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In this work we study how nonminimally coupled theories of gravity modify the usual Friedmann
equation, and develop two methods to treat these. The ambiguity in the form of the Lagrangian density of a
perfect fluid is emphasized, and the impact of different dominant matter species is assessed. The
cosmological constant problem is also discussed.
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I. INTRODUCTION

Despite its great experimental success (see e.g.
Refs. [1,2]), it is well known that general relativity (GR)
is not the most encompassing way to couple matter with
curvature. Indeed, these can be coupled, for instance, in a
nonminimal way [3] (see also Refs. [4–6] for early
proposals in cosmology), a fact that can have a bearing
on the dark matter [7,8] and dark energy [9,10] problems,
as well as inflation [11,12] and structure formation [13].
This putative nonminimal coupling modifies the well-
known energy conditions [14] and can give rise to several
implications, from Solar System [15] and stellar dynamics
[16–19] to close timelike curves [20] and wormholes [21].
Another interesting issue that arises in the context of

gravity theories with a nonminimal coupling between
curvature and matter is the fact that the Lagrangian
degeneracy in the description of a perfect fluid, encoun-
tered in GR [22,23] is lifted [24]: indeed, since the
Lagrangian density explicitly appears in the modified
equations of motion, two Lagrangian densities leading to
the same energy-momentum tensor have different dynami-
cal implications, whereas in GR they are physically
indistinguishable.
Thus, one considers that the Einstein-Hilbert action is

extended by the action functional [3],

S ¼
Z

½κf1ðRÞ þ f2ðRÞL�
ffiffiffiffiffiffi−gp

d4x; (1)

where fiðRÞ (i ¼ 1, 2) are arbitrary functions of the scalar
curvature, R, g is the determinant of the metric and
κ ¼ c4=16πG. The above encompasses the well-known
fðRÞ theories, which are widely used to study the effect of

modifications of gravity in a plethora of scenarios, e.g. the
Starobinsky inflationary model fðRÞ ¼ Rþ αR2 [25], the
accelerated expansion of the Universe [26], and Solar
System tests [27], amongst others.
Following the argument that fðRÞ theories should be

derived from a more complete theory as low-energy
phenomenological models, one also finds strong funda-
mental motivation for the presence of a nonminimal
coupling, as it arises from one-loop vacuum-polarization
effects in the formulation of quantum electrodynamics in a
curved spacetime [28], as well as in the context of multi-
scalar-tensor theories, when considering matter scalar fields
[29] (as explicitly shown in Ref. [30]). Furthermore, a
nonminimal coupling was put forward in an earlier pro-
posal [31], developed in the context of Riemann-Cartan
geometry.
A related approach is found in the so-called Horndeski’s

scalar-tensor theories [32], where the most general action
that includes a scalar field ϕ and leads to second-order
equations of motion is developed: in that context, one finds
that a linear coupling between the scalar curvature and the
scalar field is allowed, although appropriate “counterterms”
in derivatives of ϕ must be added to cancel higher-order
terms in the field equations.
In contrast, fðRÞ theories (and, by extension, the model

here considered) yield fourth-order equations of motion,
but can be cast as a well-defined Cauchy problem exhibit-
ing second-order equations in both the metric and the scalar
curvature. This approach is reminiscent of Ostrogradski’s
Hamiltonian formulation of fðRÞ theories, where the
curvature is promoted to a canonical variable [33].
Horndeski’s scalar-tensor theories are not considered here
since one does not aim at including a scalar field as an
additional matter species, but instead seeks to find how a
nonminimal coupling of the scalar curvature with normal
matter (described as a perfect fluid) can leave an imprint on
the Friedmann equation.
In what follows, two methods to relate modifications of

the Friedmann expansion rate equation with the functions
of the scalar curvature appearing in the action functional
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Eq. (1) are developed—considering both a nonlinear
curvature term and a nonminimal coupling (NMC) between
the latter and matter. The impact of the form of the
Lagrangian density in this identification is assessed, with
no particular choice for this quantity or the dominant matter
species (aside from the assumption of a perfect fluid). This
work aims at complementing a previous study of the impact
of a NMC in a cosmological context [9].
This work is structured as follows: in Sec. II, we describe

the nonminimally coupled models of interest, and consider
their impact in cosmology in Sec. III; in Secs. IV and V,
we discuss two different regimes of the NMC models;
Secs. VI–X concern specific explicit solutions; in Sec. XI,
we address the issue of generating a cosmological constant;
finally, in Sec. XII we present our conclusions.

II. THE MODEL

Variation of Eq. (1) with respect to the metric yields the
modified field equations,�

F1 þ
F2L
κ

�
Gμν ¼

1

2κ
f2Tμν þ Δμν

�
F1 þ

F2L
κ

�

þ 1

2
gμν

�
f1 − F1R − F2RL

κ

�
; (2)

with Fi ≡ dfiðRÞ=dR and Δμν ≡∇μ∇ν − gμν□. As
expected, GR is recovered by setting f1ðRÞ ¼ R
and f2ðRÞ ¼ 1.
The trace of Eq. (2) reads

ðκF1 þ F2LÞR ¼ 1

2
f2T − 3□ðκF1 þ F2LÞ þ 2κf1: (3)

Resorting to the Bianchi identities, one concludes that
the energy-momentum tensor of matter may not be (cova-
riantly) conserved, since

∇μTμν ¼ F2

f2
ðgμνL − TμνÞ∇μR (4)

can be nonvanishing. Given the analogy between the
nonminimally coupled fðRÞ theories here considered and
a two-scalar-tensor theory [30], this can be interpreted as
due to an energy exchange between the perfect fluid and the
latter.

III. COSMOLOGY

In order to study the effect of the modified dynamics
arising from a NMC, one assumes a spatially flat, homo-
geneous and isotropic Universe, thus considering the
Friedmann-Robertson-Walker (FRW) line element,

ds2 ¼ −dt2 þ a2ðtÞdV; (5)

where aðtÞ is the scale factor, and it is assumed that matter
is a perfect fluid with an energy-momentum tensor,

Tμν ¼ ðρþ pÞuμuν þ pgμν → T ¼ 3p − ρ; (6)

with uμuν ¼ −1 and uμuμ;ν ¼ 0; since one uses comoving
coordinates, uμ ¼ δμ0 and

T00 ¼ ρ; Trr ¼
Tθθ

r2
¼ a2p: (7)

