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We provide a holographic description of two-dimensional dilaton gravity with anti–de Sitter boundary
conditions. We find that the asymptotic symmetry algebra consists of a single copy of the Virasoro algebra
with nonvanishing central charge and point out difficulties with the standard canonical treatment. We
generalize our results to higher spin theories and thus provide the first examples of two-dimensional higher
spin gravity with holographic description. For spin-3 gravity we find that the asymptotic symmetry algebra
is a single copy of the W3 algebra.

DOI: 10.1103/PhysRevD.89.044001 PACS numbers: 04.60.Kz, 04.20.Ha, 11.25.Tq, 04.20.Fy

I. INTRODUCTION

Gravity models in lower dimensions can provide useful
insights into classical and quantum gravity. They were
studied vigorously in the past three decades. In terms
of technical simplicity, the optimal choice for the dimen-
sion is two: it is the lowest dimension where the notions
of curvature, causal structure, light cones and black holes
exist, all of which are essential features of the way we
think about gravity in higher dimensions. Of course, some
aspects of higher-dimensional gravity are inevitably lost—
for instance, there are no graviton excitations in two
dimensions (2D)—but if these aspects are not of relevance
for a given physical question, then studying 2D toy models
can be a rewarding exercise.
The first thing to realize when working in 2D is that

Einstein gravity is not the right starting point: any 2D
metric trivially solves the 2D Einstein equations as a
consequence of the 2D identity Rμν ¼ 1

2
Rgμν. The most

suitable set of theories are scalar-tensor theories, also
known as dilaton gravity. These theories have nontrivial
equations of motion (EOM) and nontrivial solutions,
including black holes.
Indeed, 2D dilaton gravity has been employed to study,

among other things, black holes in string theory [1–3], black
hole evaporation [4], black hole complementarity [5], black
hole thermodynamics [6,7], information loss [8,9], the S
matrix in quantum gravity [10], and gravity at large [11] and
small [12] distances. See [13] and references therein for
further literature on 2D dilaton gravity.

An item conspicuously absent in this list is holography
[14,15] and the anti–de Sitter/conformal field theory (AdS/
CFT) correspondence [16]. The reason for its absence is
because so far no satisfying treatment of holography exists
in 2D dilaton gravity, despite several interesting attempts
like [17–20]. We shall comment on them (and on further
work) as we go along.
Given the recent excitement about higher spin holog-

raphy in three dimensions [21–25] another important
item that is missing on the list above is the construction
of 2D higher spin theories and their holographic descrip-
tion. These two items are the main motivation for our
work.
The main purpose of this paper is to establish AdS

holography in 2D dilaton gravity and for the first time also
in higher spin theories in 2D.
The 2D dilaton gravity bulk action [26–28]

S ¼ κ

2π

Z
d2x

ffiffiffi
g

p ðXRþ UðXÞð∂XÞ2 þ 2VðXÞÞ (1)

contains the 2D gravitational coupling κ, the dilaton field X
and two arbitrary potentials thereof, UðXÞ and VðXÞ. We
set κ ¼ 1, work in Euclidean signature throughout (though
most of our results extend straightforwardly to Lorentzian
signature) and restrict for the time being to models
with UðXÞ ¼ 0.
Dilaton gravity in 2D is locally quantum trivial [29],

but globally it can be nontrivial, which is why physical
boundary states could exist, similar to the situation in
three-dimensional Einstein gravity with negative cosmo-
logical constant [30] or flat space chiral gravity [31]. It is
one of the aims of this paper to check to what extent this
is true.

