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Black objects lose their mass and angular momenta through evaporation by Hawking radiation, and
the investigation of their time evolution has a long history. In this paper, we study this problem for a
five-dimensional doubly spinning black ring. The black ring is assumed to emit only massless scalar
particles. We consider a thin black ring with a small thickness parameter, λ ≪ 1, which can be
approximated by a boosted Kerr string locally. We show that a thin black ring evaporates with fixing
its thickness parameter λ. Further, in the case of an Emparan-Reall black ring, we derive analytic formulas
for the time evolution, which has one parameter to be evaluated numerically. We find that the lifetime of
a thin black ring is shorter by a factor of Oðλ2Þ compared to a five-dimensional Schwarzschild black
hole with the same initial mass. We also study detailed properties of the Hawking radiation from the thin
black ring, including the energy and angular spectra of emitted particles.
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I. INTRODUCTION

In four spacetime dimensions, a stationary, asymptoti-
cally flat, vacuum black hole is completely characterized by
its mass and spin angular momentum [1]. In particular, the
topology of its event horizon must be a sphere [2]. By
contrast, in five dimensions, in addition to the Myers-Perry
black hole [3], which is a natural generalization of the four-
dimensional Kerr black hole, various exact solutions of
black objects with nonspherical horizon topologies have
been found (see [4] for a review). In this paper, we focus
attention to black ring solutions with the S1 × S2 horizon
topology. A black ring solution rotating in the direction of
S1 was found by Emparan and Reall [5]. Since a five-
dimensional spacetime can have two angular momenta,
Pomeransky and Sen’kov [6] extended it to a solution with
two independent rotation parameters (i.e., spinning both in
the directions of S1 and S2).
A black hole is known to evaporate due to quantum

effects of fields in curved spacetime as shown by Hawking
[7]. The rate of mass and angular momentum loss by the
Hawking radiation for a Kerr black hole was first studied
by Page [8,9] taking account of fields with spins 1/2, 1,
and 2, and it was shown that a Kerr black hole spins down
to a nonrotating black hole regardless of its initial state.
However, Chambers et al. [10] (see also [11]) showed
that if only a massless scalar field is taken into account
(i.e., in the absence of fields with nonzero spin), a
four-dimensional Kerr black hole evolves to a state with
the nonvanishing nondimensional rotation parameter,
a=M ≃ 0.555.Thisanalysiswasextendedtofive-dimensional
Myers-Perry black holes by Nomura et al [12]. They showed
that any such black hole with nonzero rotation parameters
a and b evolves toward an asymptotic state with

a=M1=2 ¼ b=M1=2 ≃ 0.1975ð8=3πÞ1=2. Here, this value is
independent of the initial values of a and b.
It is interesting to extend these studies to the case of a

black ring. Although the Hawking radiation of black rings
has been studied in various contexts [13–16], the time
evolution of a black ring has not been studied up to now.
The difficulty in this study is that the method of mode
decomposition of the Klein-Gordon field in this spacetime
is not known since separation of variables has not been
realized, and therefore, two-dimensional numerical calcu-
lations of eigenfunctions are required. In order to avoid
this difficulty, we consider a thin black ring with a small
thickness parameter, λ ≪ 1. Here, “thin” or the small
thickness parameter λ means that the S2 radius is much
smaller compared to the S1 radius. In such a situation, a
black ring can be approximated by a boosted black string.
Then, the separation of variables for the scalar field can
be done, and we have well-defined modes.
Using this thin-limit approximation, we give a formu-

lation to study the evolution of a thin Pomeransky-Sen’kov
black ring by the Hawking radiation, and discuss general
features that do not depend on details of the greybody
factor. Then, we apply our method to a special case of the
Emparan-Reall black ring without S2 rotation, and derive a
semianalytic formula for the time evolution of the evapo-
ration. Here, the formula is semianalytic in the sense that
the evolution is expressed by analytic formulas but they
include one parameter related to the greybody factors that
have to be evaluated numerically. By developing a numeri-
cal code, we also determine the value of this parameter with
sufficient numerical accuracy.
In addition to the time evolution, we present numerical

results on detailed properties of the evaporation of a thin
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Emparan-Reall black ring. Specifically, we examine the
energy and angular spectra of emitted particles in the
evaporation. In order to clarify the property of the energy
spectrum that is specific to the evaporation of a black ring,
we discuss the results by comparing it with that of a four-
dimensional Schwarzschild black hole.
This paper is organized as follows. In Sec. II, the black

ring solution is reviewed and its boosted Kerr string limit is
shown. In Sec. III, we derive the equations that determine
the emission rates of mass and angular momenta of a black
ring via Hawking radiation. In Sec. IV, the time evolution of
an evaporating black ring is studied. In Sec. V, we present
the energy and angular spectra of emitted particles in the
evaporation of a thin Emparan-Reall black ring. Section VI
is devoted to a summary. In the Appendix we check the
validity of our numerical result by studying the DeWitt
approximation, where the greybody factor is approximately
evaluated using the capture condition of null geodesics in a
black string spacetime. To simplify the notation, we use the
natural units ℏ ¼ c ¼ G ¼ kB ¼ 1, where G is the five-
dimensional gravitational constant.

II. BLACK RING

In this section, we review basic properties of a black ring
and show its boosted Kerr string limit. This limit was
discussed in the more general case of an unbalanced
Pomeransky-Sen’kov black ring in Ref. [17].

A. Pomeransky-Sen’kov solution

The metric of the Pomeransky-Sen’kov black ring is [6]

ds2 ¼ −Hðy; xÞ
Hðx; yÞ ðdtþ ΩÞ2 − Fðx; yÞ

Hðy; xÞ dψ
2

− 2
Jðx; yÞ
Hðy; xÞ dψdϕþ Fðy; xÞ

Hðy; xÞ dϕ
2

þ 2R2Hðx; yÞ
ðx − yÞ2ð1 − νÞ2

�
dx2

GðxÞ −
dy2

GðyÞ
�
; (1)

where the 1-form Ω is

Ω ¼ −
2Rλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ νÞ2 − λ2

p
Hðy; xÞ ½ð1 − x2Þy ffiffiffi

ν
p

dϕþ 1þ y
1 − λþ ν

× f1þ λ − νþ x2yνð1 − λ − νÞ þ 2νxð1 − yÞgdψ �;
(2)

and the functions G, H, J, and F are

GðxÞ ¼ ð1 − x2Þð1þ λxþ νx2Þ; (3)

Hðx; yÞ ¼ 1þ λ2 − ν2 þ 2λνð1 − x2Þyþ 2xλð1 − y2ν2Þ
þ x2y2νð1 − λ2 − ν2Þ; (4)

Jðx; yÞ ¼ 2R2ð1 − x2Þð1 − y2Þλ ffiffiffi
ν

p
ðx − yÞð1 − νÞ2 ½1þ λ2 − ν2 þ 2ðxþ yÞλν − xyνð1 − λ2 − ν2Þ�; (5)