The tt component of the field Eqs. (2) yields the
modified Friedmann equation,

H2 ¼ hðR;L; ρÞ
6κ

;

hðR;L; ρÞ≡ κ

F1 þ F2L
κ

�
f2ρ
κ

− 6H∂t

�
F1 þ

F2L
κ

�

þ
�
F1 þ

F2L
κ

�
R − f1

�
; (8)

whereH ≡ a
:
=a; clearly, for f1ðRÞ ¼ R and f2ðRÞ ¼ 1, the

usual result hðρÞ ¼ ρ ensues.
The purpose of this work is to ascertain the forms for

f1ðRÞ and f2ðRÞ compatible with a specific form hðρÞ for
the Friedmann-like equation; this requires that both the
Lagrangian density L and the scalar curvature R are
expressed in terms of the energy density ρ. The former
is simply attained by writing

L ¼ −αρ; α ¼
�
1; L ¼ −ρ
−ω; L ¼ p

; (9)

where ω ¼ p=ρ is the equation of state (EOS) parameter.
This captures the two possible Lagrangian formulations
of a perfect fluid (although it was argued in Ref. [24]
that L ¼ −ρ is the most adequate choice), including
the possibility of effectively describing a scalar field where
L ¼ pðφ;φ: Þ.
Replacing Eq. (9) into Eq. (8), one gets

hðR; ρÞ≡ κ

F1 − αF2
ρ
κ

�
f2ρ
κ

− f1 þ 6H∂t

�
F1 − αF2

ρ

κ

�

þ
�
F1 − αF2

ρ

κ

�
R

�
; (10)

while the trace Eq. (3) yields�
F1−α

F2ρ

κ

�
R¼−

1−3ω

2

f2ρ
κ

−3□

�
F1−α

F2ρ

κ

�
þ2f1;

(11)

and the nontrivial ν ¼ t component of the energy con-
servation Eq. (4) becomes
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ρ
: þ 3Hð1þ ωÞρ ¼ F2

f2
ðα − 1ÞρR: : (12)

In the following sections one derives the aforementioned
relation between the functions f1ðRÞ, f2ðRÞ and hðρÞ,
using two different methods. First, one considers only a
perturbative regime, so that the scalar curvature is approx-
imately given by its usual GR expression, RðρÞ ¼
R0ðρÞ≡−T=ð2κÞ. Second, one attempts to obtain a cor-
respondence valid even in a nonperturbative scenario, by
imposing instead that the solution to the above system of
equations obeys the condition κF1 þ F2L ¼ constant.

IV. PERTURBATIVE REGIME

In this section, one establishes a relation between the
nontrivial forms for f1ðRÞ, f2ðRÞ and the modified
Friedmann equation. Following Ref. [34], one writes

f1ðRÞ ¼ Rþ φ1ðRÞ; f2ðRÞ ¼ 1þ φ2ðRÞ; (13)

where φiðRÞ are assumed to be perturbative, φ1ðRÞ ≪ R
and φ2ðRÞ ≪ 1. By the same token, the scalar curvature is
assumed to be approximately given by

RðρÞ ≈ R0ðρÞ ¼ ð1 − 3ωÞ ρ

2κ
; (14)

so that

dφi

dR
¼ 2κ

1 − 3ω
φi

0ðρÞ; (15)

where the prime denotes differentiation with respect to the
energy density ρ. This perturbative approach cannot be
applied for radiation or relativistic matter, as both have an
EOS parameter ω ¼ 1=3, so that the ensuing curvature
vanishes according to GR, R0 ¼ 0.
It should be noted that this classical result can be evaded,

since corrections to the value of the EOS parameter ω ¼
1=3 (of the order 10−2) appear due to the effect of a trace
anomaly arising from quantum effects in a photon gas in a
SUðNÞ gauge theory [35].
Using the covariant conservation of the energy-momen-

tum tensor, Eq. (12), and writing hðρÞ ¼ ρþ δðρÞ, Eq. (10)
becomes, to first order in φi,

δðρÞ ¼ −κφ1 þ
�
φ2 − κ

1þ 3ω

1− 3ω
φ0
1

�
ρ

þ 6ð1þωÞκφ00
1 − αð5þ 3ωÞφ0

2

1− 3ω
ρ2 − 6ð1þωÞαφ00

2

1− 3ω
ρ3:

(16)

This linear nonhomogeneous differential equation ena-
bles a direct translation between the form of the modified

Friedmann equation and the nontrivial forms for f1ðRÞ,
f2ðRÞ giving origin to it. Setting φiðRÞ ¼ 0 trivially yields
δðρÞ ¼ 0, while the inclusion of a cosmological constant
(CC) term in the action, φ1ðRÞ ¼ −2Λ and φ2ðRÞ ¼ 0,
leads to H2 ¼ ðρ=6κÞ þ Λ=3, as expected. Notice, how-
ever, that a dominant CC, which occurs since z ∼ 0.4 [36],
cannot be accommodated by the mechanism outlined
above, as it is nonperturbative, i.e. R ∼ 4Λ ≠ R0 (since
ΩΛ ∼ 0.7 > Ωm ∼ 0.3).

A. “Neutral” solutions

One notices that since Eq. (16) is linear, its general
solution for a given modification δðρÞ of the Friedmann
equation includes the solution of the corresponding homo-
geneous differential equation, i.e. the one for which
δðρÞ ¼ 0. Physically, this simply states that any perturba-
tion φ1HðRÞ in the action has a counterpart φ2HðRÞ that
cancels out its dynamical effect. These functions, here
dubbed as “neutral,” are related by

0¼−κφ1H þ
�
φ2H − κ

1þ 3ω

1− 3ω
φ0
1H

�
ρ

þ 6ð1þωÞκφ00
1H −αð5þ 3ωÞφ0

2H

1− 3ω
ρ2− 6ð1þωÞαφ00

2H

1− 3ω
ρ3:

(17)

By the same token, if one sets φ2H ¼ 0 and solves the
above differential equation for φ1H (and vice versa), one
finds that functions of the form φ1HðRÞ ∼ Rn1 and
φ2HðRÞ ∼ Rn2 , with

n1 ¼
7þ 9ω�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
73þ 78ωþ 9ω2

p

12ð1þ ωÞ ;

n2 ¼
1þ 3ω�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 3ωÞ2 þ 24

α ð1þ ωÞð1 − 3ωÞ
q

12ð1þ ωÞ ; (18)

do not modify the Friedmann equation at first order, since
their contribution to Eq. (16) vanish.
For completeness, one lists the values of the above

exponents for the relevant matter species:
(i) Nonrelativistic dust (ω ¼ 0, α ¼ 1):

n1 ¼
7� ffiffiffiffiffi

73
p

12
; n2 ¼

1� 5

12
: (19)

(ii) Ultrastiff matter (ω ¼ 1, α ¼ 1):

n1 ¼
4� ffiffiffiffiffi

10
p

6
; n2 ¼

1� i
ffiffiffi
5

p

6
: (20)
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(iii) Scalar field (ω ¼ 1, α ¼ −ω ¼ −1):

n1 ¼
4� ffiffiffiffiffi

10
p

6
; n2 ¼

1� ffiffiffi
7

p

6
: (21)

Notice the unphysical, complex value of n2 for ultrastiff
matter. The conditions under which the method outlined here
can be applied to a power-lawmodification of the Friedmann
equation will be discussed in a subsequent section.