*grumil@hep.itp.tuwien.ac.at
†mauricio@iafe.uba.ar
‡dvassil@gmail.com

PHYSICAL REVIEW D 89, 044001 (2014)

1550-7998=2014=89(4)=044001(8) 044001-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.044001
http://dx.doi.org/10.1103/PhysRevD.89.044001
http://dx.doi.org/10.1103/PhysRevD.89.044001
http://dx.doi.org/10.1103/PhysRevD.89.044001


II. PRELIMINARIES

Like in three-dimensional gravity, where a gauge-
theoretic formulation as Chern-Simons theory exists
[32,33], there is a useful gauge-theoretic formulation of
2D dilaton gravity as a nonlinear gauge theory [34], namely
a Poisson-sigma model (PSM) [35] (see [36] for higher-
dimensional generalizations)

S ¼ 1

π

Z
d2x~ϵμν

�
Xað∂μeνa þ ωμϵa

beνbÞ þ X∂μων

þ 1

2
ϵabeμaeνbVðXÞ

�
: (2)

The notations mostly follow [13] (except for our
Euclidean signature). Latin indices are raised and lowered
with δab ¼ diagð1; 1Þab. We set ϵ10 ¼ 1. We denote the
“holographic” (or radial) coordinate by ρ and the angular
coordinate (or, in Lorentzian signature, time coordinate)
by φ, identifying φ ∼ φþ 2π. We fix the sign in the
Levi-Civita symbol ~ϵμν by ~ϵρφ ¼ 1.
To make the relation of the first order action (2) to a PSM

manifest we rewrite it as

S ¼ 1

π

Z
d2x~ϵμν

�
XI∂μAνI þ

1

2
PIJðXKÞAμIAνJ

�
(3)

with three target space coordinates XI ¼ ðX;XaÞ, three
connection 1-forms Ax ¼ ω, Aa ¼ ea, and the Poisson
tensor (PIJ ¼ −PJI)

PXb ¼ Xaϵa
b; Pab ¼ VðXÞϵab: (4)

As a consequence of the nonlinear Jacobi identities

∂PIJ

∂XL PLK þ ∂PJK

∂XL PLI þ ∂PKI

∂XL PLJ ¼ 0 (5)

the nonlinear gauge transformations

δλXI ¼ PIJλJ; (6a)

δλAμI ¼ −∂μλI − ∂PJK

∂XI λKAμJ (6b)

leave the PSM action (3) invariant up to a total derivative,

δλS ¼ 1

π

Z
d2x∂μ

�
~ϵμνAνIλJ

�
PIJ − XK ∂PIJ

∂XK

��
: (7)

Terms in PIJ that are linear in XK do not contribute to the
gauge variation (7).
In components the gauge transformations (6) read

δλXa ¼ Vϵabλb − Xbϵb
aλX; (8a)

δλX ¼ Xbϵb
aλa; (8b)

δλeμa ¼ −∂μλa − ωμϵa
bλb þ ϵa

beμbλX; (8c)

δλωμ ¼ −∂μλX − ϵabeμaλbdV=dX: (8d)

Canonically, the gauge transformations (8) which corre-
spond on-shell to diffeomorphisms and Lorentz transfor-
mations) are realized through first class constraints:

∂ρXI þ PIJAρJ ¼ 0: (9)

In components the constraints read as follows:

∂ρX0 − X1ωρ − Veρ1 ¼ 0; (10a)

∂ρX1 þ X0ωρ þ Veρ0 ¼ 0; (10b)

∂ρX þ X1eρ0 − X0eρ1 ¼ 0: (10c)

The remaining field equations are the torsion constraint

~ϵμνð∂μeνa þ ωμϵa
beνbÞ ¼ 0; (11)

which allows one to express the spin connectionωμ through
the zweibein eaμ, the curvature equation

R ¼ 2~ϵμν

detðeÞ ∂μων ¼ −2dV=dX; (12)

and the same equations as the constraints (10), but with ρ
replaced by φ.
There are two distinct sets of solutions to the field

equations: constant dilaton vacua, with X0 ¼ X1 ¼
VðXÞ ¼ 0 and X ¼ const, and linear dilaton vacua, where
the dilaton X does depend on ρ. The latter solutions are
generic, while the former exist only for specific models,
and even then require an infinite fine-tuning for the value of
the dilaton. Some recent attempts towards AdS holography
for constant dilaton vacua are based on work by Hartman
and Strominger [20,37] and require coupling to a Maxwell
field. Also the recent construction of spin-3 gravity by
Alkalaev restricts to the constant dilaton sector [38].
We do not consider this nongeneric sector and focus

instead on generic linear dilaton vacua. At first glance it
may seem surprising that asymptotic AdS symmetries can
be compatible with linear dilaton vacua, since a vector field
ξ that generates diffeomorphisms does only preserve a
constant dilaton, ξμ∂μX ¼ 0. However, it is sufficient if
these vector fields preserve the asymptotic structure of the
dilaton (and of all other fields involved), and this depends
on the precise boundary conditions one imposes, which
turn out to be somewhat delicate. It is probably for this
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reason that so far no consistent holographic description
exists for linear dilaton vacua.

