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We focus on the evolution of curvature perturbation on superhorizon scales by adopting the spatial
gradient expansion and show that the nonlinear theory, called the beyond δN formalism as the next-leading
order in the expansion. As one application of our formalism for a single scalar field, we investigate the case
of varying sound speed. In our formalism, we can deal with the time evolution in contrast to δN formalism,
where curvature perturbations remain just constant, and nonlinear curvature perturbation follows the simple
master equation whose form is similar to one in linear theory. So the calculation of bispectrum can be done
in the next-leading order in the expansion as similar as the case of deriving the power spectrum. We discuss
localized features of both primordial power and bispectrum generated by the effect of varying sound speed
with a finite duration time. We can see a local feature like a bump in the equilateral bispectrum.
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I. INTRODUCTION

Recent observations of the cosmic microwave back-
ground anisotropy, such as WMAP and PLANCK satellites
[1,2], show very good agreement of the observational data
with the prediction of standard inflationary cosmology
where primordial fluctuations generated from quantum
fluctuations of an inflaton field (see [3] for review). The
most recent observations by the PLANCK [4,5] show that
the primordial curvature perturbation is nearly scale invari-
ant and follows almost perfect Gaussian statistics. The non-
Gaussianity of primordial fluctuations is a powerful probe
to discriminate inflationary models and also distinguish
among different models (see, e.g., Ref. [6] and references
therein). Therefore, if any tiny signature from these
observations will be detected, it can tell us important
information on the physics behind inflation. The
PLANCK data [5] have measured −8.9 < flocNL < 14.3
and −192 < feqNL < 108 for the so-called local type and
equilateral type of non-Gaussianity, respectively, at the 2σ
(95%) confidence level. These observations show that the
primordial curvature perturbation follows almost perfect
Gaussian statistics, however it may be detected at smaller
scales and also as some tiny localized feature in the
bispectrum. Especially, although the quantity flocNL is now
constrained very strongly, the possibility still remains that
non-Gaussianity of equilateral shape has localized features.
If ever detected, it would tell us important properties of the
curvature perturbation and be a probe to distinguish the
models of inflation.
The gradient expansion approach [7–19] to discuss the

evolution of nonlinear curvature perturbation on super-
horizon scales is a powerful tool on calculation as well as

the second-order perturbation theory [20,21]. The lowest
order in the expansion is the so-called δN formalism [9,12].
However, if we would analyze local features of the equi-
lateral bispectrum, this formula is not suitable since it leads
to that nonlinearity of curvature perturbations on long-
wavelength scales over horizon always generates the local
shape of bispectrum. Therefore we focus on the nonlinear
theory valid to the next-leading order in the expansion. It is
called the beyond δN formalism and it is able to give us not
only the local, but also the equilateral shape of bispectrum
in contrast to δN formalism, even though the expansion
technique is taken on superhorizon scales [16,18]. Our
nonlinear theory of the next-leading order in the expansion
includes such subhorizon effect corresponding to the
equilateral shape by matching a superhorizon curvature
perturbation and subhorizon one suitably.
The main purpose of this paper is to investigate the

situation where effective sound speed changes with a finite
duration time and analyze whether features can appear in
the bispectrum, in particular of the equilateral shape by
using our nonlinear perturbation theory. The previous
papers have studied the models of varying sound speed
both in the power spectrum and in the bispectrum [22–29]
(see also, e.g., [30–32] for the heavy physics, related to the
same purpose and references therein), where one basically
assumed a sudden change; however, we particularly focus
on the effect of a finite duration time. As a simple
application of beyond δN formalism, we will consider a
single scalar field whose effective sound speed will change
in time due to a noncanonical kinetic term. As a first step,
we will assume the background evolution follows a simple
slow-roll inflation, although a more realistic situation
would be realized for a more complicated coupled kinetic
term on a multiscalar system, such as the curvaton scenario
[33,34], otherwise the slow-roll conditions will be also*takamizu@yukawa.kyoto‑u.ac.jp; yt313@cam.ac.uk
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violated. However, in this paper in order to extract the
effects of the change of sound speed alone, we study the
case of varying sound speed without affecting the back-
ground evolution as a simple tractable example, the same
setup as in Ref. [23], and see the Appendix therein for a
more detailed discussion.
The rest of the paper is organized as follows. In Sec. II,