V. NONPERTURBATIVE, RELAXED REGIME

In this section one obtains a correspondence between the
functions f1ðRÞ, f2ðRÞ and the right-hand side of the
Friedmann Eq. (8); instead of assuming a perturbative
regime, the possibility that the scalar curvature may strongly
deviate from its GR expression, RðρÞ ≠ R0ðρÞ, is addressed.
To tackle this situation, the hypothesis that the combi-

nation F1 þ F2L=κ is constant is posited. This could stem,
for instance, from a fixed point in the dynamical system
constituted by Eq. (2): indeed, the presence of the kinetic
term ΔμνðF1 þ F2L=κÞ in these is suggestive that some
fixed points could obey the constraint

F1 þ
F2L
κ

¼ F1 − αF2

ρ

κ
¼ A ≠ 0: (22)

Notice that GR yields A ¼ 1, so that one expects this
quantity to be either always equal to unit, or to depend on
additional parameters related to the functions f1ðRÞ, f2ðRÞ
in such a way that A → 1 renders GR.
Inserting Eq. (22) into Eq. (10) yields

Ah ¼ f2ρþ AκR − κf1; (23)

while the trace Eq. (11) becomes

AR ¼ − 1 − 3ω

2κ
f2ρþ 2f1: (24)

Solving for f1ðRÞ and inserting back into Eq. (23), one
gets

2h ¼ κRþ 3

2A
ð1þ ωÞf2ρ: (25)

The above is further simplified by writing the scalar
curvature explicitly,

R ¼ 6ð _H þ 2H2Þ ¼ 6

�ð _H2Þ
2H

þ 2H2

�
¼

¼ 1

κ

�
_h
2H

þ 2h

�
¼ 1

κ

�
h0ðρÞ
2

_ρ

H
þ 2h

�
: (26)

One may resort to Eq. (12) to eliminate _ρ. For this, one
assumes that the scalar curvature can be written as a

function of the energy density alone, R ¼ RðρÞ (as will
be shown below), so that

f2ðRÞ ¼ f2ðRðρÞÞ → F2
_R ¼ f02ðρÞ_ρ; (27)

i.e. one differentiates with respect to the energy density
ρ, instead of the scalar curvature. In the remainder of
this work, the notation Fi ¼ dfiðRÞ=dR and f0i ¼
dfðRðρÞÞ=dρ is adopted, for brevity. Thus, Eq. (12) implies
that

_ρ ¼ − 3Hð1þ ωÞf2ρ
f2 þ ð1 − αÞf02ρ

: (28)

Replacing this into Eq. (26) yields

RðρÞ ¼ 1

κ

�
2h − 3

2

ð1þ ωÞf2h0ρ
f2 þ ð1 − αÞf02ρ

�
; (29)

thus showing that the scalar curvature can be expressed
solely as a function of the energy density, as claimed above.
Inserting this into Eq. (25) leads to

A
ð1þ ωÞf2h0ρ

f2 þ ð1 − αÞf02ρ
¼ ð1þ ωÞf2ρ: (30)

Assuming that f2 þ ð1 − αÞf02ρ ≠ 0 and ð1þ ωÞf2ρ ≠
0 (so that a ω ≠ −1 scalar field in slow roll is excluded),
one finally obtains

f2 þ ð1 − αÞf02ρ ¼ Ah0: (31)

This relationship provides the connection between the
modified form of the Friedmann equation and the NMC; it
is worth remarking that if L ¼ −ρ → α ¼ 1, then the NMC
is directly read, f2ðρÞ ¼ Ah0. Inserting this into Eq. (29),
one gets

RðρÞ ¼ 1

κ

�
2h − 3

2A
ð1þ ωÞf2ρ

�
: (32)

Finally, Eq. (11) allows one to read

f1 ¼
1

κ

�
Ah − 1þ 3ω

2
f2ρ

�
: (33)

In order to identify the functions f1ðRÞ and f2ðRÞ that
enable a particular form for hðρÞ, one must first solve
Eq. (31) for f2ðρÞ. One can then compute RðρÞ from
Eq. (32) and invert it to obtain ρ ¼ ρðRÞ; replacing this
back into f2ðρÞ yields the aimed NMC. A similar procedure
using Eq. (33) yields the curvature term f1ðRÞ. Condition
Eq. (22) can then be explicitly checked (it can also be
shown to be valid for a general hðρÞ, although that is not
shown here).
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In the following sections some specific forms for the
right-hand side of the Friedmann equation, i.e. the function
hðρÞ, are explored, with the aim of obtaining the functions
fiðRÞ that give rise to the latter using the two methods
proposed above.

VI. APPLICATION: COSMOLOGICAL CONSTANT

One remarks that Eq. (31) is linear, so that its solution is
the sum of a particular solution plus the general solution of
the corresponding homogeneous equation. The latter
amounts to h0ðρÞ ¼ 0, yielding a constant Hubble param-
eter H (i.e. a de Sitter phase)—and can thus be related to
the CC.
Assuming that the matter contribution is negligible, one

thus has hðρÞ ≈ 6κH2
0: for this reason, one cannot rely on

the perturbative approach, as the scalar curvature is
approximately constant R ¼ 2h=κ ¼ 12H2

0 and cannot be
considered to be a small deviation from the form
R ¼ R0 ¼ ð1 − 3ωÞρ=2κ, as argued above. Consequently
one must rely solely on the method developed for
the relaxed regime; in particular, Eq. (31) becomes
homogeneous,

f2 þ ð1 − αÞf02ρ ¼ 0 → f2ðρÞ ∝ ρ1=ðα−1Þ: (34)

Inserting into Eq. (29), one gets a constant, as expected; as a
result, one cannot invert it to write ρ ¼ ρðRÞ, and the
obtained NMC cannot be expressed as a function of the
scalar curvature.
Thus, one concludes instead that, although the energy

density may be subdominant with respect to the contribu-
tion of the CC, it must also be accounted for. This translates
into the choice

hðρÞ ¼ ρþ 2κΛ; (35)

so that Eq. (31) reads

f2 þ ð1 − αÞf02ρ ¼ A ¼ 1 → f2ðρÞ ¼ 1þ C

�
ρ

2κΛ

�
1=ðα−1Þ

;

(36)

where C is an integration constant and A ¼ 1 was set to
enforce fð0Þ ¼ 1. If L ¼ −ρ → α ¼ 1, the exponent on the
right-hand side is singular, so one has to separately consider
both options α ¼ 1 or α ¼ −ω.