III. ADS2 BOUNDARY CONDITIONS

The discussion above applies to arbitrary potentials
VðXÞ. However, in order to obtain asymptotically AdS
solutions (with unit AdS radius) the potential must asymp-
tote to X, since only then the Ricci scalar asymptotes to
R ¼ −2; see (12). For simplicity let us therefore consider
from now on the potential VðXÞ ¼ X, which describes
the Jackiw-Teitelboim model [39,40], and postpone a
description of generalizations thereof. In that case the
PSM reduces to a linear gauge theory, with gauge group
SLð2Þ [41–44].
We discuss now locally asymptotically (Euclidean) AdS

boundary conditions. We assume that ρ → ∞ corresponds
to the right (R) AdS boundary and ρ → −∞ to the left (L)
one. For simplicity we choose the gauge

e1ρ ¼ 1; e0ρ ¼ e1φ ¼ 0: (13)

The only nontrivial zweibein component is e0φ. It must
diverge exponentially in ρ at both AdS boundaries. Thus, a
reasonable ansatz is

e0φ ¼ TRðφÞeρ þ TLðφÞe−ρ; (14)

where TR;L are arbitrary (state-dependent) functions of the
angular coordinate. We note that the exponential behavior
in ρ of the zweibein generalizes one of the assumptions
imposed in a previous approach to PSM holography by one
of us [45].
In fact, solving the EOM in the gauge (13) it can be

shown that (14) is the most general solution, which
shows the consistency of our ansatz (14). In the language
of Brown and Henneaux [30] we have gauge-fixed small
gauge transformations by the choice (13) and parametrized
the large gauge transformations (those that change the
physical state of the theory) by the functions TR;LðφÞ.
With the gauge (13) and boundary conditions (14) on

the zweibein we proceed now to determine the boundary
conditions for the connection by demanding consistency
with the torsion constraint (11):

ωφ ¼ −TRðφÞeρ þ TLðφÞe−ρ; ωρ ¼ 0: (15)

We demand that the target space coordinates obey
boundary conditions such that the constraints (10) hold
identically; this means nothing else but prohibiting boun-
dary conditions that violate the constraints and is therefore
a meaningful restriction.

X0 ¼ ∂ρX; ∂ρX1 ¼ 0; ∂2
ρX ¼ VðXÞ ¼ X: (16)

Solving the constraints (16) establishes boundary con-
ditions for the target space coordinates:

X ¼ XRðφÞeρ þ XLðφÞe−ρ; (17a)

X0 ¼ XRðφÞeρ − XLðφÞe−ρ; (17b)

X1 ¼ X1ðφÞ: (17c)

Our result that XR;L are allowed to fluctuate in a state-
dependent way differs crucially from the approach by
Navarro-Salas and Navarro [19], who fixed XR to some
(state-independent) constant.
In addition to the terms that we displayed in the

boundary conditions (13)–(17) there could be subleading
terms that we are not going to specify explicitly, as they
will be of no relevance for our discussion.
The SLð2Þ Casimir function turns out to be independent

from the radial coordinate ρ:

CðφÞ ¼ X2 − ðX0Þ2 − ðX1Þ2 ¼ 4XRXL − ðX1Þ2: (18)

On-shell C is constant and corresponds physically to the
mass of the solution. The EOM provide three relations
between the five state-dependent functions, X1TR;L ¼
−X0

