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We study the end stages of gravitational collapse of the thin shell of matter in ingoing Eddington-
Finkelstein coordinates. We use the functional Schrodinger formalism to capture quantum effects in the
near singularity limit. We find that the equations of motion which govern the behavior of the collapsing
shell near the classical singularity become strongly nonlocal. This reinforces previous arguments that
quantum gravity in the strong field regime might be nonlocal. We managed to solve the nonlocal equation
of motion for the dust shell case, and found an explicit form of the wave function describing the collapsing
shell. This wave function and the corresponding probability density are nonsingular at the origin, thus
indicating that quantization should be able to rid gravity of singularities, just as was the case with the
singular Coulomb potential.
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I. INTRODUCTION

What happens at the last stages of the gravitational
collapse of some distribution of matter is still unknown.
The reason is our lack of a fully fledged theory of quantum
gravity that will fatefully describe quantum dynamics in
very strong gravitational fields (e.g. near classical singu-
larities). Since the formulation of quantum gravity still
seems to be far from our reach, we have to work with what
we have at hand, and try to push it as far as possible. Along
the way, we might get a glimpse of what the ultimate theory
of quantum gravity should look like.
The purpose of this paper is to study quantum aspects of

gravitational collapse of a shell of matter in the context of
the functional Schrodinger formalism [1–14]. We will work
in Eddington-Finkelstein coordinates which are convenient
for studying the question of the black hole formation until
the very end, where the collapsing matter distribution
crosses its own Schwarzschild radius and starts approach-
ing the classical singularity at the center. The first interest-
ing finding is that the equations of motion describing
behavior of the collapsing shell near the classical singu-
larity become nonlocal. It has been argued for a while that
(for various reasons) quantum gravity should ultimately
be a manifestly nonlocal theory [8,9,15–17], (see also
[18–20]). Our finding is a strong indication that something
like that might indeed be true. While the functional
Schrodinger formalism is not a full theory of quantum
gravity, it should however capture some aspects of it.
Nonlocality might be one of those important aspects.
Nonlocal equations are notoriously difficult to solve.

However, manipulating the equations of motion in the near
singularity limit, we managed to find an explicit solution to
the nonlocal Schrodinger equation. Interestingly enough,
the solution for the wave function is nonsingular at the

origin. In fact, the probability density becomes zero exactly
at the origin. This indicates that quantization can perhaps
remove classical singularities from gravity, as argued from
many different points of view [8,9,21–26].
In Sec. II we setup the metric for the collapsing dust shell

in ingoing Eddington-Finkelstein coordinates and derive
transformations that we will use later. In Sec. III we apply
Gauss-Codazzi method to find the conserved quantity
which has a clear interpretation of the Hamiltonian. In
Sec. IV we quantize this Hamiltonian using the functional
Schrodinger formalism in the near singularity limit. As we
mentioned, the functional Schrodinger equation is non-
local. In the same section we solve this equation explicitly
to find the wave function and probability density (which is
nonsingular). In Sec. V we repeat the same procedure for
the shell whose energy density is constant (i.e. spherically
symmetric domain wall). In Sec. VI we quantize the
domain wall shell and find again that the equation gov-
erning the behavior near the origin is nonlocal. We do not
explicitly solve for the wave function in this case since the
expressions are cumbersome. Finally, we give conclusions
in Sec. VII.

II. THE METRIC IN INGOING EDDINGTON-
FINKELSTEIN COORDINATES

In this section we will setup the metric of a collapsing
shell of matter in ingoing Eddington-Finkelstein coordi-
nates. Since this space-time foliation is nonsingular at the
Schwarzschild radius, it will allow us to study the gravi-
tational collapse as the shell is approaching the classical
singularity at the center.
The radius of a collapsing spherically symmetric shell of

mater is R. The parameter of evolution is the ingoing null
coordinate v related to the asymptotic Schwarzschild time as
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v ¼ tþ r� (1)

where r� is the tortoise coordinate. The trajectory of the
collapsing shell is then simply r ¼ RðvÞ. The metric outside
the collapsing shell is

ds2 ¼ −
�
1 − Rs

r

�
dv2 þ 2dvdrþ r2dΩ2; r > RðvÞ:

(2)

By Birkhoff theorem, the interior metric is Minkowski

ds2 ¼ −dT2 þ dr2 þ r2Ω2; r < RðvÞ (3)

The interior time coordinate, T, is related to the ingoing null
coordinate, v, via the proper time on the shell, τ. [Note that
the proper time τ is different from the same quantity in
Schwarzschild coordinates since the space-time foliation is
different.] The relations are

dT
dτ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
dR
dτ

�
2

s
(4)

and

dv
dτ

¼ 1

B

�
dR
dτ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ

�
dR
dτ

�
2

s �
(5)

where

B≡ 1 − Rs

R
: (6)

From Eq. (5), we can get,

Rτ
2 ¼ B

ð1 − B
Rv
Þ2 − 1

(7)

From Eq. (4) and Eq. (5),

dv
dT

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rv

2 − 2Rv þ B
p (8)

Wewill use these relations when needed to convert from one
to another time coordinate.

