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The incompleteness of the Dirac quantization scheme leads to a redundant set of solutions of the
Wheeler-DeWitt equation for the wave function in the superspace of quantum cosmology. The selection of
physically meaningful solutions that match quantum initial data can be attained by a reduction of the theory
to the sector of true physical degrees of freedom and their canonical quantization. The resulting physical
wave function unitarily evolving in the time variable introduced within this reduction can then be raised to
the level of the cosmological wave function in the superspace of 3-metrics to form a needed subset of all
solutions of the Wheeler-DeWitt equation. We apply this technique in several simple but nonlinear
minisuperspace models and discuss (at both the classical and quantum level) the physical reduction in
extrinsic time—the time variable determined in terms of extrinsic curvature (or momentum conjugated to
the cosmological scale factor). Only this extrinsic time gauge can be consistently used in the vicinity of
turning points and bounces where the scale factor reaches extremum and cannot monotonically parametrize
the evolution of the system. Since the 3-metric scale factor is canonically dual to the extrinsic time variable,
the transition from the physical wave function to the wave function in superspace represents a kind of
generalized Fourier transform. This transformation selects square-integrable solutions of the Wheeler-
DeWitt equation, which guarantees the Hermiticity of canonical operators of the Dirac quantization
scheme. This makes this scheme consistent, a property that is not guaranteed with general solutions of the
Wheeler-DeWitt equation. Semiclassically this means that wave functions are represented by oscillating
waves in classically allowed domains of superspace and exponentially fall off in classically forbidden
(underbarrier) regions. This is explicitly demonstrated in a flat Friedmann-Robertson-Walker (FRW) model
with a scalar field having a constant negative potential, and for the case of a phantom scalar field with a
positive potential. The FRW model of a scalar field with a vanishing potential does not lead to selection
rules for solutions of the Wheeler-DeWitt equation, but this does not violate Hermiticity properties, because
all these solutions are plane-wave type and describe cosmological dynamics without turning points and
bounces. In models with turning points the description of classically forbidden domains goes beyond the
original principles of the unitary quantum reduction to the physical sector, because it includes the
complexification of the physical time variable or the complex nature of the physical Hamiltonian. However,
this does not alter the formalism of the Wheeler-DeWitt equation, which continues describing underbarrier
quantum dynamics in terms of real superspace variables.
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I. INTRODUCTION

It goes without saying that quantum cosmology is an
indispensable tool in the studies of the very early quantum
Universe. Inflationary cosmology [1], whose observational
status was essentially strengthened after the first Planck
release [2], successfully resolves many traditional problems
of the Big Bang theory, but it is unable to resolve the issue
of the initial conditions for the cosmological evolution.
This issue is an ultimate goal of quantum cosmology.
On the other hand, it would not be a great exaggeration to

say that quantum cosmology is one of the most discredited
areas in modern theoretical physics. The Wheeler-DeWitt

equation [3], as an incarnation of this theory, is widely
considered as a decorative tool that would never lead to
original achievements in gravity theory. At best, it would be
used as a justification of the semiclassical results obtained by
other much simpler and down-to-earth methods of quantum
field theory in curved spacetime. Though much of this
criticism seems to actually be true, the situation with this
equation very much resembles the status of modern
S-matrix theory vs the Schrödinger equation and its sta-
tionary perturbation theory. Despite the fact that scattering
amplitudes are much simpler to obtain by the covariant
Feynman diagrammatic technique, everyone clearly under-
stands that their machinery is based on the fundamental but
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manifestly noncovariant Schrödinger equation, and without it
this technique becomes a set of ungrounded contrived rules.
A similar situation holds for theWheeler-DeWitt equation

which underlies the physical dynamically independent
content of the theory and its numerous applications.
However, there is a big difference: the formalism of the
Wheeler-DeWitt equation itself, without additional assump-
tions, does not form a closed physical theory. These
assumptions concern two main ingredients of the theory:
the selection of physically meaningful solutions of the
Wheeler-DeWitt equation, and the construction of the
physical inner product on their subspace, which could
generate observable amplitudes and expectation values.
The fact is that this equation has many more solutions

than those having a clear physical setup. This setup is
dictated by dynamically independent degrees of freedom,
which are intricately hidden among the full set of gravi-
tational variables. Various ways to disentangle these
degrees of freedom and separate them from the gauge
variables give rise to different quantization schemes. One
scheme consists in disentangling them at the classical level
and canonically quantizing in the resulting reduced phase
space. Another scheme is the Dirac quantization [4], where
the first class Dirac constraints are imposed as equations on
the quantum states in the representation space in which all
original phase-space variables (both physical and gauge
ones) satisfy canonical commutation relations. This scheme
is not closed as a physical theory, because it does not have
by itself a well-defined conserved positive-definite inner
product that would provide the unitarity of the theory.
However, this approach is exactly the one usually
employed in numerous applications of quantum cosmol-
ogy. As a rule they do not go beyond achieving the solution
of the Wheeler-DeWitt equation and giving it some
interpretation or fundamentally restricting the gravitational
sector to the semiclassical domain [5] and using the Born-
Oppenheimer approximation [6].
The most striking feature of this approach is a mismatch

between the nature of the Wheeler-DeWitt equation and the
number of its boundary (or initial) value data. As a second-
order differential equation (of the Klein-Gordon type in
minisuperspace applications) it requires two values at the
Cauchy surface: the value of the function, and its normal (or
time) derivative. But any local unitary quantum theory
assumes the existence of only one initial data function—the
wave function of the initial state. This clearly demonstrates
the incompleteness of the Dirac quantization, and the goal
of our work is to achieve its completion by formulating the
selection rules for solutions of the Wheeler-DeWitt equa-
tion and to demonstrate these rules in several simple
minisuperspace models.
In theminisuperspace context the redundancy in solutions

of this equation directly manifests itself in positive- and
negative-frequency solutions, which exist due to the hyper-
bolic (rather than parabolic) nature of the Wheeler-DeWitt

equation. The usual interpretation of these solutions as
describing expanding and contracting cosmological models
breaks down in the vicinity of the bounce—the point of the
maximal or minimal size of the universe, where expansion
goes over into contraction or vice versa. A consistent
description of this situation is possible if we start with the
reduced phase-space quantization with an appropriately
chosen timevariable. This automatically leads to themissing
selection rule in the set of solutions of the Wheeler-DeWitt
equation, and as a by-product raises the issue of the
Hermiticity of canonically commuting operators in the
definition of a quantum Dirac constraint.
The structure of the paper is as follows. In Sec. II we

present the unitarity approach to the Wheeler-DeWitt
formalism [7] which allows one to raise the reduced
phase-space quantum state to the level of the wave function
in the DeWitt superspace of quantum cosmology. This
procedure, described in Sec. III, implies a special time-
nonlocal transform from the physical wave function,
satisfying a conventional Schrödinger equation, to the
Wheeler-DeWitt wave function and leads to the selection
rules of the above type. In the following sections we apply
this transform in several minisuperspace models and
discuss relevant operator Hermiticity and unitarity proper-
ties. In Secs. IVand V we consider a model with a negative
constant potential. In Sec. VI we consider a model of a
massless scalar field with a vanishing potential. Section VII
is devoted to a model based on the phantom scalar field
with a positive constant potential. Section VIII is devoted to
discussion and conclusions. Appendices A and B present
useful formulas for unitary canonical transformations and
integral representations for Bessel and modified Bessel
functions.