Fðx; yÞ ¼ 2R2

ðx − yÞð1 − νÞ2
h
GðxÞð1 − y2Þ½fð1 − νÞ2 − λ2gð1þ νÞ þ yλð1 − λ2 þ 2ν − 3ν2Þ�

þ GðyÞ½2λ2 þ xλfð1 − νÞ2 þ λ2g þ x2fð1 − νÞ2 − λ2gð1þ νÞ
þ x3λð1 − λ2 − 3ν2 þ 2ν3Þ − x4ð1 − νÞνð−1þ λ2 þ ν2Þ�

i
: (6)

Here, we follow the notation of Ref. [6] except that we
choose the signature ð−;þ;þ;þ;þÞ for the metric,
exchange ϕ and ψ , and use R instead of k. The coordinate
ranges are −∞ < t < þ∞, 0 < ϕ, ψ < 2π, −1 ≤ x ≤ 1,
and −∞ < y < −1. R is a parameter of dimension of
length, which determines the characteristic scale of the S1

radius. λ and ν are dimensionless parameters satisfying
0 ≤ ν < 1 and 2

ffiffiffi
ν

p
≤ λ < 1þ ν, which determine two

nondimensional rotation parameters. The regular event
horizon exists at y ¼ yh, where

yh ¼
−λþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 − 4ν
p

2ν
: (7)

The solution is asymptotically flat and the spacelike infinity
is located at x ¼ y ¼ −1. The coordinates ðx;ϕÞ para-
metrize the two-sphere S2 and ψ parametrizes the circle S1.
One recovers the Emparan-Reall black ring by setting
ν ¼ 0, and the line ν ¼ λ2=4 represents the sequence of
extremal black rings (see Fig. 1).
The mass and angular momenta are

M ¼ 3πR2λ

1 − λþ ν
;

Jϕ ¼ 4πR3λ
ffiffiffi
ν

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ νÞ2 − λ2

p
ð1 − νÞ2ð1 − λþ νÞ ; (8)
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Jψ ¼ 2πR3λð1þ λ − 6νþ λνþ ν2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ νÞ2 − λ2

p
ð1 − νÞ2ð1 − λþ νÞ2 : (9)

The angular velocities, the area, and the surface gravity of
the horizon are written as [18]

Ωϕ ¼ λð1þ νÞ − ð1 − νÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4ν

p

4Rλ
ffiffiffi
ν

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ν − λ

1þ νþ λ

r
;

Ωψ ¼ 1

2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ν − λ

1þ νþ λ

r
;

(10)

AH ¼ 32π2R3λð1þ νþ λÞ
ð1 − νÞ2ðy−1h − yhÞ

;

κ ¼ ðy−1h − yhÞð1 − νÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4ν

p

4Rλð1þ νþ λÞ : (11)

B. Thin ring limit

We consider a thin ring limit λ → 0 where the ratio of the
S2 radius to the S1 radius becomes very small. Here, we have
to take care of the fact that this limit depends on the path to
the point λ ¼ ν ¼ 0. For example, taking the limit λ → 0 on
the line ν ¼ 0 gives a boosted Schwarzschild string, while
taking the limit λ → 0 on the extremal line ν ¼ λ2=4 should
result in an extremal Kerr black string. Therefore, λ ¼ ν ¼ 0
is a degenerate point, and in order to resolve this degeneracy,
we introduce a new parameter a� as

ν ¼ 1

4
a2�λ2; (12)

and consider a limit λ → 0 on the line of a fixed a� (see
Fig. 1). Also, in order to obtain a well-defined limit, we
introduce

MK ¼ 1ffiffiffi
2

p λR; (13)

and fix MK in taking this limit.
We introduce the new coordinates r, z, and θ as

y ¼ −
ffiffiffi
2

p
R

r
; ψ ¼ − zffiffiffi

2
p

R
; x ¼ cos θ; (14)

and collect the leading-order term of each metric compo-
nent with respect to λ. Then, the black ring solution is
reduced to the so-called boosted Kerr string solution

ds2 ¼ −
�
1 − 2MKr cosh2 σ

ρ2

�
dt2 þ 2MKr sinh 2σ

ρ2
dtdz

þ
�
1þ 2MKr sinh2 σ

ρ2

�
dz2 þ ρ2

Δ
dr2 þ ρ2dθ2

þ ðr2 þ a2Þ2 − Δa2sin2 θ
ρ2

sin2 θdϕ2

− 4MKr cosh σ

ρ2
a sin2 θdtdϕ

− 4MKr sinh σ

ρ2
a sin2 θdzdϕ; (15)

where ρ2 ¼ r2 þ a2 cos2 θ and Δ ¼ r2 − 2MKrþ a2,
and a is defined by a ≔ MKa�. SinceMK and a correspond
to the mass and rotational parameter of a four-dimensional
Kerr black hole, respectively, a� represents the nondimen-
sional rotation parameter along the S2 direction. σ ≔
arctanhð1= ffiffiffi

2
p Þ is the boost parameter. Although the boost

parameter can take any value for a general boosted Kerr
string, it is restricted to this value for the thin limit of a
black ring. The event horizon is located at r ¼ rþ
where r� ≔ MK �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

K − a2
p

¼ MKð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
Þ.

In studying the evaporation of a black ring, we use this
boosted Kerr string solution in the following sense. We
consider the situation where λ is very small, and do not take
the exact limit. Then, in the neighborhood of the black
ring, the spacetime metric can be well approximated by the
boosted Kerr string solution. For this reason, the value ofR is
not infinite in our analysis although it is very large compared
to MK . The relative error in this approximation is OðλÞ
compared to the leading order in the following analyses.
In this thin-limit approximation, the physical quantities

in Eqs. (8)–(11) are expressed in terms of R, MK , and a
(or a�) as

M ≃ 3
ffiffiffi
2

p
πRMK;

Jψ ≃ 2
ffiffiffi
2

p
πR2MK;

Jϕ ≃ 4πa�RM2
K; (16)

 0

 0.2

 0.4
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ν

λEmparan-Reall

a* = const.

Myers-Perry
Extremal

FIG. 1 (color online). The parameter space ðλ; νÞ of the
Pomeransky-Sen’kov solution. λ and ν can take values in the
region surrounded by solid lines. The line ν ¼ λ − 1 is the
Myers-Perry black hole limit, the line ν ¼ 0 is the Emparan-Reall
black ring limit, and the line ν ¼ λ2=4 is the extremal limit. The
point λ ¼ ν ¼ 0 corresponds to the boosted Kerr string limit. The
broken line ν ¼ a2�λ2=4 is the path to the point λ ¼ ν ¼ 0 with a
fixed a�.
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Ωϕ ≃ a
2MKrþ

1

cosh σ
; Ωψ ≃ 1

2R
; (17)

AH ≃ 16π2rþMKR; κ ≃ rþ − r−
4MKrþ

1

cosh σ
: (18)

The inverse relations of Eq. (16) are

R≃ 3Jψ
2M

; MK ≃
ffiffiffi
2

p

9π

M2

Jψ
; a� ≃ 27π

4

JψJφ
M3

; (19)

and λ is expressed as

λ ¼
ffiffiffi
2

p
MK

R
≃ 4

27π

M3

J2ψ
: (20)

Because λ−1=2 is proportional to the angular momentum Jψ
normalized by mass M, it can be interpreted as the
nondimensional rotation parameter along S1. At the same
time, Eq. (20) also means that λ gives the order of the ratio
of the S2 radius to the S1 radius. Therefore, λ is interpreted
as an indicator for the “thickness” of the black ring. In this
paper, we call λ the thickness parameter.

