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An exact and regular solution describing a couple of charged and spinning black holes is generated in an
external electromagnetic field, via the Ernst technique, in Einstein-Maxwell gravity. A wormhole
instantonic solution interpolating between the two black holes is constructed to discuss, at the semiclassical
level, the quantum process of creation rate, in an external magnetic field, of this charged and spinning black
hole pair.
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I. INTRODUCTION

In general relativity, few processes are known to allow
for the creation of black holes. At the macroscopic classical
level it is possible to produce, through the gravitational
collapse of stars, a massive black hole whose mass cannot
be smaller that the Oppenheimer threshold of about 3 solar
masses. At the microscopical level a quantum effect
analogous to the Schwinger pair creation in an external
field may occur. This effect is the possibility that a
spacetime with a source of excess energy will quantum
tunnel into a spacetime containing two black holes. Though
a well-established theory of quantum gravity is presently
not known, some speculations about this Planckian scale
effect are studied in the literature [1,2] using the semi-
classical Euclidean path integral approach—not only for
Einstein-Maxwell gravity but also for the dilatonic cou-
pling [3,4]. Motivations to study this process include,
among others, the topological changing process, the black
hole information paradox, the counting of black hole
microstates, and the microstates interaction [5].
In this framework, several studies were done using the

cosmological constant or an external magnetic field as a
background, which provides the energy to generate the
black hole pair.1 The fact that the cosmological constant
value is fixed and small by observation, while an external
magnetic field can be set arbitrarily large—in fact it has
recently been measured to be extremely large at the center
of some galaxies, including our own [6]—makes this
process physically more realistic in the external field
setting. In the first case the Plebanski-Demianski solutions
are used (see [7,8]), while in the latter case the Ernst
solution [9] is needed. The Ernst solution describes two
oppositely charged black holes accelerating apart by means
of the force supplied by the external magnetic field. Ernst

metrics are built with the help of solution generating
techniques.
Solution generating techniques—we will focus on the

Ernst method [11,12]—are a very powerful tool in general
relativity. By exploiting the integrability property of
general relativity, they give us a new insight into the theory
and are able to generate new and exact solutions, which can
be hardly obtained by directly integrating the field
equations.
For the pair creation process, as first pointed out by

Gibbons in [13] and further analyzed in [1] and [2], the
suitable Ernst metric is usually that which describes
a couple of accelerating, intrinsically magnetically
charged black holes embedded in the external field of
the Melvin magnetic universe. The analogy with the
Schwinger electron-positron pair creation in an external
electric field is apparent, as discussed in Sec. 3. Taking
advantage of the electromagnetic duality in four dimen-
sions, a specular treatment can also be done for an
electric Reissner-Nordstrom (RN) spacetime in an exter-
nal electric field. In [14] and [15] it is shown that the pair
nucleation rate of the dualized and standard cases are the
same; in [16] this electromagnetic equivalence is shown
in a general setting. What happens when the Ernst black
holes are both electrically and magnetically intrinsically
charged at the same time is still unknown, and in this case
even a dyonic Ernst-like solution is not known. What one
expects is that the black holes acquire rotation because of
the Lorentz force interacting between the black hole
electrical charge and the external magnetic field, as
happens in the case of the nonaccelerating single black
hole [17].
The purpose of this work is to explore the possibility

of generalizing the Ernst metric to the dyonic case. This
can be done by taking advantage of the new form of the
C metric offered by [18]; this is more suitable for
generating techniques because in this coordinate set,
the accelerating space-time can be more easily cast
into the Weyl form. This is done in Sec. 2. Then, in
Sec. 3, a Euclidean instanton is built to evaluate the pair
creation rate.

*marco.astorino@gmail.com
1In [10], the possibility of furnishing the energy to produce the

black hole pair by a cosmic string in a de Sitter background is also
studied.
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II. EMBEDDING AN ACCELERATING
REISSNER-NORDSTROM BLACK

HOLE IN A MAGNETIC UNIVERSE

Consider Einstein gravity coupled to Maxwell electro-
magnetism. The regularized action for this theory is
given by

I½gμν;Aμ� ¼− 1

16πG

Z
M

d4x
ffiffiffiffiffiffi−gp �

R− G
μ0

FμνFμν

�

− 1

8πG

Z
∂M

d3x
ffiffiffi
h

p
K− 1

4πμ0

Z
∂M

d3
ffiffiffi
h

p
nμAνFμν;