II. UNITARITY APPROACH TO QUANTUM
COSMOLOGY

Gravity theory in the canonical formalism has an action
which in condensed DeWitt notation [8] is of the following
form:

S ¼
Z

dtfpi _qi − NμHμðq; pÞg: (1)

Here qi represent spatial metric coefficients and matter
fields. Their conjugated momenta are denoted by pi. The
condensed index i includes discrete labels and also spatial
coordinates, and the Einstein summation rule implies
integration over the latter. The same concerns the indices
μ of the Lagrange multipliers Nμ which are the Arnowitt-
Deser-Misner (ADM) lapse and shift functions [9]. In the
formal treatment of the infinite-dimensional configuration
space as a finite-dimensional manifold (which we assume
in this section), the range of i is i ¼ 1;…n and the range of
μ is μ ¼ 1;…m with n > m. In asymptotically flat models
the integrand of Eq. (1) also contains the contribution of the
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ADM surface-term Hamiltonian −H0ðq; pÞ, but below we
consider only spatially closed or spatially flat minisuper-
space models without this term.
The variation of the Lagrange multipliers leads to the set

of nondynamical equations, i.e., constraints,

Hμðq; pÞ ¼ 0; (2)

which in gravity theory comprise the set of Hamiltonian
and momentum constraints. The constraint functions
Hμðq; pÞ belong to the first class and satisfy the
Poisson-bracket algebra

fHμ; Hνg ¼ Uλ
μνHλ; (3)

with the structure functions Uλ
μν ¼ Uλ

μνðq; pÞ, which
depend on the phase-space variables of the theory.
Dirac quantization of the theory (1) consists in promot-

ing the initial phase-space variables and the constraint
functions to the operator level ðq; p;HμÞ → ðq̂; p̂; ĤμÞ and
in selecting the physical states jΨ i in the representation
space of ðq̂; p̂; ĤμÞ by the equation

ĤμjΨ i ¼ 0: (4)

The operators ðq̂; p̂Þ satisfy the canonical commutation
relations ½q̂k; p̂l� ¼ iℏδkl and the quantum constraints Ĥμ as
operator functions of ðq̂; p̂Þ should satisfy the correspon-
dence principle with the classical c-number constraints and
be subject to the commutator algebra

½Ĥμ; Ĥν� ¼ iℏÛλ
μνĤλ; (5)

with some operator structure functions Ûλ
μν standing to the

left of the operator constraints. This algebra generalizes
Eq. (3) to the quantum level and serves as the integrability
conditions for Eq. (4).

A. Classical reduction to the physical sector:
coordinate gauge conditions

The theory with the action (1) is invariant under the set of
transformations of phase-space variables ðqi; piÞ and
Lagrange multipliers [7], signifying the diffeomorphism
invariance of the original action in the Lagrangian form.
The conventional approach to this situation implies that the
equivalence class of variables belonging to the orbit of
these transformations corresponds to one and the same
physical state. The description of this state in terms of
physical variables consists in singling out the unique
representative of each such class and in treating the
independent labels of this representative as physical
variables.
This can be attained by imposing on the original phase-

space variables the gauge conditions

χμðq; p; tÞ ¼ 0; (6)

which determine the 2n-dimensional phase space, where
the (2n −m)-dimensional surface (remember that n is the
range of index i, while m is that of μ) has a unique
intersection with the orbit of gauge transformations. At
least locally, the latter condition implies the invertibility of
the Faddeev-Popov matrix [10] with the nonvanishing
determinant

J ¼ det Jμν ; Jμν ¼ fχμ; Hνg: (7)

Gauge conditions of the form (6) impose restrictions only
on phase-space variables and single out the physical sector
locally in time: all variables in the canonical action are
expressed in terms of true physical degrees of freedom.
This goes as follows.
To begin with, the Lagrange multipliers [which are not

fixed by the equations of motion for the action (1)] become
uniquely fixed as functions of ðqi; piÞ. This directly follows
from the conservation in time of gauge conditions, which
serves as the equation for the lapse and shift functions,

d
dt

χμ ¼ fχμ; HνgNν þ ∂χμ
∂t ¼ 0; (8)

Nμ ¼ −J−1μν
∂χν
∂t : (9)

For the reparametrization-invariant systems with
H0ðq; pÞ ¼ 0 in Eq. (1), the gauge conditions should
explicitly depend on time in order to generate dynamics
in the physical phase space [7,11]. For gravitational
systems with the Lagrangian multipliers playing the role
of the lapse and shift functions this is obvious; nonzero
values of the latter exist only for ∂χν=∂t ≠ 0.1

The parametrization of ðqi; piÞ in terms of the
phase-space variables of the physical sector ðξA; πAÞ,
A ¼ 1;…n −m, in its turn, follows from solving together
the system of constraints (2) and the gauge conditions (6),
which determine the embedding of the 2ðn −mÞ-
dimensional physical phase space into the space of ðqi; piÞ,

qi ¼ qiðξA; πA; tÞ; (10)

pi ¼ piðξA; πA; tÞ: (11)

The internal coordinates of this embedding should satisfy
the canonical transformation law for the symplectic form
restricted to the physical subspace,

1The geometrical meaning of Nμ is the collection of normal
and tangential projections of the four-velocity with which a
spacelike hypersurface moves in the embedding spacetime, so
that the degeneration of Nμ to zero implies freezing this surface at
a fixed position. Then it does not scan the spacetime and no
physical dynamics is probed within these time-independent
gauge conditions [7].
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pidqi ¼ πAdξA −HphysðξA; πA; tÞdtþ dFðqi; ξA; tÞ; (12)

so that ξA and πA can be identified with the physical
phase space coordinates and the conjugated momenta,
respectively. HphysðξA; πA; tÞ is considered as a physical
Hamiltonian, andFðqi; ξA; tÞ is considered as the generating
function of this canonical transformation.
The simplest form of this reduction is when the gauge

conditions are only imposed on phase space coordinates,
χμðq; tÞ ¼ 0. Such coordinate gauge conditions determine
the embedding of the (n −m)-dimensional space Σ of the
physical coordinates ξA directly into the space of original
coordinates qi,

Σ∶qi ¼ eiðξA; tÞ; χμðeiðξ; tÞ; tÞ≡ 0: (13)

