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We study the gravitational collapse of a homogeneous scalar field, minimally coupled to gravity, in the
presence of a particular type of dynamical deformation between the canonical momenta of the scale factor
and of the scalar field. In the absence of such a deformation, a class of solutions can be found in the
literature [R. Goswami and P. S. Joshi], whereby a curvature singularity occurs at the collapse end state,
which can be either hidden behind a horizon or be visible to external observers. However, when the phase
space is deformed, as implemented herein this paper, we find that the singularity may be either removed or
instead, attained faster. More precisely, for negative values of the deformation parameter, we identify the
emergence of a negative pressure term, which slows down the collapse so that the singularity is replaced
with a bounce. In this respect, the formation of a dynamical horizon can be avoided depending on the
suitable choice of the boundary surface of the star. Whereas for positive values, the pressure that originates
from the deformation effects assists the collapse toward the singularity formation. In this case, since the
collapse speed is unbounded, the condition on the horizon formation is always satisfied and furthermore the
dynamical horizon develops earlier than when the phase-space deformations are absent. These results are
obtained by means of a thoroughly numerical discussion.
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I. INTRODUCTION

One of the most important contemporary challenges in
gravitation theory and relativistic astrophysics is to fully
describe the gravitational collapse of a massive body from
initially regular matter distributions [1]. While Einstein’s
general theory of relativity has been a highly successful
theory in describing gravitation, it is a well-established
result that a gravitational collapse process, governed by
the Einstein field equations with physically reasonable
matter configurations, may induce a spacetime singularity
to appear [2]: physical parameters such as the matter energy
density and spacetime curvatures will diverge. Among the
variety of models that have been investigated, the gravi-
tational collapse of scalar fields have attracted particular
attention: massless as well as massive scalar fields have
been studied by applying analytical and numerical methods
[3–13]. However, classical general relativity breaks down at
the very late stages of a collapse scenario, where densities
and curvatures are so extreme that quantum gravity effects
may become more prominent, therefore possibly resolving
the classical singularity [14,15].

One such possible effect is noncommutativity between
spacetime coordinates, which was first proposed by Snyder
[16] in an effort to introduce a short length cutoff (the
noncommutativity parameter) in a Lorentz covariant way.
The aim was to improve the renormalizability properties
of relativistic quantum field theory (see [17] and references
therein). The basic idea that lies behind noncommutativity
is to take into account the uncertainty in simultaneous
measurements of any (canonical) pair of phase-space
variables and their conjugate momenta. This idea has been
revived in recent years, due to strong motivations from
string and M-theories [18] and more concretely has been
proposed in a new algebra regarding spacetime uncertainty
relations derived from quantum mechanics and general
relativity that provides the framework for noncommutative
field theories in a Lorentz covariant way [19] (see also [20]
and references therein). One may also study noncommu-
tative theories in particle physics, owing to the interesting
predictions having been made in this area, such as IR/UV
mixing and nonlocality [21], violation of Lorentz symmetry
[22] (see also [23] on the phenomenological features of
noncommutative geometry), new physics at very short
distance scales [17] and the equivalence between translations
in noncommutative gauge theories and gauge transforma-
tions [24]. Noncommutative extensions of quantum
mechanical models such as the harmonic oscillator [25],
Hydrogen atom spectra [26], and gravitational radiation [27]
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have also been investigated in order to predict theoretical
values of the noncommutative parameter as a test bed for
the experiments.
Since the advent of noncommutative field theory, the

interest in this area slowly but continuously made progress
into the domain of gravity theories. Recent progresses in
noncommutative geometry imply that the noncommutative
effects in general relativity may be taken into account by
keeping the standard form of the Einstein tensor on the left-
hand side of the field equations and introducing a modified
energy-momentum tensor as a source including noncom-
mutative parameter on the right-hand side [28]. Several
investigations have also been carried out to verify the
possible role of noncommutativity in cosmological scenar-
ios such as Newtonian cosmology [29], cosmological
perturbation theory and inflationary cosmology [30], non-
commutative gravity [31], quantum cosmology [32,33],
and noncommutativity based on generalized uncertainty
principle [34] (see [35] for reviews on different approaches
to noncommutative gravity). The concept of spacetime
underlying the general theory of relativity would not be
sensible below the distances which are comparable to the
Planck ones, because the uncertainty principle governing
the quantum theory of gravity prohibits measurements in
positions to better accuracies than the Plank length. Since
the transition from classical to quantum mechanics requires
the physical observables to be noncommutative, it is
expected that, in a transition from classical to quantum
gravity, the observables could also become noncommutative.
Thus, by extending general relativity toward noncommuta-
tive spacetime, we may come closer to some aspects of
quantum gravity. In particular, replacing the usual canonical
Poisson brackets between physical variables, by others, with
new terms, as suggested by string theory, concerning
fundamental interactions (see e.g., [36] and reference
therein). Such deformations on the structure of the phase
space [37] have been employed as a means to convey
noncommutativity into the dynamics [38–42]. In this work,
our objective is to investigate the gravitational collapse of a
minimally coupled scalar field ϕ in the presence of a specific
phase space deformation. In particular, this modification
will concern the dynamical sector involving the momenta of
the scale factor a and ofϕ. Our paper is organized as follows.
In Sec. II, we briefly summarize some features regarding the
gravitational collapse of a minimally coupled homogeneous
scalar field [43], but within a Hamiltonian formalism. In
Sec. III, we will obtain, still using the Hamiltonian formal-
ism, the equations of motion for such minimally coupled
scalar field, but in the presence of the particular dynamical
deformation aforementioned. Subsequently, we extract
(numerically) a class of solutions that represent a gravita-
tional collapse. In particular, we discuss the implications
regarding the collapse outcome for different ranges of the
deformation parameter. We will find that the deformation
determines that an extra pressure term may appear, changing

the collapse dynamics and whether if a singularity can be
formed or not. We summarize our conclusions in Sec. IV.
Appendices A and B provide complementary information
regarding the equations of motion in the deformed phase
space.

II. GRAVITATIONAL COLLAPSE OF A
HOMOGENEOUS SCALAR FIELD

In this section, we briefly describe the gravitational
collapse of a homogeneous scalar field, minimally coupled
to gravity. The full detailed analysis is present in [43].
In this work we employ the Hamiltonian formalism, for
the reason that it will prove useful when we introduce,
in the next section, the deformation (noncommutativity) in
the phase space. Therefore, we start with a Lagrangian
density as

L ¼ ffiffiffiffiffiffi−gp �
R
2k2

− 1

2
gμνϕ;μϕ;ν − VðϕÞ

�
; (2.1)

where k2 ≡ 8πG, R is the Ricci scalar, g is the determinant
of a metric gμν (where the Greek indices run from zero to
three) andVðϕÞ is a scalar potential. For practical reasons we
employ, for our gravitational setting, a spherically symmetric
homogeneous collapsing (interior) region, which is given by
the following line element as (cf. [43–46])

ds2 ¼ habdxadxb þ R2ðt; rÞdΩ2; (2.2)

where hab ¼ diag½−N2ðtÞ; a2ðtÞ� is the line element on
the two dimensional hypersurface, normal to the two-
dimensional sphere characterized by the standard line
element dΩ2. NðtÞ is a lapse function, aðtÞ is the scale
factor, and Rðt; rÞ ¼ raðtÞ is the physical radius of the
collapsing star. Hence, the scalar field must depend only on
the comoving time, i.e ϕ ¼ ϕðtÞ. By substituting the
Ricci scalar associated to the metric (2.2) into the
Lagrangian density (2.1), neglecting the total time derivative
k2dðN−1a2 _aÞ=dt, the corresponding Hamiltonian reads