III. COLLAPSE OF THE DUST SHELL:
CONSERVED QUANTITY

In this section we will derive a quantity which remains
conserved during the collapse of the dust (pressureless)
shell. We will then identify this quantity with the
Hamiltonian. We will use the Gauss-Codazzi method, also

known as Israel approach for surface layers (see e.g.
[27–29] and references therein).
Let us consider a shell which is a timelike three-surface

separating two regions of space-time. The extrinsic curva-
ture, Kij, in this case is discontinuous. The explicit form of
the extrinsic curvature can be derived from Einstein
equations as

½Ki
j� ¼ 8π

�
Sij − 1

2
∂i

jSkk

�
; (9)

where S is surface stress energy defined as

Sαβ ¼ lim
ε→0

Z þϵ

−ϵ
Tα

βdn: (10)

One can show that, in general,

Sim∣m þ ½Tn
i� ¼ 0: (11)

For our case of the thin shell of dust the surface stress
energy can be written as

Sαβ ¼ σuαuβ; (12)

where σ is energy per unit area of the shell. For the constant
rest mass of the shell, σ is not constant, and changes its
value as the radius of the shell changes. Our extrinsic
curvature tensor becomes

½Kij� ¼ 8πσ

�
uiuj þ

1

2
ð3Þgij

�
: (13)

Outside the shell the stress energy tensor ½Tn
i� will be zero.

Then Eq. (11) gives

dσ
dτ

þ σum∣m ¼ 0: (14)

The metric on the shell is

ds2 ¼ −dτ2 þ R2ðτÞðdθ2 þ sin2 θdϕ2Þ; (15)

where τ is the proper time parameter of the observer located
on the shell. For this form of the metric Eq. (14) becomes

ðσðð3ÞgÞ12uiÞ;i
ðð3ÞgÞ12 ¼ 0: (16)

Since uτ ¼ 1 and ð3Þg ¼ R4ðτÞ it becomes 4πR2σ ¼ μ. We
can think of μ as the rest mass of the shell which always
remains constant for the dust shell. Now we can use
Eq. (13) to find equations of motion
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½Kθθ� ¼ 8πσ

�
uθuθ þ

1

2
ð3Þgθθ

�
¼ μ: (17)

One can find Kθθ as

Kθθ ¼ −nθ;θ ¼ − 1

2
n2gθθ;r ¼ −rnr: (18)

Combining Eq. (17) and Eq. (18) we get

−rðnrþ − nr−Þ ¼ μ; (19)

where nrþ, nr− are radial components toward the exterior
and interior region, respectively. The components of u and
n can be evaluated by using the dot products n:u ¼ 0,
n:n ¼ 1 and u:u ¼ −1. Towards the exterior region of the
shell, we get

nvuv þ nrur ¼ 0; (20)

�
1 − Rs

r

�
ðuvÞ2 − 2uvur ¼ 1; (21)

�
1 − Rs

r

�
ðnrÞ2 − 2nrnv ¼ 1: (22)

We can solve this system of equations to get nr ¼ �uv.
Substituting this result in Eq. (21) gives

�
1 − Rs

r

�
ðnrÞ2 − 2urnr ¼ 1: (23)

Now, nr ¼ grνnν, which leads to

nr ¼
�
1 − Rs

r

�
nr þ nv: (24)

Substituting nv from Eq. (22), we get

nr ¼ 1þ ð1 − Rs
r Þnr2

2nr
: (25)

Using Eq. (23) and Eq. (25), we find

nr ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 − Rs

r

�
þ ðurÞ2

s
: (26)

Wewill ignore negative sign because at the shell ur ¼ R
:
, so

the relation becomes

nrþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 − Rs

R

�
þ R

: 2

s
: (27)

We can easily obtain nr− from nr− by substituting M ¼ 0

nr− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R

: 2
q

: (28)