Here ξA are identified with the physical coordinates, and the
conjugated momenta πA and the physical Hamiltonian read

πA ¼ pi
∂ei
∂ξA ; (14)

HphysðξA; πA; tÞ ¼ −piðξA; πA; tÞ
∂eiðξ; tÞ

∂t : (15)

As we see, the physical momenta are the projections of
the original momenta pi to the vectors tangential to Σ,
eiA ≡ ∂ei=∂ξA. In view of the contact nature of this trans-
formation the generating function Fðqi; ξA; tÞ in Eq. (12) is
vanishing.
The normal projections of pi should be found from the

constraints (2), the local uniqueness of their solution being
granted by the nondegeneracy of the Faddeev-Popov
determinant. Together with Eq. (13), this solution yields
all the original phase-space variables ðqi; piÞ as known
functions of the physical degrees of freedom ðξA; πAÞ.
The original action (1) reduced to the physical sector (that
is, to the subspace of constraints and gauge conditions)
acquires the usual canonical form with the physical
Hamiltonian (15).

B. Quantum reduction

The canonical quantization in the physical sector (or
reduced phase-space quantization) consists in promoting
ξA, πA, HphysðξA; πA; tÞ to the level of operators, ξ̂A, π̂A,
Ĥphys, subject to the canonical commutation relations
½ξ̂A; π̂A� ¼ iℏδAB, and postulating the Schrödinger equation
for the quantum state of the system in the Hilbert space of
these operators,

iℏ
∂
∂tΨphysðt; ξÞ ¼ ĤphysΨphysðt; ξÞ: (16)

Here Ψphysðt; ξÞ ¼ hξjΨphysðtÞi is the wave function of this
state in the coordinate representation. The kernel of its
unitary evolution can be represented by the path integral
over trajectories in the reduced phase space,

Ψphysðtþ;ξþÞ¼
Z

dξ−Kðtþ;ξþjt−;ξ−ÞΨphysðt−;ξ−Þ; (17)

Kðtþ; ξþjt−; ξ−Þ ¼
Z
ξðt�Þ¼ξ�

D½ξ; π�

× exp
i
ℏ

Z
tþ

t−
dtfπA _ξA −Hphysðξ; π; tÞg;

(18)

where D½ξ; π� ¼ Q
tdξðtÞdπðtÞ is the Liouville measure of

integration over trajectories interpolating between the two
points ξ�, i.e., the arguments of the evolution kernel.
The profound success in the quantization of gauge

theories in the 1970 s and 1980 s [3,8,10,12,13] was based
on the identical transformation in this path integral from
the variables of the reduced phase space to the variables of
the original action (1). This transformation brings us to the
Faddeev-Popov canonical path integral for the two-point
kernel in the space of original coordinates qi—the DeWitt
superspace of 3-metrics and matter fields [7],

Kðqþ; q−Þ ¼
Z
qðt�Þ¼q�

D½q; p�DN
Y

tþ>t>t−
JtδðχtÞ

× exp
i
ℏ

Z
tþ

t−
dtfpi _qi − NμHμg; (19)

where D½q; p� ¼ Q
t

Q
i dq

iðtÞdpiðtÞ is the Liouville mea-
sure of integration over trajectories interpolating between
the points q�,

DN ¼
Y

tþ≥t≥t−

Y
μ

dNμðtÞ (20)

is the integration measure over the lapse and shift functions
including the integration over Nμðt�Þ at the boundary
points t�, and

Q
tJtδðχtÞ is the Faddeev-Popov gauge

fixing factor,

JtδðχtÞ≡ det JμνðqðtÞ; pðtÞÞ
Y
α

δðχαðqðtÞ; tÞÞ; (21)

which restricts the integration over qðtÞ at any t ≠ t� to the
gauge condition surface (6).
The integration over Nμðt�Þ has a very important

consequence. It implies that

Ĥμ

�
qþ;

ℏ
i

∂
∂qþ

�
Kðqþ; q−Þ ¼ 0; (22)

i.e., one finds that the two-point kernel K is a solution of the
quantum Dirac constraint ĤμK ¼ 0, i.e., the Wheeler-
DeWitt equation. One can show that due to the well-known
gauge independence properties of the Faddeev-Popov path
integral this kernel is independent of the choice of χμ (in the
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class of admissible gauges). Also, in view of the time
parametrization invariance it is independent of t�.

2

The role of Kðq; q0Þ is revealed by the observation that in
the semiclassical approximation it can be related to the
unitary evolution operator (18) [7,11,15]. This relation—
derived in Ref. [7] by slicing the path integral and
confirmed in the semiclassical approximation in
Refs. [11,15]—reads

Kðt; ξjt0; ξ0Þ ¼
�
J⃗
M

�1=2

Kðq; q0Þ
� ←

J0

M0

�1=2����
q¼eðξ;tÞ;q0¼eðξ0;t0Þ

þOðℏÞ; (23)

where the operator-valued factors J⃗ and
←
J0 coincide

with the Faddeev-Popov determinants in which the
c-number momentum argument is replaced by its operator
representation,3

J⃗ ¼ J

�
q;
ℏ
i
∂⃗
∂q

�
;

←
J0 ¼ J

�
q;−ℏ

i
∂⃖
∂q0

�
; (24)

and M ¼ MðqÞ is a measure of integration over the
(n −m)-dimensional physical subspace Σ in n-dimensional
q-space, satisfying

dn−mξ ¼ dnqδðχðqÞÞMðqÞ: (25)

This implies that the kernel Kðq; q0Þ [similarly to the
Schrödinger propagator Kðt; ξjt0; ξ0Þ] can be regarded as a
propagator of the Dirac wave function Ψ ðqÞ in q-space.
The boundary value problem for this wave function can be
written down as

Ĥμ

�
q;
ℏ
i
∂
∂q

�
Ψ ðqÞ ¼ 0; (26)

Ψphysðξ; tÞ ¼
�
J⃗
M

�1=2

Ψ ðqÞj
q¼eðξ;tÞ

þOðℏÞ; (27)

where the relation (27) serves as the “initial” condition for
Ψ ðqÞ specified on the (n −m)-dimensional surface Σ, and
them equations (26), μ ¼ 1;…m, propagate this initial data
onto the entire n-dimensional superspace.4 This propaga-
tion from the initial surface Σ0 via the two-point kernel
Kðq; q0Þ in the semiclassical approximation reads

Ψ ðqÞ ¼
Z

dq0Kðq; q0Þδðχðq0; t0ÞÞ→J0 Ψ ðq0Þ þOðℏÞ: (28)