H0 ¼ − k2

12
Na−1P2

a þ
1

2
Na−3P2

ϕ þ Na3VðϕÞ; (2.3)

where Pa and Pϕ are the momentum conjugates associated
to the scale factor and scalar field, respectively. Therefore,
the Dirac Hamiltonian is given by

H ¼ H0 þ λPN; (2.4)

where we should note that, as the momentum conjugate to
NðtÞ, PN , vanishes, we have therefore added the last term
λPN as a constraint to the Hamiltonian (2.3), in which λ is a
Lagrange multiplier.
Let us consider the ordinary phase-space structure

described by the usual (nonvanishing) Poisson brackets, as
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fa; Pag ¼ fϕ; Pϕg ¼ fN;PNg ¼ 1: (2.5)

The equations of motion with respect to the Hamiltonian
(2.4) are1

_a ¼ fa;Hg ¼ − k2

6
Na−1Pa; (2.6)

_Pa ¼ fPa;Hg ¼ − k2

12
Na−2P2

a þ
3

2
Na−4P2

ϕ − 3Na2VðϕÞ;
(2.7)

_ϕ ¼ fϕ;Hg ¼ Na−3Pϕ; (2.8)

_Pϕ ¼ fPϕ;Hg ¼ −Na3
dVϕ

dϕ
; (2.9)

_N ¼ fN;Hg ¼ λ; (2.10)

_PN ¼ fPN;Hg ¼ k2

12
a−1P2

a − 1

2
a−3P2

ϕ − a3VðϕÞ: (2.11)

Wewill work in the comoving gauge, that is, we fix N ¼ 1.
Also, to satisfy the constraint PN ¼ 0 at all times, the
secondary constraint _PN ¼ 0 should also be satisfied.
Hence, it is straightforward to show that Eqs. (2.6–2.11)
give the dynamic evolution for the system, as

H2 ¼ k2

3

�
1

2
_ϕ2 þ VðϕÞ

�
≡ k2

3
ρðtÞ; (2.12)

2
ä
a
þH2 ¼ −k2

�
1

2
_φ2 − VðφÞ

�
≡−k2pðtÞ; (2.13)

while the scalar field satisfies the Klein-Gordon equation

ϕ̈þ 3H _ϕþ dV
dϕ

¼ 0; (2.14)

where H ¼ _a=a ¼ _R=R is the rate of collapse. In addition,
ρ and p represent the energy density and pressure, respec-
tively. For _ϕ ≠ 0, we can easily derive the Klein-Gordon
equation (2.14) from the Eqs. (2.12) and (2.13) or, equiv-
alently, from the conservation equation; thus, only two of
the three equations (2.12–2.14) are independent.
Let us rewrite equations (2.12–2.14) in a more conven-

ient form, as

H2 ¼ k2

3

�
1

2
a2H2ϕ2

;a þ VðϕÞ
�
; (2.15)

3H2 þ 2aHH;a ¼ −k2
�
1

2
a2H2ϕ2

;a − VðϕÞ
�
; (2.16)

dV
da

¼ − 4aH2ϕ2
;a − a2HH;aϕ

2
;a − a2H2ϕ;aϕ;aa; (2.17)

where “; a”≡d=da. The above set of differential equations
have a general solution

HðaÞ ¼ α exp

�
− k2

2

Z
aϕ2

;ada

�
; (2.18)

VðaÞ ¼ α2
�
3

k2
− a2

2
ϕ2
;a

�
exp

�
−k2

Z
aϕ2

;ada

�
; (2.19)

where α is an integration constant. In order to proceed, we
need to further specify the dependence of the scalar field
upon one of the other variables. Thus we take the following
ansatz for the scalar field, which will induce a suitable
gravitational collapse dynamics:

ϕðaÞ ¼
ffiffiffiffiffiffiffiffiffi−2βp

lnðaÞ; (2.20)

where β < 0 is another constant. Applying (2.20), we can
then easily solve for the rate of collapse and the scalar field
potential to get (we set k2 ¼ 1)

HðaÞ ¼ αaβ; (2.21)

VðϕÞ ¼ α2ð3þ βÞ exp ð− ffiffiffiffiffiffiffiffiffi−2βp
ϕÞ; (2.22)

where we require, additionally, that α < 0. From (2.21), the
scale factor reads

aðtÞ ¼ ½a−βi − αβðt − tiÞ�−
1
β; ts ¼ ti þ

a−βi
αβ

; (2.23)

where ts stands for the time at which the collapse ends in a
spacetime singularity. Let us be more concrete. The scalar
field is given by

ϕðtÞ ¼ ∓
ffiffiffiffiffiffi
−2
β

s
ln ½a−βi − αβðt − tiÞ�: (2.24)

We then have the following expressions for the energy
density and Kretschmann invariant as

ρ ¼ 3α2½a−βi − αβðt − tiÞ�−2; (2.25)

K ¼ 12

��
ä
a

�
2

þ
�
_a
a

�
4
�

¼ 24α4ð1þ βð1þ β
2
ÞÞa4βi

½1 − ðt − tiÞαβaβi �4
: (2.26)

1The dot represents derivative with respect to time.
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The above class of collapse solutions has been found in [43],
where it was shown that a spacetime singularity occurs,
which can be either hidden behind the event horizon (black
hole) or visible to the outside observers (naked singularity).
It is the causal structure of trapped surfaces and the apparent
horizon, which is the outermost boundary of the trapped
region, that determines the visibility or otherwise of the
spacetime singularity. If the trapped surfaces form prior to
the singularity formation, then the collapse scenario ends in a
black hole, and if the trapped surfaces are delayed or failed to
form until the singularity formation, the regimes with
extreme curvature and density may be seen by the outside
observers (naked singularity). Let us be clear and to that aim
we introduce the null coordinates

dξþ ¼ − 1ffiffiffi
2

p ½NðtÞdt − aðtÞdr�;

dξ− ¼ −
1ffiffiffi
2

p ½NðtÞdtþ aðtÞdr�: (2.27)

Metric (2.2) can be cast into double null form as

ds2 ¼ −2dξþdξ− þ Rðt; rÞ2dΩ2: (2.28)

We assume, a spacetime which is time orientable and ∂� ¼
∂=∂ξ� are future pointing. The condition for radial null
geodesics, ds2 ¼ 0, shows that there exist two kinds of
future pointing null geodesics corresponding to ξþ ¼
constant and ξ− ¼ constant such that their expansion reads

Θ� ¼ 2

R
∂�R: (2.29)

The expansion of radial null geodesics is a measure that the
light signals, being normal to the two-dimensional sphere,
are diverging (Θ� > 0) or converging (Θ� < 0). The
spacetime is said to be trapped, untrapped, or marginally
trapped if, respectively [47],[48]

ΘþΘ− > 0; ΘþΘ− < 0; ΘþΘ− ¼ 0; (2.30)

where the third class characterizes the outermost boundary of
the trapped region, the apparent horizon. Furthermore, the
Misner-Sharp energy may be defined as [48]

Mðt; rÞ ¼ Rðt; rÞ
2

½1 − hab∂aRðt; rÞ∂bRðt; rÞ�

¼ Rðt; rÞ
2

�
1þ R2ðt; rÞ

2
ΘþΘ−

�
; (2.31)

which in our model reads 2Mðt; rÞ ¼ Rðt; rÞ _R2ðt; rÞ.
Therefore, the dynamical apparent horizon, which is a
marginally trapped surface in a spherically symmetric
spacetime, is given by

2M
R

¼ 1: (2.32)

From (2.31) we then conclude that the spacetime region
where 2M=R > 1ð< 1Þ is trapped (untrapped). For the
solution (2.21), we have

2Mðt; rÞ
Rðt; rÞ ¼ r2α2a2ð1þβÞ: (2.33)

We now find that for −1 < β < 0, if the ratio 2Mðt; rÞ=
Rðt; rÞ is less than one at the initial time, it would stay less
than one until the singular epoch and thus trapped surfaces
fail to form throughout the collapse process. For β < −1,
trapped surfaces do form and the singularity is necessarily
covered by the spacetime event horizon.
We subsequently show in the next section, by resorting

to phase-space deformation effects, that the corresponding
gravitational collapse procedure not only does not culmi-
nate in the formation of a spacetime singularity but also
exhibits a bouncing behavior, with which trapped surfaces
do not form.

