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We point out that the ability of some models of inflation, such as the Higgs inflation and the universal
attractor models at large values of the coupling ξ, in reproducing the available data is due to their relation to
the Starobinsky model of inflation. For large field values, where the inflationary phase takes place, all of
these classes of models are indeed identical to the Starobinsky model. Nevertheless, the inflation is just an
auxiliary field in the Jordan frame of the Starobinsky model, and this leads to two important consequences:
first, the inflationary predictions of the Starobinsky model and its descendants are slightly different (albeit
not measurably); second, the theories have different small-field behavior, leading to different ultraviolet
cutoff scales. In particular, one interesting descendant of the Starobinsky model is the nonminimally
coupled quadratic chaotic inflation. Although the standard quadratic chaotic inflation is ruled out by the
recent Planck data, its nonminimally coupled version is in agreement with observational data and valid up
to Planckian scales.
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I. INTRODUCTION

The recent Planck results [1] have indicated that the
cosmological perturbations in the cosmic microwave back-
ground (CMB) radiation are nearly Gaussian and of the
adiabatic type. If one insists in assuming that these
perturbations are to be ascribed to single-field models of
inflation [2], the data put severe restriction on the infla-
tionary parameters. In particular, the Planck results have
strengthened the upper limits on the tensor-to-scalar ratio,
r≲ 0.12 at 95% C.L., disfavoring many inflationary
models [1]. For instance, the chaotic models with potential
ϕn with n ≥ 2 are not in good shape; in particular, the
simplest quadratic chaotic model m2ϕ2 has been excluded
at about 95% C.L.
Among the inflationary models discussed by the Planck

collaboration is the Starobinsky ðRþ R2Þ theory proposed
in Ref. [3], whose predictions for the perturbations were
originally discussed in Ref. [4]. Although this model looks
quite ad hoc at the theoretical level, its perfect agreement
with the Planck data is basically due to an additional 1=N
suppression (N being the number of e-folds till the end of
inflation) of r with respect to the prediction for the scalar
spectral index ns. As expected, this has renewed interest in
this model. Particular recent efforts have been in the
direction of the supersymmetric version of it [5–11], along
the lines originated in Refs. [12,13].
Of course there are also other models which are in

agreement with the Planck data. For example, the so-called
Higgs inflation [14–16] and the so-called universal attractor
models at large values of the coupling ξ [17,18] give
exactly the same inflationary predictions to leading order as
the Starobinsky theory. In this paper we stress that there is a

simple reason why this apparent coincidence takes place:
all of these models are the Starobinsky model during
inflation. While this might be known to some (see for
instance Ref. [19] for the Higgs model of inflation), it
seems to be mysterious to others [20]. In the Planck paper
[1], for instance, the Starobinsky and the Higgs inflation
models are treated as different. The reason that these
models may be considered descendants of the
Starobinsky model is that during inflation the kinetic terms
are subleading with respect to the potential terms, and
therefore, they can be neglected in first approximation. If
so, the scalar field present in the Higgs model and in the
universal attractor models is just an auxiliary field which
can be integrated out, giving rise to the Starobinsky model.
During the inflationary phase, where kinetic energies
are negligible, apparent unrelated models are described
effectively by the same dynamics.
The next natural question is therefore if one can

distinguish these descendants from the Starobinsky model.
An obvious way is to compare the inflationary parameters
in these models beyond the leading order. As we show, the
slow-roll parameters are the same up to ∼10−5 corrections,
which are quite small to be measured in the upcoming
measurements. Another difference relies on the different
way reheating after inflation proceeds in the different
models [19], but again, differences are of the order of
10−3 in the spectral index, hardly detectable by Planck (the
often-quoted Planck result ns ¼ 0.960� 0.007 is based on
assumptions on the reionization, the primordial Helium
abundance and the effective number of neutrino).
The fact that the Starobinsky model and its descendants

differ by the kinetic term is also interesting from another
point of view. While the kinetic terms play a subleading
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role during inflation, they play a fundamental role in
determining the UV behavior of the theories and its cutoff
Λ. In particular, there is an ongoing discussion about the
validity of the Higgs inflation as it seems that the cutoff of
this theory is lower than the inflationary scale [21–23] (see
Ref. [24] for a criticism of these results). On the other side,
the cutoff of the Starobinsky theory is the Planck scale Mp
[23] so that inflation can be trusted in this framework. The
difference relies exactly in the role played by the kinetic
energy. We extend the discussion of the cutoff for the
universal attractor models. We find that when the potential
in the Jordan frame is of the power-law type ∼ϕ2n, the
cutoff is always above the inflationary scale only for
n > 7=2. Therefore, for any value of n < 7=2 (like for
example the Higgs inflation case for which n ¼ 2), the
cutoff satisfies the relation Λ < V1=4, where V is the
vacuum energy driving inflation, thus making the infla-
tionary predictions questionable. The case n ¼ 1 is par-
ticular as it corresponds to a nonminimally coupled simple
quadratic chaotic inflation. We find in this case that the
cutoff of this theory is at the Planck scale as in the
Starobinsky theory. Therefore, inflation can be trusted
for the nonminimally coupled version of the simple
quadratic chaotic inflation.
The structure of this work is as follows. In Sec. II, we

