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By wrapping D3-branes over 3-cycles on a half-flat manifold, we construct an effective supersymmetric
black hole in theN ¼ 2 low-energy theory in four dimensions. Specifically, we find that the torsion cycles
present in a half-flat compactification, corresponding to the mirror symmetric image of electric Neveu-
Schwarz flux on a Calabi–Yau manifold, manifest in the half-flat black hole as quantum hair. We compute
the electric and magnetic charges related to the quantum hair and also the mass contribution to the effective
black hole. We find that by wrapping a number of D3-branes equal to the order of the discrete group
associated to the torsional part of the half-flat homology, the effective charge and mass terms vanish. We
compute the variation of entropy and the corresponding temperature associated with the loss of quantum
hair. We also comment on the equivalence between canceling Freed–Witten anomaly and the assumption of
self-duality for the 5-form field strength. Finally from a K-theoretical perspective, we compute the presence
of discrete Ramond–Ramond charge of D-branes wrapping torsional cycles in a half-flat manifold.
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I. INTRODUCTION

The inclusion of flux backgrounds in the search of string
compactification scenarios leading to fully symmetric four-
dimensional spaces with some or all moduli stabilized has
been studied in a huge effort and detail in the last decade
(see, for example, Ref. [1] and references therein). Within
this context, there have been enormous advances in the
construction of string models in which (supersymmetric)
Standard-Model-like scenarios are immersed ([2–4]).
On the other hand, supersymmetric black holes (SBHs)

have been constructed in the context of type II string theory
fluxless compactifications on a Calabi–Yau (CY) manifold
by wrapping Dp-branes on internal p cycles [5–16] and in
the corresponding low-energy limit given by supergravity
N ¼ 2 [17–22]. Integer electric and magnetic charges
are computed from the corresponding massless Ramond–
Ramond (RR) potential fields. However, as it is well
known, string compactifications on Calabi–Yau manifolds
are far from being realistic for various reasons, among
which are the moduli stabilization problem and the a priori
selection of vibrational modes of the quantum string.
Hence, it would be desirable to construct black holes

on the grounds of a more general theory where RR
and (Neveu-Schwarz–Neveu-Schwarz) NS-NS fluxes are
turned on. The main problem arises from the fact that in the
most general background, since the fluxes are translated
into the mirror symmetric manifold as torsion contributions

to the Levi-Cività connection, most of the forms [as the
holomorphic (3,0) form Ω and the Kähler form J] do not
close under the standard differential operator d, and the
relation among harmonic fields and standard cohomology
is lost. Without this identification, effective theories in four
dimensions cannot being constructed as easily as in the
CY case.
Huge efforts have been made in the past years to

construct N ¼ 2 gauged supergravities from compactifi-
cations of type II strings on generalized manifolds, as half-
flat manifolds, such as internal spaces with SUð3Þ or
SUð3Þ × SUð3Þ structures, etc. Construction of black hole
solutions within the context of gauged supergravity has also
been studied in the last years [23–26]. On the other hand,
nonperturbative corrections to the prepotential in type IIA
string theory compactifications on Calabi–Yau manifolds
and for self-mirror manifolds have been considered
recently to find analytical black hole solutions involving
nonextremal solutions as well as an interesting solution
describing a supersymmetric black hole [27,28].
It is important to remark that the inclusion of NS–NS

fluxes in the construction of SBHs could made some of the
involved branes unstable to decay into closed strings, as
shown in Ref. [29] due to the presence of a Freed–Witten
(FW) anomaly [30–32]. If the FW anomaly is cancelled, a
SBH constructed in such scenarios seems to be stable [33].
Nevertheless, the amount of fluxes considered must be
small; otherwise, we cannot assure a small backreaction
due to fluxes in the supergravity approach. We are
interested precisely on this point and study the effects
on the black hole by wrapping D3-branes on an internal
manifold in which the backreaction has been considered.
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Therefore, one can foresee two options for constructing a
SBH: by wrapping D3-branes on a CY manifold threaded
with a slight amount of NS–NS flux or by wrapping
D3-branes on a generalized manifold [29,33–36]. The
main goal of this work is to establish the first steps to
study the physics of a black hole constructed by wrapping
D-branes on a generalized manifold.
Concretely, we focus our study on the construction of

SBHs by wrapping D-branes on torsional cycles of a
half-flat manifold without considering quantum corrections
to the superpotential or prepotential. In this sense, we are
studying at tree level how to construct SBHs on manifolds
which already have backreacted to the presence of NS–NS
fluxes. The backreaction is then manifested by the appear-
ance of torsional components on which wrapped D-branes
contribute to extra degrees of freedom to the low-energy
theory identified with (a supersymmetric version of)
quantum hair studied in Refs. [37–43] and measure it
by the presence of a four-dimensional string.
Our work is organized as follows. In Sec. II, we briefly

review the standard construction of a SBH in a type IIB
string CY compactification by wrapping D3-branes on
supersymmetric 3-cycles. In Sec. III, we compute and
review some of the most important properties of a half-flat
manifold including the derivation of cohomology groups
and the expansion of some fields in terms of torsional
forms, followed by the calculation of the electric and
magnetic discrete charges and the torsional mass contri-
bution. With this, we can compute the entropy variation of
the state by increasing the number of torsional D3-branes
and the associated temperature once the black hole loses its
hair as the number of torsional branes reaches the order of
the discrete group. Finally, in Sec. IV we use K theory in
order to compute the discrete charge associated toD-branes
in torsional cycles with the purpose of elucidating the
nature of discrete charge without using an extra object as a
four-dimensional string manifested as the Aharanov–Bohm
effect. Our final comments are given in Sec. V followed
by a couple of Appendices. In Appendix A, we refer to the
usual notation for the symplectic cohomology basis, while
in Appendix B, we explicitly show a review on the
construction of the low-energy theory corresponding to a
type IIB compactification on a half-flat manifold on which
the 5-form field strength is expanded in terms of tor-
sional forms.

II. SUPERSYMMETRIC BLACK HOLES FROM
WRAPPED D3-BRANES

It is well known from the past years that a SBH in four
dimensions can be constructed by wrapping D-branes in
internal nontrivial cycles. The physics of the effective
Bogomolnyi-Prasad-Sommerfield (BPS) object can be
derived from different approaches [5,6,8,10,11,15,35].
According to our purposes, we would like to review the
construction of a SBH in the type IIB scenario in which

D3-branes wrap internal 3-cycles of a CY manifold X3,
closely following Ref. [6].
A massive SBH is obtained by wrapping a large number

of D3-branes on the corresponding cycles (otherwise, they
simply describe elementary massive particles). The gauge
field A1 related to the electric and magnetic charges in the
effective four-dimensional N ¼ 2 theory is constructed
from the self-dual RR field strength F 5, given by
F 5 ¼ F 2∧F3, with dA1 ¼ F 2, and through the decom-
position driven by compactifying the extra six dimensions
on X3.
To see that, consider N D3-branes wrapping an internal

3-cycle C3 ⊂ X3 given by a linear combination of the
symplectic basis of 3-cycles ðAI; BIÞ with PD6ðAIÞ ¼ βI ,
PD6ðBIÞ ¼ αI , and I ¼ 0; 1;…; hð2;1ÞðX3Þ. The basis of
3-forms ðαI; βIÞ is chosen to satisfy, as usual,

Z
AJ
αI ¼ −

Z
BI

βJ ¼ δJI : (2.1)