III. EFFECTS OF PHASE SPACE DEFORMATION
ON COLLAPSE DYNAMICS AND

SINGULARITY AVOIDANCE

From arguments based on the Wigner quasidistribution
function and the Weyl correspondence between quantum-
mechanical operators in Hilbert space and ordinary c-number
functions in phase space (see e.g., [37] and references
therein), it has been claimed that a deformation in phase
space can be applied as an alternative path to quantization.
More specifically, Moyal brackets, that are based on the
Moyal product [33],[42],[49],[50], have been applied to
introduce the deformation in the usual phase space structure.
In practice, for introducing such deformations, specific
Poisson brackets are employed, wherein noncommutative
effects are induced. However, for the purpose of tracing the
effects of such noncommutativity in gravity, a fundamental
length is usually considered in the hope of seeking for a
fundamental theory upon which general relativity and quan-
tum theory can be consistently reconciled. The so-called
Planck scale is the scale at which gravitational effects become
comparable to the quantum ones [19]. Such a regime with
extreme energy scale or equivalently with a tiny size scale
occurs in the very early universe and in the late stages of a
typical gravitational collapse of a dense star.
In this regard, much effort has been devoted to the

concept of spacetime noncommutativity and one of the
main streams under investigation is the κ-Minkowski
spacetime [51] so that as it is shown in [52], it can appear
in the framework of quantum gravity coupled to matter
fields. From a phenomenological standpoint, κ-Minkowski
spacetime provides a suitable playground area for testing
the predictions arising from deformed (doubly) special
relativity (DSR) theories [53–56]. In particular, the DSR
is related to the κ-deformation [57]. It is believed that
the noncommutativity introduced in this manner is
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generally compatible with Lorentz symmetry [57,58].
The κ-Minkowski space is naturally introduced by concepts
based on the κ-Poincare algebra [54–56], in which the
ordinary brackets between coordinates are replaced by

fx0; xig ¼ 1

κ
xi: (3.1)

The parameter κ ¼ ϵ=ζ, where ϵ ¼ �1 [59], conveys the
presence of the deformation (noncommutativity), with
dimension of mass in the units c ¼ ℏ ¼ 1, such that one
can interpret κ and ζ as dimensional parameters for
fundamental energy and length, respectively. Within cos-
mology, a few publications (see e.g., [60,61]) are present in
the literature, using a few such types of modifications in the
phase-space structure, inspired by relation (3.1).
However, in this section, inspired by the mentioned

motivations in Ref. [62] and also by the corrections from
string theory to Einstein gravity [63], we propose to change
the structure of the phase space by introducing noncommu-
tativity between conjugate momenta to trace the deformation
implications in the gravitational collapse of a homogeneous
scalar field. To retrieve a model with deformation (in the
phase space), where the calculations would allow interesting
novel results, but that do not convey a mere trivial scenario,
we should reasonably pick a convenient framework.
Therefore, we choose to employ a dynamical deformation
within the canonical conjugate momentum sector, viz., with
Pa; Pϕ replaced by new P0

a0 ; P
0
ϕ0 momenta, that comply

instead to

fP0
a0 ; P

0
ϕ0g ¼ lϕ03; (3.2)

where we leave the other Poisson brackets unchanged
[corresponding to those presented in relation (2.5)], with
respect to the above primed variables. It is straightforward
to show that the Jacobi identity is still satisfied. In [62], a
discussion on the motivations for choosing such kind of
deformation in the phase space was presented. We shall keep
the Hamiltonian with the same functional form as (2.3), but
now written in terms of primed (deformed) variables as

H0
0 ¼ − 1

12
N0a0−1Pa0

02 þ 1

2
N0a0−3P02

ϕ0 þ N0a03V 0ðϕ0Þ;
(3.3)

where the standard Poisson brackets (for the primed vari-
ables) are satisfied except in (3.2). Here, we aim to obtain the
equations of motion for the primed variables, in which the
Dirac Hamiltonian in the deformed phase space reads

H0 ¼ H0
0 þ λ0P0

N0; (3.4)

where H0
0 is given by (3.3) and as P0

N0 ¼ 0. We have added
the last term, λ0P0

N0, as a constraint to the Hamiltonian (3.3),
in which λ0 is a Lagrange multiplier and P0

N0 is the

momentum conjugate to N0ðtÞ. By recalling that the
deformed phase structure is described by the deformed
(nonvanishing) Poisson brackets (3.2) and fa0; P0

a0g ¼
fϕ0; P0

ϕ0g ¼ fN0; P0
N0 g ¼ 1, the equations of motion with

respect to Hamiltonian (3.4) are given by

_a0 ¼ fa0; H0g ¼ − 1

6
N0a0−1P0

a0; (3.5)

_P0a0 ¼ fP0
a0; H0g ¼ − 1

12
N0a0−2P02

a0 þ
3

2
N0a0−4P02

ϕ0

− 3N0a02V 0ðϕ0Þ þ N0la0−3ϕ03P0
ϕ0 ; (3.6)

_ϕ0 ¼ fϕ0; H0g ¼ N0a0−3P0
ϕ0 ; (3.7)

_P0
ϕ0 ¼ fP0

ϕ0 ; H0g ¼ −N0a03
dV 0

ϕ0

dϕ0 þ 1

6
N0la0−1ϕ03P0

a0 ; (3.8)

_N0 ¼fN0; H0g ¼ λ0; (3.9)

_P0
N0 ¼ fP0

N0 ; H0g ¼ 1

12
a0−1P02

a0 −
1

2
a0−3P02

ϕ0 − a03V 0ðϕ0Þ:
(3.10)

Again, we work in the comoving gauge, i.e., we set N0 ¼ 1.
Also, the constraint P0

N0 ¼ 0 gives _P0
N0 ¼ 0. Hence, from

(3.10), we obtain

P02
a0 ¼ 6a0−2P02

ϕ0 þ 12a04V 0ðϕ0Þ: (3.11)

By squaring both sides of Eq. (3.5) and substituting P02
a0 from

(3.11) and then using Eq. (3.7), we get the Hamiltonian
constraint as

� _a0

a0

�2

¼ 1

3

�
1

2
_ϕ02 þ V 0ðϕ0Þ

�
≡ 1

3
ρ0eff : (3.12)

Now, differentiating Eq. (3.5) with respect to the time, and
then employing Eqs. (3.6), (3.7), (3.11), and (3.12) we have