briefly describe the Starobinsky model and show why the
Higgs inflationmodel, the universal attractor models as well
as a higher dimensional Starobinsky-like model, which is
related to the T model of Ref. [20], may be considered
descendants of the Starobinsky model during inflation. In
Sec. III, we discuss the differences between these models in
their predictions for inflationary parameters, deferring the
discussion of their cutoffs, if viewed as effective field
theories, until Sec. IV. Finally, we conclude in Sec. V.

II. THE STAROBINSKY MODEL AND ITS
DESCENDANTS

The Starobinsky model [3] is described by the
Lagrangian

SS ¼
1

2

Z
d4x

ffiffiffiffiffiffi−gp �
M2

pRþ 1

6M2
R2

�
: (2.1)

This theory propagates a spin-2 state (graviton) and a scalar
degree of freedom. The latter is manifest in the so-called
linear representation where one can rewrite the Lagrangian
(2.1) as [25]

SS ¼
Z

d4x
ffiffiffiffiffiffi−gp �

M2
p

2
Rþ 1

M
Rψ − 3ψ2

�
: (2.2)

It is easy to see that upon integrating out ψ , one gets
back the original theory (2.1). After writing the expression
(2.2) in the Einstein frame by means of the conformal
transformation

gμν → e−
ffiffiffiffiffiffi
2=3

p
ϕ=Mpgμν ¼

�
1þ 2ψ

MM2
p

�−1
gμν; (2.3)

we get the equivalent scalar field version of the Starobinsky
model

SS ¼
Z

d4x
ffiffiffiffiffiffi−gp �

M2
p

2
R − 1

2
∂μϕ∂μϕ

− 3

4
M4

pM2
�
1 − e−

ffiffi
2
3

p
ϕ=Mp

�
2
�
: (2.4)

We see that during inflation (large values of ϕ), the
dynamics are dominated by the vacuum energy

VS ¼
3

4
M4

pM2: (2.5)

Equation (2.4) is the linear representation of the
Starobinsky model where the extra scalar degree of free-
dom is manifest. The theory described by the action given
by Eq. (2.4) leads to inflation with scalar tilt and tensor-to-
scalar ratio

ns − 1 ≈ − 2

N
; r ≈

12

N2
: (2.6)

Note that r has an additional 1=N suppression with respect
to the scalar tilt and thus this theory predicts a tiny amount
of gravitational waves. It is therefore consistent with the
Planck constraints. The normalization of the CMB anisot-
ropies fixes M ≈ 10−5.

A. Higgs inflation as a descendant
of the Starobinsky model

Let us now consider the Higgs inflation model which is
described by an action of the form [16]

SHI ¼
Z

d4x
ffiffiffiffiffiffi−gp �

M2
p

2
Rþ ξH†HR − ∂μH†∂μH

− λðH†H − v2Þ2
�
; (2.7)

where H is the standard model (SM) Higgs doublet and v
its vacuum expectation value. In the unitary gauge H ¼
h=

ffiffiffi
2

p
and for h2 ≫ v2, the theory is described by

SHI ¼
Z

d4x
ffiffiffiffiffiffi−gp �

M2
p

2
Rþ 1

2
ξh2R − 1

2
∂μh∂μh − λ

4
h4
�
:

(2.8)

In this case, successful inflation exists for ξ2=λ ≈ 1010.
During inflation, the kinetic term is, by definition, smaller
than any potential term, and thus (2.8) is effectively
described by the action
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SHI ¼
Z

d4x
ffiffiffiffiffiffi−gp �

M2
p

2
Rþ 1

2
ξh2R − λ

4
h4
�
: (2.9)

The Higgs field during inflation has been turned into an
auxiliary field which can be integrated out. We find that

ξhR − λh3 ¼ 0; (2.10)

which leads to

h2 ¼ ξR
λ
: (2.11)

Plugging this value back into the action, we find that the
theory during inflation can be equally well described by

SHI ¼
Z

d4x
ffiffiffiffiffiffi−gp �

M2
p

2
Rþ ξ2

4λ
R2

�
: (2.12)