Equations (23)–(28) could have been exact beyond the
semiclassical approximation if the first-class constraints
were linear in momenta pi. In this case Eq. (26) would have
specified the derivatives of Ψ ðqÞ along gauge directions,
and the Faddeev-Popov determinant in the coordinate
gauge would be just a q-dependent measure factor
J ¼ JðqÞ, independent of pi. In quantum cosmology this
is impossible, because the Hamiltonian constraint is quad-
ratic in momenta, and Jðq; pÞ is a nonlinear function of the
momenta of power coinciding with the total number of
Hamiltonian constraints (which is of course infinite in full
gravity theory and formally equals the number of spatial
points ∞3).5

A formal treatment of an infinite number of degrees of
freedom can be avoided in minisuperspace applications of
quantum cosmology, where only one Hamiltonian con-
straint (m ¼ 1) survives in the finite-dimensional phase
space of the Friedmann-Robertson-Walker (FRW) metric
and homogeneous matter fields. However, another problem
still remains with the boundary value problem (26)–(27).
The Wheeler-DeWitt equation (26) is at least quadratic in
derivatives ∂=i∂q and requires two initial conditions on
Σ—the value of Ψ ðqÞ and its first-order derivative—so that
the number of solutions is at least doubled as compared
to the reduced phase-space dynamics. This “positive-
negative” frequency doubling serves as a source of a rather
speculative third quantization concept [17], which repre-
sents the attempt to go beyond a physical phase-space
reduction.
We will, however, remain within the physical reduction

concept which consists in lifting the physical wave function
Ψphysðt; ξÞ to the level of the wave function in superspace
Ψ ðqÞ. The latter of course satisfies the Wheeler-DeWitt
boundary value problem (26)–(27) but incorporates only
the physical wave function information. In other words, a
formal boundary value problem (26)–(27) contains many
more solutions than the physically relevant ones which are
encoded in the Schrödinger equation (16) of the reduced
phase-space quantization. Thus our task will be finding the
selection rules for the solutions of the Wheeler-DeWitt
equation that are appropriate for the physical setting in the
reduced phase space.

2The kernel (19) is a truncation of the Batalin-Fradkin-
Vilkovisky (BFV) unitary evolution operator in the relativistic
phase space to the zero-ghost sector [7,13], and these properties
directly follow from this truncation [14].

3The operator ordering in Eq. (24) is immaterial because it is
responsible for terms of higher order in ℏ, which go beyond the
semiclassical approximation including the (one-loop) prefactor.

4Note that Σ is not the hypersurface and its codimension is
m > 1, so that the m equations (26) recover Ψ ðqÞ on the full n-
dimensional superspace from the boundary data (27).

5The semiclassical operator measure δðχÞJ⃗ þOðℏÞ in the
physical inner product of Dirac wave functions in Eq. (28)
can be promoted to the level of an exact concept by embedding
the Dirac quantization into the BFV quantization [13] in the
extended phase space of all canonical pairs of “matter” variables
qi, pi; Nμ, πμ and pairs of Grassmann ghost variables Cμ, P̄μ; C̄μ,
Pμ. This has been done within the concept of quantization on the
so-called inner product spaces in Refs. [14,16].
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C. Basis of classical constraints and their operator
realization

The classical theory is of course invariant under the
change of the basis of constraints with any invertible matrix
Ων

μ ¼ Ων
μðq; pÞ,

Hμ → H0
μ ¼ Ων

μHν; (29)

and under canonical transformations of phase-space
variables,

ðq; pÞ → ð ~q; ~pÞ; (30)

pidqi − ~pid ~qi ¼ dFðq; ~qÞ: (31)

Here Fðq; ~qÞ is a generating function of this canonical
transform, relating the old and new symplectic forms. One
should expect that at the quantum level this invariance
should hold due to the unitary equivalence of Dirac
quantization schemes in different constraint bases and
different canonical parametrizations. At least in the semi-
classical approximation (which includes one-loop prefac-
tors), this issue formally has an affirmative resolution.
Interestingly, it is associated with the problem of the
operator realization of quantum constraints Ĥμ which
should satisfy a closed commutator algebra (5).
As was shown in Refs. [7,11,18], in this approximation

the quantum Dirac constraints are given by the Weyl
ordering of their classical expressions,

Ĥμ ¼ NWHμðq̂; p̂Þ þOðℏ2Þ: (32)

Remarkably, this prescription holds in any basis of classical
constraints. Under the basis change (29) the formalism
undergoes a unitary transformation to new wave functions
Ψ 0ðqÞ and new operators Ĥ0

μ, Ĥ
0
μΨ 0ðqÞ ¼ 0,

Ψ ðqÞ → Ψ 0ðqÞ ¼ ðdet Ω̂ν
μÞ−1=2Ψ ðqÞ þOðℏÞ; (33)

Ĥμ → Ĥ0
μ ¼ ðdet Ω̂α

βÞ−1=2Ω̂ν
μĤνðdet Ω̂α

βÞ1=2 þOðℏ2Þ: (34)

In other words, the Dirac wave functionΨ ðqÞ is a density of
minus one-half weight in the space of gauge indices [18].6

Similarly, the classical canonical transformation (30)
induces the unitary transformation (see the derivation in
Appendix A for a generic quantum system),

Ψ ðqÞ → ~Ψ ð ~qÞ; ~̂Hμ
~Ψ ð ~qÞ ¼ 0; (35)

Ψ ðqÞ ¼
Z

d ~q

����det 1

2πℏ
∂2Fðq; ~qÞ
∂qi∂ ~qk

����1=2 exp
�
i
ℏ
Fðq; ~qÞ

�
~Ψ ð ~qÞ

þOðℏÞ; (36)

which was checked in Ref. [18] at least for contact
transformations, ~q ¼ ~qðqÞ, under which Eq. (36) reduces
to the transformation law of the weight-1=2 density,

Ψ ðqÞ ¼
����det ∂ ~q∂q

����1=2 ~Ψ ð ~qðqÞÞ þOðℏÞ: (37)

These unitary equivalence transformations will be
important in what follows, because we will have to go
to another convenient canonical parametrization of the
theory and also pick up a special normalization of the
Hamiltonian constraint. Only their consistent treatment will
guarantee the correct transition between the physical and
Wheeler-DeWitt wave functions of the theory.