(2.1)

where h is the determinant of the induced three-metric and
K is the trace of the extrinsic curvature of the boundary. The
first boundary term is the standard Gibbons-Hawking
regularization [19], while the second is needed for the
class of solutions we will discuss, to ensure that the electric
charge is fixed on the boundary2 (as explained in [14]).
The gravitational and electromagnetic field equations are

obtained by extremizing with respect to the metric gμν and
the electromagnetic potential Aμ

3

Rμν − R
2
gμν ¼

2G
μ0

�
FμρFν

ρ − 1

4
gμνFρσFρσ

�
; (2.2)

∂μð
ffiffiffiffiffiffi−gp

FμνÞ ¼ 0: (2.3)

A very well-known solution for this theory is given by
the dyonic RN spacetime. It represents a static and
spherical symmetric black hole equipped with both electric
and magnetic intrinsic monopole charges, denoted e and g
respectively. A generalization of RN space-time, including
an acceleration parameter A, is called a (dyonic) charged C
metric. In spherical coordinates this metric is

ds2 ¼ 1

ð1þ Ar cos θÞ2

×

�
−QðrÞdt2 þ dr2

QðrÞ þ
r2dθ2

PðθÞ þ r2PðθÞsin2θdφ2

�
;

(2.4)

where

QðrÞ ¼ ð1 − A2r2Þ
�
1 − 2m

r
þ e2 þ g2

r2

�
; (2.5)

PðθÞ ¼ 1þ 2mA cos θ þ A2 cos2 θðe2 þ g2Þ: (2.6)

It is supported by the electromagnetic potential

A ¼ − e
r
dtþ g cos θdφ: (2.7)

This is usually interpreted as a couple of twin RN black
holes4 accelerating apart under the force of a string (or a
strut), mathematically represented by an axial conical
singularity typical of this kind of metric, that will be
analyzed after the magnetization process. The metric
(2.4)–(2.6) will constitute the “seed” solution of our
construction. Apart from the usual RN inner r− and outer
rþ event horizons, (2.4) has an accelerating horizon rA
located at

r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − e2 − g2

q
; rA ¼ 1

A
: (2.8)

In order for the roots of the polynomial QðrÞ in (2.5) to
be ordered according to the Cmetric interpretation [18], the
physical parameters m; e; g; A must satisfy the following
relation:

0 ≤ Ar− ≤ Arþ ≤ 1:

We recall that in C metrics the azimuthal coordinate
range has a hidden parameter C, which can be used, as in
[20], to remove one of the characteristic conical singular-
ities: ϕ ∈ ð−Cπ; Cπ�.
All axisymmetric spacetimes in Einstein-Maxwell grav-

ity, because of the system integrability, have the remarkable
property of being generated, in principle, by the group of
transformations SUð2; 1Þ (for details see [21]). One
element of this group, the Harrison-Elhers transformation,
is able to embed a generic spacetime in an external
magnetic field [17]. It can be written in this way5:

E → Ê ¼ E

1þ BΦ − B2

4
E
; Φ → Φ̂ ¼ Φþ B

2
E

1þ BΦ − B2

4
E
:

(2.9)

E and Φ are the Ernst complex gravitational and electro-
magnetic potentials; for magnetizing purposes, they are
defined as

E ≔ f − jΦΦ�j þ ih; Φ ≔ Aφ þ i ~At; (2.10)

where2The magnetic charge is automatically fixed by fixing the
gauge potential.

3Henceforward the Newton constant G and the electromag-
netic vacuum permeability μ0 will be set to 1 for simplicity,
without loss of generality.

4For the sake of generality we will always consider the dyonic
charged case in this paper.

5A hat stands for the transformed quantities.
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∇⃗ ~At ≔ − f
ρ
e⃗ϕ × ð∇⃗At þ ω∇⃗AϕÞ; (2.11)

∇⃗h ≔ − f2

ρ
e⃗ϕ × ∇⃗ω − 2 ImðΦ�∇⃗ΦÞ: (2.12)

Since we are interested in axisymmetric spacetimes the
functions f, ω, γ, At, Aϕ depend only on the coordinates
ðr; θÞ. These functions for the seed solution can be obtained
by comparing (2.4) with the most general axisymmetric
metric, the Weyl-Lewis-Papapetrou metric

ds2 ¼ −fðdφ − ωdtÞ2 þ f−1½ρ2dt2 − e2γðdρ2 þ dz2Þ�∶
(2.13)

fðr;θÞ¼− r2PðθÞsin2θ
ð1þAr cos θÞ2 ; ωðr;θÞ¼ 0

ρðr;θÞ¼ r sin θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðrÞPðθÞp

ð1þAr cos θÞ2 ;

zðr;θÞ¼ ðAr cos θÞ½rþmðAr cos θ−1Þ−Aðe2þg2Þcos θ�
ð1þAr cos θÞ2 :