Therefore, during inflation, Higgs inflation is equivalent to
the Starobinsky model, once we identify

M2 ¼ λ

3ξ2
: (2.13)

Since we know that M ≈ 10−5, we get that ξ2 ≈ 1010λ,
which is, not surprisingly, the value needed in Higgs
inflation. In addition, the vacuum energy which drives
inflation is then

VHI ¼
3

4
M2M4

p ¼
λ

4ξ2
M4

p: (2.14)

B. Universal attractor models as a descendant of the
Starobinsky model

The equivalence of the Starobinsky and Higgs inflation
models is not merely an accident. In fact, the Starobinsky
model is also equivalent during inflation to the general form
of nonminimal coupling proposed in Ref. [17]

Satt¼
Z

d4x
ffiffiffiffiffiffi−gp �

1

2
ΩðϕÞR−1

2
∂μϕ∂μϕ−VJðϕÞ

�
; (2.15)

with

ΩðϕÞ ¼ M2
p þ ξfðϕÞ; VJ ¼ f2ðϕÞ: (2.16)

It should be noted that this class of models was discussed
first in Ref. [22] where it was pointed that they are not
technically “natural,” as there is no obvious way for a
symmetry, for example, to preserve the relation between the
nonminimal coupling and the scalar potential.
Let us consider the case of large values of the coupling ξ

As in the Higgs inflation case, during inflation, the
dynamics are completely dominated by the potential so

that we may ignore the scalar kinetic term. Therefore, the
theory turns out to be written as

Satt ¼
Z

d4x
ffiffiffiffiffiffi−gp �

M2
p

2
Rþ 1

2
ξfðϕÞR − fðϕÞ2

�
: (2.17)

We may integrate out the scalar through its equation of
motion which is

1

2
ξRf0 − 2f0f ¼ 0; f0 ¼ ∂f=∂ϕ: (2.18)

The scalar field equation admits two solutions

f0 ¼ 0 (2.19)

and

f ¼ 1

4
ξR: (2.20)

Equation (2.19) is solved by a constant configuration
ϕ ¼ ϕ�. Therefore, it corresponds to Einstein gravity with
Planck mass M2

p þ ξfðϕ�Þ and cosmological constant
λ2fðϕ�Þ2. However, the second solution (2.20) gives

Satt ¼
Z

d4x
ffiffiffiffiffiffi−gp �

M2
p

2
Rþ ξ2

16
R2

�
(2.21)

i.e., the Starobinsky model (2.1) again with the
identification

M2 ¼ 4

3ξ2
: (2.22)

The vacuum energy that drives inflation turns out to be for
in this case

Vatt ¼
3

4
M2M4

p ¼
M4

p

ξ2
: (2.23)

C. Higher dimensional Starobinsky
model descendants

Let us now discuss the higher dimensional generalization
of the Starobinsky model with the action of the form

S ¼
Z

ddx
ffiffiffiffiffiffi−gp �

Md−2�
2

Rþ aRb

�
; (2.24)

where R is the ð4þ dÞ-dimensional Ricci scalar, M� is the
corresponding Planck mass and a and b are dimensionless
parameters. This higher dimensional theory can be linear-
ized in the scalar curvature as usual by introducing an
auxiliary field ϕ
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S ¼
Z

ddx
ffiffiffiffiffiffi−gp �

Md−2�
2

Rþ wϕ2R − ϕ
2b
b−1

�
; (2.25)

where

w ¼ b
b − 1

ððb − 1ÞaÞ1b: (2.26)

By making the conformal transformation to the metric
gμν → Ω2gμν, where

Ωd−2 ¼
�
1þ 2wϕ2

Md−2�

�−1
; (2.27)

we may write the action (2.25) as

S¼
Z

ddx
ffiffiffiffiffiffi−gp �

Md−2�
2

R−1

2
ðd−1Þðd−2ÞMd−2� ð∂μ logΩÞ2

−V0fðΩ2−d−1ÞΩðb−1Þd
b g b

b−1

�
; (2.28)

where

V0 ¼
M

bðd−2Þ
b−1�

ð2wÞ b
ðb−1Þ

: (2.29)

Clearly, in order to get a Starobinsky-like model, we need

d − 2 ¼ b − 1

b
d or b ¼ d

2
: (2.30)

Then the action (2.28) turns out to be

S¼
Z

ddx
ffiffiffiffiffiffi−gp �

Md−2�
2

R−1

2
ðd−1Þðd−2ÞMd−2� ð∂μ logΩÞ2

−V0ð1−Ωd−2Þ d
d−2

�
: (2.31)