R;L and ðX1Þ0 ¼ −2ðXRTL þ XLTRÞ. Above and in
what follows we reduce notational clutter by writing
XR;L and TR;L instead of XR;LðφÞ and TR;LðφÞ.
As a first check that our boundary conditions above are

consistent we show that the action is off-shell gauge-
invariant and obeys a well-defined variational principle.
Gauge invariance is evident from (7), since in our case the
Poisson tensor is linear in the target-space coordinates, so
that the term in parentheses in (7) vanishes identically. Thus,
as long as the variational principle does not require addi-
tional boundary terms in the action, off-shell gauge invari-
ance is guaranteed. In this regard our approach differs from
our previous treatment [46], which related the boundary
terms in thePSMformulation to the standardboundary terms
in the second order formulation, thereby introducing boun-
dary terms that look bizarre from a PSM perspective. Our
current approach avoids such boundary terms.
We check now the variational principle. The first

variation of the action (3) yields on-shell

δSjEOM ¼ 1

π

Z
∂MR

dφXIδAφI − 1

π

Z
∂ML

dφXIδAφI: (19)

Here ∂MR;L denote the two disconnected components of
the AdS2 boundary, and the relative minus sign appears
since the outward pointing unit normals to the boundary
have different orientations. Inserting our boundary and
gauge conditions (13)–(17) establishes that all exponen-
tially diverging terms at either boundary vanish identically,
and only finite terms remain at each boundary component:
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δSjEOM ¼ 2

π

�Z
∂MR

dφ −
Z
∂ML

dφ

�
ðXRδTL − XLδTRÞ

¼ 0: (20)

Even though the boundary terms do not necessarily vanish
individually at each component of the boundary, they
cancel each other once both boundary components are
taken into account.
Thus, we have a well-defined variational principle: the

first variation of the action vanishes for all variations that
preserve our boundary conditions. In this respect our setup
differs crucially from the one by Cadoni and Mignemi [18],
who considered similar boundary conditions but only
one boundary component and therefore did not have a
well-defined variational principle.

IV. ASYMPTOTIC SYMMETRIES

Let us now construct the metric and discuss some of its
properties. With the choices (13) and (14) the line element
is given by

ds2 ¼ dρ2 þ ðT2
Re

2ρ þ 2TRTL þ T2
Le

−2ρÞdφ2: (21)

Infinitesimal diffeomorphisms δgμν ¼ ∇μξν þ∇νξμ that
preserve the form (21) of the line element are generated
by vector fields ξμ with

ξρ ¼ ξρðφÞ; ξφ ¼ ξðφÞ þ ∂φξ
ρe−ρ

2TRe0φ
: (22)

The same vector field also preserves our boundary con-
ditions on the target-space coordinates (17). In this respect
our approach differs crucially from [19], where nearly all
the diffeomorphisms that preserve their boundary condi-
tions on the metric violate their boundary conditions for the
dilaton field.
Defining ξR ¼ ξ and ξL ¼ ξþ ð∂φξ

ρÞ=ð2TRTLÞ the
state-dependent functions transform as

δξTR ¼ ξρTR þ ∂φðξRTRÞ; (23)

δξTL ¼ −ξρTL þ ∂φðξLTLÞ: (24)

Note that at this stage we have two independent functions
of φ appearing in the asymptotic symmetries, namely ξρðφÞ
and ξðφÞ. This is different from all previous approaches to
2D holography andmay provide interesting generalizations.
However, in order to make contact with previous

approaches we fix from now on TR ¼ 1
2
so that only TL

is allowed to fluctuate. Then ξρ is determined by (23) as
ξρ ¼ −ξ0 and the transformation law (24) for T≔ − TL
expands to

δξT ¼ 2ξ0T þ ξT 0 þ ξ000: (25)

What we have just proven is that the state-dependent
function T transforms precisely like a chiral stress tensor
in a 2D CFT [47] with positive central charge. This is one
of our main results.
The PSM gauge transformations (6) that preserve our

boundary conditions are generated by gauge parameters λ
whose components read

λX ¼ − 1

2
ξeρ − ðTξþ ξ00Þe−ρ; (26a)

λ0 ¼
1

2
ξeρ − ðTξþ ξ00Þe−ρ; (26b)