(2.14)

The differential operators can be taken as follows6:

∇⃗gðr; θÞ ∝ e⃗r
ffiffiffiffiffiffiffiffiffiffi
QðrÞ

p ∂rgðr; θÞ þ e⃗θ
ffiffiffiffiffiffiffiffiffiffi
PðθÞ

p ∂θgðr; θÞ:
(2.15)

Then from (2.11) we can obtain the value of
~At ¼ e cos θ; therefore, the seed Ernst potentials are

Φ ¼ ðgþ ieÞ cos θ;

E ¼ − r2PðθÞ sin2 θ
ð1þ Ar cos θÞ2 − ðg2 þ e2Þcos2 θ: (2.16)

Now we are able to apply the Harrison transformation (2.9)
to get the complex potentials for the magnetized spacetime:

Ê ¼
− r2PðθÞsin2 θ

ð1þAr cos θÞ2 − ðg2 þ e2Þcos2 θ
Λðr; θÞ ; (2.17)

Φ̂ ¼
ðg − ieÞ cos θ − B

2

h
r2PðθÞsin2 θ
ð1þAr cos θÞ2 þ ðg2 þ e2Þcos2 θ

i
Λðr; θÞ ;

(2.18)

where

Λðr; θÞ ¼ 1 − Bðgþ ieÞ cos θ

þ B2

4

�
r2PðθÞsin2 θ

ð1þ Ar cos θÞ2 þ ðg2 þ e2Þcos2 θ
�
:

(2.19)

Finally, we return to the metric notation. From (2.9) it is
possible to find how f changes under the Harrison
transformation:

fðr; θÞ → f̂ðr; θÞ ¼ fðr; θÞ
jΛðr; θÞj2 : (2.20)

From (2.12)we can obtain a relation to get the magnetized
ωðr; θÞ:

∇⃗ω̂ðr; θÞ ¼ jΛðr; θÞj2∇⃗ω − ie⃗ϕ ×
ρ

f
ðΛ�∇⃗Λ − Λ∇⃗Λ�Þ:

(2.21)

Integrating the latter one finds that

ω̂ðr; θÞ ¼ eB3ð1þ 2Ar cos θÞQðrÞ
2A2rð1þ Ar cos θÞ2

þ eB
2A2r

½4A2 þ B2A2ðe2 þ g2Þ − B2�

þ eB3m
A2r2

− eB3ðe2 þ g2Þ
2A2r3

þ ω0 (2.22)

whereω0 is an arbitrary constant. From definition (2.10) we
have

Âϕðr; θÞ

¼ g cos θ − Bðe2 þ g2Þcos2 θ − B
2
ð3gB

2
cos θ − 1ÞE − B3

8
E2

jΛðr; θÞj2
þ kϕ; (2.23)

~̂Atðr;θÞ ¼ e cos θ

n
1− B2

4

h
r2PðθÞsin2 θ
ð1þAr cos θÞ2 − ðg2 þ e2Þcos2 θ

io

jΛðr;θÞj2
þ ~kt: (2.24)

Using (2.11) it is possible to obtain the standard electric
field component:

Âtðr; θÞ ¼ −ω̂ðr; θÞ
�
Âϕðr; θÞ þ

3

2B

�
þ 2e

r
þ kt; (2.25)

where kt, ~kt, and kϕ are generic integration constants.
Finally inserting the Harrison transformed quantities
(f̂ and ω̂, while γ remains unvaried) in (2.13), the

6The orthonormal frame is defined by the ordered triad
ðe⃗r; e⃗ϕ; e⃗θÞ.
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magnetized C-metric solution (2.4), supported by the
electromagnetic field (2.23)–(2.25), results in

dŝ2 ¼ jΛðr; θÞj2
ð1þ Ar cos θÞ2

�
−QðrÞdt2 þ dr2

QðrÞ þ
r2dθ2

PðθÞ
�

þ r2PðθÞsin2 θ½dϕ − ωðr; θÞdt�2
jΛðr; θÞj2ð1þ Ar cos θÞ2 : (2.26)