III. MINISUPERSPACE MODELS: FROM THE
PHYSICAL SECTOR TO THE WHEELER-DEWITT

WAVE FUNCTION

The goals formulated in the end of Sec. II B can be
explicitly implemented in the case of minisuperspace
quantum cosmology with one Hamiltonian constraint.
For the index μ, which in the minisuperspace case takes
only one value,

Hμðq; pÞ≡Hðq; pÞ; χμðq; p; tÞ≡ χðq; p; tÞ; (38)

the gauge condition can be rewritten as expressing t
explicitly as a function on the phase space of qi and pi,

χðq; p; tÞ ¼ 0 ⇒ χðq; p; tÞ≡ Tðq; pÞ − t ¼ 0; (39)

so that the Faddeev-Popov determinant and the relevant
lapse function (7)–(9) read

J ¼ fT;Hg; N ¼ 1

J
: (40)

The critical point of the physical reduction is the non-
degeneracy of J over the entire phase space. The degen-
eration of J to zero at certain points in the phase space
implies the breakdown of the physical reduction known in
the context of Yang-Mills-type gauge theories as the Gribov
copies problem [19]. This problem arises when the surface
of gauge conditions is not transversal everywhere to the
orbits of gauge transformations and does not pick up a
single representative of each class of gauge-equivalent
configurations. In gravity theory, and specifically in min-
isuperspace quantum cosmology, this problem manifests
itself in the fact that the time variable Tðq; pÞ is not a
monotonically growing function along all possible (on-
shell and of-shell) histories. If J changes sign, then

6Oðℏ2Þ and OðℏÞ in Eqs. (32) and (33) signify the same one-
loop approximation because the semiclassical expansion for a
quantum state begins with 1=ℏ order.
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according to Eq. (40) N changes sign too, and according to
the geometrical interpretation of the lapse function the
spacelike hypersurface of constant time t with growing t
starts moving in spacetime back to the past. Therefore a
meaningful physical reduction makes sense only in
domains where J does not change sign. In classical theory
this problem is usually circumvented by a choice of time
that is monotonic at the classical history. The same applies
to the semiclassical quantization which probes only an
infinitesimal neighborhood of the latter. However, even in
this simplified case the requirement of monotonic T
imposes serious restrictions on its choice as a function
of the phase-space variables.
The role of the coordinate q in minisuperspace models is

basically played by the cosmological scale factor a ¼ eα,
so that

qi; pi ¼ α; pα; ξ; π; (41)

where ξ, π are actually the matter degrees of freedom other
than α, pα. This immediately forbids the choice of the
coordinate gauge or time T ¼ TðαÞ (intrinsic metric time)
in problems with bouncing cosmology when the evolution
of a undergoes a bounce from some of its maximum or
minimum values. More generally, the coordinate gauge
conditions χðq; tÞ are forbidden even semiclassically,
because their J ¼ fχ; Hg vanishes on caustics in multidi-
mensional superspace [20] ( _a ¼ 0 is the simplest degen-
erate case of the caustic in one-dimensional superspace).
Using classical theory as a guide in the search for
admissible gauges we will chose a Tðq; pÞ which mono-
tonically grows along the classical trajectory, and in the
bounce cosmology it immediately leads to a p-dependent
choice—the so-called extrinsic time Tðα; pαÞ [21].
This transition to momentum-dependent gauges implies

that the quantum reduction (27) no longer applies directly.
What we need is, first, to make a canonical transformation
of the type (30),

α; pα → T ¼ Tðα; pαÞ; pT ¼ pTðα; pαÞ;
pαdα − pTdT ¼ dFðα; TÞ; (42)

with the relevant generating function Fðα; TÞ. Second, we
make a classical and quantum reduction in terms of new
phase-space variables in the gauge (39). In these variables
the Hamiltonian constraint and the Wheeler-DeWitt equa-
tion correspondingly read as

H ≡HðT; pT ; ξ; πÞ ¼ 0; (43)

Ĥ

�
T;

∂
i∂T ; ξ̂; π̂

�
j ~Ψ ðTÞi ¼ 0: (44)

The ket vector notation here refers to the state in the Hilbert
space of matter operators ðξ̂; π̂Þ and the tilde labels the

Wheeler-DeWitt wave function in the representation of the
variable T. The quantum reduction to the physical sector
involves the Faddeev-Popov “determinant” and its operator
realization,

JðT; pT ; ξ; πÞ ¼
∂H
∂pT

; (45)

J⃗ ¼ J

�
T;

∂
i∂T ; ξ̂; π̂

�
: (46)

The resulting physical wave function jΨphysðtÞi satisfies the
Schrödinger equation (16).
In view of the minisuperspace nature of the system the

embedding (13), q ¼ eðξ; tÞ, of the physical space into the
superspace ofq ¼ ðT; ξÞ is in fact a one-to-onemap between
q and the arguments ðt; ξÞ of jΨphysðtÞi ¼ Ψphysðt; ξÞ.
Therefore Eq. (27) can be reversed to raise the physical
quantum state to the level of the Wheeler-DeWitt wave
function in the superspace of the T variable. Because of
dqδðχðq; tÞÞ≡ dTδðT − tÞdξ ¼ dξ [cf. Eq. (25)], the inte-
gration measure in Eq. (27)M ¼ 1, and this equation can be
rewritten as7

j ~Ψ ðTÞi ¼ 1

ðJ⃗Þ1=2 jΨphysðTÞi þOðℏÞ: (47)

The invertibility of J semiclassically guarantees the invert-
ibility of the corresponding operator coefficient acting on the
T argument of jΨphysðTÞi.
Similarly to Eq. (36), the canonical transformation (42)

implies at the quantum level the unitary transformation to
the α representation from that of T,

jΨ ðαÞi ¼
Z

∞

−∞
dThαjTij ~Ψ ðTÞi; (48)

where

hαjTi ¼
���� 1

2πℏ
∂2Fðα; TÞ
∂α∂T

����1=2ei
ℏFðα;TÞ þOðℏÞ; (49)

whence

jΨ ðαÞi ¼
Z

∞

−∞
dT

���� 1

2πℏ
∂2Fðα; TÞ
∂α∂T

����1=2eði=ℏÞFðα;TÞ
×

1

ðJ⃗Þ1=2 jΨphysðTÞi þOðℏÞ: (50)

Note that this relation is nonlocal in time: only the
knowledge of the entire Schrödinger evolution of

7For brevity, here and in what follows we normalize ℏ to unity
and only label the commutator terms disregarded in the semi-
classical approximation as OðℏÞ or Oðℏ2Þ.
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jΨphysðtÞi allows one to recover the Wheeler-DeWitt wave
function in the superspace of q.
Below we demonstrate how this equation works in

several simple but essentially nonlinear minisuperspace
models. What will be important for us is whether the
resulting wave function is either exponentially suppressed
or infinitely oscillating at superspace boundaries α ¼ −∞
and α ¼ ∞ (similarly for T and p̂T at the boundaries
T ¼ �∞). This would guarantee Hermiticity of the
phase-space operators—a necessary property of the Dirac
quantization and Wheeler-DeWitt equation formalism.
Simultaneously this would provide us with the selection
rules for physically motivated solutions of the Wheeler-
DeWitt equation, which remove one half of the full set of
their positive- and negative-frequency solutions. This
restores the balance between the number of these solutions
and the number of physical data in the reduced phase-space
quantization—a single physical wave function jΨphysðtÞi at
the initial Cauchy surface.

