψ , χ and σ can be
found from those in [7], by specializing to the case where the
external magnetic field is set to zero. Note that some sign
conventions in [7], associated with the definition of the orienta-
tion of the 2-spheres, differ from ours.
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black hole is to perform first a duality transformation to the
case with purely electric charge, then and use the gauge-
invariant expression (3.11).

B. Charges and thermodynamics for
the Kerr-Newman-Melvin metrics

Here, we use the Kaluza-Klein formalism of Sec. III to
calculate the electric charge and angular momentum for the
Kerr-Newman-Melvin solutions, which take the form

ds2 ¼ H
�
−fdt2 þ R2

�
dr2

Δ
þ θ2

��
þ Σsin2θ

HR2
ðdϕ − ωdtÞ2;

A ¼ Φ0dtþ Φ3ðdϕ − ωdtÞ: (5.8)

The various functions appearing in the metric and gauge
potential are rather complicated, and we refer the reader to
[7], where they are presented. The charge and angular
momentum are again given by (3.5) and (3.9) or (3.11),
where expressions for the scalar fields σ, χ and ψ can be
found in Appendices A and B of [7]. The period of φ,
determined by the requirement of there being no conical
singularity on the axis atθ ¼ 0 andθ ¼ π, is nowgivenby [7]

Δϕ ¼ 2π

�
1þ 3

2
q2B2 þ 2aqmB3 þ

�
a2m2 þ 1

16
q4
�
B4

�
:

(5.9)

It is straightforward to see that the expression for χ given
in [7] is nonvanishing on the axis at θ ¼ 0 and θ ¼ π: we
have

χjθ¼0 ¼ χjθ¼π

¼ γ ≡ πB
4Δϕ

½12q2 þ 24amqBþ ðq4 þ 16a2m2ÞB2�:
(5.10)

It is therefore natural, in the light of the previous calculation
for the Kerr-Newman black hole, to make a gauge trans-
formation of the form (5.6) with c ¼ −γ before evaluating
the gauge-dependent expression (3.9) for the angular
momentum. Assuming that we do this, we then find

Q ¼ qþ 2amB − 1

4
q3B2;

J ¼ ~J ¼ am − q3B − 3

2
amq2B2

− 1

4
qB3ð8a2m2 þ q4Þ

− 1

16
amB4ð16a2m2 þ 3q4Þ: (5.11)

(The calculation ofQ is discussed in [7].) By having chosen
the gauge where χ vanishes on the axis, we obtain the same
expression J for the angular momentum as we get from the
gauge-invariant expression ~J given by (3.11).
For the mass, we see from (4.17) that result for the Kerr-

Newman-Melvin metric will be just the usual factor m,
however now scaled by a factor of ðΔφÞ=ð2πÞ, where Δφ is
the period of the azimuthal angle φ, given in (5.9). Thus we
find that the mass is given by

E ¼ m

�
1þ 3

3
q2B2 þ 2aqmB3 þ

�
a2m2 þ 1

16
q4
�
B4

�
:

(5.12)

The area AH of the outer horizon and the surface gravity
κ can be straightforwardly calculated from the Kerr-
Newman-Melvin metrics given in [7], leading to

AH ¼ 4π

�
1þ a2m2B4 þ 2amB3qþ 3B2q2

2
þ B4q4

16

�
ða2 þ ðmþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2 − q2

q
Þ2Þ;

κ

8π
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2 − q2

p
8πða2 þ ðmþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2 − q2

p
Þ2Þ

: (5.13)

Assuming for now that we hold the external magnetic
field B fixed, we can expect that the first law should take
the form

dE ¼ κ

8π
dAH þΩdJ þ ΦdQ; (5.14)

where Ω ¼ ΩH −Ω∞ is the difference between the angular
velocity of the horizon and the angular velocity at infinity,
and Φ ¼ ΦH − Φ∞ is the potential difference between the
horizon and infinity. Because of subtleties associated with
the asymptotic structure of the Kerr-Newman-Melvin
metrics at infinity it is not obvious how to calculate Ω∞

and Φ∞. We can, however, proceed by using our results
above for the other thermodynamic quantities, and then
seeking solutions for Φ and Ω such that the first law (5.14)
holds. We find that solutions do indeed exist. This is in fact
nontrivial, since with three independent parameters being
varied in (5.14) we have three equations for the two
unknowns Ω and Φ. 8 The solutions for Ω and Φ are rather