After parametrizing Ω as

logΩ ¼ − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd − 1Þðd − 2Þp ψ

M�ðd−2Þ=2
; (2.32)

we get that

S ¼
Z

ddx
ffiffiffiffiffiffi−gp �

Md−2�
2

R − 1

2
∂μψ∂μψ

− V0

�
1 − e

− ffiffiffiffiffi
d−2
d−1

p
ψ

M�
d−2
2

� d
d−2
�
: (2.33)

After a dimensional reduction in a d − 4 torus Td−4, we get
the four-dimensional action

S¼
Z

d4x
ffiffiffiffiffiffi−gp �

M2
p

2
R− 1

2
∂μχ∂μχ −V0

�
1− e−

ffiffiffiffiffi
d−2
d−1

p
χ
Mp

� d
d−2
�

(2.34)

after identifying

χ ¼ V1=2
d−4ψ ; Vd−4Md−2� ¼ M2

p; (2.35)

where Vd−4 is the volume of Td−4. We assume of course
that the torus moduli or at least its volume modulus is
stabilized. The potential of this generalized Starobinsky
model is of the general form

V ¼ V0

�
1 − eα

ϕ
Mp

�
β
; (2.36)

which is a kind of T model [20]. For such a potential, it is
straightforward to calculate the inflationary predictions. We
find that

ns ≈ 1 − 2

N
; r ≈

8

α2N2
; (2.37)

where 1=N0 ¼ α
ffiffiffi
2

p
and we have taken the limit N ≫ N0.

In this limit, this is the same with the T-model predictions
[20,26] as during inflation; β can be absorbed, to leading
order, by an appropriate shift of ϕ.
We conclude this section with a comment on the

conformally invariant SO(1,1) two-field model of Ref. [20]
described by the Lagrangian

L ¼ ffiffiffiffiffiffi−gp �
1

2
∂μχ∂μχ þ χ2

12
R − 1

2
∂μϕ∂μϕ

þ ϕ2

12
R − λ

4
ðϕ2 − χ2Þ2

�
: (2.38)

The field χ has a wrong kinetic term, and it was called
conformon in Ref. [20]. Clearly the Lagrangian (2.38) is
invariant under SO(1,1) rotations of ðϕ; χÞ. Therefore, one
may fix this symmetry either by going to the Einstein frame
χ2 − ϕ2 ¼ 6M2

p or to the Jordan frame χ ¼ ffiffiffi
6

p
Mp. Both

gauge fixings lead to

L ¼ ffiffiffiffiffiffi−gp �
M2

p

2
R − 1

2
∂μϕ∂μϕ − 9λM4

p

�
: (2.39)

Here, we ignore as we did above the kinetic terms,
assuming that they are small compared to the potential
term. In this case, ϕ and χ are auxiliaries which can be
integrated out to give

L ¼ ffiffiffiffiffiffi−gp 1

144λ
R2: (2.40)
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This is nothing else than the Starobinsky model in the
Mp → ∞ limit. Therefore, again the conformally invariant
SO(1,1) symmetric two-field model is a particular limit of
the Starobinsky theory, at least in the region where scalar
kinetic terms can be ignored. Note that (2.40) propagates a
graviton and a scalar, as can be seen in the linear
representation

L ¼ ffiffiffiffiffiffi−gp ðφR − 36λφ2Þ: (2.41)

By integrating out φ we get the R2 theory in (2.40). By
going to the Einstein frame by means of the conformal
transformation

gμν →
M2

p

2φ
gμν (2.42)

we get

L ¼ ffiffiffiffiffiffi−gp �
M2

p

2
R − 3

2φ2
∂μφ∂μφ − 9λM4

p

�
(2.43)

which is (2.39) after the transformation φ ¼ eϕ=
ffiffi
3

p
.

III. DISTINGUISHING THE STAROBINSKY
MODEL FROM ITS DESCENDANTS

From the discussion in the previous section, one can
conclude that the Starobinsky model and its descendants
differ only in their kinetic terms. Therefore, a reasonable
question to ask is to which level this difference may be
appreciated in the observables. Since the first slow-roll
parameter ϵ ¼ −H: =H2 (where H is the Hubble rate during
inflation) parametrizes the kinetic energy [2], it is expected
that differences between the Starobinsky model and its
descendants appear at the level of differences in the slow-
roll parameter ϵ. For the Starobinsky model, the slow-roll
parameters are given by

ϵS ≈ − 3

4N2
; (3.1)

ηS ≈ − 1

N
: (3.2)