A. L ¼ −ρ case

If α ¼ 1, then Eq. (31) straightforwardly reads
f2ðRÞ ¼ 1, so that a minimal coupling between curvature
and matter is recovered. Naturally, Eq. (32) collapses into
the GR result

RðρÞ ¼ 4Λþ ð1 − 3ωÞρ
2κ

; (37)

and Eq. (33) reads

f1 ¼ 2Λþ ð1 − 3ωÞρ
2κ

¼ R − 2Λ; (38)

thus yielding the trivial result that, in the absence of a
NMC, a CC can be produced by simply inserting it
into f1ðRÞ.

B. L ¼ −p case

One is thus left with the possibility L ¼ p → α ¼ −ω,
which is read directly from Eq. (36),

f2ðρÞ ¼ 1þ C

�
2κΛ
ρ

�
1=ð1þωÞ

: (39)

Inserting this into Eq. (32) yields

RðρÞ ¼ 4Λþ
�
1 − 3ω − 3ð1þ ωÞC

�
2κΛ
ρ

�
1=ð1þωÞ� ρ

2κ
:

(40)

Although the above cannot be easily inverted in order to
obtain ρ ¼ ρðRÞ, Eq. (11) allows one to read

f1ðRÞ ¼ 2Λþ
�
1 − 3ω − ð1þ 3ωÞC

�
2κΛ
ρ

�
1=ð1þωÞ�

ρ

2κ
¼ R − 2Λ; (41)

so that the usual expression for GR with a CC is recovered.
One also obtains

R0ðρÞ ¼ 1 − 3ω

2κ
− 3ωC

2κ

�
2κΛ
ρ

�
1=ð1þωÞ

: (42)

Up to now, the integration constant C has not been
specified. One is only left with the relaxation condition
Eq. (22) to look for its value; it reads

F1 þ ω
F2ρ

κ
¼ 1þ ω

f02ðρÞρ
κR0ðρÞ

¼ 1 − 2
ω

1þ ω
C

ð2κΛρ Þ1=ð1þωÞ

1 − 3ω − 3ωCð2κΛρ Þ1=ð1þωÞ ;

(43)

which is only constant (and equal to A ¼ 1) if C ¼ 0. This,
however, collapses Eqs. (39) and (40) to their GR form—
and so one concludes that the only way of obtaining a CC
obeying the relaxation condition Eq. (22) is by trivially
setting f1ðRÞ ¼ R − 2Λ and f2ðRÞ ¼ 1.
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This result complements a similar argument, discussed in
Ref. [9], which was valid only for a pure de Sitter
expansion, i.e. disregarding the contribution of the energy
density of matter, so that hðρÞ ∼ 2κΛ. If the scalar curvature
R does not evolvewith time, neither do F1 and F2; since the
energy density ρ varies [albeit in a modified fashion, as
given by Eq. (28)], then it is impossible to enforce the
relaxation condition F1 − αF2ρ=κ (except for the trivial
case obtained). Here, it is shown that this result does not
change even if the matter contribution is considered. This
does not preclude the possibility of obtaining a CC from a
NMC, although the two methods developed above cannot
be applied. Such an issue is deferred to Sec. XI.
Given the above, one drops the homogeneous solution

∼ρ−1=ð1þωÞ from the scenarios studied in the subsequent
paragraphs, thus considering that the Friedmann equation
[as given by hðρÞ] cannot include a constant term.

VII. APPLICATION: POWER-LAW FORM

In this section one addresses the possibility that the
modified Friedmann equation is written as

hðρÞ ¼ ρ

�
1þ ϵ

�
ρ

ρc

�
n−1�

; n ≠ 1; (44)

where ϵ ¼ �1 marks the sign of the power-law addition.
Positive quadratic corrections, ϵ ¼ 1 and n ¼ 2, arise in
braneworld scenarios [37–39], while loop quantum gravity
[40] gives rise to a negative quadratic term, ϵ ¼ −1. The so-
called Cardassian models postulate deviations of the form
above [41], with ϵ ¼ 1 and n < 2=3. By following the two
methods here devised, one may ascertain the related form
of the functions f1ðRÞ and f2ðRÞ.

A. Perturbative regime

The perturbation δðρÞ≡ hðρÞ − ρ ¼ ϵρcðρ=ρcÞn is now
considered. Inspection of Eq. (16) shows that the functions
φiðρÞ should also be power laws, writing

φ1ðρÞ ¼ K1

ρc
κ

�
ρ

ρc

�
n1
; φ2ðρÞ ¼ K2

�
ρ

ρc

�
n2
; (45)

where K1 and K2 are dimensionless constants, and thus

ϵ ¼ −
�
1þ 7þ 9ω − 6ð1þ ωÞn1

1 − 3ω
n1

�
K1

�
ρ

ρc

�
n1−n

þ
�
1þ 1þ 3ω − 6ð1þ ωÞn2

1 − 3ω
αn2

�
K2

�
ρ

ρc

�
n2−nþ1

;

(46)

so that one must have n ¼ n1 ¼ n2 þ 1. Replacing into the
above, one obtains the following relation between the
constants K1 and K2:

ϵ ¼ −
�
1þ 7þ 9ω − 6ð1þ ωÞn

1 − 3ω
n

�
K1

þ
�
1þ 7þ 9ω − 6ð1þ ωÞn

1 − 3ω
αðn − 1Þ

�
K2: (47)

The result above plainly shows that at a perturbative
level, a δðρÞ ∼ ρn power-law modification of the Friedmann
equation can be achieved by either a nonlinear curvature
term,

f1ðRÞ ¼ R

�
1þ 2K1

1 − 3ω

�
2κR

ρcð1 − 3ωÞ
�

n−1�
; (48)

a power-law NMC,

f2ðRÞ ¼ 1þ K2

�
2κR

ρcð1 − 3ωÞ
�

n−1
; (49)

or a combination of both.
Furthermore, due to the linearity of Eq. (16), one

concludes that if the perturbative modification of the
Friedmann equation can be expanded in powers of ρ,

δðρÞ ¼ −X∞
n¼1

an

�
ρ

ρc

�
n
; (50)

it is related to the functions

f1ðRÞ ¼ R

�
1þ

X∞
n¼1

2anK1n

1 − 3ω

�
2κR

ρcð1 − 3ωÞ
�

n−1�
;

f2ðRÞ ¼ 1þ
X∞
n¼1

anK2n

�
2κR

ρcð1 − 3ωÞ
�

n−1
; (51)

where the Kin (i ¼ 1, 2) coefficients obey Eq. (47) for
each n.
Finally, one recalls that, from the previous discussion

about homogeneous solutions of Eq. (16), power-law
perturbations φiðRÞ with exponents given by Eq. (18) do
not have an impact on the Friedmann equation (at first
perturbative order).
This means that any power-law perturbation δðρÞ ∼ ρn to

the Friedmann equation can be considered. As an example,
suppose one is aiming at implementing a hðρÞ ∼ ρ3=2

perturbation for a dust-dominated universe: although a
NMC φ2ðRÞ ∼ R1=4 has no impact on Eq. (46), the function
φ1 ∼ R3=2 gives rise to the desired power-law modification.