8The fact that a solution exists for Ω and Φ also provides
nontrivial support for the validity of our expression (5.12) for the
mass of the Kerr-Newman-Melvin solution.
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complicated, and we shall not present them in detail here.
Later, we shall present leading-order terms in Ω and Φ in
useful approximations.
Firstly, however, we remark that we can also allow B to

become an additional thermodynamic variable in the first
law, which will now be generalized to

dE ¼ κ

8π
dAH þ ΩdJ þ ΦdQ − μdB; (5.15)

where μ has the interpretation of being the magnetic
moment of the system. (Analogous expressions have been
obtained by for the case of Einstein-Dilaton-Maxwell
theory in the Kaluza-Klein case by Yazadjiev [15].)
Again, it is nontrivial that a solution for μ exists.
Having obtained μ, which is also rather complicated in
general, it is straightforward to verify that the various
thermodynamic quantities satisfy the Smarr-like relation

E ¼ κ

4π
AH þ 2ΩJ þ ΦQþ μB: (5.16)

As we mentioned above, the solutions for Ω, Φ and μ are
rather complicated in general. It is instructive to look at the
leading-order forms of these quantities. Up to linear order
in q, we find

μ ¼ aqð1þ a2m2B4Þ þOðq2Þ: (5.17)

To linear order in B, we find

Ω ¼ a
r2þ þ a2

− 2qBrþ
r2þ þ a2

þOðB2Þ;

Φ ¼ qrþ
r2þ þ a2

þ 3aq2B
ðr2þ þ a2Þ þOðB2Þ: (5.18)

Note that from (5.17) we have, to lowest order, that
μ ¼ Jq=m, reproducing the gyromagnetic ratio g ¼ 2 as
found by Carter [16]. We also see that the second term in
the expression for Ω in (5.18) agrees with the standard
formula for the Larmor precession frequency ΩL ¼ μB=J,
in the limit that we may approximate rþ by 2m.

C. The case q ¼ −amB

It was shown in [7] that in general the magnetized Kerr-
Newman black holes have an ergoregion that extends out to
infinity close to the axis of rotation. A special case arises if

the charge parameter q of the original Kerr-Newman
solution is chosen to satisfy [7]

q ¼ −amB; (5.19)

where m and a are the mass and rotation parameters of the
Kerr-Newman metric. Under these circumstances we find
that the conserved charge and angular momentum, given in
general by (5.11), simplify considerably, and become

Q ¼ amB

ffiffiffiffiffiffiffi
Δϕ
2π

r
¼ −q

ffiffiffiffiffiffiffi
Δϕ
2π

r
¼ −Q0

ffiffiffiffiffiffiffi
Δϕ
2π

r
;

J ¼ am
Δϕ
2π

¼ J0
Δϕ
2π

; (5.20)

where Q0 ¼ q and J0 ¼ am are the conserved charge and
angular momentum of the original Kerr-Newman solution.
The period of the azimuthal coordinate is now

Δϕ
2π

¼
�
1þ 1

4
a2m2B2

�
2

: (5.21)

The area of the event horizon, given in general by (5.13),
can now be written as

AH ¼ A0
H
Δϕ
2π

; (5.22)

where A0
H is the area of the event horizon of the

Kerr-Newman black hole. Of course we still also have,
from (4.17), that the mass is given by

E ¼ E0

Δϕ
2π

; (5.23)

where E0 ¼ m is the mass of the Kerr-Newman black hole,
while the surface gravity κ is, as always, just equal to its
value in the Kerr-Newman solution [see Eq. (5.13)].

VI. ENERGY MINIMIZATION

Defining E0 ¼ m and J0 ¼ am as the mass and the
angular momentum of the Kerr-Newman black hole (i.e.
the B ¼ 0 specialization), we may eliminate q between the
expressions for Q and E in (5.11) and (5.12), thereby
obtaining an equation that determines E in terms of Q, J0
and B:

E3 − E2ð17þ 3B4J20ÞE0 þ
1

2
Eð160 − 192B4J20 þ 6B8J40 þ 136B3J0Q − 11B2Q2ÞE2

0

−
�
64þ 48B4J20 þ 12B8J40 þ B12J60 − 128J0Q − 32B7J30Qþ 68B2Q2 þ 17B6J20Q

2

− 2B5J0Q3 þ 1

16
B4Q4

�
E3
0 ¼ 0: (6.1)