Substituting nrþ and nr− into Eq. (19), we get

−r
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

1 − Rs

R

�
þ R

: 2

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R

: 2
q �

¼ μ; (29)

which can be simplified to give

M ¼ μð1þ Rτ
2Þ12 − μ2

2R
: (30)

The quantityM in Eq. (30) is an integral of motion, and has
a clear interpretation of the total energy. It contains the rest
mass of the shell μ, the kinetic energy represented by Rτ,
and gravitational self-energy μ2=ð2RÞ. We will therefore
identify it with the Hamiltonian of the system.
We now express the Rτ in terms of RT to obtain

M ¼ μ

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − RT
2

p − μ

2R

�
: (31)

We can then write down an effective action that gives
Eq. (31) as its Hamiltonian as

Seff ¼ −μ
Z � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − RT
2

q
− μG
2R

�
: (32)

The ultimate goal is to find an action in terms of the ingoing
coordinate v, so we write

Seff ¼ −μ
Z � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
�
dR
dv

dv
dT

�
2

s
− μG
2R

�
: (33)

Substituting dv=dT from Eq. (8), we arrive at the desired
action,

Seff ¼ −
Z

dvμ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B − 2Rv

p − μG
2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rv

2 − 2Rv þ B
q �

:

(34)

The corresponding Lagrangian is

L ¼ −μ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B − 2Rv

p − μG
2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rv

2 − 2Rv þ B
q �

: (35)

We needed an explicit form of the Lagrangian so that we
can define the canonical momentum and find the
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Hamiltonian in terms of momentum. Canonical momentum
in this case is defined as Π ¼ ∂L

∂Rv
, which yields

Π ¼ μ

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B − 2Rv
p þ μG

2R
ðRv − 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rv
2 − 2Rv þ B

p �
: (36)

Finally, the Hamiltonian corresponding to the Lagrangian
in Eq. (35) is

H ¼ μðB − RvÞ
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B − 2Rv

p − μG
2R

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rv

2 − 2Rv þ B
p �

;

(37)

where the velocity Rv should be eliminated by the use of
Eq. (36). We emphasize that so far we did not use any
approximations, so the Hamiltonian in Eq. (37) is exact.

IV. QUANTUM COLLAPSE OF THE DUST SHELL
IN THE LIMIT OF R → 0

The main goal of the this paper is to see what happens at
the last stages of the collapse of the shell, i.e. when R → 0.
Since we have an explicit Hamiltonian of the system, we
can apply the functional Schrodinger formalism and study
quantum effects near the classical singularity. In the
framework of the functional Schrodinger formalism, we
will simply write down the Schrodinger equation for the
wave-functional Ψ½RðvÞ�, and try to solve it.
We first derive the behavior of Rτ near R ¼ 0. From

Eq. (30), we have

Rτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M
μ
þ μG

2R

�
2 − 1

s
: (38)

From here we see that Rτ ≈
μG
2R as R is approaching zero.

Substituting this result in Eq. (7), we find

Rv ≈ − 1

2

�
μG
R

�
2

: (39)

Thus, the rate at which the dust shell collapses near R ¼ 0
diverges as Rv ∝ 1

R2.
In this limit the Hamiltonian in Eq. (37) can be

approximated as

H ¼ μð−RvÞ
�

1ffiffiffiffiffiffiffiffiffiffiffi
2∣Rv∣

p − μG
2R

1

Rv

�
; (40)

which gives

Rv ¼ 2

�
H
μ
−Gμ
2R

�
2

: (41)

For R → 0, we can ignore the constant term H=μ, and we
will again get Eq. (39).

In the limit R → 0, the canonical momentum reduces to

Π ¼ μ

�
1ffiffiffiffiffiffiffiffiffiffiffi
2∣Rv∣

p þ μG
2R

�
: (42)

Expressing Rv in terms of Π in Hamiltonian (40) we get

H ¼ −R
G

�
1 − 2ΠR

μ2G

�−1
þ μ2G

2R
: (43)

The Hamiltonian in Eq. (43) governs the evolution of the
collapsing dust shell in vicinity of R ¼ 0. As in the standard
quantization procedure, we promote the momentum Π into
an operator

Π ¼ −iℏ ∂
∂R : (44)

We can now write the functional Schrodinger equation for
the wave-functional ψ ½RðvÞ�,