Conversely, hðρÞ ∼ ρ
7þ ffiffiffi73p

12 requires a NMC φ2ðRÞ ∼ ρ
−5þ ffiffiffi73p

12 ,

since φ1ðRÞ ∼ R
7þ ffiffiffi73p

12 would have no dynamical impact in a
universe dominated by a nonrelativistic perfect fluid.
Furthermore, one notices that the listed neutral expo-

nents are always noninteger, so they do not contradict the
assumed Taylor expansion, as discussed above.
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B. Relaxed regime

One now uses Eq. (31) to read the NMC,

f2 þ ð1 − αÞf02ρ ¼ A

�
1þ ϵn

�
ρ

ρc

�
n−1�

→

f2ðRÞ ¼ 1þ ϵn
nþ αð1 − nÞ

�
ρ

ρc

�
n−1

; (52)

where A ¼ 1was fixed so that f2ðρÞ ¼ 1 when ρ ≪ ρc and
GR is recovered.
One may now replace the obtained expression into

Eq. (32), leading to

RðρÞ ¼ ρ

2κ

�
1 − 3ωþ ϵ

4αð1 − nÞ þ nð1 − 3ωÞ
nþ αð1 − nÞ

�
ρ

ρc

�
n−1�

;

(53)

and, from Eq. (33),

f1 ¼
ρ

2κ

�
1 − 3ωþ ϵ

2αð1 − nÞ þ nð1 − 3ωÞ
nþ αð1 − nÞ

�
ρ

ρc

�
n−1�

:

(54)

In order to write f1 and f2 in terms of the scalar
curvature, one must invert Eq. (53), which requires solving
a n-order algebraic equation. For a generic value of the
exponent n and the EOS parameter ω, one can proceed
numerically; for completion, the examples considered in
the previous section are worked out below:
(i) Nonrelativistic dust (ω ¼ 0, α ¼ 1):

RðρÞ ¼ ρ

2κ

�
1þ ϵð4 − 3nÞ

�
ρ

ρc

�
n−1�

;

f1ðRÞ ¼
ρ

2κ

�
1þ ϵð2 − nÞ

�
ρ

ρc

�
n−1�

;

f2ðRÞ ¼ 1þ ϵn

�
ρ

ρc

�
n−1

: (55)

(ii) Radiation (ω ¼ 1=3, α ¼ −ω ¼ −1=3 and n ≠ 1=4):

RðρÞ ¼ 2ϵ
ρc
κ

n − 1

4n − 1

�
ρ

ρc

�
n
;

f1ðRÞ ¼ ϵ
ρc
κ

n − 1

4n − 1

�
ρ

ρc

�
n
¼ R

2
;

f2ðRÞ ¼ 1þ ϵ
3n

4n − 1

�
ρ

ρc

�
n−1

¼ 1þ 3nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð4n − 1Þp �

κR
2ðn − 1Þρc

�ðn−1Þ=n
: (56)

(iii) Relativistic matter (ω ¼ 1=3, α ¼ 1):

RðρÞ ¼ 2ϵð1 − nÞ ρc
κ

�
ρ

ρc

�
n
;

f1ðRÞ ¼ ϵð1 − nÞ ρc
κ

�
ρ

ρc

�
n
¼ R

2
;

f2ðRÞ ¼ 1þ ϵn

�
ρ

ρc

�
n−1

¼ 1þ ϵ1=nn

�
κR

2ð1 − nÞρc

�ðn−1Þ=n
: (57)

(iv) Ultrastiff matter (ω ¼ 1, α ¼ 1):

RðρÞ ¼ − ρ

κ

�
1þ ϵð3n − 2Þ

�
ρ

ρc

�
n−1�

;

f1ðρÞ ¼ −
ρ

κ

�
1þ ϵð2n − 1Þ

�
ρ

ρc

�
n−1�

;

f2ðρÞ ¼ 1þ ϵn

�
ρ

ρc

�
n−1

: (58)

(v) Scalar field (ω ¼ 1, α ¼ −ω ¼ −1):

RðρÞ ¼ − ρ

κ

�
1þ ϵ

n − 2

2n − 1

�
ρ

ρc

�
n−1�

;

f1ðρÞ ¼ −
ρ

κ

�
1þ ϵ

2n − 1

�
ρ

ρc

�
n−1�

;

f2ðρÞ ¼ 1þ ϵ
n

2n − 1

�
ρ

ρc

�
n−1

: (59)

One concludes that radiation or relativistic matter are not
suited for implementing a power-law modification of the
Friedmann equation, as they require that f1ðRÞ ¼ R=2.

VIII. APPLICATION: QUADRATIC FORM

The specific case

hðρÞ ¼ ρ

�
1þ ϵ

ρ

ρc

�
; (60)

is of particular interest, as it arises from braneworld
scenarios [37–39], loop quantum gravity (where it is found
to be valid even for very high densities, ρ≲ ρc) [40] and,
phenomenologically, it can be viewed as a leading-order
correction to the linear form of the Friedmann equation.
One now replaces n ¼ 2 into the previous results, for
illustration.

A. Perturbative regime

Using Eqs. (48) and (49) one finds that, at perturbative
level, the modified Friedmann Eq. [40]) stems from both a
quadratic curvature term
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f1ðRÞ ¼ Rþ 4κK1

ð1 − 3ωÞ2
R2

ρc
; (61)

and a linear NMC

f2ðRÞ ¼ 1þ 2κK2

ð1 − 3ωÞ
R
ρc

; (62)

with the constraint

ϵ ¼ 9
1þ ω

1 − 3ω
K1 −

�
5þ 3ω

1 − 3ω
α − 1

�
K2: (63)

The above agrees with the particular case previously
studied in Ref. [34], with a minimally coupled scalar field
(ω ¼ −α ¼ 1) and a negative quadratic term, ϵ ¼ −1,

f1ðRÞ ¼ Rþ κR2

9ρc
; f2ðRÞ ¼ 1: (64)

For comparison, one finds that a scalar field can also give
rise to the same quadratic modification resorting only to a
linear NMC,

f1ðRÞ ¼ R; f2ðRÞ ¼ 1þ R
3ρc

: (65)

Notice that although the NMC has a positive slope, the
negative curvature R ≈ −ρ=κ < 0 found in Eq. (59) leads
to a subtractive quadratic term hðρÞ ¼ −ρ2=ρc.

