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Computing general-relativistic effects from Newtonian N-body simulations:
Frame dragging in the post-Friedmann approach
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We present the first calculation of an intrinsically relativistic quantity, the leading-order correction to
Newtonian theory, in fully nonlinear cosmological large-scale structure studies. Traditionally, nonlinear
structure formation in standard ACDM cosmology is studied using N-body simulations, based on
Newtonian gravitational dynamics on an expanding background. When one derives the Newtonian regime
in a way that is a consistent approximation to the Einstein equations, the first relativistic correction to the
usual Newtonian scalar potential is a gravitomagnetic vector potential, giving rise to frame dragging. At
leading order, this vector potential does not affect the matter dynamics, thus it can be computed from
Newtonian N-body simulations. We explain how we compute the vector potential from simulations in
ACDM and examine its magnitude relative to the scalar potential, finding that the power spectrum of
the vector potential is of the order 10~ times the scalar power spectrum over the range of nonlinear scales
we consider. On these scales the vector potential is up to two orders of magnitudes larger than the value
predicted by second-order perturbation theory extrapolated to the same scales. We also discuss some
possible observable effects and future developments.
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I. INTRODUCTION

Modern cosmology is usually studied in two limits. On
the largest scales, a perturbative approach is used in a
general-relativistic framework. On small scales, nonlinear-
ities are treated in a Newtonian fashion, often with the use
of N-body simulations.

Few attempts have been made to go beyond the
Newtonian approximation on nonlinear scales by including
post-Newtonian type corrections [1-6]. However, no
attempt has been made to include post-Newtonian correc-
tions in N-body simulations of cosmological large-scale
structure. Investigations have been carried out into the
interpretation of N-body simulations on large scales, of
the order of the Hubble length [7,8]. In [8], they examine
the dictionary between Newtonian and relativistic cosmol-
ogies on all scales and how accurately Newtonian cosmol-
ogy satisfy the Finstein equations. Of course, no matter
how well the Newtonian dynamics capture the full gen-
eral-relativistic (GR) dynamics, there are GR quantities
on all scales that have no counterpart in Newtonian theory.

Recently, a new approximation scheme has been devel-
oped, dubbed the post-Friedmann approach [9], with the
aim of providing a unified framework for all scales, from
the fully nonlinear Newtonian regime to the largest scales
where relativistic effects become important [10,11]. It is
based on an expansion in inverse powers of the speed
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of light, ¢, in a post-Newtonian [12] fashion, adapted to cos-
mology. When linearized, this approach correctly reprodu-
ces the linear general-relativistic perturbation theory. When
one derives the Newtonian regime in this approach, in a way
that is a consistent approximation to the Einstein equations,
a vector potential must be present in the metric in addition to
the usual Newtonian scalar gravitational potential.

This vector potential is nondynamical at leading order,
therefore it does not affect the matter dynamics. It is sourced
only by terms that appear in Newtonian gravity, so it can be
extracted from N-body simulations. Physically, this vector
potential represents the gravitomagnetic field thatis generally
presentin metric theories of gravity such as general relativity.
Its typical effect is frame dragging, a ubiquitous relativistic
effect, well known in cosmological perturbation theory
[13] and in black hole systems [14]. Furthermore, in the solar
system, Gravity Probe B [15] has measured the frame
dragging of the Earth, see also [16]. The computation of
the frame-dragging vector potential from Newtonian N-body
cosmological simulations is the main result of this paper. Itis
the first time that an intrinsically relativistic quantity, i.e. a
quantity with no counterpart in Newtonian cosmology, has
been computed in fully nonlinear cosmological large-scale
structure studies, in particular using N-body simulations
on cosmological scales [17].

II. POST-FRIEDMANN APPROACH

We briefly present the pertinent details of the post-
Friedmann approach [9]. The starting point is an expansion
of the perturbed metric, in Poisson gauge [21-23], up to

order ¢7>:
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Note that the background metric here is the flat Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric, not the
Minkowski metric, i.e. a standard ACDM cosmology is
assumed. The ggy and g;; scalar potentials have been split
into the Newtonian (U, V) and post-Friedmann (Up, Vp)
components. Similarly, the vector potential has been split up
into BY and BY. Since this metric is in the Poisson gauge,
the three-vectors BY and B! are divergenceless, BY, =0
and BP =0.In add1t10n h is transverse and tracefree
hi = hl = 0. Note that at thls order h;; is not dynamical,
so it does not represent gravitational waves. From a post-
Friedmann viewpoint, there are two different levels of per-
turbations in the theory, corresponding to terms of order ¢ >
and ¢73, or of order ¢c™* and ¢, respectively. Defining
“resummed” variables, such as ® = —Uy + ¢ 2(U%—
2Up), then calculating the Einstein equations and lineariz-
ing them, reproduces linear GR perturbation theory in
Poisson gauge. Thus, this approach is capable of describing
structure formation on the largest scales.