2
ä0

a0
þ
� _a0

a0

�2

¼ −
�
1

2
_ϕ02 − V 0ðϕ0Þ

�
−
1

3
la0−2ϕ03 _ϕ0

≡−ðp0 þ p0
dÞ≡−p0

eff ; (3.13)

where p0
d ≡ 1=3la0−2ϕ03 _ϕ0 refers to an effective pressure

term associated to effects arising from the deformation
parameter. Finally, a modified Klein-Gordon equation can
be derived if we differentiate both sides of (3.7) with respect
to time. Then, if we substitute for _P0

φ0 from (3.8) into the
resulted expression and using relation (3.5), we extract
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ϕ̈0 þ 3

� _a0

a0

�
_ϕ0 þ dV 0ðϕ0Þ

dϕ0 þ l _a0
�
ϕ0

a0

�
3

¼ 0: (3.14)

Note that, in all of the above equations, if we set l ¼ 0, then,
each primed equation (quantity/variable) will have the same
form as its corresponding standard in the previous section. In
fact, Eqs. (3.12–3.14) (where only two of them are inde-
pendent), are the extended versions of the standard equations
of motion (2.12–2.14). These equations are associated to
the deformed phase space and their solutions will describe
the behavior of the primed variables. However, hereafter,
for the sake of simplicity, we drop the prime from all the
variables. We should mention that, from now on, the herein
unprimed quantities [which are the generalized (deformed)
forms of the standard (unprimed) ones] are reduced to their
corresponding in the previous section only by setting the
deformation parameter equal to zero. In Appendix A, wewill
present another different approach for deriving the equations
of motion. We should note that, although not explicit, the
effects of the chosen deformation on Eq. (3.14) are implicit,
as some of the following figures will show (in particular,
cf. Figs. 1 and 6, herein).
We now investigate some aspects of the gravitational

collapse, within the above framework for deformed phase
space, by means of numerical methods. We are particularly
interested in probing the behavior of the scale factor, its
time derivative, collapse acceleration, the scalar field evo-
lution, and other related quantities for a potential of the same
type as (2.22), in order to properly contrast the presence of
noncommutative features in the collapse dynamics.
In Fig. 1 we have presented numerically the time

evolution of the scale factor and the speed of collapse
(i.e., _a), for different values of the deformation parameter.
All the scale factor trajectories begin from the same initial
value, aðtiÞ, but, as the collapse proceeds, the full curve
(l < 0) separates from the other two and reaches a
minimum value for the scale factor at a critical epoch
which lies between tib < tcr < tfb. Thus, for tib < t < tcr,
the collapse scenario proceeds much slower than t < tib,
ceasing at tcr and then entering a smooth expanding phase
for tcr < t < tfb. Therefore, it is seen that for l < 0 the
collapse scenario presents a soft bouncing behavior during
the time interval Δtb ¼ tfb − tib. For l > 0 the collapse
advances towards the singularity faster than in the case
where the phase-space deformation effects are absent. From
the middle panel of Fig. 1, we further see that for l < 0 the
collapse commences from _aðtiÞ < 0, proceeding for a while
in an accelerating phase until an absolute maximum value
in negative direction is reached (point A). It then decel-
erates and halts at point B where _aðtcrÞ ¼ 0. After this
epoch, the collapse regime is replaced by an accelerated
expansion and continues up to the point C. This expanding
phase slows down when this point is passed. The lower
panel in Fig. 1 further supports this argument: the collapse
acceleration remains negative prior to point A, where the

collapse speed achieves its maximum negative value. This
point corresponds to the first inflection point of acceler-
ation curve, occurring at t ¼ t1 inf . Thus, for t < t1 inf the
collapse proceeds in the so-called fast-reacting process
while for t1 inf < t < tcr a slow-reacting regime governs.
The collapse procedure experiences a decelerating phase
from points A to B (see the middle plot in Fig. 1) with ä
achieving in between a local maximum. As time evolves,

FIG. 1 (color online). Upper and middle panels: The time
behavior of the scale factor, the speed of collapse ( _a) for different
values of deformation parameter, l ¼ −0.211 (solid curve), l ¼
0.211 (dashed curve), l ¼ 0 (dotted-dashed curve), β ¼ −3.2,
and α ¼ 1.1. Lower panel: The time behavior of _a (solid curve)
and ä (dashed curve) for l ¼ −0.211. We have taken the initial
values ϕðtiÞ ¼ 1.98, _ϕðtiÞ ¼ 0.711, aðtiÞ ¼ 3, _aðtiÞ ¼ −0.868,
and ρi ¼ 0.2511.
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the acceleration decreases to point B, with _a progressing
toward less negative values (upwards), eventually being
_a ∼ 0 and then smoothly becoming positive. This happens
during the time interval Δtb, within which the bounce
appears. We note that Δtb is too small so that _a changes
infinitesimally and ä ∼ constant. For t > tfb, an accelerat-
ing expanding phase governs the scenario until the time
t2 inf , at which ä reaches its second inflection point, where
_a achieves its absolute maximum (see also point C). For
t > t2 inf the expanding phase slows down at late times.
The situation is quite different for l > 0; as it is seen the
collapse evolves faster than the case l ¼ 0.
In Fig. 2 we have plotted the Kretschmann invariant

(upper plot) and the ratio of twice Misner-Sharp energy
(middle plot) over the physical area radius. Correspondingly,
the Kretschmann invariant behaves regularly for l < 0 but
for l > 0, it diverges in a more rapid way than the case
l ¼ 0. For l < 0, the ratio 2M=R stays finite and less than
one until the bounce occurs, which signals the trapped
surfaces formation failure; for l > 0, this invariant tends to
infinity faster when compared to the case l ¼ 0: this implies
that the trapped surfaces form earlier than when the
deformation effects are absent. The lower panel in Fig. 2
further illustrates the dynamics of the apparent horizon in the
interior spacetime, which by means of Eq. (2.32), reads

rahðtÞ ¼
1

aðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
3

ρeffðtÞ

s
: (3.15)

As the figure shows, the different behaviors of the scale
factor bodes the different pictures for the time behavior of the
apparent horizon curve. For l < 0 (solid curve) there are two
minimum radii for which, if the boundary is taken so that
r2 min < rb < r1 min, the apparent horizon curve goes to
infinity as tcr is approached; therefore no trapped surfaces are
expected to appear throughout the gravitational contraction
process, before the bounce occurs. However, when contrac-
tion turns to an accelerated expansion, the apparent horizon
may still form due to the process of recapturing the mass that
might have escaped during the contraction regime. Thus, for
rb < r2 min, no horizon may form during the expanding
phase. It is also worth noticing that the middle plot in
Fig. 2 has been made for rb ¼ 0.1 while r1 min ≃ 0.427 and
r2 min ≃ 0.126. We also note that the regularity condition,
which states that there should not be any trapped surface at
the initial time from which the collapse begins, puts an upper
bound on the value of the boundary. Thus, from Eq. (3.15),
the boundary has to satisfy rb < rahðtiÞ in order that the
regularity condition be respected.
The case l > 0 (dashed curve) also shows that there is

no minimum radius below which trapped surface formation
could be avoided and the apparent horizon forms faster than
when l ¼ 0 (dotted-dashed curve). The inset of the middle
panel in Fig. 2 elaborates more on this issue, where we
show the behavior of the invariant ΘþΘ− over time. All the

curves begin from initial configurations that respect the
regularity condition [ΘþΘ−ðtiÞ < 0]. For l < 0, the expan-
sion of radial null geodesics stays negative throughout the
scenario which shows the failure of formation of the
apparent horizon. For l ¼ 0, this quantity stays negative
for a while, then intersects the line ΘþΘ− ¼ 0 at t ¼ t2 ah;
correspondingly, from the lower plot of Fig. 2, we observe
that the apparent horizon (dotted-dashed curve) forms at
this time to cover the singularity. For l > 0, the dashed
curve gets zero at t ¼ t1 ah < t2 ah, which from the lower