C. Effect of boost

Note that Ωϕ in Eq. (17) is equal to the angular velocity
defined by the Killing generator ξ of the horizon of the
boosted Kerr string,1

ξ ¼ ∂t þ Ωϕ∂ϕ þ V∂z (21)

with

V ¼ tanh σ; (22)

and κ in Eq. (18) is identical to the surface gravity of the
horizon calculated with ξ. For a later convenience, it is
useful to compare Ωϕ and κ with the angular velocity and
the surface gravity of the horizon of the unboosted Kerr
string. In the following, quantities in the unboosted system
are indicated by prime (0). In the unboosted system, the
Killing generator of the horizon is ξ0 ¼ ∂t0 þ Ω0

ϕ∂ϕ, andΩ0
ϕ

and κ0 calculated from ξ0 are

Ω0
ϕ ¼ a

2MKrþ
; κ0 ¼ rþ − r−

4MKrþ
: (23)

There is a deference in the quantities of the boosted and
unboosted systems by a factor of 1= cosh σ. This is
understood as the effect of time delay in the Lorentz boost.

III. FORMULATION

In this section, we formulate the time evolution of mass
and angular momenta of a thin black ring via Hawking
radiation, by approximating the evolution of a scalar field
in the black ring spacetime by that in a boosted Kerr string
spacetime.

A. Emission rate

The evolution of a scalar field is governed by the
Klein-Gordon equation in curved spacetime

ð−gÞ−1=2∂μð
ffiffiffiffiffiffi−gp

gμν∂νΦÞ ¼ 0; (24)

where g is the determinant of its metric.
To quantize the field, we need to expand it in terms of

the eigenmodes for Φ, which can be written in the black
ring background as

Φ ¼ e−iωteimϕeinψΨðx; yÞ; (25)

where ω,m, and n are the eigenvalues for the Killing vector
fields ∂t, ∂ψ , and ∂ϕ, respectively. By inserting this
expression into Eq. (24), we obtain a second-order elliptic
equation for Ψðx; yÞ in the ðx; yÞ plane. This equation has a
discrete series of regular solutions labeled by an integer l.
In the Schwarzschild string limit with Jϕ ¼ 0, this series of
solutions become proportional to the associate Legendre
functions Pm

l ðxÞ. Thus, the mode functions are labeled by
the four parameters ðω;l; m; nÞ in which l, m, and n take
integer values.
In the case of a nonrotating black hole, the expected

number of particles emitted per unit time for each mode is
proportional to black body radiation:

hNsi ∝
1

eω=Ts − 1
; (26)

where ω is the energy of a scalar particle in the background
of the nonrotating black hole and Ts is the temperature of
the horizon. Here, the temperature is expressed as Ts ¼
κs=2π in terms of the surface gravity κs of the horizon.
In the rotating case, we have to replace ω by the energy

of the mode with respect to the null geodesic generator of
the black hole horizons because the mode function behaves
as expð−iω�u�Þ in the coordinates that are regular around
the black hole horizon, where u� is the advanced time/
retarded time around the horizon. In general, this null
geodesic generator ξ can be written as ξ ¼ ∂t þ

P
jΩj∂ϕj

in terms of the time translation Killing vector ∂t and the
rotational Killing vectors ∂ϕj . From this, it follows that ω�
for the mode ∝ expð−iωtþ i

P
jmjϕ

jÞ is expressed as

ω� ¼ ω −X
j

mjΩj: (27)1Our expression of Ωϕ does not agree with that of Ref. [19]
because the definition is different.
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Hence, the expected number of particles emitted per unit
time for each mode from the black ring is given by

hNBRi ¼
ΓðBRÞ
lmn ðωÞ

eðω−nΩψ−mΩϕÞ=TBR − 1
; (28)

where TBR is the temperature of the horizon and ΓðBRÞ
lmn ðωÞ is

the greybody factor, which is identical to the absorption
probability of the incoming wave of the corresponding
modes. This determines the emission rates of the total mass
M and angular momenta Jψ and Jϕ as

− d
dt

 M
Jψ
Jϕ

!
¼ 1

2π

X
l;m;n

Z
∞

0

dωhNBRi
 ω

n
m

!
; (29)

where the summation is taken over all modes. Note that in
this expression, it is difficult to estimate the greybody factor
generally because we cannot separate the coordinates x and
y, and two-dimensional numerical calculations are required
to determine the energy eigenvalues and corresponding
eigenmodes.
In order to circumvent this difficulty, we consider the

situation where the mode functions can be approximately
evaluated: a black string limit discussed above. For the
boosted black string (15), we can separate thewave equation,
and therefore, we approximate the evolution of a scalar field
in a black ring spacetime by that in a boosted Kerr string
spacetime. In this situation, the variables can be separated as

Φ ¼ e−iωtRðrÞe−ikzeimϕSml ðθÞ; (30)

where Sml ðθÞ is the spheroidal harmonic function. From the
coordinate transformation (14), n of a black ring and k of a
boosted black string are related by

n ¼ 2kR tanh σ: (31)

The expected number of particles emitted per unit time per
mode is given by

hNBBSi ¼
ΓlmnðωÞ

eðω−kV−mΩϕÞ=T − 1
; (32)

where T ¼ κ=2π is the temperature of the horizon with κ in
Eq. (18), and V is the linear velocity introduced in Eq. (22).
ΓlmnðωÞ is the greybody factor of the boosted Kerr string
spacetime. We evaluate the emission rates (29) by using
hNBBSi instead of hNBRi.

B. Simplification

We normalize all quantities by the mass density MK,

~ω ¼ MKω; ~k ¼ MKk;

~Ωϕ ¼ MKΩϕ; ~T ¼ MKT ¼ MKκ

2π
: (33)

We change the order of summations over l and m as

X∞
l¼0

Xl
m¼−l

¼
X∞

m¼−∞

X∞
l¼jmj

; (34)

and introduce

gðmÞð ~ω; ~kÞ ≔
X∞
l¼jmj

Γlmnð ~ωÞ; (35)

where ~k and n are related to each other by Eq. (31). Then,
the emission rates can be written as

− d
dt

0
B@

M

Jψ
Jϕ

1
CA ¼ 1

2πMK

X∞
m¼−∞

X∞
n¼−∞

Z
∞

j~kj
d ~ω

×
gðmÞð ~ω; ~kÞ

eð ~ω−~kV−m ~ΩϕÞ= ~T − 1

0
B@

~ω=MK

n

m

1
CA: (36)

Here, the lower limit of the integral is j~kj because the modes
with their energy ω < j~kj are gravitationally bounded
and do not escape to infinity. Because the spectral density
of ~k is very large, Oð1=λÞ, the summation over n can be
replaced by the integral:

X
n

→
Z

dn ¼ 2R tanh σ

MK

Z
d~k: (37)

The relative error produced by this replacement isOðλÞ and
negligible in our thin-limit approximation. We obtain