Extremizing E with respect to Q, while holding E0, J0 and B0 fixed then implies
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E ¼ ð512BJ0 þ 128B5J30 − 544Q − 136B4J20Qþ 24B3J0Q2 − B2Q3ÞE0

4ð11Q − 68BJ0Þ
: (6.2)

From these equations we can now obtain expressions for Ē and Q̄, the values of E andQ at the extremum, as function of E0,
J0 and B. For Q, we find that Q̄ is given by the roots of the factorized polynomial PðQÞ ¼ P1ðQÞP2

2ðQÞ, where

P1 ¼ B2Q3 − 12B3J0Q2 þ 16ð4þ B4J20Þð3Q − 4BJ0Þ;
P2 ¼ B2Q3 − 30B3J0Q2 − 4ð392 − 75B4J20ÞQþ 8BJ0ð588 − 125B4J20Þ: (6.3)

Expanding around B ¼ 0 we find just one real root for
P1ðQÞ ¼ 0, giving

Q̄ ¼ 4

3
BJ0 þ

8

81
B5J30 þ � � � ;

Ē ¼ E0 þ
1

3
E0B4J20 þ � � � : (6.4)

For P2ðQÞ ¼ 0 we find three real roots, with

Q̄ ¼ 3BJ0 þ � � � ;

Ē ¼ 8E0 − 3

4
E0B4J20 þ � � � ; (6.5)

or

Q̄ ¼ � 28
ffiffiffi
2

p

B
þ 27

2
BJ0∓ 21

32
ffiffiffi
2

p B3J20 þ � � � ;

Ē ¼ −48E0∓7
ffiffiffi
2

p
E0B2J0 þ

15

8
E0B4J20 þ � � � : (6.6)

VII. FURTHER PROPERTIES OF UNCHARGED
BLACK HOLES

In this section, we explore various properties of mag-
netized Kerr-Newman black holes in the special case where
the physical charge Q vanishes.

A. Angular momentum of uncharged magnetized
black holes

Using the expressions (5.11) for the physical charge Q
and the angular momentum J of a magnetized Kerr-
Newman black hole, we may express J in terms of
J0 ¼ am and B in the case that Q is required to be zero.
Note that here J0 is the angular momentum of the
unmagnetized Kerr-Newman seed solution. We find that
J, J0 and B are then related by

B4J3 þ B4J0ð79þ 3B4J20ÞJ2
− ð256 − 944B4J20 þ 248B8J40 − 3B12J60ÞJ
þ J0ð4þ B4J20Þ4 ¼ 0: (7.1)

Expanding in powers of B, the branch that reduces to
J ¼ J0 in the case that B vanishes gives

J ¼ J0 þ 5B4J30 þ 21B8J50 þ 94B12J70 þ 454B16J90 þ � � � :
(7.2)

In order that J remain real the product B2J0 should not
exceed a maximum value, given by

B2J0jmax ¼
2

3
ffiffiffi
3

p : (7.3)

This corresponds to

Jjmax ¼
128

27
J0jmax ¼

256

81
ffiffiffi
3

p
B2

: (7.4)

B. Meissner effect for extremal black holes

The electromagnetic field in the magnetized Kerr-
Newman solution takes the form A¼Āþχðdϕþ2ĀdtÞ,
as in (3.1), where the various quantities may be found in
Appendix B of [7]. The magnetic flux threading the upper
hemisphere S2þ of the horizon is given by

FH ¼ 1

4
π

Z
S2þ

F ¼ Δϕ
4π

½χ�θ¼π
θ¼1

2
π
: (7.5)

Consider the case where the physical charge Q on the
black hole vanishes. From (5.11), this is achieved if the
magnetic field is given by B ¼ B� where

B� ¼ 2

q3
½2am�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2m2 þ q4

q
�: (7.6)

Suppose furthermore that the black hole is extremal,
which means that the inner and outer horizons at r ¼ r�
coincide at

r� ¼ m; m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ a2

q
: (7.7)

Inserting the zero-charge condition (7.6) and the extrem-
ality condition (7.7) into the expression for χ given in [7],
we find that χ is constant on the horizon, and it is given by
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χjH ¼ � q3

2ðq2 þ 2a2Þ : (7.8)

Evidently therefore, from (7.5), it follows that the magnetic
flux threading the upper hemisphere of the horizon is zero.
This is consistent with much previous work (see [12] for a
review).