FIG. 2 (color online). The time behavior of the Kretschmann
invariant (upper panel), the ratio 2M=R (middle panel), and the
apparent horizon curve (lower panel), for different values of defor-
mation parameter, l ¼ −0.211 (solid curve), l ¼ 0.211 (dashed
curve), l ¼ 0 (dotted-dashed curve), β ¼ −3.2, and α ¼ 1.1. The
inset shows the time behavior of the invariant ΘþΘ−, l ¼ −0.211
(solid curve), l ¼ 0 (dotted-dashed curve), and l ¼ 0.211
(dashed curve). We have taken the initial values ϕðtiÞ ¼ 1.98,
_ϕðtiÞ ¼ 0.711, aðtiÞ ¼ 3, _aðtiÞ ¼ −0.868, and ρi ¼ 0.2511.
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plot we see that the apparent horizon (dashed curve) forms
earlier in the absence of phase-space deformation effects.
The behavior of the effective energy density and the time

derivative of the Misner-Sharp energy is shown in Fig. 3.
The full curve shows that the effective energy density
increases up to a local maximum value (point A), where _a
has reached its negative maximum value. This could be
associated with the first inflection point t1 inf as the star
contracts in an accelerating way. As the decelerating regime
begins, the collapse slows down and proceeds to momen-
tarily to stop. The effective energy density decreases to a
zero value at t ¼ tcr, as if some mass loss took place,
possibly caused by the appearance of negative pressure
coming from phase-space deformation effects, i.e., energy
escaping as this reverse in the dynamics takes place. Since
trapped surfaces are failed to form, this flux of energy
may be visible by external observers. Thus, a soft bounce
occurs when the contracting phase transits to an expanding
one at a specific value of the scale factor between the time
interval Δtb (point B in upper plot of Fig. 3; cf. Fig. 1).
Subsequently, as the collapse turns into expansion, the
effective energy density increases again to an absolute
maximum (point C), possibly due to energy being regained;
finally, it decreases asymptotically, as the star continues to

expand without restriction2. The energy density never blows
up and the singularity that was produced in the undeformed
case is avoided. This behavior may be interpreted as
follows: the collapse proceeds for a while and then halts
at the bouncing stage (cf. the behaviors of _a and ä), after
which the star expands and intakes some mass that may
have escaped. Finally, as it carries on expanding without
regaining any more mass, the density decreases. We notice
that the mentioned behavior is only for the solid line.
The lower panel in Fig. 3 suggests indeed this behavior at

this period; hence the peak for point C. Furthermore, the
negative zone in this figure shows the outward flux of
energy occurring in the deceleration phase, i.e., from points
A to B in Fig. 1. Therefore, the matching with a suitable
exterior geometry, namely the generalized Vaidya space-
time, must be carried out, which describes an outgoing
radiation. We note that since the star has internal pressure
and is radiating, the Schwarzchild metric may no longer be
a suitable spacetime to describe the exterior region. On the
other hand, through the matching procedure, the interior
solution can be extended to the exterior region3 and this may
tell us whether the horizons form. Let us be more precise.
The geometry outside a spherically symmetric radiating
body is given by the generalized Vaidya metric as [65]

ds2out¼−
�
1−2MðuÞ

rv

�
du2−2dudrvþr2vdΩ2; (3.16)

where u ¼ t − rv andMðuÞ being the retarded (exploding)
null coordinate and the gravitational mass inside the sphere
of radius rv, respectively. The above metric is to be
matched, by means of Isreal-Darmois junction conditions
[66], to the internal geometry [cf. (2.2)] at the boundary of
the star which is a timelike hypersurface given by r ¼ rΣ.
We assume that the second fundamental form is continuous
across the boundary; there is no surface stress-energy or
surface tension at the boundary (see [67] for more details).
The induced metrics as we approach Σ from the interior and
exterior regions are given by, respectively

ds2Σin
¼−dt2þa2ðtÞr2ΣdΩ2;

ds2Σout
¼−

��
1−2MðuÞ

rv

�
_u2þ2_u_rv

i
dt2þr2vdΩ2; (3.17)

where _≡ d=dt. Matching the induced metrics across Σ
we get

rvðtÞ ¼ rΣaðtÞ;
�
1 − 2MðuÞ

rv

�
_u2 þ 2_u_rv ¼ 1: (3.18)

FIG. 3 (color online). The time behavior of the effective energy
density and _M for different values of deformation parameter,
l ¼ −0.211 (solid curve), l ¼ 0.211 (dashed curve), l ¼ 0
(dotted-dashed curve) for β ¼ −3.2 and α ¼ 1.1. We have
taken the initial values ϕðtiÞ ¼ 1.98, _ϕðtiÞ ¼ 0.711, aðtiÞ ¼ 3,
_aðtiÞ ¼ −0.868, and ρi ¼ 0.2511.

2A similar behavior for the energy density is found in the
models driven by spinor cosmology [64].

3Correspondingly, the effects of phase-space deformation may
be transported to the outside.
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Matching the extrinsic curvature components calculated
from the interior and exterior geometries and after a
straightforward but lengthy calculation, we get at the
boundary [68]

2MjΣ ¼ r3Σa _a
2 ¼ 2MjΣ: (3.19)

Following [69], let us cast the exterior line element into
dual-null form as

ds2out ¼ −2dξþdξ− þ r2vdΩ2; (3.20)

with the dual-null one-forms given by

dξþ ¼ 1

2
du; dξ− ¼

�
1 − 2M

rv

�
du − 2drv: (3.21)

The corresponding radial null expansions are given by

θþ ¼ 2

rv

�
1 − 2M

rv

�
; θ− ¼ − 1

rv
: (3.22)

The dynamical horizon in the generalized Vaidya space-
time is located at θþ ¼ 0 or simply 2M ¼ rv, which lies
on the boundary surface if 2M ¼ R. Then, from (3.19) we
readily get

j _aj ¼ 1

rΣ
; (3.23)

which implies that once the collapse velocity reaches the
value that satisfies the above equation, the dynamical
horizon intersects the boundary of the star. Figure 4 shows
the absolute value of the collapse velocity versus the scale

factor. The horizontal arrows label different values of j _aj
for different boundary radii, as Eq. (3.23) dictates. There
are two thresholds for the horizon formation, one in the
collapse phase, which corresponds to j _a1 maxj ¼ 1=r1Σ,
and the other one in the expanding phase which corre-
sponds to j _a2 maxj ¼ 1=r2Σ. Thus, for l < 0 (solid curve),
the following considerations can be remarkable:
(i) The regularity condition demands that there must be

no trapping of light at the initial epoch from which the
collapse scenario begins. Thus there exists a maximum
radius, namely, rrgΣ, so that if rb ¼ rrgΣ the regularity
condition breaks down. Then, we could deduce that if
the boundary surface is taken so that r1Σ < rb < rrgΣ
or equivalently j _argj < j _aj < j _a1 maxj, three horizons
may appear (see the dashed arrow labeled as D, in
Fig. 4); in the accelerated contracting regime, (from
the initial configuration until point A or the first
inflection point, see Fig. 1) as j _aj increases, the first
horizon forms to intersect the boundary until the time
at which the decelerated contracting regime begins.
After this time, j _aj starts decreasing until getting
vanished at the bounce, i.e., from point A to B. During
this time interval where a decelerated contracting
regime governs the collapse procedure, the horizon
condition (3.23) is satisfied for the second time at an
inner horizon. Contrary to the outer horizon, this one is
situated in a modified regime where the weak energy
condition (WEC) is effectively violated (due to the
appearance of negative pressure) and ä > 0. As the
collapse is replaced by a bounce and an accelerated
expanding regime gets started, i.e., from points B to C,
the condition (3.23) is fulfilled for the third time and a
dynamical horizon intersects the matching surface.