This metric describes a pair of spinning Reissner-
Nordstrom dyonically and oppositely charged black holes
accelerating away from each other along the axis of a
magnetic universe. Remarkably, even though the seed
solution was diagonal, (2.26) exhibits rotation due to the
appearance of a E⃗ × B⃗ circulating momentum flux in the
stress-energy tensor, which serves as a source for a twist
potential. This is a typical feature of magnetized black
holes when the spacetime possesses an intrinsic charge and
an external electromagnetic field of different types—i.e., an
electric intrinsic charge and an external magnetic field, or
vice versa (see, for instance, [17]). That is because the Ernst
potentials are fully complex, not just real or purely
imaginary. In fact, the metric (2.26) is the rotating gener-
alization of the one found by Ernst in [9] and studied in [1]
and [2]. This latter subcase can be obtained from (2.26) by
setting e ¼ 0, that is, retaining only the intrinsic magnetic
charged black hole. This is why the e ¼ 0 case has no
rotation.
Due to the accelerating and magnetized asymptotic, it is

not known how to compute the angular momentum for
these magnetized spacetimes. In the case of no acceleration
—for just a single black hole—there have been some recent
results, but they disagree.7 As noted in [22], the gravita-
tional contribution to the angular momentum is exactly
compensated by the contrarotation of the external electro-
magnetic field. Therefore even though the charged black
hole in an external magnetic field is rotating, the total
angular momentum of the spacetime is null. However, as it
is computed in [23], the angular momentum does not
vanish.
The spacetime (2.26) is affected by conical singularities

(as usually occurs for accelerating metrics) which act as
the sources of the acceleration.8 To study the metric
conicity, following [20], a small circle around the half-axis
θ ¼ 0 is considered, while keeping the coordinates t and
r fixed:

circumference
radius

¼ lim
θ→0

2πCPðθÞ sin θ

θjΛðr; θÞj2

¼ 2πC½1þ 2mAþ A2ðe2 þ g2Þ�
e2B2 þ ½1 − gBþ B2

4
ðe2 þ g2Þ� : (2.27)

To avoid the conical singularity in θ ¼ 0, the parameter
C can be fixed such that

C ¼ e2B2 þ ½1 − gBþ B2

4
ðe2 þ g2Þ�

1þ 2mAþ A2ðe2 þ g2Þ : (2.28)

Then the coupling between the intrinsic charges and the
external magnetic field allows us to regularize the nodal
singularity around θ ¼ π. In fact, imposing the lack of
deficit or excess angle at θ ¼ π, as done in (2.27), we
obtain a constraint relation between the physical parameters
e, g, m, A, and B:

½1þgBþB2

4
ðe2þg2Þ�2þe2B2

½1−gBþB2

4
ðe2þg2Þ�2þe2B2

·
1−2mAþA2ðe2þg2Þ
1þ2mAþA2ðe2þg2Þ¼ 1:

(2.29)

This means that the force necessary to accelerate the two
black holes is entirely provided by the external magnetic
field, without any need for a pulling string.
In the case without the intrinsic electric charge, the

nonrelativistic limit of this constraint (i.e., for small
acceleration A ≈ 0) describes the Newtonian force felt by
a massive magnetic monopole of intensity g in a uniform
magnetic field of strength B. That approximation corre-
sponds, in fact, to the weak magnetic field limit

mA ≈ −gB: (2.30)

The addition of the intrinsic electric charge to the black
hole leaves this limit unchanged because eB is a subleading
contribution, which is only relevant at higher orders. From
a Newtonian perspective, this is related to the fact that the
Lorentz force for an electrically charged particle in an
external magnetic field is proportional to both the magnetic
field and the speed of the particle, which, since in the
nonrelativistic limit the speed is small, produces a further
factor of damping.
Setting aside the nonrelativistic limit, note how the

intrinsic magnetic field plays a prominent role in the
angular regularization: when g ¼ 0 in (2.29), both conical
singularities can be eliminated only in the case of vanishing
mass parameter (m ¼ 0) or, trivially, in the case of
vanishing acceleration (A ¼ 0). The role of the intrinsic
electromagnetic charges can of course be switched without
changing the form of the metric, by an electromagnetic
duality rotation, that is, embedding the dyonic black hole in
an external electric field.

7While [23] refers exactly to the theory we are treating in this
paper, i.e., Einstein-Maxwell gravity, Ref. [22] considers a
slightly different coupling also involving a scalar dilaton. This
could be the reason for the discordance.