we review beyond δN formalism and especially focus on
the point that the master equations of curvature perturbation
in linear and nonlinear theory show similar forms and
derive the calculations. Then we discuss the possible
example as the case of varying sound speed in Sec. III
and derive featured power spectrums and bispectra of
the curvature perturbations affected by such changes.
Section IV is devoted to the conclusion.

II. BEYOND δN FORMALISM

We employ the spatial gradient expansion. In this
approach, we suppose that the characteristic length scale
L of a perturbation is longer than the Hubble length scale
1=H of the background, i.e. HL ≫ 1. Therefore, ϵ≡
1=ðHLÞ is regarded as a small parameter and we can
systematically expand equations in the order of ϵ, identify-
ing a spatial derivative is of order ϵ, ∂iQ ¼ OðϵÞQ. To
clarify the order of gradient expansion, we introduce the
superscript ðmÞ to a quantity of order of gradient expan-
sion: OðϵmÞ.
The gradient expansion technique has been applied up to

second order Oðϵ2Þ in the expansion to a universe domi-
nated by a single [13–16] and a multiscalar field [18],
yielding the formalism “beyond δN.” The formulas have
been also extended to be capable of a universe filled with a
most generic noncanonical scalar field [19], which can give
the so-called G-inflation. In this paper, we will consider a
single scalar field as a simple example, whose kinetic term
is a noncanonical, whose Lagrangian takes the form
PðX;ϕÞ, where X ¼ −∂μϕ∂μϕ=2 because we will later
discuss the situation of the effective sound speed: c2s ¼
PX=ðPX þ 2PXXXÞ changes in time where the subscript X
represents a derivative with respect to X and notice that the
Lagrangian denoted by P plays the role of the pressure as
shown in Refs. [15,35].
Following Ref. [16], we will briefly review beyond δN

formalism for a single scalar field in this section. This
system is characterized by a single scalar degree of free-
dom, and hence one expects that a single master variable
governs the evolution of scalar perturbations even at
nonlinear order. By virtue of gradient expansion, one
can indeed derive a simple evolution equation1 for an

appropriately defined master variable RNL
c on comoving

hypersurfaces:

RNL
c

00 þ 2
z0

z
RNL

c
0 þ c2s

4
Rð2Þ½RNL

c � ¼ Oðϵ4Þ; (2.1)

with

z≡ a
H

�
ρþ P
c2s

�1
2

; (2.2)

where ρ and P denote energy density and pressure of a
scalar field, respectively, the prime represents differentia-
tion with respect to the conformal time τ and Rð2Þ½X� is the
Ricci scalar of the metric X, which can be given by

Rð2Þ½lð0Þ� ¼ −2ð2Δlð0Þ þ δij∂ilð0Þ∂jlð0ÞÞe−2lð0Þ : (2.3)

We have taken the metric of the background spacetime as
the flat FLRW universe,

ds2 ¼ a2ð−α2dτ2 þ e2lδijdxidxjÞ þOðϵ3Þ; (2.4)

where α denotes the lapse function, while the shift vector βi

is vanishing at the next-leading order βi ¼ Oðϵ3Þ. As
shown in [16,18], the natural assumptions on the metric
is βi ¼ OðϵÞ since the FLRW background must be recov-
ered in the limit ϵ → 0. However, we assume the absence of
any spatial gradient at leading order and the universe is
locally homogeneous and isotropic. This leads to the above
stronger condition and can be justified by the choice of the
spatial coordinates.
Equation (2.1) is to be compared with its linear

counterpart:

RLin
c

00 þ 2
z0

z
RLin

c
0 − c2sΔRLin

c ¼ 0; (2.5)

from which one notices the correspondence between the
linear and nonlinear evolution equations. In order to
calculate the evolution equations in Fourier space, we have
to take the replacement Δ → −k2.
It is important to notice that the structures of both (2.1)

and (2.5) are similar forms, except for the last terms in the
left-hand sides. This point is an advantage in order to
estimate evolutions of curvature perturbations in linear
and nonlinear theory since the same calculation is valid
on following the evolution equation. We will see the
details later.