Defining the RR potential related to these D3-branes by

C4 ¼ A1∧
X
I

ðeIαI −mIβ
IÞ; (2.2)

the (non-self-dual) electric part of F 5 can be written as

F5 ¼ F2∧F3 ¼ F2∧
X
I

ðeIαI −mIβ
IÞ: (2.3)

The electric charge Qe is computed by integrating �10F5

over a 5-cycle Γ5 identified as the boundary of
Γ6 ¼ B3 × Γ3. Actually, since Γ3 belongs to H3ðX3;ZÞ,
only the four-dimensional component of this cycle has
boundary. Both electric and magnetic charges are then
given by

Qe ¼
Z
S2×Γ3

⋆F2∧PD6ðC3Þ ¼ −qN;

Qm ¼
Z
S2×C3

F2∧PD6ðΓ3Þ ¼ pN; (2.4)

where PD6ðC3Þ ¼ �F3, PD6ðΓ3Þ ¼ F3 with the intersec-
tion number Γ3∩C3 ¼ N. From this, it follows that

C3 ¼ −pIAI þ qIBI; (2.5)

with

qI ¼ eJAI
J −mJCIJ;

pI ¼ −eJBIJ −mJAJ
I ; (2.6)

with the matrices A, B, andC defined through integration of
the wedge product between ðαI; βIÞ and their duals as
depicted in relations (A2). The total charge of the system
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can also be computed by integrating the self-dual 5-form
F 5 ¼ FI∧αI −GI∧βI over the cycle C3∪Γ3 as

QT ¼
Z
S2×ðC3∪Γ3Þ

F 5 ¼ Nðp − qÞ; (2.7)

where

FI ¼ eIF2 þ qI⋆F2; and GI ¼ mIF2 þ pI⋆F2:

(2.8)

On the other hand, since D3-branes are BPS states of
the theory, it is expected that the pointlike object in the
effective theory should be a BPS object as well. This means
that it represents a massive state in the short multiplet of the
N ¼ 2 supersymmetric theory with a metric given by [17]

ds2 ¼ −e2UðτÞdt2 þ e−2UðτÞ

τ4
dτ2 þ e−2UðτÞ

τ2
dΩ2; (2.9)

where UðτÞ vanishes as τ → 0 and diverges at the horizon.
Hence, the RR 5-form is self-dual in this metric provided

F2 ¼ sin θdθ∧dϕ and ⋆F2 ¼ e2Udt∧dτ: (2.10)

The effective scalar potential VðrÞ, computed by dimen-
sionally reducing the 10-dimensional term F5∧ �10 F5

(with the corresponding self-duality being imposed after-
ward) reads

VðrÞ ¼ τ4VBH; (2.11)

where

VBH ¼
Z
X6

F3∧ � F3 ¼ eKðDIWDJ̄W̄KIJ̄ þ 3jWj2Þ;

¼ −eIpI þmIqI ¼ N;

(2.12)

with the superpotential W given by

W ¼
Z
X6

F3∧Ω3: (2.13)

Being a BPS state, a SBH is extremal by construction. The
sum of the squared chargesQ2 ¼ Q2

e þQ2
m equals the mass

of the expected supersymmetric BPS object in the four-
dimensional N ¼ 2 supergravity theory on which one
obtains that F3 ¼ ReðCΩ3Þ for an arbitrary complex
constant C with Ω3 being the unique holomorphic (3, 0)
form in H3ðX3ZÞ. Although the SBH’s mass is formally
computed through the use of the special symplectic
geometry [17,44,45], we shall reconstruct it following
the prescription given in Refs. [11,46], which fits our
purposes better.

The mass can be directly computed from the Dirac–
Born–Infeld action of the D3-branes wrapping C3,

SD3 ¼
Z
γ×C3

ffiffiffiffiffiffiffiffi−Gp
¼ −MBPS

Z
γ
ds; (2.14)

where GMN is the world-volume metric of the D3-branes,
decomposing as GMN ¼ 1 ⊗ gmn. After assuming preser-
vation of supersymmetry in four dimensions (which implies
that C3 is a special Lagrangian cycle), it is possible to show
that

M2
BPS ¼ eKjWj2 ¼ 1

2Imðτ̄IJXIX̄JÞ jeIX
I −mIFIj2;

(2.15)

where K ¼ − ln i
R
Ω3∧Ω̄3 ¼ − ln iðX̄IFI − XIF̄IÞ and

FI ¼ τIJXJ. As noticed in Ref. [6], the total charge and
the mass are equal, as corresponding to a BPS object, by
considering only the graviphoton mass. At the end of the
day, we have a BPS pointlike object with a horizon, within
the extremal condition on which its charge equals its mass.
It is interesting to notice that the black hole charge in four
dimensions can be understood as a linking number among
the three-dimensional ball with S2 as its boundary and a
pointlike object. From the internal space point of view, the
quantity

R
C3
F3 also represents a linking number1 among

the internal components of the RR 3-form and the cycle on
which the integration is performed. One could say after
such observation that electric and magnetic charges of
four-dimensional objects constructed from extended branes
in higher-dimensional spaces correspond to an arrangement
of those branes such that there is a linking number in four
dimensions and in the internal space. However, the fact
the mass equals its charge is not so evident from this
perspective since the mass is computed through an integral
which does not represent a linking number. Mass and
charge are equal due to the fact that the cycles over which
they are computed are supersymmetric.
Finally, the field content in the background theory with

N ¼ 2 in four dimensions is constructed from an expan-
sion of the 10-dimensional massless RR fields on a basis of
cohomological forms in the internal space in order to
describe massless states in four dimensions. The existence
of scalar fields in a background dominated by the black
hole is not in contradiction with the famous no-hair
theorem involving a classical black hole. The no-hair
theorems applied to four-dimensional black holes can be
followed from the fact that all degrees of freedom related to
the SBH are computed from surface integrals of massless
sates in four dimensions. Values of nonzero scalar fields
are fixed at the horizon through the so-called attractor

1This is also reflected in the definition of Poincaré duals
between ðAI; BIÞ and ðαI; βIÞ.
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mechanism [47]. Finally notice that, since there are not
extra fluxes, especially NS–NS fluxes, all D3-branes are
free from the FW anomaly. This becomes an important
restriction in the construction of black holes in a back-
ground threaded with NS–NS fluxes.

III. BLACK HOLES FROM HALF-FLAT
MANIFOLDS

So far, we have reviewed the standard construction of
supersymmetric black holes by wrapping D3-branes on
homological cycles of a Calabi–Yau manifold. In this
section, we shall concentrate our analysis on constructing
black holes by wrappingD3-branes on a half-flat manifold.
As we shall see, this implies wrapping D3-branes on
torsional cycles and leads to the existence of extra degrees
of freedom associated to the torsional group [42].