−dM
dt

¼ Rffiffiffi
2

p
πM3

K

X∞
m¼−∞

Z
∞

−∞
d~k
Z

∞

j~kj
d ~ω

~ωgðmÞð ~ω; ~kÞ
eð ~ω−~kV−m ~ΩϕÞ= ~T − 1

;

(38)

−dJψ
dt

¼ R2

πM3
K

X∞
m¼−∞

Z
∞

−∞
d~k
Z

∞

j~kj
d ~ω

~kgðmÞð ~ω; ~kÞ
eð ~ω−~kV−m ~ΩϕÞ= ~T − 1

;

(39)

−dJϕ
dt

¼ Rffiffiffi
2

p
πM2

K

X∞
m¼−∞

Z
∞

−∞
d~k
Z

∞

j~kj
d ~ω

mgðmÞð ~ω; ~kÞ
eð ~ω−~kV−m ~ΩϕÞ= ~T − 1

:

(40)

The integral in each formula can be further simplified if
we perform the transformation from ð ~ω; ~kÞ to ð ~ω0; ~k0Þ,

~ω ¼ ~ω0 cosh σ þ ~k0 sinh σ;

~k ¼ ~ω0 sinh σ þ ~k0 cosh σ: (41)
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Substituting these formulas with cosh σ ¼ ffiffiffi
2

p
and

sinh σ ¼ 1 and rewriting MK and R by M, Jψ , and Jϕ
using Eq. (19), we obtain the simplified expression of the
evolution:

− 1

M
dM
dt

¼ 2Fða�Þ
J4ψ
M8

; (42)

− 1

Jψ

dJψ
dt

¼ 3Fða�Þ
J4ψ
M8

; (43)

− 1

Jϕ

dJϕ
dt

¼ Gða�Þ
J3ψ

JϕM5
; (44)

with

Fða�Þ ≔
37π2

23
ffiffiffi
2

p
X∞

m¼−∞
IðmÞ
1 ða�Þ; (45)

Gða�Þ ≔
35π

22
ffiffiffi
2

p
X∞

m¼−∞
IðmÞ
2 ða�Þ: (46)

Here, we defined

IðmÞ
1 ða�Þ ≔

Z
∞

−∞
d~k0
Z

∞

j~k0j
d ~ω0 ~ω0g0ðmÞð ~ω0; ~k0Þ

eð ~ω0−m ~Ω0
φÞ= ~T 0 − 1

; (47)

IðmÞ
2 ða�Þ ≔

Z
∞

−∞
d~k0
Z

∞

j~k0j
d ~ω0 mg0ðmÞð ~ω0; ~k0Þ

eð ~ω
0−m ~Ω0

ϕÞ= ~T 0 − 1
; (48)

with g0ðmÞð ~ω0; ~k0Þ ¼ gðmÞð ~ω; ~kÞ. In the same manner as
Eq. (33), we normalized the quantities Ω0

ϕ and T 0 ¼
κ0=2π of the unboosted system in Eq. (23) as ~Ω0

ϕ ≔
MKΩ0

ϕ and ~T 0 ≔ MKT 0. Their explicit formulas are

~Ω0
ϕ ¼ ð1=2Þa�

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p ; ~T 0 ¼ ð1=4πÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p ; (49)

and depend only on a�. Note that we used the fact that the
integrals of terms proportional to ~k0 vanish because the
greybody factor is an even function of ~k0 [see Eqs. (55) and
(56) of the next subsection], and thus, such terms are odd
functions of ~k0. From Eqs. (42)–(44) and Eq. (19), the
equation for a� is derived as

− 1

a�

da�
dt

¼ 3Hða�Þ
J4ψ
M8

; (50)

where

Hða�Þ ≔
9π

4

Gða�Þ
a�

− Fða�Þ: (51)

Therefore, the time evolution of a thin black ring by the
Hawking radiation is determined by the equations for M,
Jψ , and a�, that is, Eqs. (42), (43), and (50). The remaining
task is to calculate the greybody factors and obtain Fða�Þ
and Hða�Þ of Eqs. (45) and (51) numerically.

C. Greybody factor

In the following, we discuss the greybody factor for a
massless scalar field in a boosted Kerr string spacetime.
Substituting the ansatz (30) into the Klein-Gordon equation
(24) in the background of the boosted Kerr string (15), we
get the following angular and radial wave equations for
Sml ðθÞ and RðrÞ [19]:

0 ¼ 1

sin θ
∂θðsin θ∂θSml Þ

þ
�
a2ðω2 − k2Þcos2 θ − m2

sin2 θ
þ λlm

�
Sml ; (52)

0¼ Δ∂rðΔ∂rRÞ−Δ½k2r2 þ a2ω2 − 2ωma cosh σþ λlm�R
þ ½½ωðr2 þ a2Þ−ma cosh σ�2 þ 2MKrðr2 þ a2Þ
× cosh2 σðω− k tanh σÞ2 − 2MKrðr2 þ a2Þω2

−m2a2 sinh2 σþ 4kmaMKr sinh σ�R; (53)

where λlm is the separation constant which is determined as
an eigenvalue of (52). For small a2ðω2 − k2Þ, the eigen-
values associated with the spheroidal wave functions Sml are
λlm ¼ lðlþ 1Þ þOða2ðω2 − k2ÞÞ [20].
As we mentioned in Sec. III A, the greybody factor is

calculated as the absorption probability of the incoming
waves of the corresponding mode. With the tortoise
coordinate r� and the new wave function u defined by

dr� ¼
r2 þ a2

Δ
dr; R ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ a2
p u; (54)

the radial wave equation (53) can be rewritten as the
following equation of a Schrödinger-type:

�
d2

dr2�
þ ω02 − VðrÞ

�
u ¼ 0; (55)

where VðrÞ is the effective potential

VðrÞ ¼ Δf2MKrðr2 − 2a2Þ þ a2ðr2 þ a2Þg
ðr2 þ a2Þ4

þ Δðω02a2 þ λlm þ k02r2Þ þ 4mω0MKar −m2a2

ðr2 þ a2Þ2 :

(56)

Here, the quantities in the unboosted frame, ω0 and k0, were
introduced in the same manner as Eq. (41). Note that
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Eqs. (55) and (56) have the same form as the equations for a
massive scalar field with angular frequencyω0 and mass jk0j
in a four-dimensional Kerr spacetime. As the boundary
condition, we impose the ingoing condition at the horizon.
Then, u behaves as

uðr�Þ ∼
�
e−iω0

þr� at r → rþ;

Aine−iω
0
∞r� þ Aouteiω

0
∞r� at r → ∞:

(57)

Here ω0þ ≔ ω0 −mΩ0
ϕ and ω0

∞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω02 − k02

p
. The grey-

body factor is written as

Γ0
lmðω0; k0Þ ¼ 1 −

���Aout

Ain

���2; (58)

which has to be evaluated numerically.
In this paper, we perform numerical calculations of the

greybody factor in the case of the Emparan-Reall black
ring, i.e., a ¼ 0. In this case, Sml ðθÞeimϕ becomes the
spherical harmonic function Ylmðθ;ϕÞ and the greybody
factor is independent of m, and therefore, the calculation
becomes much simpler compared to the case a ≠ 0. We
developed a code to calculate the greybody factor in this
situation. The left and right panels of Fig. 2 show the
behaviors of the greybody factors of the first three even l
numbers for ~k0 ¼ 0 and 0.6, respectively. Our result is in
good agreement with the analytic approximate formula for
low-frequency waves in Ref. [21] (see also [22,23]).
Note that if we take the limit ~ω0 → ~k0 for ~k0 ≠ 0, the

greybody factor is expected to approach a nonzero finite
value.2 Obtaining these values by numerical calculation
is rather difficult because the greybody factors have to
be evaluated at a very distant position r=M ≫ 1=v02

with v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðk0=ω0Þ2

p
. Although these values are left

uncertain in our calculation, we have checked that the error
caused by this uncertainty is small. For example, the error
in Fð0Þ of Eq. (67) is smaller than 0.1%.