(ii) If r2Σ < rb < r1Σ or equivalently j _a1 maxj < j _aj <
j _a2 maxj, then no horizon may form in the exterior
zone throughout the collapse regime (see the dashed
arrow labeled as E, in Fig. 4). However, two dynamical
horizons may still occur to meet the boundary; one in
the accelerated expanding phase (tcr < t < t2 inf ) and
the other one in the decelerated expanding phase
(t > t2 inf ). Therefore, the collapse procedure that is
replaced by a bouncing scenario may be covered by
these horizons.

(iii) Finally, if rb < r2Σ or equivalently j _aj > j _a2 maxj, no
horizon may occur in the exterior Vaidya region and
the bounce is uncovered (see the dashed arrow labeled
as F, in Fig. 4).

In contrast to the case l < 0 for which j _aj is bounded
during the evolution of the setting, it grows boundlessly
for l > 0 and l ¼ 0 so that there cannot be found any
threshold for the collapse velocity or any minimum radius
for the boundary in order to avoid the formation of
horizons. Thus as we approach the singularity, a dynami-
cal horizon will always form to cover the singularity. In
order to see whether the outward flux of energy can be

FIG. 4 (color online). The behavior of absolute value of the
collapse velocity in terms of the scale factor for different values of
deformation parameter, l ¼ −0.211 (solid curve), l ¼ 0.211
(dashed curve), and l ¼ 0 (dotted-dashed curve) for β ¼ −3.2
and α ¼ 1.1. The horizontal dashed arrows correspond to differ-
ent values of rb, see the text for details. We have taken the initial
values φðtiÞ ¼ 1.98, _φðtiÞ ¼ 0.711, aðtiÞ ¼ 3, _aðtiÞ ¼ −0.868,
and ρi ¼ 0.2511.
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visible to faraway observers, we assume that the energy
flux as measured locally by an observer with a four-
velocity vector ζμ is given by [70]

σ ≡ Tμνζ
μζν: (3.24)

We consider only radially moving observers and
define the radial velocity for such an observer as

v≡ ζrv ¼ drv
dt

: (3.25)

This follows then from ζμζ
μ ¼ −1 and ζθ ¼ ζϕ ¼ 0

du
dt

¼ ζu ¼ η − v

ð1 − 2MðuÞ
rv

Þ
¼ 1

ηþ v
; (3.26)

where

η ¼
�
1þ v2 − 2MðuÞ

rv

�−1
: (3.27)

By calculating the nonvanishing component of
Ricci tensor, i.e., ðRuu ¼ − 2

r2v
dM
du Þ and using

Eq. (3.24), we get the following expression for
the energy flux σ, as

σ ¼ − 1

ðηþ vÞ2
�

1

4πr2v

dMðuÞ
du

�
: (3.28)

The total luminosity for an observer with speed v
and the radius rv is given by [70]

LðuÞ ¼ 4πr2vσ: (3.29)

Substituting Eq. (3.28) into (3.29) we get

LðuÞ ¼ − 1

ðηþ vÞ2
dMðuÞ
du

: (3.30)

Then, using Eq. (3.26) in Eq. (3.30), we can
rewrite the luminosity in terms of the interior mass
function as

LðuÞ ¼ − _M
ðηþ vÞ : (3.31)

For an observer being at rest (v ¼ 0) at infinity
(rv → ∞), the total luminosity of the radiation can
be obtained by taking the limit of (3.31) as

L∞ðuÞ ¼ − _M: (3.32)

As we have described herein this paper, the negative
pressurecoming fromphase-spacedeformationeffects
decelerates the collapse procedure until the bouncing

time. Therefore, when the collapse enters the slow
reacting regime, i.e., t1 inf < t < tcr, (see the lowerplot
in Fig. 1) the horizon is expected to shrink due to the
modifications coming from phase-space deformation
in the interior spacetime, which led to the violation of
WEC (this allows the bounce to happen [68]). Since
_M < 0 in this regime we may conclude that
L∞ðuÞ∣t1 inf<t<tcr > 0; thus the radiation emanating
fromthebounceprocessmaybepossible tobedetected
by external observers. However, since j _aj is bounded
(for l < 0), then, by suitable choice of the boundary
surface r ¼ rΣ, the horizon formation is avoided. In
such a situation,wehave a regularmatter configuration
that initially collapses, reaches high densities, and then
disperses without the horizon formation.

In Fig. 5 we have plotted the scale factor for different
values of deformation parameter. It is seen that as the
absolute value of l increases, the bouncing stage increases.
This may be seen from the pressure originating from the
deformation effects (cf. the upper plot of Fig. 9). The larger
the value of pd, the longer the time scale of the bounce. Let
us briefly mention that although Eq. (2.12) remains
unchanged under deformation, the time behavior of the
kinetic energy of the scalar field in this equation is different.
Figure 6 shows our numerical simulation for the scalar

field and its kinetic energy. The full curve shows that the
scalar field increases monotonically with a soft slope at the
bouncing. The kinetic energy decreases after a local
maximum as the collapse reaches the bouncing time, while
regarding Eq. (2.22), the potential energy decreases too
and cancels the kinetic energy. Therefore, the collapse
rate vanishes and changes from a collapsing phase to a
bouncing phase [13]. Such a transition can be better seen in
the phase portrait of the collapse rate and effective energy
density. As we see from Eq. (3.12) [or from (A10)],
there are two branches i.e., collapsing and expanding

FIG. 5. The time behavior of the scale factor for different values
of deformation parameter, l ¼ −0.07385 (solid curve), l ¼
−0.1266 (dotted curve), l ¼ −0.19412 (dashed curve), l ¼
−0.38402 (dotted-dashed curve) for β ¼ −3.2 and α ¼ 1.1.
We have taken the initial values ϕðtiÞ ¼ 1.98, _ϕðtiÞ ¼ 0.711,
aðtiÞ ¼ 3, _aðtiÞ ¼ −0.868, and ρi ¼ 0.2511.
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phases for negative and positive signs of the collapse rate,
respectively. Thus, as the star initially begins to contract,
the collapse rate approaches zero (see the left half-plane of
Fig. 7), where the bounce appears at a finite scale factor
and then starts to expand at later times, see right half-plane
of Fig. 7. The dotted-dashed curve in Fig. 6 presents the
situation in the absence of phase-space deformation, with
the scalar field increasing boundlessly and the kinetic

energy diverging to infinity. The dashed curve shows the
behavior of these quantities for positive value of l whereas
we see the kinetic energy grows more rapidly than the
case l ¼ 0.
For the collapsing matter clouds, it is usually required

that the WEC be respected by the collapse configuration. In
the collapse setting presented herein, WEC is given by
ρeff ≥ 0 and ρeff þ peff ≥ 0. The first inequality holds for
both undeformed and deformed configurations and the
second one also remains valid for the undeformed case.
However, as Fig. 8 shows, the second inequality holds only
in the weak field regime, i.e., close to the initial configu-
ration of the collapse setting, since the pressure appearing
as phase-space deformation effects becomes dominant over
the effective energy density at later stages. Such a crucial
feature leads to the violation of WEC, which can be seen in
several collapse settings where the effects of quantum
gravity become prominent in strong field regimes [71].
However the herein setting guarantees the positivity of the
effective energy density.