IV. FLAT FRW MODEL WITH A HOMOGENEOUS
SCALAR FIELD

We consider a flat Friedmann universe with the metric

ds2 ¼ N2ðtÞdt2 − e2αðtÞdx2; (51)

and a spatially homogeneous scalar field ϕðtÞ. Here NðtÞ is
the lapse function and eαðtÞ is the cosmological scale factor.
The range of the minisuperspace variable α,

−∞ < α < ∞; (52)

covers all values of the scale factor from singularity to
infinite expansion.
With the normalization of the gravitational constant

1=16πG ¼ 3=4 the action of this model,

S ¼
Z

dx
ffiffiffiffiffiffi−gp �

− R
16πG

þ 1

2
gμνϕ;μϕ;ν − VðϕÞ

�
; (53)

gives rise to the minisuperspace Lagrangian and the
Hamiltonian constraint

L ¼ −9e3α _α2

2N
þ e3α

_ϕ2

2N
− Ne3αVðϕÞ; (54)

H ¼ e−3α
�
− 1

18
p2
α þ

1

2
p2
ϕ

�
þ VðϕÞe3α; (55)

in terms of the canonical momenta for α and ϕ,

pα ¼ −9 _αe3α

N
; pϕ ¼

_ϕe3α

N
: (56)

According to the discussion in Sec. II D there is a
freedom in the operator realization of this constraint

associated with its overall normalization, H → H0 ¼ ΩH
[i.e., the choice of the constraint basis (29)]. This freedom
allows us to simplify the operator realization of H0.
Multiplying Eq. (55) by Ω≡ e3α converts the constraint
into the form

H0 ¼ − 1

18
p2
α þ

1

2
p2
ϕ þ VðϕÞe6α: (57)

The advantage of this normalization is that the kinetic term
of H is independent of the minisuperspace coordinates, so
that the Weyl ordering in the operator realization (32) is
trivial. In the coordinate representation it reduces to the
replacement of momenta by partial derivatives,

pα ¼ −i ∂
∂α ; pϕ ¼ −i ∂

∂ϕ ; (58)

and the minisuperspace operator of the Wheeler-DeWitt
equation for the cosmological wave function Ψ ðα;ϕÞ

Ĥ0Ψ ðα;ϕÞ ¼ 0 (59)

takes the form

Ĥ0 ¼ 1

18

∂2

∂α2 −
1

2

∂2

∂ϕ2
þ VðϕÞe6α: (60)

V. THE CASE OF A NEGATIVE CONSTANT
POTENTIAL

The variational equations for Eq. (54) in the gauge N¼1
(we will denote the corresponding cosmic time by τ) read

9

2
h2 ¼

_ϕ2

2
þ VðϕÞ; (61)

ϕ̈þ 3h _ϕþ dV
dϕ

¼ 0; (62)

where h is the Hubble parameter,

h≡ _α; (63)

and the unusual coefficient of h2 in Eq. (61) is in fact
3=8πG ¼ 9=2 in the chosen normalization of the gravita-
tional constant.
These equations essentially simplify for a constant

negative potential, i.e., a negative cosmological constant,

VðϕÞ ¼ −V0; (64)

when the scalar field ϕ becomes a cyclic variable with a
conserved momentum pϕ. Then the equation for _ϕ in terms
of pϕ,

_ϕ ¼ e−3αpϕ; (65)
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when substituted into the Friedmann equation (61) yields

9

2
_α2 ¼ 1

2
p2
ϕe

−6α − V0: (66)

Integrating this equation, one gets

eαðτÞ ¼
�
jpϕj

sin
ffiffiffiffiffiffiffiffi
2V0

p
τffiffiffiffiffiffiffiffi

2V0

p
�

1=3

; (67)

hðτÞ ¼
ffiffiffiffiffiffiffiffi
2V0

p
3

cot
ffiffiffiffiffiffiffiffi
2V0

p
τ: (68)

Thus, the universe begins its evolution at τ ¼ 0 (the big
bang cosmological singularity), reaches the point of maxi-
mal expansion at τ ¼ π=2

ffiffiffiffiffiffiffiffi
2V0

p
when h ¼ 0, and begins

contracting to the big crunch singularity at τ ¼ π=
ffiffiffiffiffiffiffiffi
2V0

p
.

During this evolution the Hubble parameter is monoto-
nously decreasing fromþ∞ to −∞. Below we consider the
quantum cosmology of this model. Note that the range of
cosmic time is finite, 0 < τ < π=

ffiffiffiffiffiffiffiffi
2V0

p
.

A. General solution of the Wheeler-DeWitt equation

With a constant potential (64) in view of the cyclic nature
of ϕ, the wave function Ψ ðα;ϕÞ is easily represented by its
Fourier transform,

Ψ ðα;ϕÞ ¼
Z

∞

−∞
dpϕΨðα; pϕÞeipϕϕ: (69)

The wave function in the momentum representation
Ψðα; pϕÞ then satisfies the Wheeler-DeWitt equation,

�
1

9

∂2

∂α2 þ p2
ϕ − 2V0e6α

�
Ψðα; pϕÞ ¼ 0: (70)

This equation has a general solution [22],

Ψðα; pϕÞ ¼ ψ1ðpϕÞIijpϕjð
ffiffiffiffiffiffiffiffi
2V0

p
e3αÞ

þ ψ2ðpϕÞKijpϕjð
ffiffiffiffiffiffiffiffi
2V0

p
e3αÞ; (71)

where IνðxÞ and KνðxÞ are the modified Bessel functions of
the first and the second kind, respectively, whereas ψ1ðpϕÞ
and ψ2ðpϕÞ are generic functions of the momentum pϕ.
The two branches of the generic solution (71) are

drastically different. Near the cosmological singularity,
α → −∞, in view of the imaginary value of ν ¼ ijpϕj
they both represent plane waves ∼e�3να ¼ e�3ijpϕjα.
However, for x ¼ e3α → þ∞ one of them is rapidly
growing, IνðxÞ ∝ ex=

ffiffiffi
x

p ¼ expðe3α − 3α=2Þ, and another
is exponentially decaying, KνðxÞ ∝ e−x=

ffiffiffi
x

p
. Therefore, the

Hermiticity of canonical momenta p̂α ¼ −i∂=∂α and other
operators with respect to the L2 inner product on the range
of α [Eq. (52)] is possible only for quantum states

represented by the second branch of the solution (71).
These Hermiticity properties are very important in the
Dirac quantization scheme and in the even more general
Becchi-Rouet-Stora-Tyutin (BRST)/BFV quantization
scheme [7,13,14].8 The violation of these properties leads
to the inconsistency of the formalism. Therefore, the
consistency of the Dirac quantization should serve as a
selection rule which retains only the MacDonald function
branchKijpϕjð

ffiffiffiffiffiffiffiffi
2V0

p
e3αÞ of Eq. (71). Below we show that in

this particular model the same selection rule follows from
quantization in the physical sector.