IV. EVOLUTION BY EVAPORATION

In this section, we discuss general features of the time
evolution of the evaporating Pomeransky-Sen’kov black
ring. Then, we focus attention to the case of the Emparan-
Reall black ring, and derive semianalytic solutions of the
time evolution using the numerical results of the greybody
factors.

A. Evolution of Pomeransky-Sen’kov black rings

First, we discuss general features that do not depend on
the details of the greybody factor. From Eqs. (42) and (43),
the following relation can be immediately found:

J2ψ
M3

¼ const: (59)

From Eq. (20), this means that the thickness parameter λ
does not change,

λðtÞ≡ λð0Þ: (60)

Therefore, a Pomeransky-Sen’kov black ring evaporates
without changing the initial value of the nondimensional
rotation parameter along S1.
Next, let us assume a� > 0 and consider how to solve the

evolution equations for a�ðtÞ andMðtÞ. EliminatingM and
Jψ from Eqs. (42) and (50) using Eq. (59), we obtain

d
dt

�
3a�Hða�Þ
da�=dt

�
¼ 4Fða�Þ: (61)

In principle, this equation can be solved at least numerically
to yield a�ðtÞ once Hða�Þ and Fða�Þ are specified.
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FIG. 2 (color online). Greybody factors Γ0 as functions ofMKω
0 for the modes l ¼ 0, 2, and 4 in the case a� ¼ 0 for (a)MKk0 ¼ 0 (left

panel) and (b) MKk0 ¼ 0.6 (right panel). In the right panel, the data for MKω
0 ≥ 0.6005 are plotted.

2This behavior has been claimed in Ref. [21] and we have also
checked it using an analytic toy model.
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Then, from Eqs. (42) and (50), the time evolution ofMðtÞ is
formally given by

MðtÞ ¼ Mð0Þ exp
�
2

3

Z
a�ðtÞ

a�ð0Þ

Fða�Þ
a�Hða�Þ

da�

�
: (62)

We point out that the behavior of Hða�Þ is crucial for the
evolution of a�. This function is analogous to hða�Þ of
Ref. [10] where evolution of a four-dimensional Kerr black
hole was investigated: The value of a� increases (decreases)
if Hða�Þ is negative (positive). If Hða�Þ crosses zero from
negative to positive at some value a� ¼ aðcÞ� similarly to
Fig. 3 of Ref. [10], the black ring inevitably evolves to the
state with aðcÞ� . Therefore, numerical calculation ofHða�Þ is
very interesting, but is left for future work. In the present
paper, we only study what happens in the case of an
Emparan-Reall black ring.

B. Evolution of Emparan-Reall black rings

In the case of the Emparan-Reall black ring, JϕðtÞ≡ 0
and a� ≡ 0, and Eqs. (42) and (43) can be solved
analytically:

MðtÞ ¼ Mð0Þ
�
1 − 4Fð0Þ Jψð0Þ

4

Mð0Þ8 t
�

1=2

; (63)

JψðtÞ ¼ Jψð0Þ
�
1 − 4Fð0Þ Jψð0Þ

4

Mð0Þ8 t
�

3=4

: (64)

Therefore, our remaining task is to determine Fð0Þ
numerically.
As discussed in Sec. III B, basically we have to calculate

Eqs. (35), (47), and (45), and in those equations, the
summation overmwas taken at the last step. But in the case

of a� ¼ 0 considered here, it is better to take the summation
with respect tom in advance because the integrand does not
depend on m. For this reason, we calculate summation of
the greybody factors as

g0ð ~ω0; ~k0Þ ≔
X∞
l¼0

Xl
m¼−l

Γ0
lmð ~ω0; ~k0Þ

¼
X∞
l¼0

ð2lþ 1ÞΓ0
lð ~ω0; ~k0Þ: (65)

Then, Fð0Þ is given by

Fð0Þ ¼ 37π2

23
ffiffiffi
2

p I1; I1 ≔
Z

∞

−∞
d~k0
Z

∞

j~k0j
d ~ω0 ~ω

0g0ð ~ω0; ~k0Þ
e ~ω0= ~T 0 − 1

:

(66)

The integrations of I1 were executed with the Simpson’s
method. The domain of integration of I1 was made finite by
discarding the region where the integrand is sufficiently
small. We therefore set the upper limit of integration with
respect to ~ω0 to be 0.75. We took summation with respect to
l up to l ¼ 5, because the contributions from the modes
l > 5 turned out to be negligible. This is because the
potential walls for l > 5 are so high that they reflect almost
of all waves. In this manner, Fð0Þ is determined as

Fð0Þ≃ 0.239: (67)

As a check, we compute Fð0Þ using the DeWitt approxi-
mation [28] in the Appendix. The two results agree well,
and therefore, our numerical result is reliable.
As shown in Eq. (60), the nondimensional rotation

parameter J2ψ=M3 is held fixed throughout the evolution,
and this also indicates the constancy of the thickness
parameter λ. Because a� ≡ 0, the Emparan-Reall black
ring evaporates keeping similarity to its initial shape: The
black ring at any time can be obtained by uniformly scaling
its initial configuration. The scaling factor CðtÞ can be
found by deriving the time evolution of the ring radius R as

CðtÞ ≔ RðtÞ
Rð0Þ ¼

�
1 − 4Fð0Þ Jψð0Þ

4

Mð0Þ8 t
�

1=4

: (68)

The lifetime tLT of a thin black ring with mass M is

tLT ≈
�
27πλ

4

�
2
�
M
Mp

�
2

tp; (69)

where Mp and tp are the Planck mass ðℏ2=GÞ1=3 and the
Planck time ℏ=Mpc2, respectively. The time scale is
proportional to M2, and this dependence on M is same
as that of the five-dimensional Schwarzschild black hole.
However, because of the prefactor ð27πλ=4Þ2, the lifetime
of a thin black ring with λ≲ 10−2 is much shorter than that
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FIG. 3 (color online). The rescaled energy spectrum dIM=d ~ω as
a function of ~ω together with the contributions of different
quantum numbers l ¼ 0, 1, and 2. This profile is proportional to
the energy spectrum.
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of the five-dimensional Schwarzschild black hole with the
same mass.

V. ENERGY AND ANGULAR SPECTRA

In this section, we study the spectra of energy and
angular momentum of radiated particles in the evaporation
of a thin Emparan-Reall black ring.