A. Linear theory valid through Oðϵ2Þ
To obtain the power spectrum, we will use the linear

theory of the curvature perturbation in this subsection. The
above equation (2.5) has two independent solutions; con-
ventionally called a growing mode and a decaying mode.

1Also for a generic noncanonical single scalar field, the master
equation becomes a simple evolution equation as a same form. As
shown in Ref. [19], the system described by the so-called G-
inflation, that is PðX;ϕÞ −GðX;ϕÞ□ϕ can be reduced to a same
form with an extended definition of z.
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We assume that the growing mode is constant in time at
leading order in the spatial gradient expansion.
As shown in [16], the linear solution valid up to Oðϵ2Þ

can be obtained as

RLin
c;k ðτÞ ¼

�
~αLink þ ð1 − ~αLink Þ

~DðτÞ
~D�

−
�
~F�
~D�

~DðτÞ þ ~FðτÞ
�
k2
�
Uð0Þ

k ; (2.6)

where the integrals ~DðτÞ and ~FðτÞ have been given as

~DðτÞ ¼ 3Hðτ�Þ
Z

η

τ�
dτ0

z2ðτ�Þ
z2ðτ0Þ ;

~FðτÞ ¼
Z

τ

τ�

dτ0

z2ðτ0Þ
Z

τ0

τ�
z2ðτ00Þc2sðτ00Þdτ00: (2.7)

Here ~D� ¼ ~Dðτ�Þ, ~F� ¼ ~Fðτ�Þ, τ� and H denote an initial
time of gradient expansion and the conformal Hubble
parameter H ¼ d ln a=dτ, respectively. The integrals in
(2.7) represent a decaying and growing mode solution,
respectively.
Note thatRLin

c;k ðτ�Þ ¼ Uð0Þ
k that is just a constant solution,

while RLin
c;k ð0Þ ¼ ~αLink Uð0Þ

k . Thus if the factor j ~αLink j is large,
it represents an enhancement of the curvature perturbation
on superhorizon scales due the Oðϵ2Þ effect.
Here it is useful to consider an explicit expression

for ~αLink in terms of RLin
c;k and its derivative at τ ¼ τ�.

The result is

~αLink ¼ 1þ
~D�

3H�

RLin
c;k

0ðτ�Þ
RLin

c;k ðτ�Þ
− k2 ~F� þOðk4Þ: (2.8)

In order to relate our calculation with the standard
formula for the curvature perturbation in linear theory,
we introduce τk (or tk) which denotes the time at which the
comoving wave number has crossed the Hubble horizon,

τk ¼ − r
k
; 0 < r ≪ 1: (2.9)

The power spectrum at the horizon crossing time is
given by

hRLin
c;k ðτkÞRLin

c;k0 ðτk0 Þi ¼ ð2πÞ3PRðkÞδ3ðkþ k0Þ;
PRðkÞ ¼ jRLin

c;k ðτkÞj2: (2.10)

By inverting RLin
c;k in terms of Uð0Þ

k as shown in [16],
we can show the final value of the linear curvature
perturbation as

RLin
c;k ð0Þ ¼ ~αLink Uð0Þ

k ¼ αLink RLin
c;k ðτkÞ þOðk4Þ; (2.11)

where

αLink ¼ 1þ αRDk − k2Fk; (2.12)

and

αR ¼ 1

3HðηkÞ
RLin0

c;k

RLin
c;k

����
τ¼τk

;

Dk ¼ 3HðτkÞ
Z

0

τk

dτ0
z2ðτkÞ
z2ðτ0Þ ;