B. Physical wave function

From the discussion of Sec II C [see Eqs. (39)–(40)], we
remember that the gauge condition in the reduction to the
physical sector can be cast into the form

χðT; tÞ ¼ T − t; (72)

explicitly depending on time t, and T ¼ Tðα; pαÞ is a new
canonical variable depending on the old phase-space
variables. For the consistency of the physical reduction,
such a variable should monotonously grow with time at
least on classical solutions of the model. For models with
the cosmological expansion followed by contraction, the
variables depending only on the scale factor a (or its
logarithm α) are not monotonous. Thus, Tðα; pαÞ should
involve the canonical momentum, and it is called extrinsic
time [21] (involving the extrinsic curvature rather than the
intrinsic geometry of a spatial surface in spacetime). A
possible choice is the following function:

Tðα; pαÞ ¼
1

3
ffiffiffi
2

p pαe−3α; (73)

which is proportional to theHubble parameter9 and therefore
classically has infinite range, −∞ < T < ∞ (cf. beginning
of Sec. V). The conjugated momentum for this variable is

pT ¼ − ffiffiffi
2

p
e3α; (74)

so that the inverse transform from ðT; PTÞ to ðα; pαÞ reads

e3α ¼ − pTffiffiffi
2

p ; (75)

8The BRST quantization has as one of its basic ingredients the
(unphysical) inner product of L2 type in the bosonic sector of
the phase space and the Berezin integration inner product in the
sector of its Grassmann ghost variables.

9Note that the extrinsic time introduced in minisuperspace by
Eqs. (72)–(73) coincides up to a numerical factor with the York
extrinsic time introduced in Ref. [21] for an arbitrary manifold
τ≡ 2

3
γ−1=2π, π ¼ γabπab, where γab is a spatial metric and πab is

its conjugated momenta.
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pα ¼ −3pTT: (76)

The constraint (57) in terms of the new variables

H0ðT; pT; pϕÞ≡− 1

2
p2
TðT2 þ V0Þ þ

1

2
p2
ϕ ¼ 0 (77)

has a solution for pT,

pT ¼ − jpϕjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ V0

p ; (78)

where a particular sign of the square root is chosen in
accordance with the geometrical meaning of the momen-
tum pT (minus the three-dimensional volume of the
cosmological model). Thus, the physical Hamiltonian in
the gauge (72) reads [cf. Eq. (15)]

Hphysðpϕ; tÞ ¼ −pT jT¼t ¼
jpϕjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ V0

p : (79)

The corresponding Schrödinger equation for the physical
wave function,

i
∂Ψphysðt; pϕÞ

∂t ¼ Hphysðpϕ; tÞΨphysðt; pϕÞ; (80)

immediately gives the time evolution,

Ψphysðτ; pϕÞ ¼ ψ0ðpϕÞ exp
�
−ijpϕjarcsinh

tffiffiffiffiffiffi
V0

p
�

¼ ψ0ðpϕÞ
� ffiffiffiffiffiffi

V0

p

tþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ V0

p �
ijpϕj

; (81)

where ψ0ðpϕÞ is an arbitrary function of the momentum pϕ,
i.e., the initial data for Eq. (80) at t ¼ 0. Note that the time t
in contrast to the cosmic time τ has infinite range,
−∞ < t < ∞, and Eq. (80) propagates the data from
t ¼ 0 both forward and backward in time.

C. From the physical wave function to the solution of
the Wheeler-DeWitt equation

To lift the physical wave function to the level of the
Wheeler-DeWitt wave function according to Eq. (47), we
have to act with the inverse square root of the operator
version of the Faddeev-Popov operator. In the gauge (72) it
reads

J ¼ fT;H0g ¼ −pTðT2 þ V0Þ; (82)

so that semiclassically

J⃗ ¼ −ðT2 þ V0Þ
∂
i∂T : (83)

Thus, with the same one-loop precision (disregarding the
operator ordering in the above equation),

~ΨðT; pϕÞ ¼
�
− ∂
i∂T

�−1=2ΨphysðT; pϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ V0

p þOðℏÞ: (84)

Now by the generalized Fourier transform (48)–(49)
we have to go from the T representation to α represen-
tation. The classical generating function Fðα; TÞ of this
transform is

Fðα; TÞ ¼
ffiffiffi
2

p
e3αT; (85)

pαdα − pTdT ¼ dFðα; TÞ: (86)

Therefore the kernel of the unitary transformation (49)
reads

hαjTi ¼
ffiffiffiffiffiffiffiffiffi
3

π
ffiffiffi
2

p
s

e3α=2þi
ffiffi
2

p
e3αT þOðℏÞ; (87)

and

Ψðα; pϕÞ ¼
Z

∞

−∞
dThαjTi ~ΨðT; pϕÞ

¼
ffiffiffiffiffiffiffiffiffi
3

π
ffiffiffi
2

p
s

e3α=2
Z

∞

−∞
dTei

ffiffi
2

p
e3αT

×

�
− ∂
i∂T

�−1=2ΨphysðT; pϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ V0

p þOðℏÞ: (88)

By “integrating by parts” the time derivative in the nonlocal
operator ð−∂=i∂TÞ1=2—that is, acting by ð∂=i∂TÞ1=2 to the
left on the exponential function of T [which is justified by
rapid oscillations of the integrand, cf. Eq. (81), and the
decrease of its amplitude at T → �∞]—we get

Ψðα; pϕÞ ¼
ffiffiffiffiffiffi
3

2π

r Z
∞

−∞
dTΨphysðT; pϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T2 þ V0

p ei
ffiffi
2

p
e3αT þOðℏÞ:

(89)

Substituting Eq. (81) and using as a new integration
variable

x≡ arcsinh
Tffiffiffiffiffiffi
V0

p ; (90)

we have

Ψðα; pϕÞ ¼
ffiffiffiffiffiffi
3

2π

r
ψ0ðpϕÞ

Z
∞

−∞
dxe−ijpϕjxþie3α

ffiffiffiffiffiffi
2V0

p
sinh x:

(91)
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Then, in virtue of the formula for the MacDonald function,

KνðxÞ ¼
1

2
e
1
2
νπi

Z
∞

−∞
dteix sinh t−νt; (92)

which is valid for real positive x and the order ν belonging
to the interval −1 < ReðνÞ < 1 (see Appendix B for a
derivation), the wave function eventually takes the form

Ψðα; pϕÞ ¼
ffiffiffi
6

π

r
ψ0ðpϕÞe−1

2
πjpϕjKijpϕjð

ffiffiffiffiffiffiffiffi
2V0

p
e3αÞ: (93)

This is just one branch of the general solution of the
Wheeler-DeWitt equation (71) with10

ψ1ðpϕÞ ¼ 0; (94)

ψ2ðpϕÞ ¼
ffiffiffi
6

π

r
ψ0ðpϕÞ exp

�
− πjpϕj

2

�
: (95)

Thus, we have only one independent function in the
solution of the Wheeler-DeWitt equation. Remarkably, this
is exactly the MacDonald branch of Eq. (71) which
guarantees Hermiticity of the momentum operator p̂α ¼∂=i∂α and makes the Dirac quantization scheme consistent.