B. Relaxed regime

From Eqs. (52)–(54), one gathers that

RðρÞ¼ ρ

κ

�
1−3ω

2
þϵ

1−3ω−2α

2−α

ρ

ρc

�
→ ρðRÞ¼ ϵ

ð2−αÞð1−3ωÞ
4ð1−2α−3ωÞ ρc

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þϵ

16ð1−3ω−2αÞ
ð2−αÞð1−3ωÞ2

κR
ρc

s
−1

!
;

f1ðRÞ¼
ρ

κ

�
1−3ω

2
þϵ

1−3ω−α

2−α

ρ

ρc

�
¼ 1−3ω−α

1−3ω−2α
R−ϵ

ρc
8κ

ð2−αÞα
�

1−3ω

1−3ω−2α

�
2
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þϵ
16ð1−2α−3ωÞ
ð2−αÞð1−3ωÞ2

κR
ρc

s
−1

!
;

f2ðRÞ¼ 1þ 2ϵ

2−α

ρ

ρc
¼1þ 1−3ω

2ð1−2α−3ωÞ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þϵ

16ð1−2α−3ωÞ
ð2−αÞð1−3ωÞ2

κR
ρc

s
−1

!
; (66)

where the positive branch of the square root was chosen
when obtaining ρ ¼ ρðRÞ so that ρ ∼ 2κR=ð1 − 3ωÞ if
ρ ≪ ρc. All expressions collapse to their GR counterparts
f1ðRÞ ≈ R and f2ðRÞ ≈ 1 when ρ ≪ ρc, as expected.
One may compute the obtained expressions for specific

matter contents, namely:
(i) Nonrelativistic dust (ω ¼ 0, α ¼ 1):

RðρÞ ¼ ρ

2κ

�
1 − 2ϵ

ρ

ρc

�
;

f1ðRÞ ¼ ϵ
ρc
8κ

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16ϵ

κR
ρc

s !
;

f2ðRÞ ¼
1

2

 
3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16ϵ

κR
ρc

s !
: (67)

(ii) Radiation (ω ¼ 1=3, α ¼ −ω ¼ −1=3):
RðρÞ ¼ 2ϵ

7

ρ2

κρc
;

f1ðRÞ ¼
R
2
;

f2ðRÞ ¼ 1þ 3

ffiffiffiffiffiffiffiffiffiffiffi
2ϵ

7

κR
ρc

s
: (68)

(iii) Relativistic matter (ω ¼ 1=3, α ¼ 1):

RðρÞ ¼ −2ϵ ρ2

κρc
;

f1ðRÞ ¼
R
2
;

f2ðRÞ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ϵ κR

ρc

s
: (69)

(iv) Ultrastiff matter (ω ¼ 1, α ¼ 1):

RðρÞ ¼ − ρ

κ

�
1þ 4ϵ

ρ

ρc

�
;

f1ðRÞ ¼
3

4
Rþ ϵ

ρc
32κ

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16ϵ

κR
ρc

s !
;

f2ðRÞ ¼
1

4

 
3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16ϵ

κR
ρc

s !
: (70)
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(v) Scalar field (ω ¼ 1, α ¼ −ω ¼ −1):

RðρÞ ¼ − ρ

κ
;

f1ðRÞ ¼ Rþ ϵ

3

κR2

ρc
;

f2ðRÞ ¼ 1 − 2ϵ

3

κR
ρc

: (71)

The different forms for fiðRÞ obtained for radiation vs
relativistic matter and for ultrastiff matter vs scalar field
show the relevance of the choice of the form for L.
Although these pairs of matter types are characterized
by the same EOS parameter (ω ¼ 1=3 and ω ¼ 1, respec-
tively), their differing Lagrangian densities (relativistic and
ultrastiff matter are assumed to be described by L ¼ −ρ (as
discussed in Ref. [24]), while radiation and a scalar field
have L ¼ p) account for the distinct results.
Finally, one notices that a NMC scalar field can lead to a

quadratic Friedmann equation, with both a linear NMC and
a quadratic curvature term.

IX. APPLICATION: NONINTEGER
POWER-LAW FORM

The previous section considered a power-law addition to
the usual linear term found in the Friedmann equation;
another modification of the latter can assume instead that
the behaviour of the Friedmann equation is almost linear,
so that

hðρÞ ¼ ρ

�
ρ

ρc

�
β

; β ∼ 0: (72)

While the previously considered power-law addition
may be viewed as arising from a Taylor expansion of a
more general modification of the Friedmann equation, the
above presents the opposite case of a nonanalytical form for
hðρÞ (for noninteger β). Regardless of this, both methods
developed here still apply, as is shown in the following
paragraphs.

A. Perturbative regime

Since one considers an exponent β ∼ 0, the quantity

δðρÞ≡ hðρÞ − ρ ¼ ρ

��
ρ

ρc

�
β − 1

�
; (73)

is a small perturbation, and one may resort to Eq. (16) to
translate hðρÞ into the corresponding functions f1ðRÞ and
f2ðRÞ. Since the former is linear, its solution (disregarding
nondynamical contributions obeying Eq. (17), as discussed
before) is given by the linear combination of Eqs. (48) and
(49) with ðn ¼ β þ 1; ϵ ¼ 1Þ and ðn ¼ 1; ϵ ¼ −1Þ,

φ1ðρÞ ¼ A1

ρ

κ
þ K1

ρ

κ

�
ρ

ρc

�
β

;

φ2ðρÞ ¼ A2 þ K2

�
ρ

ρc

�
β

: (74)

Replacing the above into Eq. (16), one finds that the
pairs ðK1; K2Þ and ðA1; A2Þ still obey Eq. (47) (with
n ¼ β þ 1, ϵ ¼ 1 and n ¼ 1, ϵ ¼ −1, respectively),

1 ¼ −
�
1þ 1þ 3ω − 6ð1þ ωÞβ

1 − 3ω
ðβ þ 1Þ

�
K1

þ
�
1þ 1þ 3ω − 6ð1þ ωÞβ

1 − 3ω
αβ

�
K2;

1 ¼ 2

1 − 3ω
A1 − A2; (75)

as can be verified explicitly.
Setting A2 ¼ K2 ¼ 0, one finds that Eq. (72) admits a

minimal coupling,

A1 ¼
1 − 3ω

2
;

K1 ¼ −
�
1þ 1þ 3ω − 6ð1þ ωÞβ

1 − 3ω
ðβ þ 1Þ

�−1
≈ −

1 − 3ω

2
; (76)

so that

f1ðRÞ ≈ R

�
2 −

�
2κR

ð1 − 3ωÞρc

�
β
�
∼ R; (77)

and f2ðRÞ ¼ 1.
Conversely, one may resort solely to a NMC, so that

f1ðRÞ ¼ R and

A2 ¼ −1;
K2 ¼

�
1þ 1þ 3ω − 6ð1þ ωÞβ

1 − 3ω
αβ

�−1
; (78)

thus yielding

f2ðRÞ ≈
�

2κR
ð1 − 3ωÞρc

�
β

: (79)

Both expressions clearly show the validity of the
perturbative regime, since they approach their GR counter-
part, f2 ∼ 1 when β vanishes.