A. Why select half-flat manifolds?

As studied in the last few years, generalized CY
manifolds can be characterized by torsional components
of the Levi-Cività connection as representations of the
internal structure group SUð3Þ [1]. Under this perspective,
the Kähler and the holomorphic (3, 0) forms satisfy

dJ ¼ 3

2
ImðW̄1Ω3Þ þW4∧J þW3;

dΩ3 ¼ W1J2 þW2∧J þ W̄5∧Ω3; (3.1)

whereWi’s are the representations on SUð3Þ of the intrinsic
torsional components of the connection ∇. The intrinsic
torsion T is defined as the antisymmetrization of the
contorsion κ, which in turn is given as follows. Consider
differentiation of a generic p-cochain dσp ¼ ð∇σÞμ1���μp
dxμ1 � � � dxμp . If σp is not closed under d, then dσp ¼ κσp,
where κ defines the contorsion. Then we can define a
differential operator dðTÞ with torsion such that dðTÞσp ¼ 0
with

dðTÞ ¼ d − κ: (3.2)

To wrap D3-branes on cycles of the internal manifold Y3,
we concentrate on those manifolds where the nonvanishing
terms of dJ and dΩ3 have the following two properties:
1) torsional components of the connection are represented
by torsional components of the (co)homology such that it
is still possible to wrap D3-branes in a geometrical way,
and 2) we need to relate the SUð3Þ representations of the
cohomology groups of Y3 with the SUð3Þ representations
of the intrinsic torsion. This forces us to consider the case in
which W4 ¼ W5 ¼ 0 since the corresponding cohomology
groups vanish in a CY manifold.
There is a variety of manifolds for which W4 ¼ W5 ¼ 0

such as Calabi–Yau, almost Kähler, nearly Kähler, special
Hermitian, and half-flat [1]. We are going to focus on the

simplest and more studied case of the half-flat manifold,
in which torsional cohomology components are easy to
compute, and therefore a detailed study of how D3-branes
wrap such components can be carried out straightforwardly.
Nevertheless, it is important to mention that by selecting a
half-flat manifold as a background to built black holes,
some extra effects (with respect to the standard super-
symmetric black hole in a Calabi–Yau) would come
precisely from torsional branes, by which we mean
D3-branes wrapping torsional cycles.

B. Half-flat manifolds

Let us start by reviewing the construction of the
cohomology groups associated to a half-flat manifold Y3.
Under mirror symmetry, compactification of type IIA string
theory on a CY manifold X3 threaded with electric Neveu–
Schwarz flux is mapped into a mirror manifold Y3 referred to
as a half-flat manifold [48,49] on which type IIB is
compactified. Mirror symmetry is guaranteed once we have
that on Y3 dImΩ3 ¼ 0 and d × ReΩ3 ¼ ei ~ωi, where ei
comes from turning on the electric part of the NS–NS field
strength in type IIA compactification, while ~ωi are the
4-forms in H4ðY3;ZÞ. Here we want to stress that this fact
leads to the existence of torsional components in the (co)
homology of Y3 as shown in Refs. [50,51].
Take the zero components of a symplectic 3-form basis

ðαI; βIÞ with I ¼ 0; :::::; hð2;1ÞðY3Þ satisfying

dα0 ¼ ei ~ωi; (3.3)

dωi ¼ eiβ0; (3.4)

where i; j ¼ 1; :::::; hð2;1ÞðY3Þ.
Writing the right-hand side of Eq. (3.3) as ei ~ωi ¼

kðni ~ωiÞ, where k ¼ gcdðe1; � � � ; eh1;1Þ for some integers
ni, a basis for Hð2;2ÞðY3;ZÞ is then given by

ðn1 ~ω1 þ na ~ωa; ~ωaÞ; (3.5)

with a ¼ 2;…; hð1;1Þ. It is clear that n1 ~ω1 þ na ~ωa is tor-
sional since kðn1 ~ω1 þ na ~ωaÞ ¼ dα0, but ~ωa is not. Hence,

Hð2;2ÞðY3;ZÞ ¼ Zhð1;1Þ−1⊕Zk: (3.6)

Following the notation used in Ref. [42], we shall denote
by Ω̂pðY3Þ all those nonclosed p forms such that dσp ¼
kλpþ1, implying in turn that λpþ1 ∈ Tor HpðY3; ZÞ.
Therefore, from Eq. (3.4), we observe that 2-forms ωi
are nonclosed under differentiation and that dðniωiÞ ¼
kðniniβ0Þ, implying that ½niniβ0�≡ β0;tor ∈ Tor H3ðY3Þ
and niωi ∈ Ω̂2ðY3Þ (we have taken nini ¼ 1). Hence, there
is a single 3-form which is torsional (β0;tor) and another
which is nonclosed (α0 ≡ α̂0). From this, it is concluded
that
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H3ðY3; ZÞ ¼ Z2hð1;2Þ⊕Zk: (3.7)

With respect to the 2-forms, we can construct a basis of
H2ðY3;ZÞ given by

�
ω1; ηa ¼ ωa − ea

e1
ω1

�
: (3.8)

The forms ηa are all closed, but ω1 is not. Notice also that
none of them (including ω1) is torsional. Hence,

Hð1;1ÞðY3; ZÞ ¼ Zhð1;1Þ−1: (3.9)

The results are summarized in Table I.
The existence of torsional forms in a given manifold and

their closure under the action of the Laplacian [50] leads to
the fact that it is possible to expand RR potentials in terms
of forms belonging to Tor HpðY3;ZÞ⊕Ω̂ðY3Þ. Notice that
under differentiation,

d∶Ω̂pðY3Þ → Ker½Tor Hpþ1ðY3;ZÞ�: (3.10)

(3.11)

Therefore, following the notation used in Ref. [42], it is
possible to define a basis of 3-forms in the half-flat
manifold as ðα̂0; β0;torÞ supported in the pair ðΣtor

3 ; Π̂3Þ
conformed by a 3-cycle and a 3-chain with

kΣtor
3 ¼ ∂Π̂4; ∂Π̂3 ¼ kΣtor

2 ; (3.12)

where Σtor
3 ∈ Tor H3ðY3; ZÞ and Π̂3 ∈ Ω̂3ðY3Þ. This estab-

lishes an isomorphism between the spaces Tor H3ðY3Þ⊕Ω̂3

and Ω̂3⊕Tor H3ðY3Þ, meaning that the trivial element in
the field is given by integration of a torsional (nonclosed)
form over a nonclosed (torsional) cycle. This in turn
defines an extra isomorphism between Tor H3ðY3Þ and
Tor H4ðY3Þ as expected by Poincaré duality and the
universal coefficient theorem [42,52]. Specifically, we
have that

Z
Σtor
3

α̂0 ¼ −
Z
Π̂3

β0;tor ¼
Z
Y3

α̂0∧β0;tor ¼ 1;

Z
Π̂4

ωtor
4 ¼ −

Z
Σtor
2

ω̂2 ¼
Z
Y3

ωtor
4 ∧ω̂2 ¼ 1; (3.13)

in accordance with the basis chosen in Refs. [48,49,53,54]
and where we made use of

Z
Σtor
3

α̂0 ¼
1

k

Z
∂Π̂4

α̂0 ¼
1

k

Z
Π̂4

dα̂0 ¼
Z
Π̂4

ωtor
4 ¼ 1: (3.14)

From these relations, we can also obtain that

PD6ðα̂0Þ ¼ Π̂3;

PD6ðβ0;torÞ ¼ Σtor
3 ; (3.15)

with PD6∶ Tor H3ðY3;ZÞ⊕Ω̂3ðY3Þ⟷TorH3ðY3;ZÞ⊕Ω̂3

ðY3Þ. Notice that the above integrals define the linking
number between Σtor

3 and Π̂3.
Using this structure, it is possible to write down expres-

sions for the Kähler form and the holomorphic 3-form
depending on the noncohomological forms [48,49].
Consider the Kähler 2-form J ¼ viωi, which can be written
in terms of ω̂2 as