A. Formulas for energy and angular spectra

For a thin Emparan-Reall black ring with a� ¼ 0, the
emission rates of energy and angular momentum are
given by Eqs. (38) and (39) with dJϕ=dt ¼ 0. In
Sec. III B, we simplified these formulas by performing
the Lorentz transformation from ð ~ω; ~kÞ to ð ~ω0; ~k0Þ through
Eq. (41). Physically, this corresponds to the transformation
from the boosted frame to the unboosted frame. Therefore,
when we speak about the spectra, the two kinds of spectra
can be considered: The spectra in the boosted frame (with
respect to ω) and those in the unboosted frame (with respect
to ω0). In this paper, we prefer to analyze the spectra in the
boosted frame, because the spectra in the boosted frame
correspond to those for a distant observer at rest in the
original black ring spacetime. For this reason, we rewrite
Eqs. (38) and (39) in order to match them to our purpose
here. Because the integrand does not depend onm in the case
of a� ¼ 0, we take summation with respect tom in advance,

X∞
m¼−∞

gðmÞð ~ω; ~kÞ ¼
X∞
l¼0

ð2lþ 1ÞΓlð ~ω; ~kÞ; (70)

and change the order of integration with respect to ~ω
and ~k as Z

∞

−∞
d~k
Z

∞

j~kj
d ~ω ¼

Z
∞

0

d ~ω
Z

~ω

− ~ω
d~k: (71)

Then, the formulas for the emission rates become

−dM
dt

¼ Rffiffiffi
2

p
πM3

K

Z
∞

0

d ~ω
X∞
l¼0

ð2lþ1Þ
Z

~ω

− ~ω
d~k

~ωΓlð ~ω; ~kÞ
eð ~ω−~kVÞ= ~T −1

;

(72)

− dJψ
dt

¼ R2

πM3
K

Z
∞

0

d ~ω
X∞
l¼0

ð2lþ 1Þ
Z

~ω

− ~ω
d~k

~kΓlð ~ω; ~kÞ
eð ~ω−~kVÞ= ~T − 1

:

(73)

Therefore, the energy and angular spectra are written as

− d2M
dtd ~ω

¼ Rffiffiffi
2

p
πM3

K

dIM
d ~ω

; − d2Jψ
dtd ~ω

¼ R2

πM3
K

dIJ
d ~ω

; (74)

with the definitions

dIM
d ~ω

≔
X∞
l¼0

ð2lþ 1Þ
Z

~ω

− ~ω
d~k

~ωΓlð ~ω; ~kÞ
eð ~ω−~kVÞ= ~T − 1

; (75)

dIJ
d ~ω

≔
X∞
l¼0

ð2lþ 1Þ
Z

~ω

− ~ω
d~k

~kΓlð ~ω; ~kÞ
eð ~ω−~kVÞ= ~T − 1

: (76)

The quantities dIM=d ~ω and dIJ=d ~ω are interpreted as
the rescaled energy and angular spectra.
We also would like to compare the energy spectrum

of a thin black ring with that of a four-dimensional
Schwarzschild black hole. The energy spectrum of evapo-
ration of a four-dimensional Schwarzschild black hole with
a mass MS ¼ MK=G4, where G4 is the four-dimensional
gravitational constant, is given by

− d2MS

dtd ~ω
¼ 1

M2
K

dIðBHÞM

d ~ω
with

dIðBHÞM

d ~ω
≔

1

2π

X∞
l¼0

ð2lþ 1Þ ~ωΓ
ðBHÞ
l ð ~ωÞ

e ~ω= ~T 0 − 1
; (77)

where ΓðBHÞ
l ð ~ωÞ is the greybody factor for a massless scalar

field in a four-dimensional Schwarzschild spacetime. Here,
dIðBHÞM =d ~ω is the rescaled energy spectrum. The trivial
difference between the two energy emission rates (72) and
(77) is that the black ring evaporation is different by a factor
of ∼R=MK ∼ 1=λ ≫ 1 compared to the four-dimensional
black hole evaporation. This is because a large number of
the Kaluza-Klein modes contribute to the black ring
evaporation, while only massless modes contribute to the
evaporation of a four-dimensional Schwarzschild black
hole. In the following, we discuss the difference between
the rescaled energy spectra dIM=d ~ω and dIðBHÞM =d ~ω apart
from this trivial difference of OðR=MKÞ.

B. Numerical results

Now, we present the numerical results.

1. Energy spectrum

Figure 3 shows the rescaled energy spectrum dIM=d ~ω of
emitted particles from a thin Emparan-Reall black ring as a
function of ~ω. The contributions from different quantum
numbers l ¼ 0, 1, and 2 are also plotted. Only the l ¼ 0
and 1 modes give the dominant contributions for the energy
spectrum. The data for the higher multipole modes l ≥ 3
are not plotted because they are tiny and invisible.
Let us discuss the feature of the energy spectrum of the

black ring evaporation by comparing it with that of the
evaporation of a four-dimensional Schwarzschild black
hole. The numerical data of the energy spectra for a black
ring and for a four-dimensional black hole are plotted in
Fig. 4. First, we focus attention to the low-frequency
region, ~ω ≪ 1. In this region, the energy spectrum for
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the black ring evaporation grows more slowly compared to
that for the four-dimensional black hole as ~ω is increased.
This feature can be explained by the approximate analysis
as follows. In this region, the energy spectrum is approx-
imately determined only by the l ¼ 0 mode. Since the
field equation in the unboosted frame is identical to the
Klein-Gordon equation with mass k0, we can use Unruh’s
approximate formula [21] for the greybody factor,

Γ0 ≈
32πð1þ v02Þ ~ω03

1 − exp½−2π ~ω0ð1þ v02Þ=v0�
≈ 16 ~ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~ω02 − ~k02

p
þ 16π ~ω0ð2 ~ω02 − ~k02Þ þ � � � ; (78)

for the l ¼ 0 mode, where v0 ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~k02= ~ω02

q
is the

velocity at infinity. Transforming this formula into the
boosted frame and substituting it into Eq. (75), we find

dIM
d ~ω

≈ ~ω3: (79)

On the other hand, the approximate behavior of dIðBHÞM =d ~ω
for ~ω ≪ 1 for the four-dimensional Schwarzschild black
hole is derived as

dIðBHÞM

d ~ω
≈ π−2 ~ω2: (80)

This explains the slower growth of the rescaled energy
spectrum for the black ring compared to that for the four-
dimensional black hole.
Next, we discuss the behavior in the high-frequency

region ~ω ≫ 1. In this case, the greybody factor for a
sufficiently small l is approximately unity [see Fig. 2 and
also Eq. (A10) in the Appendix), and therefore, the
contribution from a mode with a sufficiently small l is
approximated as

Z
~ω

− ~ω
d~k

~ωΓlð ~ω; ~kÞ
eð ~ω−~kVÞ= ~T − 1

≈
~ω

8π
e−8ð

ffiffi
2

p −1Þπ ~ω: (81)