Now let us consider the Higgs inflation model and
rewrite it in the Einstein frame. Redefining the metric as

gμν →

�
1þ ξ

h2

M2
p

�−1
gμν; (3.3)

the action turns out to be

SHI ¼
Z

d4x
ffiffiffiffiffiffi−gp �

M2
p

2
R−1

2

�
1

1þξ h2

M2
p

þ6ξ2
h2

M2
p

1

ð1þξ h2

M2
p
Þ2
�
∂μh∂μh− λ

4

h4

ð1þ ξh2

M2
p
Þ2
	
: (3.4)

Let us now compare this theory with the Starobinsky theory in the representation (2.9) which in the Einstein frame is written
similarly as

SS ¼
Z

d4x
ffiffiffiffiffiffi−gp �

M2
p

2
R − 6

2
ξ2

h2

M2
p

1

ð1þ ξ h2

M2
p
Þ2 ∂μh∂μh − λ

4

h4

ð1þ ξh2

M2
p
Þ2
�
: (3.5)

The difference between the two theories is evident. They
differ by a factor of

ΔL ¼ − 1

2

1

1þ ξ h2

M2
p

∂μh∂μh; (3.6)

which is precisely the Higgs kinetic term we neglected to
arrive at with the Starobinsky theory in the Einstein frame.
Here we should stress that the fundamental difference
between the Higgs inflation and the Starobinsky model
resides in the scalar kinetic term in the Jordan frame. For
the Starobinsky model, there is no kinetic term for the
auxiliary field ϕ in the linear representation of the model.
This has the effect of making the parameter ξ irrelevant, as
it can be completely absorbed in the scalar field and it is

redundant. In the case of Higgs inflation, there is a kinetic
term for the Higgs field to start with, as it is a real field in
the Jordan frame and not an auxiliary. In this case, there-
fore, ξ cannot anymore be absorbed; it is not redundant, and
as we see, it lowers the cutoff by a factor ξ−1 as compared to
the Starobinsky model.
The slow-roll parameters for Higgs inflation and the

Starobinsky theory are given by

ϵHI;S ¼ M2
p

2

�
1

V
∂V
∂χ
�

2

¼ M2
p

2

�
1

V
∂V
∂h
�

2
�∂h
∂χ
�

2

; (3.7)

where χ is the canonically normalized scalar, different for
Higgs and Starobinsky models, and V is the common
potential
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V ¼ λ

4

h4

ð1þ ξh2

M2
p
Þ2
: (3.8)

Then, since

∂h
∂χ ¼

�
1

1þ ξ h2

M2
p

þ 6ξ2
h2

M2
p

1

ð1þ ξ h2

M2
p
Þ2
�−1=2

(3.9)

for Higgs inflation and

∂h
∂χ ¼

�
6ξ2

h2

M2
p

1

ð1þ ξ h2

M2
p
Þ2
�−1=2

(3.10)

for the Starobinsky model, we find that

ϵHI ¼
M2

p

2

�
1

V
∂V
∂h
�

2
�

1

1þ ξ h2

M2
p

þ 6ξ2
h2

M2
p

1

ð1þ ξ h2

M2
p
Þ2
�−1

;

(3.11)

ϵS ¼ M2
p

2

�
1

V
∂V
∂h
�

2
�
6ξ2

h2

M2
p

1

ð1þ ξ h2

M2
p
Þ2
�−1

: (3.12)

Since the number of e-folds till the end of inflation is
related to h as N ≈ ð6ξh2=8M2

pÞ, we get that

ϵHI
ϵS

¼ 8Nξ

1þ 4
3
N þ 8Nξ

¼ 1 − 1

6ξ
≃ 1 − 10−5

6λ
. (3.13)

Even though the slow-roll parameter enters with a factor of
6ϵ in the spectral index ns, the difference is too small to be
detectable. Another difference between the Starobinsky
model and the Higgs inflation model is their corresponding
reheating temperatures [19]: TRH ≃ 3 × 109 GeV and
TRH ≃ 6 × 1013 GeV, respectively. This leads to a differ-
ence in the predicted value of spectral index at the level of
10−3 [19]. As we mentioned in the Introduction, this
difference is larger than the typical Planck error only if
strong assumptions are made about the reionization history,
the primordial Helium abundance and the effective number
of neutrino.
Let us now turn to the universal attractor models. The

general class of models (2.15) can be written in the Einstein
frame by the conformal transformation

gμν →

�
1þ ξfðϕÞ

M2
p

�−2
gμν; (3.14)

and it is explicitly written as

Satt ¼
Z

d4x
ffiffiffiffiffiffi−gp
"
M2

p

2
R − 3

4

ξ2f02

M2
p

∂μϕ∂μϕ�
1þ ξf

M2
p

�
2

− 1

2

∂μϕ∂μϕ

1þ ξf
M2

p

− f2�
1þ ξf

M2
p

�
2

#
: (3.15)

Similarly, the Starobinksy model in the representation
(2.17) can be written as

SS¼
Z

d4x
ffiffiffiffiffiffi−gp
2
64M2

p

2
R−3

4

ξ2

M2
p
f02

∂μϕ∂μϕ�
1þ ξf

M2
p

�
2
− f2�

1þ ξf
M2

p

�
2

3
75:

(3.16)

Clearly, the two models differ in their kinetic terms

ΔL ¼ − 1

2

ffiffiffiffiffiffi−gp ∂μϕ∂μϕ

1þ ξf
M2

p

; (3.17)

and the difference is tiny for large values of ξ. The slow-roll
parameters for the above general classes of inflation models
and the Starobinsky theory are given by

ϵatt; S ¼ M2
p

2

�
1

V
∂V
∂χ
�

2

¼ M2
p

2

�
1

V
∂V
∂ϕ
�

2
�∂ϕ
∂χ
�

2

; (3.18)

where χ is the canonically normalized scalar, different for
the two models, and V is the common potential

V ¼ f2

ð1þ ξf
M2

p
Þ2 : (3.19)

Let us discuss the particular, but sufficiently generic case of
f ¼ ϕn=Mn−2

p , for which

V ¼ ϕ2n

M2n−4
p ð1þ ξ ϕn

Mn
p
Þ : (3.20)

Then, since

∂ϕ
∂χ ¼

 
1

1þ ξ ϕn

Mn
p

þ 3ξ2n2

2

ϕ2n−2
M2n−2

p

1�
1þ ξ ϕn

Mn
p

�
2

!−1=2
(3.21)

for general models of nonminimally coupled inflation and

∂ϕ
∂χ ¼

�
3ξ2n2

2

ϕ2n−2
M2n−4

p

1

ð1þ ξ ϕn

Mn
p
Þ2
�−1=2

(3.22)

for the Starobinsky model, we find that
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ϵatt ¼
M2

p

2

�
1

V
∂V
∂ϕ
�

2
�

1

1þ ξ ϕn

Mn
p

þ3ξ2n2

2

ϕ2n−2
M2n−2

p

1

ð1þ ξ ϕn

Mn
p
Þ2
�−1

(3.23)

ϵS ¼
M2

p

2

�
1

V
∂V
∂ϕ
�

2
�
3ξ2n2

2

ϕ2n−2
M2n−2

p

1

ð1þ ξ ϕn

Mn
p
Þ2
�−1

: (3.24)

Since the number of e-folding is related to ϕ as

N ≈
3ξϕn

4Mn
p
; (3.25)

we infer that

ϵatt
ϵS

≈ 1 − N
2
n−1

2n2ξ
2
n

�
4

3

�
2=n

: (3.26)

This always deviates from unity by a quantity smaller that
10−3, and therefore the difference is not observable.

IV. EFFECTIVE CUTOFF SCALES

One (somewhat controversial) issue is the natural cutoff
of the theories we have discussed so far. As there exists
another mass M (or 1=ξ1=2), which enters besides the
dimensionful Planck mass Mp, it is natural to expect that
the cutoff of the theory may not be Mp, but a ratio of it by
appropriate power ofM (or ξ). If this power is high enough,
it may happen that the cutoff is quit low, lower than the
inflationary scale. In such a case, the discussion of inflation
cannot be trusted, or it is questionable, to say the least.
Below we find the cutoffs of the models discussed so far by
considering the scalar field in the Einstein frame as a one-
dimensional σ model. Then, as mentioned, the expansion of
its kinetic term for small values of the field reveals the
cutoff of the theory and, above all, the differences among
the models.
The Starobinsky model (3.5) can be expanded as

S ¼
Z

d4x
ffiffiffiffiffiffi−gp �

M2
p

2
R − 1

2

�
ξh2

M2
p
þ 6

ξ2h2

M2
p
þ � � �

�
∂μh∂μh

− λ

4
h4
�
1 − 2

ξh2

M2
p
þ � � �

��
: (4.1)

We should canonically normalize the leading kinetic term.
Thus, after defining h2 ¼ Mpψffiffi

3
p

ξ
, we get that the action turns

out to be

S ¼
Z

d4x
ffiffiffiffiffiffi−gp �

M2
p

2
R − 1

2

�
1 − ψffiffiffi

3
p

Mp

þ � � �
�
∂μψ∂μψ

− λ

12

M2
p

ξ2
ψ2

�
1 − 2

ψffiffiffi
3

p
Mp

þ � � �
��

: (4.2)

From the above form of the action we see that the cutoff ΛS
of the Starobinsky theory is, as already found in [23],