8Also the seed metric (2.4) has axial deficit/excess angles,
which can be quantified in the following computation just by
turning off the external magnetic field: B ¼ 0.
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Therefore, the spacetime (2.26) implemented by the
constraint (2.29) is completely regular, since the only
remaining singularities—of curvature—are located inside
the inner horizon at r ¼ 0.
At spatial infinity, that is, for θ → π, r → A−1, the

solution is not asymptotically Melvin, as the e ¼ 0 case
is. This is a typical feature of spinning magnetized black
holes [24,25] . To visualize it, consider that the value of the
electric field is not converging to zero, as it is in the Melvin
universe.
In the case of null acceleration the metric describes a

single spinning RN black hole embedded in an external
magnetic field [17].9

III. INSTANTONIC PAIR CREATION

In order to interpret the solution as a black hole pair
creation and evaluate its nucleation rate (as discussed in
[2,3] and [4]), the ðy; xÞ coordinates are always preferred to
the spherical coordinates. They are related by the following
transformation:

T ¼ At; y ¼ − 1

Ar
; x ¼ cos θ:

In this set of coordinates the dyonic magnetizedC-metric
solution (2.26) becomes

ds2 ¼ jΛðy; xÞj2
A2ðx − yÞ2

�
GðyÞdT2 − dy2

GðyÞ þ
dx2

GðxÞ
�

þ GðxÞ½dϕ − ωðy; xÞdT�2
jΛðy; xÞj2A2ðx − yÞ2 ; (3.1)

where

GðξÞ ¼ ð1 − ξ2Þð1þ r−AξÞð1þ rþAξÞ; (3.2)

Λðy; xÞ ¼ 1 − Bxðg − ieÞ

þ B2

4

�
GðxÞ

A2ðx − yÞ2 þ ðe2 þ g2Þx2
�
; (3.3)

ωðy; xÞ ¼ B3eðy − 2xÞ
2A2ðx − yÞ2 GðyÞ −

Bey
2A2

½4A2 − B2 þ A2B2ðe2 þ g2Þ� þ B3emy2

A
þ B3ey3

2
eðe2 þ g2Þ þ ω0;

Aφðy; xÞ ¼
fgx − B

2
½ GðxÞ
A2ðx−yÞ2 þ ðe2 þ g2Þx2�gf1 − gxBþ B2

4
½ GðxÞ
A2ðx−yÞ2 þ ðe2 þ g2Þx2�g − Be2g2

jΛðy; xÞj2 þ kϕ;

ATðy; xÞ ¼ −ωðy; xÞ
�
Aϕðy; xÞ þ

3

2B

�
− 2eyþ kT: (3.4)

In this new set of coordinates the nonaccelerating limit is
not as explicit as it is in (2.26); also, the geometrical
interpretation is clearer in spherical coordinates. On the
other hand, it is clear that (3.1)–(3.4) are the generalization
of the metric considered in [1] and [2], which can be
obtained by vanishing the electric charge e. There is only a
subtle difference in the parametrization of the polynomial
GðξÞ ¼ −r−rþA2

Q
4
i¼1ðξ − ξiÞ, according to the insight of

[18]; therefore, the roots do not always coincide. This
means that the location of the horizons and range of the
coordinates may differ. The angular coordinates are ðx;ϕÞ,
and in order for the metric to have a Lorentz signature we
require ξ3 ≤ x ≤ ξ4 so that the sign of GðxÞ is positive.
Because of the conformal factor 1=ðx − yÞ2 in the metric,
the spatial (and conformal) infinity is reached by fixing t
and letting both y and x approach ξ3. The inner, event, and
accelerating horizons are located at y ¼ ξ1, y ¼ ξ2, and
y ¼ ξ3, respectively. The x ¼ ξ3 axis points towards spatial
infinity, and the x ¼ ξ4 axis points towards the other black
hole. Usually the constant kϕ is fixed in order to confine the

Dirac string of the magnetic field to the axis x ¼ ξ4. This
can be accomplished by fixing kϕ so that Aϕðx ¼ ξ3Þ ¼ 0.
Similarly, for the case of e ¼ 0 [2], to ensure that the

metric is free from conical singularities, we impose the
following on both poles x ¼ ξ3; ξ4:

G0ðξ3ÞjΛðξ4Þj2 ¼ −G0ðξ4ÞjΛðξ3Þj2 (3.5)

and

ΔϕE ¼ 4πjΛðξ3Þj2
G0ðξ3Þ

; (3.6)

which are precisely equivalent to the constraints (2.28) and
(2.29) we have previously obtained in spherical coordi-
nates. Note that ΛðξiÞ ≔ Λðx ¼ ξiÞ are just constants.
The black hole pair production probability jΨj2 is

described10—according to the no-boundary Hartle-
Hawking proposal—by the functional integral over all
possible manifold topologies, metrics, and electromagnetic
potentials interpolating between two boundary hypersur-
faces Σ1, Σ2,