VIII. ANGULAR MOMENTUM IN STU
SUPERGRAVITY

In this section, we extend our earlier discussion of the
conserved angular momentum in Einstein-Maxwell theory
to the case of the four-dimensional STU model, which is
N ¼ 2 supergravity coupled to three vector multiplets. For
our purposes, it suffices to focus just on the bosonic sector
of the theory. The bosonic Lagrangian, in the notation of
[17], is

L4 ¼ R � 1 − 1

2
� dφi∧dφi − 1

2
e2φi � dχi∧dχi − 1

2
e−φ1ðeφ2−φ3 � Fð2Þ1∧Fð2Þ1

þ eφ2þφ3 � Fð2Þ2∧Fð2Þ2 þ e−φ2þφ3 � F 1
ð2Þ∧F 1

ð2Þ þ e−φ2−φ3 � F 2
ð2Þ∧F 2

ð2ÞÞ
þ χ1ðFð2Þ1∧F 1

ð2Þ þ Fð2Þ2∧F 2
ð2ÞÞ; (8.1)

where the index i labeling the dilatons ϕi and axions χi
ranges over 1 ≤ i ≤ 3. The four field strengths can be
written in terms of potentials as

Fð2Þ1 ¼ dAð1Þ1 − χ2dA2
ð1Þ;

Fð2Þ2 ¼ dAð1Þ2 þ χ2dA1
ð1Þ − χ3dAð1Þ1 þ χ2χ3dA2

ð1Þ;

F 1
ð2Þ ¼ dA1

ð1Þ þ χ3dA2
ð1Þ;

F 2
ð2Þ ¼ dA2

ð1Þ: (8.2)

A. Derivation of the conserved angular momentum

The conserved charge associated with a diffeomorphism
ξ can be calculated using the standard Wald procedure.
Thus, we first calculate δLðΦÞ ¼ dΘþ e:o:m:, where all
the fields Φ are varied using the Lie derivatives δΦ ¼ LξΦ.

For example, for the metric we have δgμν ¼ ∇μξν þ∇νξμ,
and for gauge potentials δAμ ¼ ξν∇νAμ þ Aν∇μξ

ν. In the
standard way, we then define

J ¼ Θ − iξL; (8.3)

where iξ denotes the contraction of the vector ξ with the
Lagrangian 4-form L, as defined in footnote 3. It follows
that dJ ¼ 0 and hence we can write

J ¼ −dP: (8.4)

After considerable algebra, we find that for the Lagrangian
(8.1) we shall have

P ¼ PEin þ PKin þ PCS; (8.5)

where

PEin ¼ �dξ;
PKin ¼ e−φ1þφ2−φ3 � Fð2Þ1ξμðAμ1 − χ2A2

μÞ
þ e−φ1þφ2þφ3 � Fð2Þ2ξμðAμ2 þ χ2A1

μ − χ3Aμ1 þ χ2χ3A2
μÞ

þ e−φ1−φ2þφ3 � F 1
ð2Þξ

μðA1
μ þ χ3A2

μÞ þ e−φ1−φ2−φ3 � F 2
ð2Þξ

μA2
μ;

PCS ¼ −χ1½ðξμAμ1ÞdA1
ð1Þ þ ðξμA1

μÞdAð1Þ1 þ ðξμAμ2ÞdA2
ð1Þ þ ðξμA2

μÞdAð1Þ2�: (8.6)

Here PEin is the contribution from the Einstein-Hilbert term in (8.1), PKin is the contribution from the four kinetic terms for
the gauge field strengths, and PCS is the contribution from the Chern-Simons terms.
We now make the spacelike dimensional reduction

ds24 ¼ e−φ4ds̄23 þ eφ4ðdϕþ B̄ð1ÞÞ2; (8.7)

and

Að1Þ1 ¼ Āð1Þ1 þ σ1ðdϕþ B̄ð1ÞÞ; Að1Þ2 ¼ Āð1Þ2 þ σ2ðdϕþ B̄ð1ÞÞ;
A1

ð1Þ ¼ Ā1
ð1Þ þ σ3ðdϕþ B̄ð1ÞÞ; A2

ð1Þ ¼ Ā2
ð1Þ þ σ4ðdϕþ B̄ð1ÞÞ; (8.8)
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otherwise following the notation of the timelike reduction described in [17]. In particular, in three dimensions the four
reduced field strengths and the Kaluza-Klein field strength Ḡð2Þ ¼ dB̄ð1Þ are reexpressed in terms of scalar fields, by means
of dualizations [17]:

−e−φ1þφ2−φ3þφ4 �̄F̄ð2Þ1 ¼ dψ1 þ χ3dψ2 − χ1dσ3 − χ1χ3dσ4;

−e−φ1þφ2þφ3þφ4 �̄F̄ð2Þ2 ¼ dψ2 − χ1dσ4;

−e−φ1−φ2þφ3þφ4 �̄F̄ 1
ð2Þ ¼ dψ3 − χ2dψ2 − χ1dσ1 þ χ1χ2dσ4;

−e−φ1−φ2−φ3þφ4 �̄F̄ 2
ð2Þ ¼ dψ4 þ χ2dψ1 − χ3dψ3 − χ1dσ2 þ χ2χ3dψ2

− χ1χ2dσ3 þ χ1χ3dσ1 − χ1χ2χ3dσ4;

e2φ4 �̄Ḡð2Þ ¼ dχ4 þ σ1dψ1 þ σ2dψ2 þ σ3dψ3 þ σ4dψ4: (8.9)

We then find after some algebra that with ξ ¼ ∂=∂φ we shall have

PEin ¼ ðdχ4 þ σ1dψ1 þ σ2dψ2 þ σ3dψ3 þ σ4dψ4Þ∧dϕþ � � � ;
PKin ¼ ½−σ1dψ1 − σ2dψ2 − σ3dψ3 − σ4dψ4 þ χ1dðσ1σ3 þ σ2σ4Þ�∧dϕþ � � � ;
PCS ¼ −χ1dðσ1σ3 þ σ2σ4Þ∧dϕþ � � � ; (8.10)

where the ellipses denote terms that have vanishing pull-
back to the 2-sphere. Thus, from (8.5) we conclude
that P ¼ dχ4∧dϕþ � � �, and so the conserved charge
associated with the Killing vector ξ ¼ ðΔϕ=ð2πÞÞ∂=∂ϕ
is given by

J ¼ 1

16π

Z
S2
P ¼ ðΔϕÞ2

32π2

Z
dχ4 ¼

ðΔϕÞ2
32π2

½χ4�θ¼π
θ¼0: (8.11)

[The ðΔϕ=ð2πÞÞ factor in the choice of the Killing vector
takes account of the fact that angular momentum should be
defined with respect to a canonically normalized azimuthal
angle having period 2π.]
This result is the analogue of the expression we derived

in (3.9) for the angular momentum for the Einstein-
Maxwell black holes. It also has the same feature as in
that case, of not being invariant under gauge transforma-
tions of the electromagnetic potentials. Specifically, we
have four Abelian Uð1Þ gauge symmetries in the STU
model, under which the potentials transform as

A½i�
ð1Þ → A½i�

ð1Þ
0 ¼ A½i�

ð1Þ þ dλi; (8.12)

where A½i�
ð1Þ for i ¼ 1, 2, 3 and 4 denotes

ðAð1Þ1; Að1Þ2;A1
ð1Þ;A

2
ð1ÞÞ respectively. The subset of gauge

transformations where

λi ¼ λ̄i þ ciϕ; (8.13)

with λ̄i being independent of ϕ and ci being constants,
preserve the form of the Kaluza-Klein reductions (8.8). For

these gauge transformations, the three-dimensional gauge
potentials and the σi fields therefore transform as

Ā½i�
1 0 ¼ Ā½i�

1 − ciB̄ð1Þ þ dλ̄i; σ0i ¼ σi þ ci: (8.14)

From these, it follows that the quantities dĀi�
ð1Þ þ σidB̄ð1Þ

from which three-dimensional field strengths F̄½i�
ð2Þ are

constructed, and hence the three-dimensional field
strengths themselves, are inert under the gauge trans-
formations. This in turn implies that the scalar fields ψ i
are inert,

ψ i
0 ¼ ψ i: (8.15)

Finally, since F̄ ð2Þ is inert, it follows from (8.14) and (8.15)
that χ4 transforms as

χ04 ¼ χ4 −
X
i

ciψ i: (8.16)

Thus we see that under the gauge transformations (8.12),
the angular momentum J defined in (8.11) transforms as