Hψ ¼ iℏ
∂ψ
∂v ; (45)

and try to solve it. Unfortunately, the structure of the
Hamiltonian (43) is such that the usual treatment is
practically impossible. The main problem is that the
differential operator in Hamiltonian (43) is nonlocal.
This finding represents a strong support for suggestions
that quantum gravity might be ultimately a nonlocal theory.
While finding solutions to nonlocal equations is very

difficult, we will show that it is possible to define a
procedure (similar to the one outlined in [5]) which will
lead to the solution of Eq. (45). We first isolate the nonlocal
operator Â from the Hamiltonian (43),

Â ¼
�
1 − 2ΠR

μ2G

�−1
: (46)

Its inverse is

Â−1 ¼ 1 − 2ΠR
μ2G

: (47)

We can take care of the operator ordering as

Â ¼
�
1 − 1

μ2G
ðΠ̂Rþ RΠ̂Þ

�−1
; (48)

so that

Â−1 ¼ 1 − 1

μ2G
ðΠ̂Rþ RΠ̂Þ: (49)

In terms of derivatives, Â−1 is
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Â−1 ¼
�
1þ i

μ2G

�
þ 2iR
μ2G

∂
∂R : (50)

Let’s define the action of an operator Â as φ ¼ Âψ , which
means ψ ¼ Â−1φ, where φ is just some function which
gives the wave function ψ upon action of the operator Â.
Explicit action of Â−1 on φ converts the equation Â−1φ ¼
ψ into a linear differential equation,

dφ
dR

þ 1

2R
ð1 − iμ2GÞφþ iμ2G

2R
ψ ¼ 0: (51)

This equation can be solved to give

φ ¼ − iμ2G
2

R
R−ð1þiμ2GÞ

2 ψdR

R
ð1−iμ2GÞ

2

: (52)

Since φ ¼ Âψ we obtain the action of Â as

Â ¼ − iμ2G
2

R
R−ð1þiμ2GÞ

2 ð:ÞdR
R

ð1−iμ2GÞ
2

; (53)

where ð:Þ is the placeholder for the function on which Â is
acting.
Let’s concentrate on the stationary solutions to Eq. (45)

in the form of

ψðR; vÞ ¼ ψðRÞeiEv=ℏ; (54)

where v is the time evolution parameter, and E is the energy
eignevalue. The time independent Schrodinger equation
becomes Hψ ¼ Eψ . The Hamiltonian in Eq. (43) in terms
of the operator Â becomes

H ¼ RÂ
G

þ μ2G
2R

: (55)

Accounting for the ordering of operators, this Hamiltonian
becomes

H ¼ − 1

2G
ðRÂþ ÂRÞ þ μ2G

2R
: (56)

The Schrodinger equation (45) becomes

−1
2G

ðRÂþ ÂRÞψ þ μ2G
2R

ψ ¼ Eψ (57)

When Â operates on R we get

ÂðRÞ ¼ −α
2
R−1

2
ð1−αÞ

Z
R−1

2
ð1þαÞRdR; (58)

which yields

ÂðRÞ ¼ −αRþ β

3 − α
; (59)

where α ¼ iμ2G and β is an integration constant. So our
equation becomes

−1
2G

�
RÂψ þ αR − β

α − 3
ψ

�
þ μ2G

2R
ψ ¼ Eψ : (60)

Now we can move all the terms to one side and separate the
term with the integral

Z
R−1

2
ð1þαÞψdR ¼ 4GR−1þα

2

α

�
1

2G

�
αR − β

α − 3

�
− μ2G

2R
þ E

�
ψ :

(61)

We can now differentiate this equation with respect to R to
remove integration. Differentiation yields

�
2R

1
2
ð1−αÞ

α − 3
− 2μ2G2R−1

2
ð3þαÞ þ

�
4GE
α

− 2β

αðα − 3Þ
�
R−1

2
ð1þαÞ

�
ψ 0

¼
��

α − 1

α − 3
þ 1

�
R−1

2
ð1þαÞ − μ2G2ðαþ 3ÞR−1

2
ð5þαÞ þ

�
2GEðαþ 1Þ

α
− βðαþ 1Þ
αðα − 3Þ

�
R−1

2
ð3þαÞ

�
ψ : (62)