λ1 ¼ −ξ0: (26c)

They are parametrized by a single function ξ and reproduce
the transformation law (25). The action of this gauge
transformation on the connection 1-forms coincides with
a Lie derivative generated by a vector field ξ as given in
(22) plus a compensating local Lorentz transformation to
maintain our gauge choices. In addition, the PSM gauge
transformations allow one to establish transformations laws
for all other state-dependent functions. For instance, the
transformation law

δξXR ¼ XRξ
0 − X0

Rξ (27)

shows that XR behaves like a boundary vector, consistent
with the analysis in [48].
Our main result (25) shows that the central charge is

positive but does not specify its precise value. Without a
canonical analysis we do not know how to determine the
central charge by direct calculation, and as we shall see in a
moment, the canonical analysis is problematic. An indirect
way to fix the central charge would be to appeal to the
Cardy formula for entropy

SC ¼ 2π

ffiffiffiffiffi
ch
6

r
; (28)

where c is the central charge and h the value of the Virasoro
zero mode charge, and to equate it to the Bekenstein-
Hawking entropy [6,7]

SBH ¼ 2κXh; (29)

where Xh is the value of the dilaton field evaluated at the
black hole horizon and we have reintroduced the gravita-
tional coupling constant κ. Fixing XR ¼ 1 we define

h ¼ κ

4π
C ¼ 2κ

π
T; (30)

where C is the Casimir function (18) evaluated on shell.
We shall provide some justification of the definition (30)
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below. Demanding equality between the CFT entropy (28)
and the gravitational entropy (29), SBH ¼ 4κ

ffiffiffiffiffiffi
2T

p
, yields

2πc ¼ 48κ: (31)

It would be nice if therewas a direct way to derive this result
for the central charge [49]. In fact, a check on the correctness
of our results is that the suitably rescaled version of (25),
δξh ¼ 2ξ0hþ ξh0 þ 2κ

π ξ
000 ¼ 2ξ0hþ ξh0 þ c

12
ξ000, with h as

defined in (30), leads precisely to the result (31) for the
central charge that we determined from the Cardy formula.
Thus, our findings are compatible with the conjecture that
2D dilaton gravity in the linear dilaton vacuum with our
boundary conditions is dual to a chiral half of a CFT with
central charge c ¼ 24κ=π.
We have worked directly with the state-dependent

functions and their transformation behavior to unravel
the asymptotic symmetries. However, it is fair to ask if
the same results, in particular (25), could have been
obtained from a canonical analysis along the lines of
[30]. Surprisingly, the answer is no. Consider the variation
of the canonical boundary charges [50],

π

κ
δQ ¼ −λIδXI ¼ ξδXL þ ξ0δX1 þ 2ξ00δXR þ 2ξTδXR:

(32)

The first equality follows by inspection of the derivative
terms in the constraints (10) and the second from our
boundary conditions and the results (26). The only good
news is that the charges (32) are finite, but they are neither
conserved nor integrable. The last term in (32) spoils
integrability [51].
The nonconservation is well known and was addressed

by Cadoni and Mignemi [18], who proposed as a solution
to integrate the “charges” over φ (which in their conven-
tions is time). However, nonintegrability apparently went
unnoticed so far and is a serious issue. It implies that
there is no good canonical realization of the asymptotic
symmetries.
Thus, we are in a similar situation as in flat space

holography in four dimensions [52,53] (see also [54,55]):
we can consistently define currents and their algebra—in our
case the main result (25) leads to the anomalous trans-
formation law for T familiar from the Virasoro algebra—but
have no conserved integrable canonical charges (see [56]
for a general relativistic discussion). This is a remarkable
and unexpected feature of 2D dilaton gravity that deserves
further study and could shed light on similar issues arising in
flat space holography.
Nonintegrability means that we have to pick a certain

class of paths in field space to define charges. Let us
restrict to field variations that do not change the value of the
dilaton field at the right boundary, δXR ¼ 0. For concrete-
ness we fix XR ¼ 1. Then the variation (32) simplifies to
δQ ¼ κ=πξδXL, which integrates to the charges

Q½ξ� ¼ 2k
π
ξT ¼ k

4π
ξC: (33)

The relation (33) provides the motivation for our
definition (30) of the Virasoro zero mode charge.
(Note that a truncation to XR ¼ 1 is consistent only for
constant ξ.)