Since the number of the modes that contribute to the energy
spectrum is Oð ~ω2Þ, we have

dIM
d ~ω

∼ ~ω3e−8ð
ffiffi
2

p −1Þπ ~ω (82)

for ~ω ≫ 1 as an order estimate. On the other hand, for a
four-dimensional Schwarzschild black hole, we have

dIðBHÞM

d ~ω
∼ ~ω2e−8π ~ω: (83)

The remarkable difference of the black ring formula (82)
from the black hole formula (83) is the presence of the
factor

ffiffiffi
2

p − 1 ≈ 0.414 in the argument of the exponential
function. Because of this factor, the energy spectrum for the
black ring evaporation decays much more slowly than that
for the black hole as ~ω is increased. We can also confirm
this slower decay from our numerical data as shown in
Fig. 4. The origin of this factor is the argument ð ~ω − ~kVÞ= ~T
in the exponential function of the denominator in the left-
hand side of Eq. (81). In this formula, the momentum ~k in
the z direction of the boosted black string spacetime enters
like a chemical potential, and this “chemical potential term”
enhances the emission rate of particles with positive
momenta ~k > 0. From the viewpoint of the original black
ring spacetime, more numbers of particles with positive
angular momenta are emitted. Note that similar phenomena
are observed in the evaporation of Kerr and Myers-Perry
black holes [23–27]: The energy emission rate of a rotating
black hole is also enhanced in the high-frequency regime
compared to that of a Schwarzschild(-Tangherlini) black
hole because of the effect of the chemical potential term.
The location of the peak has to be evaluated numerically.

Our numerical result shows that the peak position is
~ω≃ 0.21 with the peak value dIM=d ~ω ¼ 4.73 × 10−4.
On the other hand, the peak position for the energy
spectrum dIM=d ~ω for a four-dimensional Schwarzschild
black hole is ~ω≃ 0.12. The peak of dIM=d ~ω is located at a
higher frequency (in the unit of MK) compared to that of
dIðBHÞM =d ~ω. The difference in the peak positions comes
from both the contribution from the Kaluza-Klein modes
and the effect of the chemical potential term.
To summarize, the energy spectrum of emitted particles

from a black ring shifts towards a higher frequency domain
compared to that from a four-dimensional black hole with
the same value of MK .

2. Angular spectrum

Now, we turn our attention to the angular spectrum.
Figure 5 shows the rescaled angular spectrum dIJ=d ~ω as a
function of ~ω together with the contributions of different

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1  1.2  1.3  1.4  1.5

dI
M

/d
ω~

ω∼

BRBH

FIG. 4 (color online). The rescaled energy spectra dIM=d ~ω for a
thin black ring and dIðBHÞM =d ~ω for a four-dimensional Schwarzs-
child black hole as a function of ~ω.
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quantum numbers l ¼ 0, 1, and 2. The modes l ≥ 3 are
not plotted for the same reason as the rescaled energy
spectrum. Again, the l ¼ 0 and 1 modes give the dominant
contributions to the angular spectrum.
First, we discuss the behavior in the low-frequency

region. In this region, the spectrum is approximately
determined only by the l ¼ 0 mode. As we can see in
the inset of Fig. 5, the rescaled angular spectrum is negative
for ~ω≲ 0.05. This behavior can be confirmed also from the
approximate analysis. Substituting Unruh’s approximate
formula (78) for the greybody factor of the l ¼ 0mode into
Eq. (76), we have

dIJ
d ~ω

≈
�
π − 8

ffiffiffi
2

p

3

�
~ω4 ≈ −0.630 × ~ω4 (84)

after some calculation. In discussing the reason for this
negativity, there are two important effects: the chemical
potential term and the greybody factor. As discussed above,
the chemical potential term enhances the emission rate of
particles with positive ~k, and hence, tends to make the
angular spectrum positive. On the other hand, for a fixed
Lorentz invariant ~ω2 − ~k2, the greybody factor is approx-
imately proportional to the frequency ~ω0 in the unboosted
frame. Because ~ω0 ¼ ffiffiffi

2
p

~ω − ~k, the positive momentum ~k
decreases the transmission probability to infinity for a given
~ω. In other words, the relation Γð ~ω; j~kjÞ < Γð ~ω;−j~kjÞ
holds. The greybody factor suppresses the emission of
particles with positive momenta ~k, and tends to make the
angular spectrum negative. Therefore, the two effects
compete with each other. At the leading order, the two
effects cancel out and there is noOð ~ω3Þ term in Eq. (84). At
the subleading order, the effect of the greybody factor is
stronger than the effect of the chemical potential, and this
leads to the negative result of Oð ~ω4Þ in Eq. (84).

Next, we discuss the behavior in the high-frequency
region ~ω ≫ 1. As done in the discussion on the energy
spectrum, we approximate the greybody factor for a
sufficiently small l to be unity. Then, the contribution
from a mode with a sufficiently small l is approximated as

Z
~ω

− ~ω
d~k

~kΓlð ~ω; ~kÞ
eð ~ω−~kVÞ= ~T − 1

≈
~ω

8π
e−8ð

ffiffi
2

p −1Þπ ~ω: (85)

Since the number of the modes that contribute to the
angular spectrum is Oð ~ω2Þ, an order estimate gives

dIJ
d ~ω

∼ ~ω3e−8ð
ffiffi
2

p −1Þπ ~ω: (86)

This is the same behavior as that of the energy spectrum,
Eq. (82). The numerical result also shows the similarity in
the behavior of dIM=d ~ω and dIJ=d ~ω in the high-frequency
region. Compare Figs. 3 and 5.
The peak position of the angular spectrum is numerically

determined to be ~ω≃ 0.25 with dIJ=d ~ω≃ 3.43 × 10−4.
This peak is located at a bit higher frequency than the peak
location of the energy spectrum, and the peak values of
dIM=d ~ω and dIJ=d ~ω have the same order. To shortly
summarize, a black ring emits positive angular momentum
except for a small region ~ω≲ 0.05, and the shape of the
angular spectrum is similar to that of the energy spectrum.

VI. SUMMARY

In this paper, we have studied the time evolution of
evaporation of a thin black ring under the assumption that
only a massless scalar field is emitted in the Hawking
radiation. In order to separate the Klein-Gordon equation in
the background of a black ring metric, we have considered
the thin-limit approximation, where the black ring metric is
approximated by the boosted Kerr string metric. Then, we
have given a set of equations, Eqs. (42), (43), and (50), that
determines the quasistationary evaporation of a thin
Pomeransky-Sen’kov black ring. In this setup, a black ring
evaporates without changing the thickness parameter λ.
Also, we have analytically solved these equations in the
case of an Emparan-Reall black ring and given its time
evolution in Eqs. (63) and (64), with the factor Fð0Þ≃
0.239 that has been determined by numerical calculation of
the greybody factor. In the evaporation, the shape of the
Emparan-Reall black ring keeps similarity to its initial
configuration. The lifetime of a black ring is shorter
by a factor of Oðλ2Þ compared to a five-dimensional
Schwarzschild black hole with the same initial mass.
We have also examined the energy and angular spectra of

emitted particles in the evaporation of a thin Emparan-Reall
black ring. Compared to the energy spectrum for a four-
dimensional Schwarzschild black hole, the energy spec-
trum for a black ring shifts to the high-frequency region.
In particular, the decay rate of the black ring spectrum is
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FIG. 5 (color online). The rescaled angular spectrum dIJ=d ~ω as
a function of ~ω together with the contributions of different
quantum numbers l ¼ 0, 1, and 2. The inset highlights the region
0 ≤ ~ω ≤ 0.06. This profile is proportional to the angular spectrum.
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slower than that for a four-dimensional black hole by a
factor of

ffiffiffi
2

p − 1 in the high-frequency region because of
the effect of the “chemical potential” term. It has also been
shown that the angular spectrum has a similar shape to that
of the energy spectrum except in the low-frequency region
~ω≲ 0.05 where the angular spectrum becomes negative
due to the effect of the greybody factors.
As a future work, we plan to study the time evolution of a