IV. CONCLUSIONS

In this paper, concerning a scenario of gravitational
collapse, we probed singularity formation (or the possibil-
ity of its removal) in the presence of a phase-space
deformation within the canonical momenta sector. To be
more precise, our matter content was described by the
Lagrangian density of a scalar field minimally coupled to
the spacetime curvature. The interior spacetime as taken as
that of flat Friedmann-Lemaı̂ tre-Robertson-Walker metric
[43–45]. Thereby, by employing an Hamiltonian formal-
ism, we explored the consequences of the dynamical
deformation (3.2) in the phase space.
The choice of such a type of deformation, whose

particular form can be further discussed by means of a
dimensional analysis, was motivated [62]. Additional
arguments for it can be found also in [62], namely with

FIG. 6. The time behavior of the scalar field and its kinetic
energy for different values of deformation parameter, l ¼ −0.211
(solid curve), l ¼ 0.211 (dashed curve), l ¼ 0 (dotted-dashed
curve) for β ¼ −3.2 and α ¼ 1.1. We have taken the initial
values ϕðtiÞ ¼ 1.98, _ϕðtiÞ ¼ 0.711, aðtiÞ ¼ 3, _aðtiÞ ¼ −0.868,
and ρi ¼ 0.2511.

FIG. 7. The phase space of the collapse rate and effective
energy density for l ¼ −0.211, β ¼ −3.2 and α ¼ 1.1. We have
taken the initial values ϕðtiÞ ¼ 1.98, _ϕðtiÞ ¼ 0.711, aðtiÞ ¼ 3,
_aðtiÞ ¼ −0.868, and ρi ¼ 0.2511.

FIG. 8. The behavior of weak energy condition for different
values of deformation parameter, l ¼ −0.211 (solid curve), l ¼
0.211 (dashed curve), l ¼ 0 (dotted-dashed curve) for β ¼ −3.2,
and α ¼ 1.1. We have taken the initial values ϕðtiÞ ¼ 1.98,
_ϕðtiÞ ¼ 0.711, aðtiÞ ¼ 3, _aðtiÞ ¼ −0.868, and ρi ¼ 0.2511.
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respect to the noncommutativity between the canonical
momenta4.
More concretely, the phase-space deformation emerges

in the equations of motion by means of specific new terms,
characterized by a parameter l. This could be taken either
as positive or negative (l ¼ 0 representing the no defor-
mation setting). The case l > 0 leads us to an additional
positive pressure effect, speeding up the collapse toward the
singularity. Whereas, in the l < 0 case, a negative pressure
is present, inducing the collapse (that would have been
toward a singularity) to be replaced by a nonsingular
bounce.
It may be appropriate to compare the deformed equations

with the corresponding ones when l ¼ 0. In the usual
collapsing regime, as is seen from Eq. (2.14), the _ϕ term
acts as antifriction throughout the collapse. From
Eq. (3.14), we may intuitively consider that a negative
value of a quantity associated to the phase-space deforma-
tion parameter, would balance the antifriction term5. In fact,
it was precisely an additional negative pressure (pd),
induced from the phase-space deformation, that changed
the collapsing picture: in the undeformed regime, for
β < −1, trapped surfaces do form as Eq. (2.33) shows
and thus the resulting singularity is covered, while in the
deformed one (for l < 0) trapped surfaces may be avoided
until the time at which the bounce occurs, see the middle
plot of Fig. 2. Since trapped surfaces failed to form, there
may exist an outward flux of energy, due to which the
effective mass reduces, see the _M < 0 period in the lower
plot of Fig. 3. At later times, when the star begins an
expanding phase, it absorbs the energy that has been
escaping the collapsing phase. Thus, gravity becomes
repulsive due to the presence of pd. This provides the
bouncing behavior and hence a singularity avoidance,
depending thus on the deformation parameter. It is worth
noting that the time scale of the bounce depends on the
absolute magnitude of the deformation parameter.
In summary, in the early stages of the collapse, as time

advances, the velocity of the collapse becomes more and
more negative; meanwhile the pressure pd that emerges
from phase-space deformation effects comes into play to
prevent the collapsing phase to proceed. This pressure starts
from a small negative value and progresses gradually to
more negative values, thus ceasing the growth of the
collapse velocity, up to a maximum negative value (see
point A in Fig. 1). From then, the collapse continues but in
a decelerating phase so that pd reaches its local maximum

in negative direction (see the upper plot in Fig. 9). After
that, pd proceeds, competing with gravitational attraction,
until the time at which the collapse velocity becomes zero,
where, during Δtb, the pressure pd stays for a while in its
local minimum. Then, the collapse smoothly transforms to
an accelerated expansion owing to this negative pressure,
and this situation continues until that pd achieves its absolute
maximum (negative value), where _a and the effective energy
density reach their maximum value. Finally, as the procedure
enters a weak field regime, the deformation effects start to

FIG. 9 (color online). Upper panel: The time behavior of the
induced pressure originated from the phase-space deformation
and the collapse velocity for l ¼ −0.211. Middle panel: The time
behavior of effective pressure, for different values of deformation
parameter, l ¼ −0.211 (solid curve), l ¼ 0.211 (dashed curve),
l ¼ 0 (dotted-dashed curve) for β ¼ −3.2 and α ¼ 1.1. Lower
panel: The time behavior of pd for l ¼ −0.211 (solid curve),
l ¼ 0.211 (dashed curve), l ¼ 0 (dotted-dashed curve), and
β ¼ −3.2. We have taken the initial values ϕðtiÞ ¼ 1.98,
_ϕðtiÞ ¼ 0.711, aðtiÞ ¼ 3, _aðtiÞ ¼ −0.868, and ρi ¼ 0.2511.

4By taking the standard Brans-Dicke Lagrangian in vacuum
and a spatially flat Friedmann-Robertson-Walker metric, then
applying a dynamical deformation in the phase space, the big
bang singularity is removed and also the horizon problem is
analyzed [62].

5The same antifrictional behavior can be seen when loop
quantum effects are taken into account in the collapse process of a
scalar field [45].
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ease, so that the velocity of expansion and the effective
energy density converge asymptotically. However, for
positive values of the phase-space deformation parameter,
it makes the last term in Eq. (3.14) behave as an antifriction
term and prompts the collapse scenario to reach the
singularity faster than the case in which the deformation
effects are absent. The middle plot of Fig. 9 further shows
that the effective pressure for l < 0 begins from positive
values, then turning to negative ones as the bounce occurs.
For l > 0 the effective pressure remains always positive
and diverges. Indeed, the associated positive pressure adds
to gravity and strengthens its attractiveness property, see
dashed curve in the lower plot of Fig. 9. Let us further
mention that, from Fig. 1, if we set the interval Δts ¼
ts − ti as the time that the collapse takes to hit the
singularity, then the following inequality holds