B. Relaxed regime

Instead of applying the procedure outlined above, one
may simply resort to Eqs. (52)–(54) found in the preceding
section for a positive addition, ϵ ¼ 1. Replacing the
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exponent n → 1þ β and disregarding the usual term
arising from GR, i.e. considering only the ρc terms, one
obtains

RðρÞ ¼ ð1þ βÞð1 − 3ωÞ − 4αβ

1þ ð1 − αÞβ
ρ

2κ

�
ρ

ρc

�
β

; (80)

f1ðRÞ ¼
�
1þ 2αβ

ð1þ βÞð1 − 3ωÞ − 4αβ

�
R; (81)

f2ðRÞ ¼
1þ β

1þ ð1 − αÞβ

×

�
1þ ð1 − αÞβ

ð1þ βÞð1 − 3ωÞ − 4αβ

2κR
ρc

� β
1þβ

: (82)

Clearly, β ¼ 0 yields the usual GR results. One sees that
the deviation from linearity in the Friedmann equation
arises from a small correction to the strength of gravity [via
the correction to f1ðRÞ] and the new dynamics imprinted
by the NMC. Again, both radiation and relativistic matter
yield unphysical results, as replacing ω ¼ 1=3 into the
above yields f1ðRÞ ¼ R=2.

X. OTHER MODIFICATIONS OF THE
FRIEDMANN EQUATION

Another class of modifications of the Friedmann equa-
tion relies on the introduction of additional terms on H,
while keeping the linear energy density term. Indeed, in
Ref. [42] the alternative formulation,

H2 − Hβ

r2−βc
¼ ρ

6κ
; β < 2; (83)

is considered. For a given value of β, inverting the above
(even if this can only be attained numerically) yields the
form here considered, H2 ¼ hðρÞ=6κ. One may then apply
either of the two methods presented here.
However, the complexity of the ensuing computations

(even for a simple linear modification, β ¼ 1, where
H2 ¼ H2ðρÞ is easily obtained) implies that an analytic
solution is very cumbersome, and perhaps best
approached numerically. Since this is not the purpose
of this study, the above modification is addressed only
in the perturbative regime, as one can advantageously
take a further step and insert H2 ≈ ρ=6κ into Eq. (81),
obtaining

H2 ¼ ρ

6κ
þ 1

r2c
ðrcHÞβ ≈ ρ

6κ
þ 1

r2c

�
r2cρ
6κ

�
β=2

; (84)

showing that the problem collapses into the previously
addressed power-law modification, Eq. (44), with ϵ ¼ 1,
n ¼ β=2 and ρc ¼ 6κ=r2c.

XI. COSMOLOGICAL CONSTANT FROM A
NONMINIMAL COUPLING

In this section, one considers the putative relation
between a CC and the nonminimally coupled fðRÞ theory
posited by Eq. (1); given the inability of the two methods
discussed in Sec. VI to tackle this issue, one approaches it
by assuming a weaker condition of exponential expansion
of the Universe as a solution of Eq. (8). Inserting

aðtÞ ¼ a0eH0t → R ¼ 12H2
0 ¼ 4Λ (85)

into the latter, one finds, for the 0–0 component of Eq. (2),

κf01 − f02ρ ¼ 2½κF01 − ð4þ 3ωÞαF02ρ�Λ; (86)

while the r − r component reads

κf01 þ f02ωρ ¼ 2½κF01 þ ð4þ 3ωÞωαF02ρ�Λ; (87)

where one defines f0i ≡ fið4ΛÞ ¼ constant and F0i ≡
Fið4ΛÞ ¼ constant and uses the covariant conservation
of energy-momentum, _ρ ¼ −3Hð1þ ωÞρ, which stems
from Eq. (12), since the scalar curvature is constant.
Clearly, the constraint Eq. (22) cannot be enforced here,
since f01 and f02 are constants, while ρ varies (as argued
previously in Ref. [9]).
Inspection shows that Eqs. (86) and (87) are composed

of both constant terms and those linear in the energy
density. Equating these one obtains, for ω ≠ −1,

f01 ¼ 2F01Λ; (88)

f02 ¼ 2ð4þ 3ωÞαF02Λ; (89)

which, again, are not differential equations for f1ðRÞ and
f2ðRÞ, but algebraic ones relating the value of the relevant
quantities evaluated at the exponentially expanding phase
with a constant scalar curvature.
If one assumes a minimal coupling f02 ¼ f2ðRÞ ¼ 1,

then Eq. (89) is ill defined, since this phase is only obtained
if the energy density contribution is negligible. This
amounts to considering only Eq. (88): a trivial solution
is, as expected, given by f1ðRÞ ¼ R − 2Λ → f10 ¼ 2Λ and
F01 ¼ 1—although other forms are allowed, such
as f1ðRÞ ¼ 2ΛeðR−4ΛÞ=2Λ ≈ R − 2Λ.
The two expressions for f1ðRÞ presented above are in

fact solutions of the differential equation

f1ðRÞ ¼ 2f01ðRÞΛ; (90)
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and as such hold for the particular scenario of a de Sitter
phase, R ¼ 4Λ ¼ constant.
However, one is not restricted to these general solutions:

any form for f1ðRÞ is admissible, even if it does not obey
Eq. (90). If so, Eq. (88) sets the scale of Λ–as can be seen
from the example below, where a power-law form is
considered,

f1ðRÞ ¼ R1

�
1 − R

4Λ1

�
n
→ F1ðRÞ ¼

nf1ðRÞ
R − 4Λ1

: (91)

Replacing into Eq. (88), one gets

Λ ¼ Λ1

1 − n
2

: (92)

This, of course, does not shed any light on the CC
problem (see Refs. [43,44]) or why the CC has its observed
value, as it merely shifts the question to the value of the
parameter Λ1.
Also, notice that the strength R1 is not constrained:

demanding that f1ð4ΛÞ ¼ 2Λ, so that the value of the
curvature term is identical to its GR value in a de Sitter
phase, then