J ¼ viniω̂2; (3.16)

from which it follows that

dJ ¼ vinidω̂2 ¼ vinikβtor;0; ni ∈ Z: (3.17)

Similarly, the holomorphic (3, 0)-form Ω3 satisfies [48,49]

dΩ ¼ dα̂0 ¼ kωtor
4 ; (3.18)

for which it is straightforward to set the most general
expression for Ω3,

Ω3 ¼ Ω0
3 þ ~Ω3 ¼ Xiαi − Fiβ

i þ α̂0 − F0β
0;tor; (3.19)

with ~Ω3 corresponding to the components ofΩ3 expanded in
the basis ðα̂0; β0;torÞ and where the periods are given by the
integrals

FI ¼ ðF0; FiÞ ¼
�Z

Π̂3

~Ω3;
Z
Bi

Ω0
3

�
;

XI ¼ ðX0; XiÞ ¼
�Z

Σtor
3

~Ω3;
Z
Ai
Ω0

3

�
: (3.20)

Notice that for the half-flat manifold, the nonclosed parts
of J and Ω parametrize how different a half-flat manifold
is compared with a CY manifold. Particularly, for the
half-flat, the torsional components of the geometrical

TABLE I. Cohomology groups for Y3.

HnðY3;ZÞ Tor HnðY3Þ Exact mod k Nonclosed

n ¼ 0 Z � � � � � � � � �
n ¼ 1 � � � � � � � � � � � �
n ¼ 2 Zhð1;1Þ−1 � � � � � � niωi ≡ ω̂2

n ¼ 3 Z2hð2;1Þ Zk niniβ0 ≡
β0;tor

α̂0

n ¼ 4 Zhð1;1Þ−1 Zk ni ~ωi ≡ ωtor
4 � � �

n ¼ 5 � � � � � � � � � � � �
n ¼ 6 Z � � � � � � � � �
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connection are identified with torsional components of
cohomology. This is a key ingredient in our method to
construct black hole by wrapping D-branes on internal
cycles, since the extra information we have in relation with
a CY manifold is now encoded in torsional homology
cycles, which one can use to wrap D-branes. Notice that
this is just the half-flat version of the well-known example
in which NS–NS flux is transformed into torsional coho-
mology at the level of the tori compactification [50].

C. Discrete electric gauge charge from
half-flat manifolds

In contrast with the supersymmetric compactification on
a CY manifold, a half-flat manifold has torsional cycles.
Following the prescription reviewed in Sec. II, one wonders
what are the consequences of wrapping D3-branes around
some of these spaces on the black hole physics. It is then
the purpose of this section to study the physical implica-
tions of wrapping branes on torsional 3-cycles. For that, as
we have seen, we must in principle also consider chains
in Ω̂3ðY3Þ.
Let us start by wrapping N D3-branes on a general chain

~C3 ∈ Tor H3ðY3;ZÞ⊕Ω̂3ðY3Þ given by

~C3 ¼ p0Π̂3 − q0Σtor
3 ; (3.21)

with a world volume of the D3-branes given by
W4 ¼ γ × ~C3. It follows that the electric charge is com-
puted by

Q3 ¼
Z
Γ6

PDðW4Þ ¼
Z
Γ6

PD4ðγÞ∧PD6ð ~C3Þ: (3.22)

Contrary to the SBH in which Γ6 ¼ B3 × Γ3 with
Γ3 ∈ H3ðY3;ZÞ, in this case we can capture a discrete
charge value by integrating the current PD6ð ~C3Þ over the
chain

Γ6 ≡B3 × ~Γ3 ¼ B3

×

�
e0

k
Π̂3 −m0Σtor

3

�
; (3.23)

which is nothing else than the world volume of a D3-brane
wrapping the torsional 2-cycle

∂2Γ6 ¼ S2 × e0Σtor
2 ; (3.24)

precisely corresponding to the fractional charge computed
by the Aharanov–Bohm effect through the holonomy of
a four-dimensional string around the pointlike BH con-
structed by wrappingD3-branes on ~C3 [38,39,41,42,55,56].
Therefore, it follows that

�F3 ¼ PD6ð ~C3Þ ¼ p0α̂0 − q0β0;tor;

F3 ¼ PD6ð ~Γ3Þ ¼
e0

k
α̂0 −m0β

0;tor; (3.25)

with

p0 ¼ e0

k
A0
0 −m0C00;

−q0 ¼ m0A0
0 þ

e0

k
B00; (3.26)

and the real matrix elements given by

A0
0 ¼ −

Z
α̂0∧ � β0;tor;

B00 ¼
Z

α̂0∧ � α̂0;

C00 ¼ −
Z

β0;tor∧ � β0;tor: (3.27)

Thus, the RR field strength associated to thoseD3-branes is
then given by

F5 ¼ F2∧
�
e0

k
α̂0 −m0β

0;tor

�
; (3.28)

from which it is straightforward to compute the effective
charges. However, before computing the corresponding
electric and magnetic charges, it is worth mentioning that,
as shown in Refs. [48,54] for the half-flat compactification,
it is also necessary to consider the presence of a nontrivial
NS–NS flux2 given by H3 ¼ e0β0;tor. Nevertheless, the
existence of this flux is potentially dangerous for D3-
branes wrapping regions on which the NS–NS flux is
supported, since it renders the branes anomalous [30–32].
To cancel this Freed–Witten anomaly, it is necessary that

Z
~C3

e0β0;tor ¼ 0; (3.29)

implying that p0 ¼ 0. Therefore, the Freed–Witten
anomaly cancelation leads us to a relation between the
winding numbers e0 and m0 by

m0 ¼
e0

k
A
C
; (3.30)

where we have adopted the notation of A, B, and C to refer
to the corresponding matrix elements in Eq. (3.27). Let us
emphasize two important remarks:

2Notice that, although we have a NS–NS flux, the low-energy
limit preserves a N ¼ 2 supersymmetry since we are not
considering an extra RR flux F3 and therefore the tadpole
contribution to the D3-brane charge vanishes [57].
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(1) For e0 ¼ k the world volume of the four-dimensional
string becomes trivial, and no measurement of
fractional charge is obtained. Therefore, the value
of the quotient e0=k vanishes if it equals an integer;
i.e., we must refer to it as e0=k mod 1.

(2) By canceling the Freed–Witten anomaly, the internal
3-form F3 reduces its degrees of freedom from 2 to
1. By writing F5 as

F5 ¼ e0F2∧α̂0 −m0F2∧β0;tor
¼ F0∧α̂0 −G0∧β0;tor; (3.31)

it is possible to eliminate G0, since it does not carry
degrees of freedom. This actually was shown in
Refs. [48,54] by compactifying type IIB string theory
on a half-flat manifold and by demanding self-duality
on the 5-form field strength. Therefore, it seems that
self-duality on F5 is in agreement with the cancelation
of the Freed–Witten anomaly on D3-branes wrapping
Π̂3. Notice that this implies that the chain ~C3 reduces to
a torsional cycle; i.e., D3-branes are only wrapping
torsional components in the homology of Y3. After
making use of the FWanomaly cancelation, ~C3 and ~Γ3

reduce to

~C3 ¼ −
�
e0

k
mod 1

�
1

C
Σtor
3 ;

~Γ3 ¼
�
e0

k
mod 1

��
Π̂3 − A

C
Σtor
3

�
(3.32)

and

F5 ¼
�
e0

k
mod 1

�
F2∧

�
α̂0 − A

C
β0;tor

�
: (3.33)