9For a notation similar to the one used here, see also
Appendix A in [26], fixing s ¼ 0. 10Up to a normalization factor.
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Ψ12 ¼
Z

D½M�D½g�D½A� expð−iI½M; g;A�Þ: (3.7)

The measure D½M�D½g�D½A� on the functional space is
not well defined and, even if properly defined, it would be
computationally impractical to handle. Fortunately, in
analogy with the flat case, we can make use of a semi-
classical simplifying assumption which relies on the
existence of an instanton. An instanton is a Euclidean
regular solution which interpolates between the initial (1)
and final (2) states of a classically forbidden transition. It is
a saddle point for the Euclidean path integral that describes
the pair nucleation probability. The transition probability
amplitude is well approximated, at the lowest order in the
Planck length, by

Ψ12 ≈ e−Ie : (3.8)

Therefore, to obtain the pair creation rate between the two
black holes described by the C metric and their magnetic
background, one has to build the instanton from (3.1). Ie is a
real action evaluated on a Riemannian solution of the
Einstein-Maxwell equations (2.2), which does not neces-
sarily have to be real. For a rotating solution such as ours,
we can choose to consider either a real or a complex
instanton. It is argued in [8,15,27] that for this stationary
pair production a complex instanton is more physical,
because to enforce reality one must impose some imaginary
charge parameters. This means, in that case, that the
Euclidean and Lorentzian solutions do not properly match
because the positions of the horizons are different, or worse,
that some horizons may disappear because the number of
real roots may change. In addition, neither electromagnetic
charge nor angular momentum would be conserved in the
pair production. However, the more problematic point is that
the extrinsic curvature, the induced metric, and the induced
electromagnetic field will not match on the spatial hyper-
surface joining the Euclidean and the Lorentzian solutions.
The introduction of extra thin wall matter would be
necessary to fix this issue. For these reasons, we will
consider the possibility of having a complex instanton,
provided that the action evaluated on this solution is real;
thus, the creation probability remains real as well.
A standard way to generate the instanton (as in [2–4]) is

to Euclideanize the Ernst solution (3.1) by setting τ ¼ iT
and then fixing the Euclidean period to regularize the
conical singularity in the ðy; τÞ section. In [8] (see also
[15]) it is shown that this is equivalent to requiring
regularity to the extrinsic curvature Kij, the induced metric
hij, and the induced electromagnetic field ðEi; BiÞ on the
gluing spacelike hypersurfaces Στ, defined by constant τ.
In this 3þ 1 foliation, the Euclidean spacetime takes the
usual form

ds2 ¼ N2dτ2 þ hijðdxi þ iVidτÞðdxj þ iVjdτÞ; (3.9)

where N and Vj are the lapse function and the shift vectors,
which can depend only on ðx; yÞ coordinates to respect
axisymmetry. The prescription for the supporting electro-
magnetic field is given by

Ftj ¼ i ~Ftj; Fjt ¼ i ~Fjt; Fjk ¼ ~Fjk: (3.10)

Since the metric is complex, its signature is not clearly
defined. Therefore we can adopt the meaning of the
Euclidean from [8], if at any point xα0 there exists a complex
spatial-coordinate transformation xj ¼ ~xj − iVjðxα0Þτ, that,
absorbing the shift vector Vj, puts the metric in Euclidean
diagonal form

ds2jx¼x0 ¼ N2dτ2 þ hijd~xid~xj: (3.11)

We are interested in the lukewarm solution, which is
defined as having the event and accelerating horizons
not degenerate and at thermal equilibrium. Therefore we
impose the surface gravity and the temperature are the same
on both horizons y ¼ ξ2 and y ¼ ξ3. This can be imple-
mented by further constraining the structure constants of
the black hole to avoid the conical singularity on the ðy; τÞ
section. This is done in two steps: first, fixing the period of
the Euclidean time to be

Δτ ¼ 4π

G0ðξ3Þ
(3.12)

on the accelerating horizon y ¼ ξ3 and then requiring that
this value coincides with the one of the event horizon in
y ¼ ξ3, that is,

G0ðξ2Þ ¼ −G0ðξ3Þ: (3.13)