By retaining only the leading order terms in the ¢! expan-
sion, one recovers Newtonian cosmology, albeit with a cou-
ple of subtleties. The first is that the space-time metric is a
well-defined approximate solution of the Einstein equations.
The second is that we have an additional equation, which is a
constraint equation for the frame-dragging vector potential
BY. Once the FLRW background has been subtracted, the
full system of equations, as obtained from the Einstein
and hydrodynamic equations [9,24], is as follows.

h
L (2V3 + 4VP)> 8ij + C—j] . (D)

ds v
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As expected, we have the Newtonian continuity, Euler and
Poissons equation from the Einstein equations, where p is the
background matter density and § = (p — p)/p the density
contrast. There is also an equation forcing the scalar poten-
tials Vy and U to be equal, consistent with there being only
one scalar potential in Newtonian theory. The final equation
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is the extra equation showing that, even in the Newtonian
regime, the frame-dragging potential BY should not be set
to zero in general; this would correspond to putting an extra
constraint on the Newtonian dynamics, as is made clear by
taking the curl of this equation.

The potential BY is sourced by the vector part of the
energy current pv: Taking the curl of the vector potential
equation in order to remove the scalar part, we obtain

V x V2BY = —(162Gpa*)V x [(1 + )v]. 3)
Thus setting BY = 0 would require the pv Newtonian field
to be 1rr0tat10na1 which clearly is not the case in the non-
linear regime (in particular, after orbit crossing [25]). Note
that this equation is essentially the same as the equivalent
equations in [4,8,26]. Although BY doesn’t influence the
matter dynamics at this order, it is part of the metric and
will affect cosmological observables through its effect on
photon geodesics. We discuss some of the possible obser-
vational consequences later. We now compute the
right-hand side of Eq. (3) from N-body simulations and
thus construct the power spectrum of the vector potential.

We will be dealing with vector quantities, for which there
are different ways to define the power spectrum. Our power
spectrum for a generic vector v is defined via

(3(k) - ¥ () =

Note that for a divergenceless vector, such as BY,
k?Pgn (k) = Py,gy (k). With our Fourier transform con-
vention, the dimensionless power spectrum for a field X
is given by Py (k) = k* Px(k)/2x*. From Eq. (3), the power
spectrum of the vector potential is given by

162Gpa*\? 1
Pyn (k) = (T) EP&'UC)’ 5)

(27)38° (k — K') Py (k). “)

with
Ps, = Pva(k) + P5V><V(k) + P(V(S)xv(k)

+ P(vsxv)(Vxv) (K) + P (6y) (59xv) (K)
+ P (5vxv) (Vxv) (K).- ©)

III. SIMULATIONS

We have run three N-body simulations with Np, =
10243 particles and length 160A~'Mpc, using Gadget-2
[27], in order to compute the vector potential, as well as
multiple additional runs with varying number of particles
and box size. To allow comparison to previous studies
of vorticity [25] the simulations were run with dark matter
particles only and with a cosmology €, = 0.27,
Q) =0.73, Q, =0.046, h =0.72, 7 =0.088, o3 =0.9
and ng, = 1. All of the simulations started at redshift 50
and had their initial conditions created using 2L.PTic [28].
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Traditional methods of extracting fields from N-body
simulations, such as cloud-in-cells (CIC) [29] have several
shortcomings when applied to velocity fields. The field is
only sampled where there are particles, so in a low density
region the velocity field is artificially set to zero. In addi-
tion, the extracted field will be a mass-weighted, rather than
volume weighted field.

To extract the velocity field, we have used the publicly
available Delauney Tessellation Field Estimator (DTFE)
code [30]. This code works by first constructing the
Delauney tessellation [31,32] and then linearly interpolat-
ing the velocities of the nodes across each tetrahedron. The
velocity field and its gradients are now known everywhere.
In order to get a smoothed field from the simulation, a regu-
lar Nérid is laid down. The code then samples points at ran-
dom in each grid cell and averages the results, giving a
value for each grid cell. For this analysis, the code sampled
100 points per grid cell. However, varying this up to 1000
made no difference to the results.

One of the disadvantages of the tessellation code is that,
unlike CIC methods, the window function cannot be easily
deconvolved; the window function will be different in dif-
ferent regions of the simulation. We can examine the effects
of the window function by varying the grid size used to
analyze a given simulation. Our main result was calculated
using Ngﬁd = Npar» but varying the grid size makes no
difference except on the smallest scales.

The output from the DTFE code is Fourier transformed
and the modulus-squared values of the transformed field
are averaged in bins for given ranges of wave number k.
We used N iq/4 bins in our analyses, however varying this
value did not affect the results.