This can be written as

dψ
ψ

¼
Z

a1 þ a2Rþ a3R2

a4Rþ a5R2 þ a6R3
dR; (63)

where a1 ¼ −μ2G2ðαþ 3Þ, a2 ¼ ð2GEðαþ1Þ
α − βðαþ1Þ

αðα−3ÞÞ, a3 ¼
1þ α−1

αþ3
, a4 ¼ −2μ2G2, a5 ¼ ð4GEα − 2β

αðα−3ÞÞ, and a6 ¼ 2
α−3

This integral can be solved for general values of constants.
However, since we are working in the limit of R ≈ 0, we
keep only the leading-order terms,

ln ψ ¼
Z

a1
a4R

dRþ constant: (64)

Solving this equation and substituting the values of the
constants, we find the solution for the wave function

ψ ¼ λR
3þiμ2G

2 ; (65)

where λ is a constant. The corresponding probability
density P ¼ ψ�ψ is
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∣ψ ∣2 ¼ λ2R3: (66)

This result is very important. It demonstrates that the
probability density associated with the wave function ψ
which describes the collapse of the shell of matter is
nonsingular near the classical singularity. In fact, the
probability density in Eq. (66) vanishes exactly at
R ¼ 0. It is remarkable that a simple quantum treatment
of the gravitational collapse indicates that classical singu-
larity at the center can be removed.

V. COLLAPSE OF AN INFINITELY THIN
SPHERICAL DOMAIN WALL: CONSERVED

QUANTITY

It is a logical possibility that the nonlocal behavior in the
near singularity region that we found in the previous
section is an artifact of the example that we were studying,
i.e. the dust shell of matter. In this section we will repeat the
procedure for the shell of matter whose energy per unit
area, σ, is constant, which is the situation represented by a
spherically symmetric domain wall. We will find that the
near singularity behavior is qualitatively the same even in
this case, i.e. the Hamiltonian becomes nonlocal in
R → 0 limit.
In the case of the domain wall, mass M is also a

conserved quantity. However, the relation relating mass
with R and Rτ is now given as

M ¼ 1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Rτ

2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ Rτ

2

q
Þ4πσR2; (67)

where B≡ 1 − 2GM=R. This expression is implicit as it
contains M in B. The explicit relation of M in terms of Rτ

and R can be written as

M ¼ 4πσR2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Rτ

2

q
− 2πGσR

�
: (68)

Using the relation between T and τ Eq. (4), we get

M ¼ 4πσR2

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − RT
2

p − 2πGσR

�
: (69)

The effective action which can reproduce above relation, i.e.
gives the correct mass conservation law, can be written as

Seff ¼ −4πσ
Z

R2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − RT

2

q
− 2πGσR

�
: (70)

We want to convert the T coordinate into the infalling v
coordinate as

Seff ¼ −4πσ
Z

R2

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�∂R
∂v

∂v
∂T

�
2

s
− 2πGσR

#
: (71)

After substituting the expression for dv
dT, we arrive at

Seff ¼−4πσ
Z

dvR2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B−2Rv

p −2πσR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rv

2−2RvþB
q

Þ:
(72)

The corresponding Lagrangian can be written as

Leff ¼ −4πσR2½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B − 2Rv

p − 2πσR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rv

2 − 2Rv þ B
q

�:
(73)

Canonical momentum is defined as Π ¼ ∂L
∂Rv

, so we obtain

Π ¼ −4πσR2

� −1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B − 2Rv

p − 2πσGRðRv − 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rv

2 − 2Rv þ B
p �

: (74)

Since the Hamiltonian is H ¼ ðπRv − LÞ, substituting the
Rv in terms of Π gives

H ¼ 4πσR2ðB − RvÞ
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B − 2Rv

p − 2πσGRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rv

2 − 2Rv þ B
p �

:

(75)

VI. QUANTUM COLLAPSE OF THE DOMAIN
WALL IN THE LIMIT OF R → 0

Since we have an explicit Hamiltonian of the system, we
can apply the functional Schrodinger formalism again and
study quantum effects near the classical singularity. Again
from the conserved quantity M we can derive

∣Rτ∣ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

M
4πσR2

þ 2πσGR

�
2 − 1

s
: (76)

From here we see that Rv ≈ − 2M2

ð4πσR2Þ2 as R is approaching
zero. Thus, the rate at which the dust shell collapses near
R ¼ 0 diverges as Rv ∝ 1

R4, in contrast with the dust shell
where the divergence was quadratic.
In the same limit the Hamiltonian in Eq. (75) can be

approximated as

H ¼ 4πσR2ð−RvÞ
�

1ffiffiffiffiffiffiffiffiffiffiffi
2∣Rv∣

p þ 2πσGR
∣Rv∣

�
: (77)