Fk ¼
Z

0

τk

dτ0

z2ðτ0Þ
Z

τ0

τk

z2ðτ00Þc2sðτ00Þdτ00: (2.13)

The formula (2.11) will be used in the next subsection.
The power spectrum at the final time is thus enhanced by

the factor jαLink j2 as

hRLin
c;k ð0ÞRLin

c;k0 ð0Þi¼ ð2πÞ3jαLink j2PRðkÞδ3ðkþk0Þ: (2.14)

B. Nonlinear theory valid through Oðϵ2Þ
Using the linear solution of the curvature perturbation

given by (2.6), here we can derive the nonlinear solution by
matching the two at τ ¼ τ�. The main purpose of the
matching is to make it possible to analyze superhorizon
nonlinear evolution valid up to the second order in gradient
expansion, starting from a solution in the linear theory. In
particular, we would like to evaluate the bispectrum
induced by the superhorizon nonlinear evolution. For this
purpose, we need to have full control over terms up not
only to Oðϵ2Þ but also to Oðδ2Þ. We have introduced a
small expansion parameter δ that characterizes the ampli-
tude of perturbation, where we suppose that the linear
solution is of order OðδÞ.
Therefore, the matching condition at τ ¼ τ� should be of

the form

RNL
c ðτ�Þ ¼ RLin

c ðτ�Þ þ s1ðτ�Þ þOðϵ4; δ3Þ;
RNL

c
0ðτ�Þ ¼ RLin

c
0ðτ�Þ þ s2ðτ�Þ þOðϵ4; δ3Þ; (2.15)

where s1ðτ�Þ ¼ Oðδ2Þ and s2ðτ�Þ ¼ Oðδ2Þ are functions of
τ� and spatial coordinates. While the linear solutionRLin

c ðτÞ
is considered as an input, i.e., initial condition, the addi-
tional terms, s1ðτ�Þ and s2ðτ�Þ, are to be determined by the
following condition. The terms of order Oðδ2Þ in RNL

c;k and
RNL

c;k
0 should vanish at the horizon crossing when τ ¼ τk.

Note that τk < τ�. In other words, s1ðτ�Þ and s2ðτ�Þ
represent the Oðδ2Þ part of RNL

c and RNL
c

0, respectively,
generated during the period between the horizon crossing
time and the matching time.
We have to omit the explicit way to determine the terms

s1 and s2 for want of space, that was determined auto-
matically and shown in [16]. Therefore, to match the
solutions, we do not need to use the second order
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perturbation theory and we have shown that the final result
is independent from the the infinitesimal shift of the
matching time; see [16].
As a result, using the linear solution of the curvature

perturbation given by (2.6) we have the nonlinear comov-
ing curvature perturbation at the final time τ ¼ 0 (or t ¼ ∞)
given by

RNL
c;kð0Þ ¼ RLin

c;k ðτkÞ − ð1 − αLink ÞRLin
c;k ðτkÞ

−
1

4
Fk

~Rð2Þ½RLin
c ðτkÞ� þOðϵ4; δ3Þ; (2.16)

where

~Rð2Þ½l0�≡−2ðδij∂il0∂jl0 − 4l0Δl0Þ
¼ 4Δl0 þ Rð2Þ½l0� þOððl0Þ3Þ: (2.17)

The first term in (2.16) corresponds to the result of the δN
formalism, which is a constant since we considered the
system for a single scalar field, the second term is related to
an enhancement on superhorizon scales in linear theory,
and the last term is the nonlinear effect which may become
important if Fk is large.
It is noticed that in order to calculate the final values of

curvature perturbation both in linear (2.11) and in nonlinear
theory (2.16), all one has to do is to estimate the same
integrals shown in both theories as DK and Fk in αLink . The
reason why is that the master equations (2.1) and (2.5) for
both theories have the same structures of the evolution
equation as described before.
In this subsection, we calculate the bispectrum of our

nonlinear curvature perturbation by assuming thatRLin
c;k ðτkÞ

is a Gaussian random variable. We assume the leading
order contribution to the bispectrum comes from the terms
second order in RLin

c;k ðτkÞ. The final result (2.16) can be
reduced to

ζk ¼ RNL
c;kð0Þ

¼ αLink RLin
c;k ðτkÞ þ

Fk

2

�Z
d3k0d3k00

ð2πÞ3 ð4k02 − δijk0ik00jÞ

×RLin
c;k0 ðτk0 ÞRLin

c;k00 ðτk0 Þδ3ð−kþ k0 þ k00Þ
�
þOðϵ4; δ3Þ:

(2.18)

By assuming the Gaussian statistics for RLin
c;k ðτkÞ, it is easy

to calculate the power spectrum shown as (2.14) with (2.10)
and the bispectrum of primordial curvature perturbation: ζ.
The dimensionless bispectrum Bζ is expressed in terms

of the Fourier transformation of the three point function as

hζk1ζk2ζk3iC ¼ ð2πÞ7δ3ðk1 þ k2 þ k3ÞP2
ζ

Bζ

k21k
2
2k

2
3

; (2.19)

where h� � �iC means that it extracts out only connected
graphs. We use the dimensionless quantity Bζ to represent
the amplitude of the bispectrum with the uncorrected power
spectrum Pζ, which has been defined by Pζ ¼ k3Pζ=2π2.
We can use a standard amplitude of dimensionless power
spectrum as Pζ ¼ Oð10−9Þ. With the help of ((2.18), the
three point correlation function of ζ is at leading order
calculated as

hζk1ζk2ζk3iC ¼ ð2π3Þ½ReðαLin�k1
αLink2

ÞFk3

× f2ðk21þ k22Þ− δijki1k
j
2gδð3Þðk1þk2þk3Þ

× jRLin
c;k1

ðτk1Þj2jRLin
c;k2

ðτk2Þj2þ 2 terms�;
(2.20)

where Re means taking a real part, a superscript star
denotes a complex conjugate and “2 terms” means terms
with cyclic and permutations among the three wave
numbers. The power spectrum of RLin

c;k ðτkÞ is written as
(2.10). Then we have

Bζðk1; k2; k3Þ ¼
1

8k1k2k3
½ReðαLin�k1

αLink2
ÞFk3

× f5ðk21 þ k22Þ − k23gk33ΔPζðk1ÞΔPζðk2Þ
þ 2 terms�; (2.21)

where ΔPζ denotes the modulation factor of power
spectrum, which is a ratio of a corrected power spectrum
to an uncorrected one:

ΔPζðkÞ ¼
k3

2π2Pζ
jRLin

c;k ðτkÞj2: (2.22)

III. APPLICATION: VARYING SOUND SPEED

We consider the case of varying sound speed as one
application of beyond δN formalism. As a simple example,
we have assumed that the background evolution satisfies
the slow-roll conditions throughout this paper, that is

η1 ¼ − H
:

H2
≪ 1 and η2 ¼

η
:
1

Hη1
≪ 1; (3.1)

where a dot denotes a derivatives with respect to the
physical time t. We compute the curvature perturbation
for a model such that time variation of the sound speed is
described by the following function as

c2s ¼ c2s1 þ ðc2s2 − c2s1Þ
tanh½ðτ − τ0Þ=d� þ 1

2
; (3.2)

where cs1, cs2, τ0 and d are parameters and the sound speed
changes from cs1 to cs2 with a varying duration charac-
terized by τ0 and d. We can introduce a new parameter
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T ¼ cs1=cs2, which represents the ratio of sound speed
before and after the transition. If we take the width of
duration very small d≲ 1, the model results in the previous
study of sudden varying sound speeds as in [23].
Throughout this paper, we set τ0 ¼ −500, but the results
do not depend on specifying the choice of the parameter.
We plot the evolution of sound speed for example in Fig. 1
where we set T ¼ 0.9 and d ¼ 1, 10, 50, 100.