J0 ¼ J − Δϕ
8π

X
i

ciQi; (8.17)

where

Qi ¼
Δϕ
4π

½ψ i�θ¼π
θ¼0 (8.18)

are the electric charges carried by the four field strengths.
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As in the Einstein-Maxwell case discussed earlier, we
can derive a different expression for the angular momen-
tum, which is gauge invariant, by performing dualizations
of all the four gauge fields. This is easily done in the three-
dimensional description, where it amounts to sending σi, ψ i
and χ4 to tilded quantities, defined by

~σi ¼ ψ i; ~ψ i ¼ σi; ~χ4 ¼ χ4 þ
X
i

σiψ i: (8.19)

Repeating the calculation of the angular momentum for the
dualized theory will give

~J ¼ ðΔϕÞ2
32π2

½~χ4�θ¼π
θ¼0: (8.20)

Using our results above for the gauge transformations of σi,
ψ i and χ4, it is easily seen that ~χ4, and hence ~J, is gauge
invariant. We can then argue, in a manner analogous to our
argument in the Einstein-Maxwell case, that (8.20) would
be the appropriate expression to use if all four of the
charges carried by the gauge fields were electric.

B. Angular momentum for the magnetized static
STU-model black holes

In the case of the four-charge black holes in the STU
model discussed in [17], and with external fields in [13], the
field strengths numbered 1 and 3 carry magnetic charges,
whilst those numbered 2 and 4 carry electric charges. It
follows, therefore, that rather than using (8.20) directly in
order to calculate the angular momentum, we should first
“undualize” the contributions associated with fields 1 and
3, meaning that ~χ4 in (8.20), which was defined in (8.19),
should be replaced by ~χ4 − σ1ψ1 − σ3ψ3. Thus the proposal
for the angular momentum in this case is now

Je ¼
ðΔϕÞ2
32π2

½χ4 þ σ2ψ2 þ σ4ψ4�θ¼π
θ¼0: (8.21)

Substituting the expressions for the scalar fields obtained in
[13], we obtain the result

Je ¼
1

4
Πq

X4
i¼1

Bi

qi
þ 1

16
ΠBΠq

X4
i¼1

qi
Bi

; (8.22)

for the angular momentum of the magnetized four-charge
black holes immersed in the background of the four
external fields Bi, where ΠB ¼ Q

iBi and Πq ¼
Q

iqi.
Here qi are the four charges of the original static black

hole solutions, prior to the magnetization. This expression
reduces, as it should, to ~J given in (5.11) if we set all four
charge parameters qi equal and set a ¼ 0 in (5.11).
An alternative way to calculate the angular momentum is

to use the four-charge analogue of the expression (3.9) that
we considered in the Einstein-Maxwell case. In the present
context, this amounts to starting from the expression (8.11),
and then dualizing the contributions from fields 1 and 3 to
take account of the fact that they actually carry magnetic
charges. This gives

Jm ¼ ðΔϕÞ2
32π2

½χ4 þ σ1ψ1 þ σ3ψ3�θ¼π
θ¼0: (8.23)

Since (8.11) is gauge dependent, it is then necessary to
perform gauge transformations to ensure that the four
functions ðσ1;ψ2; σ3;ψ4Þ vanish on the axis at θ ¼ 0
and θ ¼ π. After doing this, we obtain a result that agrees
with the gauge-invariant one given in (8.22).

IX. CONCLUSIONS

In this paper we have obtained expressions for the energy
and angular momentum of magnetized Kerr-Newman black
holes. We showed how these quantities can be conveniently
calculated by making a Kaluza-Klein reduction of the four-
dimensional Einstein-Maxwell theory, and the black hole
solutions, on the azimuthal coordinate φ. Using these
expressions, we have verified the first law of thermody-
namics and the associated Smarr formulas for rotating
black holes immersed in an external magnetic field. We also
extended the the first law to include variations of the
magnetic field, and hence we obtained the induced mag-
netic moment. In an attempt to make contact with some
early work of Wald in which the magnetic field was treated
at the test level, ignoring backreaction, we have calculated
the electric charge that minimizes the energy, holding the
initial energy and angular momentum fixed and at constant
magnetic field. Our results resemble qualitatively those of
Wald but differ quantitatively. Finally we extended our
calculation of the angular momentum to the case of the
STU model of four-dimensional N ¼ 2 supergravity
coupled to three vector multiplets, in preparation for a
future paper [13] on that subject.
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