We have now all the necessary ingredients to compute
the black hole electric and magnetic charges, which
read

Qe ¼ Q
Z
~Γ3

�F3 ¼
Q
C

�
e0

k
mod 1

�
2

;

Qm ¼ P
Z
~C3

F3 ¼ −P
C

�
e0

k
mod 1

�
2

; (3.34)

where we have used that the effective charges are

Q ¼
Z
S2
�F2; and P ¼

Z
S2
F2: (3.35)

The total charge can also be computed by integrating
the self-dual 5-form F 5 ¼ F5 þ �10F5 over the cycle W5

given by W5 ¼ S2 × ð ~Γ3∪ ~C3Þ, and it is given by

QTOT ¼
Z
Γ5

F 5 ¼
1

C
ðQ − PÞ

�
e0

k
mod 1

�
2

; (3.36)

where we have used the Freed–Witten anomaly cancella-
tion condition (3.30). Notice that once we have wrapped k
of D3-branes on ~C3, their world volume becomes trivial in
homology, and in consequence QTOT vanishes. This is
exactly the mirror symmetric picture of the disappearance
of D-branes in a background threaded with NS–NS
flux with support on the homology cycles on which the
D-branes are wrapped [29,33].
Under this perspective, measuring a discrete charge by

an Aharanov–Bohm mechanism through the presence of a
four-dimensional string indicates the existence of extra
degrees of freedom associated to the black hole as pointed
out in Refs. [39,42]. Therefore, by considering a small
number k and a huge number of D3-branes wrapping
torsional cycles in Y3, the effects of torsionalD3-branes are
manifested at the quantum level. Besides this, it is also
possible to show that at the low-energy level, there are
massive scalars which are charged under the graviphoton,
with a discrete charge as well (see Appendix B). In
conclusion, all together, these features point out to the
presence of the so called quantum hair of a black hole,
which in our case is supersymmetric.
Before computing some extra consequences in the mass

of the black hole, let us make one last comment concerning
the electric charge we have computed from torsional
branes:
(1) We know that under mirror symmetry, the electric

component of a NS–NS flux is mapped into the
geometry of a manifold called half-flat. Now, by
considering the construction of SBHs in such back-
grounds, we can safely say that a SBH constructed in
a CY manifold threaded with electric NS–NS flux is
mapped into the mirror symmetric picture in which a
SBH has quantum hair.

(2) These discrete charges are associated to massive
gauge bosons, which obtain their masses by the
breakdown of a continuous symmetry Uð1Þ into a
discrete Zk (for details, see Refs. [39,42]). In
consequence, these massive gauge fields are relevant
at the scale just below the breaking of symmetry.3

D. Corrections of black hole mass

Up to now, we have computed the discrete charge of a
SBH related to D3-branes wrapping a torsional 3-cycle ~C3.
It is therefore of importance to compute the contribution to
the mass of the black hole given by those D-branes. As it
has been remarked, after using k D3-branes, the 3-cycle ~C3
becomes trivial in homology and collapses into a point,

3For a string scenario in which discrete symmetries arise by the
rupture of a continuous symmetry, see Ref. [58].
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rendering all the involved D3-branes to become unstable,
canceling out all their RR charge and transforming into
closed strings [31,32,50]. It is therefore expected to
associate a discrete value of the mass. An important
point to remark is that while accumulating D3-branes,
the system is stable and behaves as a BPS object4 in the
four-dimensional extended space.
Hence, with the purpose of computing the mass from a

base point of view, let us closely follow the black hole’s
mass computation given in Ref. [11]. Let us start by
considering the Dirac–Born–Infeld (DBI) action of a bunch
of D3-branes wrapping ~C3 given by5

SDBI ¼ −
Z
W4

ffiffiffiffiffiffiffi−hp
� 1; (3.37)

where h is the determinant of the pullback of the
10-dimensional metric to the world volume W4 ¼ γ × ~C3
of the D3-branes considered stable unless we have a
number of k D3-branes. Therefore, let us take only a
number e0 < k of D3-branes wrapping ~C3.
Under this assumption, all our branes are stable and

therefore are wrapping a chain which minimizes their
energy. In such geometric regions, it is possible to show
[46,49] that two conditions hold: i) J� ¼ 0 on ~C3, and ii) the
superpotential has a constant phase. These two properties
lead to the possibility to write the DBI action as

SDBI ¼ −
Z
γ
VD3 � 1; (3.38)

where VD3 is the volume of D3-branes playing the role of
the four-dimensional mass MBH, which in terms of the
holomorphic 3-cochain Ω3 reads

MBH ¼ eK=2

����
Z
C3∪ ~C3

Ω3

����
¼ eK=2

����
Z
C3

Ω0
3 þ

Z
~C3

~Ω3

����: (3.39)

Therefore, using the expression (3.19) for the torsional
component of Ω3, the mass term given by the D3-branes
wrapping ~C3, which actually is the mass contribution to the
SBH by adding torsional D3-branes, reads

ΔM ¼ eK=2

Z
~C3

~Ω3 ¼ −eK=2

�
e0

k
mod1

�
1

C
: (3.40)

Hence, the total mass of the black hole conformed by
D3-branes wrapping a 3-cycle C3 in H3ðY3;ZÞ and
by D3-branes wrapping the torsional cycle ~C3 is given by

M2
BH ¼ ðMBPS þ ΔMÞ2 ¼ eK

����mBPS −
�
e0

k
mod 1

�
1

C

����
2

;

(3.41)

with mBPS given by Eq. (2.13) as

mBPS ¼ −W ¼ −ðeiXi −miFiÞ: (3.42)

Notice that here, for the half-flat case, the index i in the
superpotential runs from 1 to hð1;1ÞðY3Þ, contrary to the
superpotential in a CY manifold where the index also takes
the zero value. Therefore, in analogy, we can write the
black hole total mass in terms of a new superpotential
given by

WTOTAL ¼ W þ
Z
Y3

�F3∧ ~Ω3;

¼ W þ λWHF; (3.43)

where λ ¼ iðe0k mod 1Þ 1
C

1
knivi

, and

WHF ¼
Z
Y3

idJ∧ ~Ω3; (3.44)

which under the flux conditions in our setup (no RR fluxes
and cancellation of the Freed–Witten anomaly derived from
the presence of a nontrivial NS–NS flux) is precisely the
superpotential related to a half-flat manifold as shown in
Refs. [48,54]. Two comments are given in order. First,
notice that demanding that the black hole mass satisfies the
relation M2

BPS ¼ eKjWj2, where W is a superpotential,
provides an alternative way to derive the superpotential of
the half-flat manifold. Second, we see that the contribution
to the mass by torsional branes is also proportional to
ðe0k mod 1Þ, indicating that after wrapping k D3 in ~C3, the
extra mass term vanishes.

E. Loss of quantum hair

As shown below, quantum degrees of freedom, or
quantum hair can be associated to the black hole by
wrapping D3-branes on torsional cycles. Besides this
electric discrete charge, we have also computed the mass
contribution and seen that it also has a discrete value,
meaning that upon completion of k D3-branes wrapping
~C3, the mass of the black hole will collapse to the original
valueMBPS (i.e., without considering torsional branes), and
it will lose all its quantum hair.
This is quite interesting since it implies that a stable and

extremal black hole with an associated vanishing temper-
ature would emit some radiation (consisting of closed
strings) once the number of torsional branes reaches k.
Once the SBH loses all its quantum hair, it would return to
another stable state with a lower mass. Therefore, there
must be an emission of closed strings localized in time, and

4Notice that this is valid since in this case, the charge computed
through dJ over a chain in Ω̂3ðY3Þ does not vanish.