These conditions on GðξÞ are formally identical to the
electrically neutral case (i.e., nonrotating) studied in [2].
The basic difference is that the GðξÞ differs with respect to
the e ¼ 0 case, mainly in the horizon positions. In addition
we have one more parameter (related to the intrinsic electric
charge) to accomplish the regularity constraints (3.5),(3.6),
(3.12), and (3.13). For this reason, in the pair creation
process a more general black hole can be produced with
respect to the static case [2].
From (3.13) one obtains

ðξ4 − ξ3Þðξ3 − ξ1Þ ¼ ðξ4 − ξ2Þðξ2 − ξ1Þ; (3.14)

which, in the nondegenerate case ξ3 ≠ ξ2, can be further
simplified to

ξ4 − ξ3 ¼ ξ2 − ξ1: (3.15)

In terms of the physical parameters Eq. (3.15) means
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Aðe2 þ g2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − e2 − g2

q
: (3.16)

This condition further restricts the regularity constraint
(2.29), and hence also the pair production process.
The resulting instanton has topology S2 × S2 − fptg,

where the removed point is y ¼ x ¼ ξ3. In the literature this
instanton is interpreted as representing the creation, in an
external magnetic field, of a pair of oppositely charged
black holes which subsequently uniformly accelerate
away from each other [2,4]. The two black holes are
connected by a wormhole throat containing the event
horizon, which is located at a finite proper distance from
the wormhole mouth.
To compute the black hole pair creation rate, we need to

evaluate the action (2.1) on the instanton we have just built
and compare this with the value of the action on the
background. Using the trace of the equation of motion (2.2)
and using the Stokes theorem for the Maxwell term F2, the
action (2.1) can be recast, on shell, as a boundary term

I ¼ − 1

8πG

Z
∂M

d3x
ffiffiffi
h

p
½FμνnμAν þ∇μnμ�; (3.17)

where nμ is the normalized vector orthogonal to the
boundary surface y ¼ x ¼ ξ3. We explicitly evaluate the
action at y ¼ x − ϵ and then take the limit ϵ → 0; ϵ acts
as a regularization. The non-null components of the unit
outward pointing normal to the surface y ¼ x − ϵ are

ny ¼ − Aðx − yÞGðyÞ
jΛðy; xÞj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GðxÞ −GðyÞp ;

nx ¼ − Aðx − yÞGðxÞ
jΛðy; xÞj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GðxÞ −GðyÞp ;

(3.18)

while the instantonic induced three-metric on the y ¼ x − ϵ
hypersurface is

dŝ2 ¼ jΛðy; xÞj2
A2ðx − yÞ2

�
−GðyÞdτ2 þGðxÞ −GðyÞ

GðxÞGðyÞ dx2
�

þGðxÞ½dϕþ iωðy; xÞdτ�2
jΛðy; xÞj2A2ðx − yÞ2

����
y¼x−ϵ

: (3.19)

According to the no-boundary proposal, the creation rate
of the dyonic RN black hole pair with respect to the
background (bkgr) is given by

ΓdyonRN
bkgr

∝
jΨdyonRNj2
jΨbkgrj2

∝ e−2ðIdyonRN−IbkgrÞ: (3.20)

Unfortunately in the case of rotating Ernst metrics, the
behavior at infinity is not clear (see [25] for recent
developments) so in our case evaluating the background
contribution is problematic. At most we might speculate

that the naive regularization carried out in [3], consisting in
eliding the divergent term with the background contribu-
tion, also works in the rotating case.11

The analogy with the Schwinger electron-positron pro-
duction (of charge �ê) in an external electric field (Ê) is
manifest when the intrinsic black hole electric charge e is
null; therefore, the RN black hole couple is not spinning
(the Ernst potentials and the instanton are real). In that case
the boundary action (3.17), according to [14], reduces
to the following [2,3]:

I ¼ − 1

8π

Z
∂M

d3x
ffiffiffi
h

p
e−δ∇μðeδnμÞ; (3.21)

where e−δ ¼ Λ ðy−ξ1Þ
ðx−ξ1Þ. Then, performing the trivial integra-

tions over τ and ϕ, the action evaluated on the instanton
becomes

I ¼ − 1

8π
ΔτΔϕE

Z
ξ3þϵ

ξ3

dx

ffiffiffi
h

p
ffiffiffi
g

p e−δ∂μðeδ
ffiffiffi
g

p
nμÞjy¼x−ϵ:

(3.22)

Expanding in powers of ϵ and integrating (3.22) we
obtain12

I ¼ I0 þ
Λ2ðξ3Þ
A2G0ðξ3Þ

π

ξ3 − ξ1
: (3.23)