ΛS ¼ Mp: (4.3)

A simple inspection of Eq. (2.5) shows that

VS ≪ Λ4
S; (4.4)

indicating the internal consistency of the model [23]. The
Higgs inflation action (3.4) on the other hand can be
expanded as

SHI¼
Z

d4x
ffiffiffiffiffiffi−gp �

M2
p

2
R−1

2

�
1þξh2

M2
p
þ6

ξ2h2

M2
p
þ���

�
∂μh∂μh

−λ

4
h4
�
1−2

ξh2

M2
p
þ���

��
: (4.5)

Here the leading kinetic term is canonically normalized,
and therefore, since ξ ≫ 1, we find that the cutoff
is [21–23]

ΛHI ¼
Mp

ξ
: (4.6)

This should be compared with the vacuum energy that
drives inflation in Eq. (2.14), from where we get that

VHI ≫ Λ4
HI; (4.7)

making the consistency of the model questionable. This
simple argument has been criticized in Ref. [24] where it
was observed that the cutoff should be field dependent as
the kinetic term is noncanonical. This argument would give
a cutoff that during inflation, when h ≫ Mp=ξ1=2, is even
larger then the Planckian scale. However, we disagree with
this approach. The presence of a cutoff ΛHI ∼Mp=ξ at
lower values of the field cannot be avoided, and it signals
the breakdown of the model in that field range. The small
field region is “tested” by the dynamics during the reheat-
ing stage, and one may not simply disregard this point by
invoking that the inflationary field range is the one of
interest. It should also be mentioned here a related problem,
the naturalness of the model. The only way to solve this
inconsistency is to add new degrees of freedom at energies
∼Mp=ξ1=2 in a way that does not spoil the flatness of the
inflation potential, as for example in the model discussed in
Ref. [27]. In such a case, however, the predictability of
Higgs inflation is lost, as there is now a strong dependence
on the new physics assumed to appear at ∼Mp=ξ1=2.
Similar considerations can be made for the attractor

models. To find the cutoff Λatt, we expand the action
(3.15) as
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Satt ≈
Z

d4x
ffiffiffiffiffiffi−gp �

M2
p

2
R − 1

2

�
1 − ξf

Mp
þ ξ2f2

M2
p
þ � � � 3 ξ

2f02

M2
p

�
1 − 2

ξf
M2

p
þ ξ2f02

M4
p
þ � � �

��
∂μϕ∂μϕ − f2ð1 − 2ξf þ � � �Þ

	
.

(4.8)

For a polynomial form fðϕÞ ¼ ϕn=Mn−2
p , with n ≠ 1,

the cut-off is determined by ξ2f02 term in Eq. (4.8) and
reads

Λatt ¼
Mp

ξ
1

n−1
; (4.9)

which is below Mp as ξ is large (and n is different from
unity). Moreover, the vacuum energy during inflation is
given in Eq. (2.23), which in terms of the cutoff (4.9) is
written as

Vatt ¼ ξ
6−2n
n−1Λ4

att: (4.10)

Clearly, only for n > 7=3 the vacuum energy satisfies
Vatt ≪ Λ4

att and the model makes sense.
The case n ¼ 1 is special, and we consider it separately.

The reason is that ξ2f02 dominates, and a constant rescaling
of the scalar, similar to the one in the Starobinsky model, is
needed to canonically normalize the leading kinetic term. It
is known that the simplest chaotic inflation has severe
problems with the recent Planck data. Its inflationary
dynamics is described by the action

Sm ¼
Z

d4x
ffiffiffiffiffiffi−gp �

M2
p

2
R − 1

2
∂μϕ∂μϕ − 1

2
m2ϕ2

�
; (4.11)

which predicts [2]

ns − 1 ¼ − 2

N
; r ¼ 8

N
; (4.12)

for the primordial tilt ns and the tensor-to-scalar ratio r,
values which lie outside the joint 95% C.L. for the Planck
data. Let us now consider instead of the action (4.11), a
nonminimally coupled chaotic model

S ¼
Z

d4x
ffiffiffiffiffiffi−gp �

M2
p

2
Rþ ξMpϕR− 1

2
∂μϕ∂μϕ− 1

2
m2ϕ2

�
;

(4.13)

where ξ is a dimensionless parameter. Clearly, as discussed
above, during inflation the inflation kinetic term is small
compared to the potential, and thus the model is described
effectively by

S ¼
Z

d4x
ffiffiffiffiffiffi−gp �

M2
p

2
Rþ ξMpϕR − 1

2
m2ϕ2

�
: (4.14)