5We are taking all numerical coefficients equal to 1.
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in consequence we expect a variation in the entropy by the
loss of all torsional degrees of freedom. A previous mirror
symmetric picture of this mechanism was partially studied
in Ref. [29].
Hence, let us compute the change in entropy and the

associated temperature for the radiation the SBH would
emit once completing k-torsionalD3-branes, and let us start
by reviewing the way in which entropy is computed in a CY
manifold. The associated entropy for a SBH constructed on
a CY manifold is computed by extremizing the action
[15,59]

S ¼ − π

4
½e−KðX;X̄Þ þ 2iWðXÞ − 2iW̄ðX̄Þ� (3.45)

and evaluating the extreme at the attractor point on which
the involved superpotential vanishes, rendering the system
supersymmetric. The Kähler potential is

K ¼ K0 þ ~K ¼ i × log

�Z
Ω0∧Ω̄0 þ

Z
~Ω3∧ ~̄Ω3

�
;

(3.46)

with ~K ¼ − 1
2
ImX0F0: Notice that, although at this point

we are not considering the presence of torsionalD3-branes,
the Kähler potential contains some information coming
from torsional cohomology since it is related to the
geometry of the internal space independently of the
presence of D3-branes. Since the supersymmetric black
hole constructed by wrapping D3-branes on 3-cycles
satisfies the BPS bound, i.e., it is an extremal black hole,
it does not radiate since it is in a state of minimal energy.
Therefore, the associated temperature is zero (see Ref. [21]
and references therein).
Now, let us think on a system consisting of just

D3-branes wrapping supersymmetric 3-cycles on which
we start adding torsional D3-branes, taking care that the
number of these branes does not overpass k. Since we are
adding extra degrees of freedom (parametrized by e0), it is
expected that entropy will grow with respect to the entropy
associated to the SBH. Its variation must come precisely
from the extra components in the superpotential denoted
by λWHF; i.e., the entropy variation can be computed by
extremizing the action

~S ¼ π

4
ðe ~−K − 4ImλWHFÞ: (3.47)

A direct calculation shows that ~S has an extreme at

X0
min ¼

i
C00

�
e0

k
mod 1

�
1

ðImτÞ00
; (3.48)

at which, upon substitution, gives the entropy associated to
torsional branes [and by taking WHFðX0

minÞ ¼ 0]:

ΔS ¼ π

2

1

C00

1

Imτ00

�
e0

k
mod 1

�
2

¼ π

2
e−K=2

�
e0

k
mod 1

�
ΔM: (3.49)

Therefore, the entropy related to quantum hair goes like
ðe0k mod 1Þ2, meaning that by increasing the number of
torsional branes, the entropy of the system also becomes
larger. Once we add k D3-branes, the system becomes
unstable to decay into the original supersymmetric setup,
and all torsional branes radiate into closed strings. Although
a precise description of this transition is beyond the scope of
this work, we can mention some interesting features.
First of all, by reaching the number k of D3-branes, the

extra mass and entropy vanish. The transition consists of a
black hole which suddenly loses part of its mass and goes
from a stable state with a zero temperature to another stable
state with a smaller mass. During this transition, the system
is not represented by a BPS state since ~C3 is a trivial cycle
and collapses into a point. It is then natural to associate a
temperature related to the emission of the energy contained
in the system of D3-branes wrapping a trivial cycle, which,
being a nonsupersymmetric and unstable state, can be
estimated from dS=dM ¼ 1=ΔT. Therefore,

1

ΔT
∼
π

2
e−K0=2: (3.50)

From this, we can also notice the following: consider two
black holes with the same total mass, but one has a larger
amount of mass coming from supersymmetric D3-branes.
Therefore, the mass contribution from torsional branes is
smaller in the first black hole than in the second one. In that
sense, the black hole with more discrete charge is also the
one with more entropy. Notice that if these black hole
would be nonextremal, we would say that a black hole with
a more discrete charge would be also cooler. These features
are pretty similar to the properties one expects (in a
supersymmetric point of view) from a black hole with
quantum hair with an associated temperature, as predicted
in Ref. [38].
Finally, from this supersymmetric construction, still

there is a question we can address and that was already
pointed out in Ref. [39]. It would be desirable to compute
the discrete charge of a black hole without considering the
presence of a four-dimensional string. We consider that this
can be accomplished by the use of K theory.

IV. QUANTUM HAIR AND K THEORY

The discrete electric charge computed in the previous
sections relies on the presence of an extra object. Therefore,
quantum hair seems to be detectable only if we could take
into account a four-dimensional string and perform a
holonomy around the black hole. This of course triggers
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a question about how to compute such discrete charge
without using an extra extended object. In the context of
string theory, computation of classical properties of a SBH
requires the use of (co)homology, while the quantum
regime of the black hole should be described in a
appropriate way related to the computation of D-brane
RR charges. For some years, we have known that such a
mathematical structure is encoded in K theory, and for that
reason, we expect that discrete charges must be derived
from some version of K theory. In this section, we shall
use the Atiyah–Hirzebruch spectral sequence (AHSS),
connecting cohomology to K theory in order to derive
how the discrete charge appears by computing the corre-
sponding K-theoretical charge of the D-branes used for the
construction of the black hole.
With the purpose of presenting a clearer argument and

in order to show that SBH can also be constructed by
compactifying type IIA string theory on a half-flat mani-
fold, we shall present our analysis in this background,
i.e., the construction of black holes by wrapping D2- and
D4-branes in type IIA theory compactified on a half-flat
manifold.

A. Atiyah–Hirzebruch spectral sequence

Let us start by briefly reviewing the AHSS in the context
of string theory. Essentially, the AHSS is an algorithm
which connects integral cohomology to K theory [60–62].
The main goal of this approach is to compute the K-theory
group KðXÞ related to the RR charge of D-brane supported
on the submanifold X with dimension d. For that, the
AHSS makes use of a sequence of successive approxima-
tions starting from integral cohomology and gradually
considering successive orders of approximation, which
involves the cohomology of differential maps dn, where
dn∶ HpðX;ZÞ → HpþnðX;ZÞ. In each step, the n-coho-
mology group En

p for a given n is computed by the quotient
KpðXÞ=Kpþ1ðXÞ where KpðXÞ is a subgroup of KðXÞ
which classifies all stable Dðd − pÞ-branes supported on
a (d − p)-dimensional submanifold of X but trivial in
(d − p − 1) submanifolds via the RR field strengths
(p-forms). Computing KpðXÞ involves solving the follow-
ing exact short sequence:

0 → Kpþ1 → Kp → Kp=Kpþ1 → 0. (4.1)

If all extensions are trivial for all p, the K-theory group
KðXÞ is computed just by adding the subgroups En

p, i.e., by
KðXÞ ¼ ⊕pEn

p. Notice, therefore, that in a fluxless CY
compactification, D-brane charges or equivalently the RR
charge is simply computed through the cohomology
groups. By turning on an extra NS–NS flux, the AHSS
requires a second step of approximation involving the
groups E3

p ([32,61,63]). Hence, in the absence of extra
fluxes (notice that H3 ¼ e0β0;tor does not have an influence

in the sequence), KðXÞ ¼ HpðXÞ up to solving the exten-
sion problem (4.1).