Δtlþ < Δts < Δtl− ; (4.1)

where Δtlþ ¼ t̄s − ti is the time that the collapse scenario
takes to reach the singularity at t ¼ t̄s (for l > 0), and
Δtl− ¼ tcr − ti is the time that is taken up until the collapse
transforms to a bounce. The fact is that for l < 0, the
collapse slows down due to the appearance of the negative
pressure pd, which prompts the collapse to turn into a
bounce at the time tcr > ts. Conversely, for l > 0, the
corresponding positive pressure causes the collapse to
reach the singularity at an earlier time than the case
l ¼ 0; hence t̄s < ts.
Finally, we would like to point out that besides the

setting presented here, there are various works in the
literature on other bouncing scenarios. Among them we
quote fðRÞ theories in Palatini formalism [72], generalized
teleparallel gravity theories [73] and in the presence of
interacting spinning particles in the framework of Einstein-
Cartan theory [74]. The occurrence of bounces have been
reported in spatially flat isotropic models in loop quantum
cosmology for a massless scalar field [75], for different
matter models [76], and in the presence of anisotropy [77]
(see also [78] and references therein). In addition, models
based on loop quantum gravity suggest that the singularity
(that forms in the classical framework of gravitational
collapse), can be regularized when the collapse scenario
enters the Planckian regimes; semiclassical effects into the
gravitational collapse of a homogeneous scalar field replace
the singularity by a nonsingular bounce [45,79]. The same
approach for a closed universe filled with a massive scalar
field, which classically collapses to a singularity has been
investigated in [80] and it was shown that loop quantum
effects in high curvature regimes led to a bouncing
scenario, irrespective of the initial conditions. In the end,
coordinate noncommutativity may also result in remarkable
cosmological scenarios [81] as well as its role in curing the
problems we face in describing the final fate of a radiating
black hole, such as removing the curvature singularity
being present in the commutative case [82].

ACKNOWLEDGMENTS

One of us (S. M. M. R.) is grateful for the support of
Grant No. SFRH/BPD/82479/2011 from the Portuguese
Agency Fundação para a Ciência e Tecnologia. This
research work was supported by Grant No. CERN/FP/
123618/2011. We would like to thank Nima Khosravi and
Shahram Jalalzadeh for useful discussions and comments.

APPENDIX A: ANOTHER (SECOND) APPROACH
FOR DERIVING THE EQUATIONS

OF MOTION OF SEC. III

Here, we would like to apply another approach, which
has been employed in the former investigations (see, e.g.,
Refs. [60,83]), to derive the equations of motion associated
to the deformed space of Sec. III. Let us start by introducing
the following variables8>><

>>:
P0
ϕ0 ¼ Pϕ − laϕ3

ϕ0ðtÞ ¼ ϕðtÞ; N0ðtÞ ¼ NðtÞ
a0ðtÞ ¼ aðtÞ; P0

a0 ¼ Pa:

(A1)

We can easily show that the above variables satisfy the
relation (3.2) if the unprimed variables satisfy the standard
Poisson brackets. By employing the above transformations,
the Hamiltonian (3.3) changes to

Hnc
0 ¼ H0 − Nla−2ϕ3Pϕ þ

1

2
Nl2a−1ϕ6; (A2)

where H0 is given by (2.3). In fact, by employing the
transformation (A1), the Hamiltonian H0

0 (as a function of
the primed variables) has been replaced by Hnc

0 , as a
function of the unprimed variables. Finally, we write the
Dirac Hamiltonian for the deformed scenario as

Hnc ¼ Hnc
0 þ λPN: (A3)

The equations of motion with respect to the above
Hamiltonian become

_a ¼ fa;Hncg ¼ − 1

6
Na−1Pa; (A4)

_Pa ¼ fPa;Hncg

¼ − 1

12
Na−2P2

a þ
3

2
Na−4P2

ϕ − 2Nla−3ϕ3Pϕ

þ 1

2
Nl2a−2ϕ6 − 3Na2VðϕÞ; (A5)

_ϕ ¼ fϕ;Hncg
¼ Na−3Pϕ − Nla−2ϕ3; (A6)
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_Pϕ ¼ fPϕ;Hncg
¼ 3Nla−2ϕ2Pϕ − 3Nl2a−1ϕ5

− Na3
dVðϕÞ
dϕ

; (A7)

_N ¼ fN;Hncg ¼ λ; (A8)

_PN ¼ fPN;Hncg ¼ 1

12
a−1P2

a − 1

2
a−3P2

ϕ

þ la−2ϕ3Pϕ − 1

2
l2a−1ϕ6 − a3VðϕÞ; (A9)

where, to derive the above equations, we have used the
ordinary (standard) Poisson brackets. However, instead of
the standard Hamiltonian (2.4), the noncommutative/
deformed Hamiltonian (A3) has been employed.
Therefore, we should mention that the unprimed variables
in this section are perfectly different from their correspond-
ing in Sec. II, and they were denoted by the present shapes
(i.e., in unprimed forms) only for simplicity.
In the comoving gauge, it is straightforward to show that

the equations of motion are given by�
_a
a

�
2

¼ 1

3

�
1

2
_ϕ2 þ VðϕÞ

�
¼ 1

3
ρeff ; (A10)

2
ä
a
þ
�
_a
a

�
2

¼ −
�
1

2
_ϕ2 − VðϕÞ

�
− 1

3
la−2ϕ3 _ϕ

≡ −ðpþ pdÞ≡−peff ; (A11)

ϕ̈þ 3

�
_a
a

�
_ϕþ dVðϕÞ

dϕ
þ l _a

�
ϕ

a

�
3

¼ 0; (A12)

where pd ≡ 1=3la−2ϕ3 _ϕ.
In order to monitor the role of transformations (A1) more

vividly in this paper, we should mention a few comments
regarding the primed and unprimed variables. The behavior
of the unprimed variables in this section, and also in
Sec. III, are not the same as the behavior the corresponding
ones in Sec. II. As mentioned several times, they reduce to
their standard counterparts by letting l ¼ 0. In fact, in this
paper, we have obtained the equations of motion by means
of two different approaches and realized that these equa-
tions are perfectly equivalent. In fact, introducing relations
such as (A1), that can be seen in many investigations (see
e.g., [60,83]), may just be an appropriate mathematical
transformation, at least in our paper, to derive the equations
of motion with a simpler manner. We should stress that the

only way to recover the standard (commutative) results
from the noncommutative ones is to set the deformation
parameter equal to zero.

APPENDIX B: ABOUT THE EQUATIONS
OF MOTION IN SEC. III

The effects of phase-space deformation employed in this
paper reveals itself as an additional pressure in Eq. (A11) so
that the conservation of the effective energy-momentum
tensor [81] leads to the modified evolution equation for
the scalar field. Let us take the derivative of the right- and
left-hand side of Eq. (A10), giving

_ρeff ¼ 6H _H: (B1)

From Eqs. (A10) and (A11), we have

ρeff þ peff ¼ 2H2 − 2
ä
a
: (B2)

Applying Eqs. (B1), (B2) and _H ¼ ä=a −H2, it provides

_ρeff þ 3Hðρeff þ peffÞ ¼ 0: (B3)

We now use the right-hand side and middle expression of
Eq. (A10) to obtain

_ρeff ¼ _ϕ ϕ̈þ _ϕ
dVðϕÞ
dϕ

: (B4)

Again, using the right-hand side and middle expresions of
Eqs. (A10) and (A11), gives

3Hðρeff þ peffÞ ¼ 3H _ϕ

�
_ϕþ 1

3
la−2ϕ3

�
: (B5)

Adding the left- and right-hand sides of Eqs. (B4) to (B5),
it follows

_ρeff þ 3Hðρeff þ peffÞ

¼ _ϕ

�
ϕ̈þ dVðϕÞ

dϕ
þ 3H _ϕþ l _aa−3ϕ3

�
: (B6)

By assuming _ϕ ≠ 0, we can obtain

ϕ̈þ 3

�
_a
a

�
_ϕþ dVðϕÞ

dϕ
þ l _a

�
ϕ

a

�
3

¼ 0: (B7)

Obviously, all of the explanations of this section are also
valid for the primed variables of Sec. III.
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