Pomeransky-Sen’kov black ring with nonvanishing rota-
tional parameter a� along the S2 direction. For this purpose,
we have to calculate the functions Fða�Þ and Hða�Þ of
Eqs. (45) and (51), and therefore, developing the code for
computing the greybody factor of the boosted Kerr string is
required.
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APPENDIX: DEWITT APPROXIMATION

In order to check the validity of our numerical result (67)
of Fð0Þ in the case of the Emparan-Reall black ring, we
compute this value in an approximate way. As the method
of approximation, we adopt the DeWitt approximation [28]
that was originally developed to evaluate the contribution
of the greybody factor to the evaporation of a
Schwarzschild black hole (see p. 394 of Ref. [29] for a
review). In that study, the greybody factor was obtained by
appropriately reinterpreting the capture condition of null
geodesics. Although this approximation holds only for the
high-frequency regime in a strict sense, it gives a rather
good result. In fact, the difference of the DeWitt approxi-
mation from the numerical result is ≈6%. Compare the
formula of the mass-loss rate by the DeWitt approximation
[Eq. (146) of Ref. [28]] and the numerical value reported
in Ref. [10].
In the spacetime of a five-dimensional Schwarzschild

string, a massless particle with momentum in the z direction
effectively behaves as a massive particle in a four-
dimensional Schwarzschild spacetime. Therefore, as the
first step, we study timelike geodesics in a four-
dimensional Schwarzschild spacetime and derive the cap-
ture condition. Then, we translate it to the greybody factor
for a massless scalar field in a spacetime of a Schwarzschild
string. Using this result, we derive the value of Fð0Þ in the
DeWitt approximation by performing the summation and
integration in Eqs. (65) and (66).
The metric of a four-dimensional Schwarzschild space-

time is given by

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ; (A1)

fðrÞ ¼ 1 − 2MK

r
: (A2)

The geodesic motion of a massive particle in the equatorial
plane is governed by the following equations:

fðrÞt: ¼ e; (A3)

r2ϕ
:
¼ j; (A4)

−fðrÞt:2 þ r
: 2

fðrÞ þ r2ϕ
:
2 ¼ −1: (A5)

Here, e and j indicate the energy and angular momentum
per unit mass of the test particle, and the dot ð·Þ denotes
the derivative with respect to the particle’s proper time τ.
Substituting Eqs. (A3) and (A4) into Eq. (A5), we
obtain

r
: 2 þ VðrÞ ¼ e2; (A6)

where

VðrÞ ¼
�
j2

r2
þ 1

��
1 − 2MK

r

�
: (A7)

Let us consider the situation where a test particle exists in
the neighborhood of the horizon and moves toward the
outside (i.e., r

:
> 0). Denoting the peak value of VðrÞ as

Vpeak, the particle escapes to infinity if the condition Vpeak <
e2 is satisfied. Conversely, a particle with Vpeak > e2 is
reflected back to the black hole by the centrifugal barrier.
After some calculation, the condition Vpeak ¼ e2 is shown to
be equivalent to

j ¼ e
ffiffiffiffiffiffiffiffiffiffi
FðeÞ

p
MK; (A8)

where

FðeÞ ¼ 27e4 − 36e2 þ 8þ eð9e2 − 8Þ3=2
2e2ðe2 − 1Þ : (A9)

Therefore, a particle escapes to infinity if j < e
ffiffiffiffiffiffiffiffiffiffi
FðeÞp

MK ,
and it is reflected back to the black hole if j > e

ffiffiffiffiffiffiffiffiffiffi
FðeÞp

MK .
This condition is equivalent to the one obtained in
Ref. [30]. Here,

ffiffiffiffiffiffiffiffiffiffi
FðeÞp

varies from 4 to 3
ffiffiffi
3

p
as e is

increased from unity to infinity.
We use this result in order to approximate the greybody

factor in the particle emission from the Schwarzschild string.
Here, we choose the unboosted frame, and as done in
Sec. III B, the quantities in this frame are indicated by prime
ð0Þ. Consider the emission of a quantum particle with mass
k0, angular frequency ω0, and angular quantum number l.
Replacing j → l=k0 and e → ω0=k0 in the capture condition
derived above, the particle with l≲ ω0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fðω0=k0Þp
MK

escapes to infinity and that with l≳ ω0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðω0=k0Þp

MK falls

MATSUMOTO, YOSHINO, AND KODAMA PHYSICAL REVIEW D 89, 044016 (2014)

044016-12



back to the horizon. Therefore, the greybody factor is
approximated by

Γ0
lmð ~ω0; ~k0Þ ≈ θ

�
~ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fð ~ω0=~k0Þ

q
− l
	
; (A10)

where θðuÞ denotes the Heaviside step function, and we
introduced ~ω0 ¼ MKω

0 and ~k0 ¼ MKk0 in the same manner
as Eq. (33). Note that in the massless particle limit,
~k0= ~ω0 → 0, Eq. (A10) becomes Γlmn ≈ θð3 ffiffiffi

3
p

~ω0 − lÞ,
and this agrees with the formula in the original DeWitt
approximation [28].
Now, we evaluate the value of Fð0Þ. The computation

can be done with the formula given in Sec. IV B. The
quantity g0ð ~ω0; ~k0Þ in Eq. (65) is

g0ð ~ω0; ~k0Þ ¼
X∞
l¼0

ð2lþ 1Þθ
�
~ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fð ~ω0=~k0Þ

q
− l
	

≈ ~ω02Fð ~ω0=~k0Þ: (A11)

Here, the summation over l was changed by integration
as done by DeWitt. Then, Fð0Þ can be calculated by

substituting this formula into Eq. (66). It is convenient to
introduce new variables ðx; yÞ by x ¼ ~k0= ~ω0 and y ¼ ~ω0,
and in these variables, analytic integration can be
proceeded as

I1 ¼
Z

∞

0

y4dy
e8πy − 1

Z
1

−1
dxFð1=jxjÞ

¼ ζð5Þ
4096π5

�
88þ 33

ffiffiffi
2

p
arcsin

�
2
ffiffiffi
2

p

3

�
− 3 log 3

�
:

(A12)

Substituting this result into Eq. (66), we obtain

Fð0Þ ≈ 0.224: (A13)

This value is fairly close to our numerical value in Eq. (67):
Similarly to the original DeWitt approximation for the
Schwarzschild black hole, the approximate value is about
6% smaller compared to the numerical value. Therefore, the
result of the DeWitt approximation supports the correctness
of our numerical calculation.
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