V. HIGHER SPIN THEORIES

We generalize now our results to higher spin theories.
Instead of choosing SLð2Þ we pick some higher rank
gauge algebra with generators LI and structure constants
fIJK , i.e., ½LI; LJ� ¼ fIJKLK. Let us fix a representation
and assume that the trace form GIJ ¼ trðLILJÞ is non-
degenerate. Let GJK be the inverse of GIJ. Matrix-valued
fields are defined as Aμ ≡ AμILI , X ≡ XIGIJLJ. Then we
define the higher spin theory as a PSM (3) with a linear
Poisson tensor [57] and appropriate identifications of
the gauge field 1-forms as zweibein, zuvielbein, and
connection:

PIJ ¼ fIJKXK: (34)

The PSM gauge transformations read

Aμ → eλð∂μ þ AμÞe−λ; X → eλXe−λ: (35)

For concreteness let us focus on spin-3 gravity, defined
by a PSM with SLð3Þ gauge group, with principally
embedded SLð2Þ. The generators are taken as in [58],
Eq. (3.2), numbered with superscripts, and the indices
related to their spin-3 generators W will be taken in
parentheses, e.g. Lð−1Þ ≡W−1.
In the spin-2 case we have shown that once the boundary

conditions on the connection 1-forms are fixed, the boun-
dary conditions for the target space coordinates follow from
consistency with the constraints. Therefore, it is sufficient to
provide boundary conditions for the connection 1-form A.
Inspired by theway in which boundary conditions are set up
in three-dimensional spin-3 gravity [21,22] we impose the
boundary conditions

A ¼ e−ρL0ðdþ aφILIdφÞeρL0 (36)

with

aφILI ¼ L1 þ TðφÞL−1 þWðφÞLð−2Þ: (37)

The symmetry transformations that preserve the
form (36) and (37) depend on two arbitrary functions,
λ1 ¼ ξðφÞ and λð2Þ ¼ ηðφÞ. Decomposing AI with respect
to the slð3Þ generators yields the following consistency
conditions:
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I ¼ 1∶ λ0 ¼ −ξ0; (38a)

I ¼ ð2Þ∶ λð1Þ ¼ −η0; (38b)

I ¼ 0∶ λ−1 ¼
1

2
ðξ00 þ 2ξT − 16ηWÞ; (38c)

I ¼ ð1Þ∶ λð0Þ ¼
1

2
ðη00 þ 4ηTÞ; (38d)

I ¼ ð0Þ∶ λð−1Þ ¼
1

3

�
− 1

2
η000 − 5η0T − 2ηT 0

�
; (38e)

I ¼ ð−1Þ∶ λð−2Þ ¼
1

4
ð−λ0ð−1Þ þ 2λð0ÞT þ 4ξWÞ: (38f)

The asymptotic symmetry transformations are obtained
from (38) by λ → e−ρL0

λeρL
0

.
For I ¼ −1 and I ¼ ð−2Þ we obtain the transformations

of T and W, respectively:

δT ¼ − 1

2
ξ000 − ξT 0 − 2Tξ0 þ 12η0W þ 8ηW0; (39)

δW ¼ −λ0ð−2Þ þ Tλð−1Þ − 2Wξ0: (40)

Comparing with [22] we find that making the identifica-
tions η → χ, ξ → −ϵ, T → 2πL=k and W → πW=ð2kÞ as
well as fixing their σ ¼ −1 establishes perfect agreement
with their Eqs. (4.17)–(4.20). Thus, the current algebra
generated by (39) and (40) is a single copy of the W3

algebra with positive central charge. This is our main result
for spin-3 holography.
All the caveats we discussed in the spin-2 case regarding

the canonical boundary charges also apply to 2D higher
spin theories. In particular, they are nonintegrable also for
higher spin theories.
We treated here higher spin theory entirely in its gauge

theoretic formulation, since the metric formulation is exp-
ected tobemorecumbersome.Alkalaevdiscusses the relation
between gauge theoretic and metric formulation in [38].