B. Discrete charge from K theory

A SBH in the context of type IIA string theory is
constructed by wrapping D2-and D4-branes on two- and
four-dimensional chains in Y3. Therefore, the electric and
magnetic charges are computed by integrating the RR field
strength (a 4-and 6-form, respectively) over some suitable
submanifold of the 10-dimensional space-time; this is

QIIA
e ¼

Z
S2×Γ4

�F2∧PD6ðC2Þ; and

QIIA
m ¼

Z
S2×Γ2

F2∧PD6ðC4Þ; (4.2)

with both currents PD6ðC2Þ and PD6ðC4Þ in H4ðY3;ZÞ and
H2ðY3;ZÞ, respectively. After extending the integration to
the whole internal space, the charge of a black hole in four
dimensions is determined by a 6-form flux in H6ðY3;ZÞ,
proportional to PD6ðC2Þ∧J for a D2-brane on C2 and
PD6ðC4Þ∧J2 for aD4-brane wrapping PD6ðC4Þ. Since it is
not obvious from the above expressions that the corre-
sponding charges are fractional without considering the
presence of a four-dimensional string, our goal here is to
elucidate its nature from the K-theory perspective.
Within the context of the AHSS, the relevant short

sequence involves the following filtrations (where hð1;1Þ is
the Hodge number of Y3):
(1) K5 ¼ K6 ¼ Z, which measures the charge carried

by the 6-form PD6ðC2Þ∧J2 by computing the
cohomology group H6ðY3;ZÞ ¼ Z.

(2) K4 ¼ Z⊕Zhð1;1Þ , which measures the K-theoretical
charge related to the 6-form PD6ðC2Þ∧J2 and stable
D2-branes wrapping hð1;1Þ 2-cycles in Y3.

(3) K4=K5 ¼ H4ðY3;ZÞ ¼ Zhð1;1Þ⊕Zk concerning the
group of 4-forms, related only to D2-branes wrap-
ping 2-cycles of Y3. Notice the presence of torsional
components for the half-flat manifold.

Therefore, the relevant extension problem is given by

0→
×k
H6ðY3∶ZÞ ¼ Z → Z⊕Zhð1;1Þ → H4ðY3;ZÞ

¼ Zhð1;1Þ⊕Zk → 0; (4.3)

where we have also assumed that there is no difference
between cohomology and K theory in the sequential steps.
By demanding the sequence to be exact, we notice that
there must be a shift of fractional charge i=k for each
element in Zk, with i ¼ 1;…; k.
Therefore, for each D2-brane wrapping a torsional cycle

in Zk, the corresponding torsional element induces a
fractional charge in the generator G6 ∈ H6ðY3;ZÞ, which,
as said, contributes to the four-dimensional charge of the
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black hole. Notice that a similar situation holds for the
magnetic part, i.e., by wrapping D4-branes on 4-cycles and
the fractional charge induction is independent of the
presence of one or another. This in fact confirms that it
is possible to associate a fractional K-theoretical charge of
branes wrapping torsional cycles.

V. FINAL COMMENTS

In this work, we have constructed a supersymmetric
black hole in the effective low-energy theory by wrapping
D3-branes on 3-cycles of a half-flat manifold. As it is well
known, type II string compactification on half-flat manifold
is the mirror symmetric image of a compactification on a
Calabi–Yau manifold threaded with electric NS flux.
Therefore, we are wrapping D3-branes on a manifold
which has backreacted under the presence of the electric
NS flux, and, in consequence, it is expected that the black
hole constructed in such a scenario contains some charac-
teristics inherited from the electric NS flux.
Those effects manifest in the black hole’s physics,

primarily by the presence of torsional components in the
(co)homology of the half-flat manifold with an associated
discrete group denoted by Zk. A number of N D3-branes
wrapping torsional cycles correspond in the low-energy
level to stable and supersymmetric pointlike objects with a
discrete value N=kmod1 for the mass and for the electric
and magnetic charges. Expansion of the corresponding RR
potential on these torsional components of cohomology
leads to the existence of effective massive gauge bosons
and massive scalars with discrete gaugings.
Since k is finite, by wrapping a large number of D3

on nontorsional cycles, a massive SBH is constructed with
MBH ≫ Mpl. This is a very good approximation of a
classical SBH. However, if the number of D-branes
wrapping the nontorsional cycles are of order k, the massive
states related to the torsional part must become relevant.
These degrees of freedom must correspond to some hair on
the SBH which manifests in a quantum regime as quantum
hair studied in Refs. [39,41].
Thinking on a black hole which increases its mass by

adding torsional D3-branes, it is possible to compute its
variation on mass and entropy up to the nonstatical stage in
which the bunch of torsional branes complete the number k
and annihilate each other, departing from the stable BPS
state. As for the electric and magnetic charges, the variation
of mass and entropy resulting from increasing the number
of torsional branes goes likeN=k × mod 1. In consequence,
once the number of torsional branes reaches the number k,
the black hole transits from a stable state with a mass
and charge larger than a black hole conformed only by
D3-branes wrapping homological cycles to another stable
state corresponding to the supersymmetric black hole. Both
states are stable, but during the transition, the system
conformed by the torsional branes becomes an unstable
set of branes wrapping a trivial cycle. Therefore, all the

entropy gained during the addition of torsional branes is
emitted in the form of closed strings, and we can estimate a
temperature related to this process. We observe that for two
black holes with the same total mass, the one with more
discrete charge has a bigger entropy than the second one.
This resembles some properties expected from quantum
hair in a supersymmetric version.
Keeping the number of torsional branes less than k, we

notice some other important features: since in a half-flat
manifold there is a nontrivial NS–NS flux, it is important
to cancel the Freed–Witten anomaly on all those branes
wrapping submanifolds on which the flux is supported.
This implies vanishing half of the degrees of freedom,
associated with the 5-form field strength F5. This is
compatible with the same loss of degrees of freedom by
restricting the 5-form field strength to be self-dual as shown
in Ref. [54]. Therefore, we conclude that in half-flat
compactification where F5 is taken to be self-dual, all
D3-branes are free from Freed–Witten anomalies.
Nevertheless, in this setup, computation of discrete quan-

tum hair requires the presence of a four-dimensional string.
With the purpose to compute the discrete charge of the black
hole without requiring the presence of an extra object, we
use the Atiyah–Hirzebruch spectral sequence to compute the
D3-branes charge from a K-theoretical perspective. We find
that, as in the presence of orientifolds, torsional components
of cohomology induce a lift on the generators of theD-brane
charge in fraction, rendering the total charge discrete.
However, there are still many features to study, among

which we can mention some. First, although it seems
possible that magnetic quantum hair appears by constructing
black holes on mirror symmetric manifolds to those on which
magnetic components of a NS flux have been taken into
account, still it is not clear how to wrap D-branes on those
backgrounds. Constructing black holes in general manifolds
would be an important task to perform as well as the relation
between those black holes and the solutions in the gauged
supergravity side. Second, it would be interesting to elucidate
some string mechanism which leads us to the construction
of non-Abelian quantum hair. Black holes in a background
mirror symmetric to a compactification on a CY threaded
with magnetic NS fluxes could be the string construction of
the magnetic quantum hair as described in Ref. [39]. It would
be interesting to explore such an issue. Finally, it is necessary
to study how stable a black hole in a half-flat manifold is
due to the presence of an effective scalar field Vg originated
by the nonzero curvature of the half-flat manifold.
We leave this feature for a future work.
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APPENDIX A: NOTATION