The field ϕ can be integrated out leading again to the
Starobinsky model

S ¼
Z

d4x
ffiffiffiffiffiffi−gp �

M2
p

2
Rþ ξ2

M2
p

2m2
R2

�
: (4.15)

Therefore, the nonminimally coupled chaotic inflationary
model (4.14) is equivalent during inflation to the
Starobinsky gravity (2.1) with M2

p=12M2 ¼ M2
pξ

2=2m2.
As a result, since M ≈ 10−5, we get that

ξ ≈ 105m; (4.16)

whereas the primordial tilt and the tensor-to-scalar ratio are
now ðns − 1Þ≃−2=N and r ¼ 12=N2. Let us now write
the action (4.14) in the Einstein frame. For this, we need to
make the following conformal transformation:

gμν →

�
1þ 2ξϕ

Mp

�−1
gμν; (4.17)

and the action becomes

S ¼
Z

d4x
ffiffiffiffiffiffi−gp �

M2
p

2
R − 3ξ2

∂μϕ∂μϕ

ð1þ 2ξϕ
Mp

Þ2 −
1

2

∂μϕ∂μϕ

1þ 2ξϕ
Mp

− 1

2
m2ϕ2

�
1þ 2ξϕ

Mp

�−2�
: (4.18)

For large values of the scalar field ϕ (ϕ ≫ Mp=2ξ), we have

Snm ≈
Z

d4x
ffiffiffiffiffiffi−gp �

M2
p

2
R − 1

2

�
3M2

p

2ϕ2
þ Mp

2ξϕ

�
∂μϕ∂μϕ

− V0

�
1 −Mp

ξϕ
þ � � �

�	
(4.19)

where

V0 ¼
m2M2

p

8ξ2
(4.20)

is the vacuum energy-driving inflation. Then one may
easily verify that this theory is the Starobinksy theory for

3M2
p

2ϕ2
≫

Mp

2ξϕ
: (4.21)

In other words, for ϕ in the range
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Mp

2ξ
≪ ϕ ≪

3

2
ξMp; (4.22)

the nonminimal chaotic inflation effectively coincides with
the Starobinsky model. Note that (4.22) implies that ξ ≫ 1.
The action (4.18) can be expanded also for small values

of ϕ. However, in this case, there is no canonically
normalized leading-order kinetic term for the scalar.
Thus, after defining χ ¼ ffiffiffi

6
p

ξϕ, we have

S ≈
Z

d4x
ffiffiffiffiffiffi−gp �

M2
p

2
R − 1

2

�
1 − 4χffiffiffi

6
p

Mp

− χ

3ξMp

�
∂μχ∂μχ

− 1

12

m2M2
p

ξ2
χ2
�
1 − 4χffiffiffi

6
p

Mp

�
þ � � �

	
: (4.23)

From the form of the action, it follows that the cutoff Λ of
the nonminimal chaotic inflation is indeed the Planckian
mass, Λ ¼ Mp, with V0 ≪ Λ4. This is exactly what
happens in the Starobinsky theory, where the absence of
the canonically normalized leading kinetic term pushes the
cutoff to the Planck scale.

V. CONCLUSIONS

In this paper we have discussed the relation of certain
inflationary models to the Starobinsky theory. In particular,
we have pointed out that the agreement of these models
with the recent Planck measurements is due to the fact that
during inflation they are effectively described by the
Starobinsky theory. In this respect, the Starobinsky theory
is a prototype of theories where the scalar potential has a
plateau for large values of the scalar field. The examples we
discussed here in detail are the Higgs inflation model and
the universal attractor models at strong coupling, the

dynamics of which coincides to leading order in the
slow-roll parameter with that of the Starobinsky theory.
However, they differ from the latter since the scalar in the
Starobinsky theory is auxiliary in the Jordan frame and
turns out to be propagating only in the Einstein frame.
Although these models are effectively equivalent to the

Starobinsky theory for large values of the fields, they are
not equivalent for small values. In particular, one expects
large differences in the small-field regime. Therefore, one
may correctly identify the range of the validity of the theory
by determining its cutoff scale, if it is considered as an
effective field theory. We have discussed the cutoff by
looking in the scalar kinetic term, which is similar to kinetic
term of a one-dimensional σ model. We have found that,
although the cutoff of the Starobinsky theory is the Planck
scale, for a polynomial function fðϕÞ ¼ ϕn=Mn−2

p in the
general universal attractor model, the cutoff is lower than
the inflationary scale for n < 7=3 (this case includes also
Higgs inflation for n ¼ 2). However, the case n ¼ 1 is
particular and we have discussed it in more detail. In
particular, beyond being in agreement with the data, it is
valid up to Planckian scales.
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