A. Power spectrum

The basic equation in the linear theory for primordial
curvature perturbation ζ is written in terms of v ¼ ζz. The
basic equation of motion for Fourier modes is given by

v00k þ
�
c2sk2 − z00

z

�
vk ¼ 0: (3.3)

We introduce a variable u, which is related to v as

−csk2uk ¼ z

�
vk
z

�0
; csvk ¼ θ

�
uk
θ

�0
; (3.4)

where we have defined θ≡ 1=ðcszÞ. The basic equation of
motion (3.3) in terms of the Fourier modes uk is obtained as

u00k þ
�
c2sk2 − θ00

θ

�
uk ¼ 0: (3.5)

Note that the term ðc0s=csÞ does not exist in θ00=θ since the
variable θ does not depend on cs from (2.2) as
θ ¼ 1=ða ffiffiffiffiffiffiffi

2η1
p Þ. We have to solve this equation under

the background evolution. The term θ00=θ is rewritten in
terms of slow-roll parameters as

θ00

θ
¼ 1

τ2

�
η2
2
− η1

�
; (3.6)

where we have used slow-roll approximation that is, jη1j,
jη2j ≪ 1 and taking their linear limits, and used a useful
equation,

aH ¼ − 1

τð1 − η1Þ
: (3.7)

Therefore, we can obtain the basic equation

u00k þ
�
c2sk2 − ν2 − 1

4

τ2

�
uk ¼ 0; (3.8)

where we have defined

ν2 ¼ η2
2
− η1 þ

1

4
; (3.9)

and approximate it as

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2
2
− η1 þ

1

4

r
≈
1

2
þ η2

2
− η1: (3.10)

In the regime when τ < τ0, setting cs ¼ cs1 leads to the
equation of motion,

u00k þ
�
c2s1k

2 − ν2 − 1
4

τ2

�
uk ¼ 0; (3.11)

and its solution is obtained by

uk1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi−kcs1τ

p
½c1Hð1Þ

ν ð−kcs1τÞ þ c2H
ð2Þ
ν ð−kcs1τÞ�;

(3.12)

where Hð1Þ;ð2Þ
ν ðτÞ denote the Hankel function and c1;2

are arbitrary constants, which have to be determined by
initial conditions at the time τ → −∞. We choose the
adiabatic vacuum at the initial time in terms of vk as
vk → e−ikcs1τ=

ffiffiffiffiffiffiffiffiffiffiffi
2kcs1

p
. Hence it leads to the choice

of c1, c2 as

c1 ¼
i

2k3=2

ffiffiffiffiffiffi
π

cs1

r
exp

�
2νþ 1

4
πi

�
; c2 ¼ 0: (3.13)

We solve the basic equation (3.8) numerically with the
above initial condition. This solution can show us the
evolution from subhorizon scale to superhorizon scale. On
the other hand, we can calculate the enhance factor jαLink j by
estimating the Eq. (2.13) obtained under the long-
wavelength approximation. Then we can compare it with
the above numerical exact solution. In order to compare
them, we have to estimate ζ from the numerical solution of
u by using the relation ζ ¼ v=z ¼ θ2ðu=θÞ0.
First we will show the exact solution by using numerical

solving in the left panel of Fig. 2 for various values of d. We
plot the modulation factors of power spectrum with k=k0,
where k0 is the wave number corresponding to a transition
time τ0. It shows some feature like bump at k ¼ k0 with
oscillation. As d takes a smaller value, the oscillations are
more intensive and they do not converge for d < Oð1Þ. The

FIG. 1 (color online). We plot varying sound speed as taking
cs1 ¼ 1, cs2 ¼ 0.9 for various values of varying width d. We set
τ0 ¼ −500. The horizontal axis is taking the conformal time.
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result of d ¼ 1 is consistent with the previous result of
Ref. [23] for studying the case of a sudden varying
sound speed.
The right panel of Fig. 2 shows the comparison of such

an exact solution with the solution obtained by using the
long-wavelength approximation as (2.14). It tells us that
the approximation is very good for fitting the exact
solution. Especially, we can see that the approximation

is good for not only the superhorizon regime k=k0 < 1, but
also the subhorizon regime k=k0 > 1. The enhancement
from the amplitude at the horizon crossing time, which is
described by ðαLink Þ2 of (2.12), occurs at superhorizon
scales k=k0 < 1.
Next,wewill examine how themodulation factors depend

on different variables. In Fig. 3, we plot the final power
spectrums for the case of decreasing sound speed T < 1 and