Solving this equation for Rv yields ∣Rv∣ ≈ 2h2

R4 where
h ¼ H

4πσ, which is the same as the above derived behavior.
The exact form of canonical momentum can bewritten as

Π ¼ −4πσR2

� −1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B − 2Rv

p − 2πσGRðRv − 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rv

2 − 2Rv þ B
p �

; (78)

which in R → 0 limit can be approximated as
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Π ¼ 4πσR2

�
1ffiffiffiffiffiffiffiffiffiffiffi
2∣Rv∣

p þ 2πσGR

�
: (79)

From this we can get Rv in terms of π as

Rv ¼ − 1

2

�
π

4πσR2
− 2πσGR

�−2
: (80)

The Hamiltonian given by Eq. (75) can now be approxi-
mated as

H ¼ 4πσR2ð−RvÞ
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B − 2Rv

p
�
: (81)

Submitting the value of Rv from Eq. (80) gives

H ¼ − R
ð1 − π

8π3σ2GR3Þ : (82)

The Hamiltonian in Eq. (82) governs the evolution of the
collapsing spherical domain wall in the vicinity of R ¼ 0.
As before, we promote the momentum Π into an operator,

Π ¼ −iℏ ∂
∂R : (83)

We can now write the functional Schrodinger equation,

Hψ ¼ iℏ
∂ψ
∂v ; (84)

and try to solve it. However, as in our previous case of the
dust shell, we see that the differential operator in
Hamiltonian (82) is nonlocal. This fact reinforces an
indication that quantum gravity should be ultimately a
nonlocal theory.
We will now follow the procedure we outlined in Sec. IV.

We isolate the nonlocal operator,

Â ¼
�
1 − Π

8π3σ2GR3

�−1
: (85)

For convenience, we set the constant α ¼ 1
16π2σ2G, which

gives

Â ¼ 1

ð1 − 2α Π
R3Þ : (86)

Now, we can define

Â−1 ¼ 1 − 2α
Π
R3

: (87)

We take care of the ordering problem as

Â−1 ¼ 1 − α

�
Π

1

R3
þ 1

R3
Π
�
; (88)

which also makes this operator unitary. In terms of
derivatives, we have

Â−1 ¼ 1þ iα

�
2

R3

∂
∂R − 3

R4

�
: (89)

Let us again define ψ ¼ Â−1φ, which leads to differential
equation

∂φ
∂Rþ

�
R3

2iα
− 3

2R

�
φ − R3

2iα
ψ ¼ 0: (90)

This linear differential equation can be solved to give

φ ¼ R3=2e−R4
8iα

2iα

Z
R3=2e

R4
8iαψdR: (91)

Since φ ¼ Âψ , this gives the operator Â as

Â ¼ R3=2e−R4
8iα

2iα

Z
R3=2e

R4
8iαð:ÞdR; (92)

where ð:Þ is the placeholder for the function on which Â is
acting. In principle, one can follow the procedure we
outlined in Sec. IV and solve the nonlocal Schrodinger
equation like. However, in this case calculations are much
more cumbersome because of presence of additional
exponential in the operator Â and will not be shown here.

VII. CONCLUSIONS

In this paper we studied quantum aspects of the
gravitational collapse near the classical singularity as seen
by an infalling observer. Since gravity is by far the weakest
force in nature, we expect that quantum mechanics will
significantly modify the classical behavior of gravity only
in the strong field regimes, e.g. near classical singularities.
In the absence of a fully fledged theory of quantum gravity,
we worked in the context of the functional Schrodinger
formalism applied to a simple gravitational system—the
collapsing shell of matter. We used the Eddington-
Finkelstein space-time foliation which is convenient for
studying the question of the black hole formation until the
very end, where the collapsing shell crosses its own
Schwarzschild radius and starts approaching the classical
singularity at the center. We derived the conserved quantity
with the clear interpretation as the Hamiltonian of the
system and quantized the theory. In the R → 0 limit, we
found that the equation which describes the quantum
evolution of the collapsing shell is strongly nonlocal.
Nonlocal terms which are usually suppressed in large
distance limit, become dominant in the near singularity
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limit. This conforms some earlier speculations and related
studies. As an important step forward, we managed to solve
this nonlocal equation explicitly and found the form of the
wave function. Remarkably, the wave function and its
corresponding probability density are nonsingular at
R → 0. This is an indication that quantization can remove

classical singularities from gravity, just as was the case with
the singular electromagnetic Coulomb potential.
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