VI. DISCUSSION AND GENERALIZATIONS

We discussed 2D dilaton gravity with AdS2 boundary
conditions in the gauge-theoretic PSM formulation and
found as asymptotic symmetry algebra a single copy of the
Virasoro algebra, in the sense that we have the anomalous
transformation law for the state-dependent function T in
(25) with positive central charge. By “asymptotic symmetry
algebra” we mean all transformations that preserve the
gauge and boundary conditions we imposed, modulo trivial
gauge transformations (since we fixed the latter completely
we did not need to mod out anything). However, we
showed that there is no canonical realization of the

asymptotic symmetry algebra due to nonintegrability of
the canonical boundary “charges.”
Finally, we formulated generic 2D higher spin theories

as PSM with higher rank gauge group and showed that
the asymptotic symmetry algebra for spin-3 gravity [with
principally embedded SLð2Þ] is a single copy of the W3

algebra.
We address now generalizations and possible further

applications of our results. Instead of choosing V ¼ X one
could study potentials that asymptote to X at large values
of X, so that curvature asymptotically is still a negative
constant (12). In general such potentials will introduce
curvature singularities in the bulk and the global structure
no longer is that of global AdS2; i.e., the Penrose diagram
no longer is a strip. Even in that case one could still proceed
along the lines of our work and take into account both
boundaries.
There are two alternatives. If one wants to consider

only a single boundary component, then the variational
principle is not well defined for our boundary conditions.
One could try to make sense of such a situation, though it
is awkward if solutions to the classical EOM no longer
are classical solutions of the theory; i.e., they do not
extremize the action. It is important to point out that this
defect cannot be repaired by adding suitable boundary
terms to the action, since the nonvanishing term in the
first variation of the on-shell action (20) is not integrable,
for essentially the same reasons that the canonical
boundary charges are not integrable (32). It could be
possible to find suitable relations between the state-
dependent functions TR;L and XR;L leading to a well-
defined variational principle.
Alternatively, one could fix the leading behavior of

the dilaton, XR ¼ const in (17), which reduces the
boundary conditions preserving gauge transformations
to translations only. Then the theory can no longer
be dual to a CFT. Instead, such an approach would
generate a correspondence to quantum mechanics at the
boundary [59].
Similar comments apply to generalizations with nonzero

kinetic potential, UðXÞ ≠ 0 in (1). Also in this case
asymptotic AdS2 behavior is guaranteed if the potential
V asymptotes to X (times a positive constant).
Adding gauge fields like in [20,37] basically leads to a

modification of the potential VðXÞ, since all gauge fields
can be integrated out exactly. For instance, adding to the
action (1) a Maxwell term FμνFμν is equivalent to shifting
the potential VðXÞ by a term that is constant on shell and
proportional to the square of the conserved Uð1Þ charge.
Generalizing our boundary conditions to this case is
straightforward and only requires to allow for a suitable
order unity term in the dilaton in addition to the terms
already present in (17a).
At some point we switched off the fluctuations TR at

one boundary component. It could be interesting to study
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generalizations where both TR;L are switched on. We
speculate that they may lead to an additional uð1Þ current
algebra.
Some of the canonical issues of our intrinsic 2D dis-

cussion could be avoided by lifting the discussion to higher
dimensions. For example, in many approaches to AdS2
holography the starting point is string theory and AdS2 times
some compact manifold arises as near horizon approxima-
tion to black holes; see for instance [17,37,60]. However, it
could be rewarding to try to clarify these issues intrinsically
within 2D, since this may shed light on more generic
situations where an asymptotic symmetry algebra arises
but does not allow for a well-defined canonical realization.
Generalizations to other higher spin theories, like spin-N

theories based on SLðNÞ or Vasiliev-type theories [61]
based on hsðλÞ, are straightforward and follow from similar
constructions in three dimensions [21,22]. There will
always be a single copy of some W algebra as asymptotic
symmetry algebra [62].
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