R1 ¼ 2Λ

�
n − 2

n

�
n
; (93)

and one may rewrite Eq. (91) as

f1ðRÞ ¼ 2Λ

�
1þ R − 4Λ

2nΛ

�
n
: (94)

If one also considers a NMC, then Eq. (89) has to be
considered. Since the curvature term cannot be set to its GR
form f1ðRÞ ¼ R [as this violates Eq. (88)], this merely adds
a layer of complexity to the problem.
However, this can be circumvented if one assumes that

the density terms in Eqs. (86) and (87) are much larger than
the constant contributions, so that Eq. (88) can be safely
neglected; setting f1ðRÞ ¼ R, this yields αF02ρ ≫ 1 (as a
remark, a power-law expansion aðtÞ ∼ tβ required the
inverse inequality [9]).
A straightforward solution for Eq. (89) is given by

f2ðRÞ ¼ 1þ 2

ð4þ 3ωÞα − 2

R
4Λ

; (95)

where the integration constant was chosen so that
f2ð0Þ ¼ 1; notice that the denominator ð4þ 3ωÞα − 2 is
always positive or negative, respectively, for either α ¼ 1 or
α ¼ −ω and a positive EOS parameter ω > 0.

As discussed above, a more complex NMC such as

f2ðRÞ ¼ exp

�
R

2ð4þ 3ωÞαΛ
�
; (96)

and a power-law form,

f2ðRÞ ¼
�
1þ R − 4Λ

2Λð4þ 3ωÞnα
�
n
; (97)

are also suitable.

XII. THE COSMOLOGICAL
CONSTANT PROBLEM

The preceding section shows that a CC may be obtained
from a suitable NMC, if the contribution of the time
evolving energy density dominates the modified dynamics,
embodied by Eq. (8). This stemmed from the decomposi-
tion of the terms in the latter into constant or evolving with
ρ, and precluded the possibility that the energy density is
also constant.
In this section, one addresses the possibility that a matter

species with EOS ρ ¼ −p dominates the dynamics, so that
one has ω ¼ −1 and α ¼ 1, regardless of the choice of
Lagrangian density (since α ¼ 1 or α ¼ −ω). Inspection of
Eq. (12) shows that the energy density is then constant,
_ρ ¼ 0, regardless of the form for the NMC.
One thus inserts −p ¼ ρ≡ ρΛ into Eqs. (86) and (87),

which yield

2Λ ¼ κf01 − f02ρΛ
κF01 − F02ρΛ

¼ f01 − 2f02Λ0

F01 − 2F02Λ0

; (98)

where one defines Λ0 ¼ ρΛ=2κ. Naturally, setting f01 ¼
4Λ and f02 ¼ 1 yields Λ ¼ Λ0.
The cosmological constant problem lies in the fact

that there are approximately 120 orders of magnitude
between the observed and expected value for the CC,
Λ ∼ Λ0 × 10−120, assuming that ρΛ expresses the energy
density of the quantum vacuum [43].
Clearly, one can set appropriate forms for f1ðRÞ and

f2ðRÞ so that Eq. (98) is satisfied. The general implications
of considering either a nonlinear curvature term or a NMC
are outlined below. One begins by assuming a minimal
coupling f2ðRÞ ¼ 1, so that the above collapses into

2Λ ¼ f01 − 2Λ0

F01

→ F01 ¼
f01 − 2Λ0

2Λ
: (99)

If one further requires that the nonlinear curvature is
perturbative, f01 ∼ R ¼ 4Λ but F01 ≠ 1, this becomes

F01 ≈ 2 − Λ0

Λ
≈ −Λ0

Λ
∼ −10120: (100)

MODIFIED FRIEDMANN EQUATION FROM NONMINIMALLY … PHYSICAL REVIEW D 89, 044012 (2014)

044012-11



Conversely, if one only assumes a perturbative NMC,
f1ðRÞ ¼ R and f02 ∼ 1, but F02 ≠ 0, Eq. (98) becomes

F02 ¼
f02
2Λ

− 1

2Λ0

≈
1

2Λ
: (101)

This condition is satisfied e.g. by the NMC in Eq. (95), as
can be checked by substituting α ¼ −ω ¼ 1.
One finds that a putative solution of the CC problem

using a nonlinear curvature term f1ðRÞ ≠ R requires a new
dimensionless scale F01 ∼ −Λ0=Λ to reconcile the 120
order of magnitude difference between Λ and Λ0, as shown
in Eq. (100). On the contrary, the observed value Λ arises
naturally if only a NMC is considered with a characteristic
scale F02 ≈ 1=ð2ΛÞ.

XIII. DISCUSSIONS AND OUTLOOK

In this work, we have shown that phenomenological
modifications of the Friedmann expansion rate equation are
related to the fundamental form of the action functional, i.e.
the curvature term f1ðRÞ and NMC f2ðRÞ.
We have proposed two methods to relate these functions

with the modifications of the Friedmann equation: the first
method assumes that the latter are perturbative, and expands
upon the previous work reported in Ref. [34], while the
second relies instead on the condition F1 − αF2=κ ¼
constant, which can only be implemented in NMC models.
We have shown that both methods successfully translate

a number of specific modifications of the Friedmann
equation found in the literature, using both nontrivial
functions f1ðRÞ and f2ðRÞ, or just a nontrivial f1ðRÞ ≠
R (i.e. fðRÞ theories) or a nonminimal f2ðRÞ ≠ 1.

We have also addressed the possibility of replicating a
phase of accelerated expansion of the Universe, by con-
sidering the impact of a constant scalar curvature on the
modified field equations. We find that the latter is com-
patible with a nonminimally coupled perfect fluid with any
EOS parameter ω ≠ −1, provided that Eqs. (88) and (89)
are satisfied.
Finally, we consider the cosmological constant problem,

i.e. how to reconcile the 120 order of magnitude difference
between the observed value Λ for the cosmological con-
stant and its expected value Λ0, obtained by considering a
perfect fluid with EOS pΛ ¼ −ρΛ ¼ constant. We find that
this difference can be accounted for by either a nontrivial
curvature term f1ðRÞ ≠ R or a NMC f2ðRÞ ≠ 1 (or a
combination of both).
In the first case, this requires the introduction of a

dimensionless quantity F01 ≈ −Λ0=Λ ∼ −10120, which
merely reframes the cosmological constant problem, shifting
it to the question of what is the origin of such a large number.
The use of only a NMC yields a rather interesting result,

namely that by introducing the characteristic scale
F02 ≈ 1=2Λ, the “bare” cosmological constant Λ0 is driven
towards its observed value Λ, regardless of the former:
although this mechanism does not account for the value of
Λ, the 120 orders of magnitude difference from Λ0 is
effectively removed from the problem.
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