FIG. 2 (color online). (Left) We plot the modulation factor of final power spectrum for various values of d with setting T ¼ 0.9.
We can see the featured bumps at k ¼ k0 with oscillation. As d takes a smaller value, the oscillations are more intensive. (Right)
Comparison the long-wavelength approximation (2.14) with the numerical exact solution of (3.8). We set T ¼ 0.9 and d ¼ 100. The
enhancement from the amplitude at the horizon crossing time R2ðτkÞ (green line), which is described by ðαLink Þ2 of (2.12), occurs at
superhorizon scales k=k0 < 1.

FIG. 3 (color online). We plot the modulation of final power spectrums for various values of T < 1 (left) and T > 1 (right) with setting
d ¼ 20. All cases in the left (right) panel correspond to the situations of decreasing (increasing) sound speeds.

FIG. 4 (color online). We plot dimensionless bispectrum as a function of x2 ¼ k2=k1 and x3 ¼ k3=k1. We set T ¼ 0.5, d ¼ 20 with
parameters: k1=k0 ¼ 0.1 (left) and k1=k0 ¼ 1 (right). The bispectrum has a peak at the equilateral (local) shape in the left (right) panel.
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the increasing oneT > 1, respectively. From the observation
of WMAP, the parameter jT − 1j≳ 0.1 is strongly con-
strained, therefore the modulation appearing for T ¼ 0.9 is
atmost in order tomake features in power spectrum (see [23]
for the details).

B. Bispectrum

In order to compare with observations, we can define a k-
dependent nonlinear parameter by dividing the dimension-
less bispectrum by a square of the corrected power
spectrum at the final time: fNLðk1; k2; k3Þ as

fNL ≡ 10

3

k1k2k3Bζ

jαLink1
αLink2

j2ΔPζðk1ÞΔPζðk2Þk33 þ 2 terms

¼ 5

12

�
jαLink1

αLink2
j2k33 þ 2 terms

�−1

×

�
Reðα�k1αk2ÞFk3f5ðk21 þ k22Þ − k23gk33 þ 2 terms

�
:

(3.14)

Next we will plot k-dependent nonlinear parameter
fNLðk1; k2; k3Þ. We plot a dimensionless bispectrum as a

function of x2 ≡ k2=k1 and x3 ≡ k3=k1 with the free
parameter k1=k0 in Fig. 4. In the figure, we take k1=k0 ¼
0.1 and k1=k0 ¼ 1, respectively for both of the same
settings of T ¼ 0.5, d ¼ 20. Here we notice that our
expansion technique is valid for k1=k0 ≤ 1, since we can
predict the evolution only when the transition happens after
the horizon crossing, tk < t0. As shown in Fig. 4, for the
small value of k1=k0 < 1, the bispectrum has a peak at an
equilateral shape; k1 ¼ k2 ¼ k3. On the other hand, for
k1=k0 ¼ 1, it has a peak at a local (squeezed) shape;
k3 ¼ 0, k1 ¼ k2.
When we focus on bispectrum for superhorizon scales,

i.e., taking k1=k0 < Oð1Þ, all bispectra have peaks at
equilateral shape affected by the effect of finite changing
duration time d, otherwise the delta approximation, d ≪ 1,
also shows the local type of bispectra, which have been
seen in the previous paper [24]. Our results do not depend
on specifying the choice of parameter d, only when we
consider a finite duration time; d > Oð1Þ.
Therefore, we will plot the equilateral bispectrum feqNL ¼

fNLðk1 ¼ k2 ¼ k3Þ in Fig. 5, and Fig. 6 for various values
of T with d ¼ 20. We can see the featured bispectrum in
Fig. 5 where we take small values of T as T ¼ 0.1 and
T ¼ 0.05, pointing feqNL ¼ Oð5Þ within the recent con-
straint. On the other hand, the cases for other values of T
show no such feature in Fig. 6, where the equilateral
bispectrum increases (decreases) towards super(sub)hori-
zon scale as seen in the left (right) panel. We can also see a
small feature at subhorizon scale k=k0 ≳ 1 for the large
value of T ¼ 10, however this value of amplitude of the
feature is too small to be detectable.