The first factor I0 is divergent on the boundary, when
ϵ → 0; but, by evaluating the pair production rate relative to
the Euclideanized magnetic universe, this term is compen-
sated by the background contribution. In fact, this can be
checked by evaluating, up to the order OðϵÞ, the action on
the Melvin background, setting r� ¼ 0 on the instanton
metric. Finally, the production rate of a pair of nonspinning,
magnetically charged RN black holes, in an external
magnetic field background, with respect to the Melvin
background is given by

Γ RN
Melvin

∝ exp

� −2πΛ2ðξ3Þ
A2G0ðξ3Þðξ3 − ξ1Þ

�
: (3.24)

In terms of the value of the magnetic field at infinity (which
coincides with the Melvin background magnetic field)

B̂ ¼ B
2

G0ðξ3Þffiffiffiffiffiffiffiffi
Λðξ4Þ

p , and the intrinsic physical magnetic charge

11Even though the result of [3] is eventually correct, some
subtleties in this asymptotic regularization process have to be
carefully considered, as analyzed in [2].

12Note that there seems to be a factor 1=2 discrepancy in IErnst
between Refs. [2] and [14], from the same authors, even though
they claim to obtain the same result. The final result of Γ is
obtained exactly by changing the definition of the pair creation
rate, from [2] to [14], by a compensating factor of 2.
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q̂ ≔
1

4π

Z
Σ
Fμνdxμ∧dxν

¼ 1

4π

Z
ΔφE

0

dϕ
Z

ξ4

ξ3

dx∂xAϕ

¼ g
ξ4 − ξ3
G0ðξ3Þ

Λ3=2ðξ3Þ
Λ1=2ðξ4Þ

; (3.25)

where Σ is any two-sphere surrounding the black hole
horizon, Eq. (3.24) can be rewritten as

Γ RN
Melvin

∝ exp

�
−4πq̂2 ð1 − B̂ q̂Þ2

1 − ð1 − q̂ B̂Þ4
�
: (3.26)

Expanding (3.26) for small q̂ B̂, we obtain a similar
behavior with respect to the leading term of the
Schwinger pair production πm2=ê Ê:

Γ RN
Melvin

≈ exp

�
−q̂2

�
π

B̂ q̂
− π

2
þ…

��
: (3.27)

Therefore, even though the new C-metric parametrization
introduced in [18] is not completely physically equivalent
to the older one,13 the pair creation rate remains the same as
[1–3], at least in the nonrotating case.

IV. COMMENTS AND CONCLUSIONS

In this paper, by means of Ernst’s solution generating
technique, we generate a generalization of the Ernst metric
describing a couple of accelerating intrinsically electrically
and magnetically charged black holes in the presence of an
external electromagnetic field. The main novelty, with
respect to the only intrinsically magnetically charged case,
consists in the fact that the presence of the electric charge
embedded in an external magnetic field makes the Reissner-
Nordstrom black hole pair rotate, due to the Lorentz force.
Then, because of the presence of the external magnetic field,
it is possible to regularize the conical singularity typical of
these accelerating solutions. Therefore there is no need for a
cosmic string or strut to provide the acceleration; rather, the
acceleration is furnished by the external magnetic field.

The relevance of this result is that this is a completely
regular, analytic, rotating, two black hole exact solution. To
our knowledge, it represents the first example of this kind in
the theory of pure Einstein-Maxwell general relativity.
From this metric an instantonic solution is built. It

interpolates between the two classical states— the black
hole pair, and its magnetic background. As a saddle point
for the Euclidean path integral, it is used to describe, at the
semiclassical level, the quantum nucleation probability
between the two forbidden classical states. This is analo-
gous to the Schwinger electron-positron pair creation in an
external electric field. The instanton considered here is of a
more general type compared to the usual one studied in the
literature because it also includes the electric charge.
A better understanding of the asymptotic behavior may

be useful to clarify the charges of the solution considered
here and also to evaluate the contribution of the rotation on
the pair creation rate.
It would also be interesting to extend this analysis starting,

as a seed, with a more general black hole pair that includes
rotation from the beginning, that is, an accelerating Kerr-
Newman metric. It would, at the same time, generalize and
unify both theErnst family of solutions describingblack holes
embedded in an external (electro)magnetic field, and the
Plebanski-Demianski family, which describes accelerating
metrics. By including six physical parameters—mass, rota-
tion, acceleration, external electromagnetic fields, and intrin-
sic electric and magnetic charges—it would represent the
most generic physical black hole metric for electrovacuum
general relativity.14 Works in this direction are in progress.
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