IV. CONVERGENCE AND ROBUSTNESS

First, we consider some consistency checks on the
extracted fields. We calculate the density power spectrum
with the state-of-the-art code POWMES [33] and check for
consistency with our DTFE result. In addition, the power
spectrum of the gradient of the density, which is part of one
of the quantities required for the vector potential, can be
extracted by itself. The power spectrum of the gradient
of the density should satisfy Pys(k) = k*Pjs(k), so we
can check that the extraction of the two fields is consistent.
A similar check can be performed for the velocity fields: As
pointed out by [25], kP, = Py., + Py.y, SO We can extract
all three fields and check that they satisfy this relation. The
fields do indeed satisfy this constraint, up to the smallest
scales where the window function starts to have an effect.
This is one way to see the effects of the window function.

We can also compare our extracted velocity spectra to
[25] where the velocity spectra were also extracted using
the Delauney tessellation method. However, a different
code was used that implemented the tessellation differently,
see [25] for details. For simulations with the same param-
eters, our extracted vorticity power spectra are consistent

PHYSICAL REVIEW D 89, 044010 (2014)

with this paper and show the same dependence on
resolution.

A full study of the effect of box size and mass resolution
on the extracted vector potential is beyond the scope of
this work. Nonetheless, for high resolution simulations
that are suitable for studies of vorticity, there appear
to be no significant systematic issues with resolution or
box size. However, the variation amongst realisations is
greater for quantities such as the vorticity, and by exten-
sion the vector potential, than for quantities such as the
density and velocity divergence. This further compli-
cates the issue and increases the required computational
resources. A comprehensive study will be presented in
a forthcoming publication [34].

V. RESULTS

The power spectra, averaged from three high resolution
N-body simulations of length 160h~'Mpc and
Npart = 10243, of the three source terms of the vector
potential, 6V xv, Véxv and V xv, are shown in
Fig. 1 alongside the linear and nonlinear matter power spec-
tra. The power spectra plotted here are given by
P(k)/(f*H*(2x)?), where H is the conformal time
Hubble constant and f = d In D/d In a is the logarithmic
derivative of the linear growth factor D. These units are
chosen such that the power spectrum of the velocity diver-
gence agrees with the density power spectrum on linear
scales, following [25]. We can see that it is the nonlinear
terms that are the dominant sources of the vector potential,
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FIG. 1 (color online). The power spectra of the three source
terms of the vector potential, as extracted from N-body simula-
tions. The solid (red) line is for 6V x v, the dot-dashed (blue) line
is for V§ x v, the dashed (black) line is for V x v and the dotted
(magenta) lines are the linear and nonlinear matter power spectra
for comparison. The power spectra plotted here are given by
P(k)/(f*H*(2x)*), where H is the conformal time Hubble con-
stant and f = d In D/d In a is the logarithmic derivative of the
linear growth factor D, see text and [25].
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FIG. 2 (color online). The power spectra Py and Pgv of the
Newtonian scalar potential (dashed red line) and the frame-
dragging vector potential (solid blue line) as a function of scale,
as extracted from N-body simulations. The dotted (black) line is
the power spectrum of the linear theory scalar potential for
comparison.

with the vorticity contribution (the sole contribution in lin-
ear perturbation theory) being subdominant on all scales.

The average of the power spectra of the vector potential
over the three high resolution simulations is shown in
Fig. 2, along with the average of the power spectra of
the standard scalar gravitational potential. The power spec-
tra plotted here are the dimensionless power spectra Pg, and
Pgv, as defined earlier, in natural units where ¢ = 1. For
comparison, the power spectrum of the linear theory scalar
potential is shown as well.

In Fig. 3 we show the ratio of the average of the vector
potential power spectra to the average of the scalar potential
power spectra as a function of scale. The plot shows that
this ratio is fairly constant well into the nonlinear regime,
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FIG. 3. The ratio of the power spectra Pgv and Pg of the grav-
itomagnetic vector potential and the Newtonian scalar potential as
a function of scale, as extracted from N-body simulations.
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with the vector power spectrum being of order 10° times
smaller than the scalar power spectrum.

In [35] (see also [36]), the vector potential at second
order in general-relativistic perturbation theory is calcu-
lated. Since this method has a different regime of validity
to ours, the two methods should not be expected to agree
fully. However, we can compare the qualitative behavior of
the two results. Over the range of overlap for the two meth-
ods, at the largest scales considered here, in both cases the
ratio between the vector and scalar power spectra has a
fairly constant value of order 10~>. This similar qualitative
behavior is reassuring. The difference is that the vector
power spectrum in [35] is of order 107> times the linear
scalar power spectrum, whereas ours is relative to the fully
nonlinear scalar power spectrum. Therefore, quantitatively
our vector power spectrum is up to two orders of magnitude
larger than the one from second-order perturbation theory.