IV. CONCLUDING REMARKS

We focus on the evolution of curvature perturbation on
superhorizon scales by adopting the spatial gradient
expansion. We have reviewed such an approximation in
both linear and nonlinear theory, which is called the beyond
δN formalism as the next-leading order in the expansion. In
our formalism [16,19], we can deal with the time evolution

FIG. 5 (color online). We plot the equilateral bispectrum for
various values of T < 1 with d ¼ 20. They show the featured
bispectra at k=k0 ≃ 0.1.

FIG. 6 (color online). The equilateral bispectrum for T < 1 (left) and T > 1 (right) with d ¼ 20. Even though we can see small
features at subhorizon scale k=k0 > 1 for a large value of T ¼ 10, the plots generally show no detectable feature.

APPLICATION OF THE BEYOND δN FORMALISM: … PHYSICAL REVIEW D 89, 043528 (2014)

043528-7



in contrast to δN formalism, where curvature perturbations
remain just constant, and nonlinear curvature perturbation
follows the simple master equation whose form is similar to
one in linear theory.
As seen in (2.1) and (2.5), the evolution equation for

curvature perturbation in both theories takes similar struc-
tures, therefore in order to estimate the power spectrum (2.14)
and bispectrum (2.21) in the approximation, all we have to do
is to calculate the same integrals as DK and Fk in the
enhancement factor: αLink shown in (2.12). It is easy to
estimate non-Gaussianity, in contrast with the usual in-in
formalism [20], where a numerical calculation of the corre-
lated function would be too difficult to solve (see also [36] for
the numerical method), if one considers a complicated
situation needs to be solved numerically. Beyond δN formal-
ism takes an advantage to calculating the correlated features
for power spectrum and bispectrum since the calculation is
basically the same as solving the power spectrum.
As one application of our formalism for a single scalar

field, we investigate the case of varying sound speed.
Although the previous studies have done for the situation of
a sudden changing of sound speed, in this paper we studied
an effect of its changing with a finite duration time, which
needs to be solved numerically. The study of [27] also
investigated such mild transit in the speed of sound, but the
result can be derived in the analytic way and by using a
different formalism from our δN formalism. The results
give the similar feature and are consistent with each other.
We also notice that the study of [29] did a most recent
analysis by using PLANCK data and also show such a
featured bispectrum.

The main purpose of this paper is to analyze whether the
features can appear in the bispectrum, in particular of
equilateral shape by using our nonlinear perturbation
theory. The case is more suitable to calculate by using
our formalism than by using the in-in formalism. We
discuss local features of primordial power and bispectrum
generated by the effect of varying sound speed. As shown
in [16] by using a similar way, we have also investigated
one application of the beyond δN for analyzing the featured
bispectrum affected by a sharp change in the inflaton’s
potential slope.
As shown in Fig. 5, we can see a local feature like a

bump at k=k0 ¼ Oð0.1Þ for a small value of T ¼ cs1=cs2 <
Oð0.1Þ in the equilateral bispectrum, which has a peak
value of non-Gaussianity; feqNL ¼ Oð10Þ at most, consistent
within the recent observational constraint by PLANCK.
However, such parameters also lead to the features in the
power spectrum, which are excluded from the observations
since the current CMB experiment gives a strong con-
straint, which is sensitive to jT − 1j≳ 0.1 by the CMB
temperature power spectrum (see [23]).
This study is one toy model as a first step to investigate a

more realistic situation, that is for example, including a
background evolution, extending to multifield system, etc.
We plan to work on this and hope to discuss them in the
future.
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