For a fluxless compactification on a Calabi–Yau, we
have that Z

X
αI∧ � αJ ¼

Z
X
αJ∧ � αI ¼ BIJ;Z

X
αI∧ � βJ ¼

Z
X
βJ∧ � αI ¼ −AI

J;Z
X
βI∧ � βJ ¼

Z
X
βI∧βJ ¼ −CIJ; (A1)

which in turn defines the complex matrix MIJ through

A ¼ ðReMÞðImMÞ−1;
B ¼ −ðImMÞ − ðReMÞðImMÞ−1ðReMÞ;
C ¼ ðImMÞ−1: (A2)

APPENDIX B: LOW-ENERGY THEORY

In this section, we review the low-energy limit of type
IIB string theory compactified on a half-flat manifold
closely following Refs. [48,53,54].
First of all, it is important to notice that as shown in

Ref. [42], all fields expanded in terms of α̂0 and β0;tor are
massive in the four-dimensional effective theory, and
since ½∇2; d� ¼ 0, it is possible to show that

∇2ω̂2 ¼ −niMj
iωj ¼ ω̂2; (B1)

where −Mi
j ¼ δij is the corresponding mass matrix.

Similarly, we have that

∇2α̂0 ¼ α̂0;

∇2β0;tor ¼ β0;tor;

∇2ωtor
4 ¼ ωtor

4 : (B2)

The squared masses are all of order of the Planck mass (we
have taken Mpl ¼ 1), and therefore the Laplace operator
acting on these fields gives terms of order ðfluxÞ2, implying
that it is possible to ignore massive Kaluza-Klein (KK)
states since the order of the fluxes is smaller than the order
of the compactification scale rendering the supergravity
approach valid.
The massive scalar fields and massive gauge vector

arising from compactification on a half-flat manifold can be
shown by directly computing the effective low-energy scale
as in Ref. [54]. Let us review this computation for our
specific case in which we are turning on an internal field

related only with the presence of wrapped D3-branes; i.e.,
we are not considering extra NS–NS or RR fluxes.
Consider the NS–NS and RR potentials given by

B2 ¼ b2 þ baωa þ ðbiniÞω̂2 and

C2 ¼ c2 þ caωa þ ðciniÞω̂2; (B3)

where bi and ci are constant real scalar fields and b2 and c2
are 2-forms supported in the four-dimensional extended
space-time (not necessarily constants) and ωa is the 2-form
basis in H2ðY3;ZÞ with a constant ba and ca. The
corresponding field strengths for these potentials read

H3 ¼ dB2 ¼ db2 þ ðkðbiniÞ þ e0Þβ0;tor;
F3 ¼ dC2 − C0dB2 ¼ dc2 þ kðciniÞβ0;tor − C0H3: (B4)

By expanding the RR potential C4 as

C4 ¼ A1∧
�
eiαi −miβ

i þ
�
e0

k
mod 1

�
α̂0 −m0β

0;tor

�
;

(B5)

the 5-form field strength reads

F5 ¼ F2∧
�
eiαi −miβ

i þ
�
e0

k
mod 1

�
α̂0 −m0β

0;tor

�

− A1e0ω̄tor
4 : (B6)

Comparing this expression for F5 with that given in
Eq. (3.28), we see that the last term in the right-hand side
does not contribute to the charge, and that is why it was not
considered in the calculation of the black hole charge,
although it plays an important role in the low-energy
effective theory we are computing.
Therefore, using the above expressions for C4 and F5,

together with the complex moduli Zi and vi from
Eqs. (3.19) and (3.16), it is possible to construct the
multiplets for the effective theory N ¼ 2 in four dimen-
sions where the gravity multiplet consists of the graviton
gμν and the vector field (graviphoton) ðe0k mod1ÞA1. The
vector multiplet is given by ðeaA1; ZaÞ with a ¼ 1;…;
hð2;1ÞðY3Þ and the scalars conforming the hypermultiplets
ðϕ; C0;⋆b2;⋆c2; bi; ci; viÞ where ⋆ is the Hodge dual in
four dimensions.
Not being a Ricci-flat manifold, compactification on a

half-flat manifold [54] leads to an effective potential
induced by the internal curvature and is given by

VHF
g ¼ − κ0

16K
e2ϕk2ninjgij; (B7)

where gij is the metric of the scalar moduli space. After
incorporating self-duality on F5, it was shown that [48]
some of the fields carry nonphysical degrees of freedom.
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In particular, it is possible to show that mIF2 can be
eliminated. Notice that this is compatible with cancelation
of the Freed–Witten anomaly once D3-branes are consid-
ered as in our case. Therefore, the low-energy action reads

SIIB ¼
Z

− 1

2
R � 1þ 1

2
ImMIJFI∧ � FJ

þ 1

2
ReMIJFI∧FJ − hμνDqμ∧Dqν − Veff � 1;

(B8)

where, following the notation in Ref. [48], q ¼ ðϕ; a;
ξI; ~ξIÞ, with the scalar fields given by

a ¼ 2⋆b2 þ C0⋆c2;
ξI ¼ ðC0; C0bi − ciÞ;
~ξI ¼

�
−⋆C2 − C0

6
Kijkbibjbk þ

1

2
Kijkbibjbk;

C0

2
Kijkbjbk −Kijkbjck

�
; (B9)

and the covariant derivatives read

D~ξI ¼ d~ξI − k

�
e0

k
mod 1

�
nIA1;

Da ¼ daþ k

�
e0

k
mod 1

�
A1nIξI; (B10)

with d~ξI ¼ ð−d⋆C2;
dC0

2
KijkbjbkÞ. Then it follows that

hμνDqμ∧ �Dqν ¼ dϕ∧ � dϕþ gabdZa∧dZ̄b þ Lmscalars

þ Lmgauge; (B11)

with

Lmscalars ¼
e4ϕ

4

�
Da − ξI

�
d~ξI − knI

�
e0

k
mod1

�
A1

��

∧ �
�
Da − ξI

�
d~ξI − knI

�
e0

k
mod1

�
A1

��
;

Lmgauge ¼ −
e2ϕ

2
CIJ

�
d~ξI − knI

�
e0

k
mod1

�
A1

�

∧ �
�
d~ξJ − knJ

�
e0

k
mod1

�
A1

�
: (B12)

Notice then that the gaugings from Lmscalars show that the
scalar a is charged under the graviphoton and also that the
scalars bi and ci become massive through the terms ξI .
Concerning the Lagrangian term Lmgauge, this is exactly a
Stückelberg Lagrangian, showing that the involved photons
ðe0k mod1ÞA1 are massive [42].
Finally, let us comment on the effective scalar potential

given by

Veff ¼ VHF
g − κ0

2
e4ϕðknIξIÞ2 þ

VBH

r4
; (B13)

where VBH is given by expression (2.12). The stability of
such a system depends essentially on parameters nI
(coming from the mirror symmetric image of electric NS
fluxes in type IIA on a CY manifold X3), the curvature of
the internal manifold, and the contribution of the super-
symmetric part of the black hole through the term VBH.
The stability of a SBH in a background threaded with
fluxes was studied in Ref. [33]. For the present case treated
in this paper, we leave the study of this important fact for a
future work.
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