VI. OBSERVABILITY

A vector potential present in the metric will influence
several cosmological observables. The most obvious one
is weak gravitational lensing. The usual observable consid-
ered in weak lensing is the convergence, x, which is the
isotropic expansion of a galaxy image. Here, we show
how the vector potential affects the convergence power
spectrum P,. We follow a treatment similar to [37], how-
ever we explicitly include powers of ¢ and work up to order
¢~ rather than using linear general relativistic perturbation
theory.

The starting point is the metric gy = —1, go; =
—ac™3BY and g;; = a5;;. This yields a deflection angle

x ¥
o0+ [arsy, _B,@()O __>. @)
0 ' X
Compared to [37], the Bﬁ\’ term has vanished since it is
order ¢~ in this expansion. The convergence is the trace
of the distortion matrix ;;, given by y;; = 00;/
00; — 6;;. Following [38], and working in the small angle
limit with the Limber approximation, gives a convergence
power spectrum

I [re ¢
U e N N
0 V4
where g(y) is the weak-lensing weight function. The con-
vergence power spectrum caused by the scalar gravitational

potential is

2
P =t [ @ T E oty ©)
0 X

We can see that the vector and scalar potentials contribute
in a similar fashion to the convergence power spectrum.
Therefore, because the vector power spectrum is smaller
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than the scalar power spectrum, the convergence from non-
linear scales is well approximated by just the scalar poten-
tial, as implicitly assumed in literature. However, at order
¢4, the time derivative of the vector potential will generate
the odd parity B-mode of cosmic shear that is not generated
by the scalar potential at first order. In forthcoming work,
we will examine the weak lensing power spectra up to order
c™* and investigate the observability of the vector

potential [34].

VII. CONCLUSIONS AND DISCUSSION

The post-Friedmann approach [9] provides a framework
for examining post-Newtonian effects in cosmology. The
primary result of this paper is the computation of the
post-Friedmann frame-dragging vector potential at leading
order, i.e. in the Newtonian dynamical regime, as shown
in Fig. 2. This is the first time that an intrinsically rela-
tivistic quantity has been calculated in full nonlinearity
in N-body simulations of cosmological large-scale structure
formation.

For sufficiently high resolution simulations, the power
spectrum of the vector potential appears to converge.
The agreement of the density and vorticity fields with other
methods [33,25] and similar qualitative behavior of the vec-
tor potential to second-order perturbation calculations [35]
support our numerical results.

Over the range of (nonlinear) scales we consider, we find
that the ratio between the vector and scalar power spectra
has a fairly constant value of order 107>, similar to [35].
This ratio is much larger than the value one would naively
expect from second-order perturbation theory. The differ-
ence with [35] is quantitative: on fully nonlinear scales
there is more power in the scalar power spectrum, and cor-
respondingly in the generated vector power spectrum,
which is up to two orders of magnitude larger than the
one from second-order perturbation theory.

As mentioned above, although this vector potential does
not influence matter dynamics at leading order, it will affect
photon geodesics, so the first place to look for the effects of
this vector potential is in weak-lensing surveys. The small
ratio between the power spectra of the vector gravitational
potential and the scalar gravitational potential means that
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the effects of the vector potential are unlikely to be detected
in the usual convergence or E-mode spectra. However, the
time derivative of a vector potential generates the B-mode
spectrum [37], which is not produced by the scalar potential
and thus may allow the vector potential to be observed.
Another effect where the vector potential may be observ-
able is lensing of the cosmic microwave background,
particularly polarization.

The magnitude of the vector potential we have computed
also supports the validity of Newtonian N-body simulations
in ACDM cosmology: Since the vector potential is the first
relativistic addition to Newtonian theory, its small magni-
tude relative to the scalar potential supports the assertion
that on sufficiently small scales, the relativistic corrections
to Newtonian gravity are sufficiently subdominant. A much
larger measured value would suggest that a relativistic treat-
ment is essential for structure formation in ACDM. From
the point of view of [8], the small size of the vector poten-
tial suggests that the abridged dictionary, corresponding to
the dictionary in [7], can be used, at least on sufficiently
small scales. Nonetheless, as shown here, even in a regime
where the cosmological dynamics is Newtonian a relativ-
istic framework is essential for the interpretation, and rela-
tivistic effects can be computed that are potentially
observable. At next order, ¢~*, the nonzero difference
between the two scalar potentials that appear in the
metric (1) in the post-Friedmann approach [9,24], consis-
tently with second-order relativistic perturbation theory
[22,23] and other studies [8], can also be computed from
purely Newtonian nonlinear source terms, and its effects
remain to be studied. These relativistic nonlinear effects
are potentially more important in clustering/coupled dark
energy and modified gravity cosmological models.
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