D. Cosmic time

Physical reduction can also be done in the cosmic time
gauge. To find the extrinsic time variable ~Tðq; pÞ that
would generate cosmic time with N ¼ 1 in phase space,
one should solve the differential equation for ~T in partial
derivatives, f ~T;H0g ¼ e3α ¼ −pT=

ffiffiffi
2

p
.11 This solution ~T

turns out to be related to T by the contact transformation

~Tðα; pαÞ ¼
1ffiffiffiffiffiffiffiffi
2V0

p arccot

�
−Tðα; pαÞffiffiffiffiffiffi

V0

p
�
; (96)

where Tðα; pαÞ is defined by Eq. (73). It is instructive to
demonstrate that starting with the physical wave function
~Ψphysðτ; pϕÞ built in the gauge ~χ ≡ ~T − τ ¼ 0, one again
comes to the solution of the Wheeler-DeWitt equation (70).
Repeating the procedure of reduced phase-space quan-

tization in this gauge, it is easy to see the set of relations
between quantization schemes with T and ~T time variables,

~J ≡ f ~T;H0g ¼ ∂ ~T
∂T J; (97)

→
~J ¼ ∂ ~T

∂T J⃗; (98)

~Ψphysð ~T; pϕÞ ¼ ΨphysðTð ~TÞ; pϕÞ: (99)

There is also the relation between the generating functions
of the canonical transformation from T to α and from ~T to
α, ~Fðα; ~TÞ ¼ Fðα; Tð ~TÞÞ, so that

∂2 ~Fðα; ~TÞ
∂α∂ ~T ¼ ∂2Fðα; TÞ

∂α∂T
∂T
∂ ~T : (100)

Using these relations in the tilde version of Eq. (50), we see
that, after changing the integration variable from ~T to Tð ~TÞ,
all factors of ∂ ~T=∂T cancel out, and it yields the same
Wheeler-DeWitt wave function. This confirms the antici-
pated property of the formalism that quantization schemes
in different gauges give rise to one and the same Wheeler-
DeWitt wave function.

VI. THE CASE OF A VANISHING POTENTIAL

A qualitatively different situation than that in the above
model takes place in the case of a vanishing potential. Its
classical evolution (67) in the limit V0 → 0 becomes

eα ¼ ðjpϕjτÞ1=3; 0 < τ < ∞ (101)

for the positive range of cosmic time and corresponds to
cosmological expansion from singularity to an infinite scale
factor. With V0 ¼ 0, the relation (96) between the cosmic
time τ and the time variable t reads

τ ¼ − 1ffiffiffi
2

p
t
; (102)

so that Eq. (101) maps onto

eα ¼
�
− jpϕj

t

�
1=3

; −∞ < t < 0 (103)

on a negative range of t. The contracting stage of the
cosmological evolution can be described by opposite
ranges of τ and t,

eα ¼ð−jpϕjτÞ1=3

¼
�jpϕj

t

�
1=3

; 0< t<∞; −∞< τ< 0: (104)

Both expansion and contraction can be unified as
consecutive stages of a single evolution by gluing together
the semiaxes of τ or t,

10Note that the normalization of H chosen in Eq. (57) should
be kept fixed throughout the calculation leading to Eq. (93). In
particular, it leads to the concrete normalization of J ∼ pT in
Eq. (82), the origin of ð−∂=i∂TÞ−1=2 in Eq. (88), and the
cancelation of e3α=2 in Eq. (89). Without this the resulting wave
function would not satisfy the Wheeler-DeWitt equation in the
operator realization (70).

11The normalization of the constraint H0 ¼ e3αH implies a
rescaling the lapse function—the Lagrangian multiplier for the
constraint—N0 ¼ e−3αN, so that in view of Eq. (40) the cosmic
time corresponds to f ~T;H0g ¼ 1=N0 ¼ e3α.
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eα ¼ð−jpϕjjτjÞ1=3¼
�jpϕj

jtj
�

1=3

; −∞< τ; t <∞:

(105)

With these identifications the transition through the point
τ ¼ 0 implies the “bounce” at the singularity eα ¼ 0,
whereas a similar transition through t ¼ 0 can be inter-
preted as a “turning” point from expansion to contraction at
infinite scale factor, eα → ∞. This unification is not
physically natural, however, because this transition through
τ ¼ 0 and t ¼ 0 lacks continuity and violates matching
physical data at these junction points. As we will see below,
this is even more manifest within a physical reduction at
both the classical and quantum levels.
At the quantum level the general solution of theWheeler-

DeWitt equation (70) for V0 ¼ 0 represents a pure plane
wave,

Ψðα; pϕÞ ¼ ψ1ðpϕÞe3ijpϕjα þ ψ2ðpϕÞe−3ijpϕjα: (106)

Therefore, in contrast to Eq. (71), the Hermiticity of the
momentum operator does not impose restrictions on the
coefficient functions ψ1;2ðpϕÞ. However, the physical
reduction continues by selecting only one independent
branch of this general solution.
By choosing the range of the time variable (T ≤ 0 or

T ≥ 0), one can restrict the dynamics in the physical sector
entirely to the expanding or contracting phases of the
evolution, as it happens on solutions of the equations of
motion in classical theory. From the geometric meaning of
pT as a negative quantity [Eq. (74)], it follows that it reads
as a solution of the Hamiltonian constraint pT ¼ −jpϕj=jTj
for both signs of T, and the physical Hamiltonian Hphys ¼
jpϕj=jtj at the quantum level gives

Ψ�
physðt; pϕÞ ¼ ψðpϕÞ

�
t0
t

��ijpϕj
; (107)

respectively, for contracting (þ) and expanding (−) cases,
for which t and t0 are correspondingly positive and
negative. Here t0 is the initial data moment of time when
Ψ�

physðt0; pϕÞ ¼ ψðpϕÞ, and it has the same sign as t. Then
an integration in Eq. (89) with V0 ¼ 0 over positive and
negative values of T, respectively, gives

Ψ�ðα; pϕÞ ¼
ffiffiffiffiffiffi
3

2π

r
ψðpϕÞð

ffiffiffi
2

p
jt0jÞ�ijpϕj

× e
πjpϕ j
2 Γð∓ijpϕjÞe�3ijpϕjα; (108)

which are of course the two branches of Eq. (106).12 Thus,
the separate physical reduction for contracting and

expanding cosmological models leads to the selection of
a relevant branch in the full Wheeler-DeWitt solution.
How natural is the unification of these two branches into

the single picture mentioned above? In the physical reduc-
tion this unification is possible only at the cost of violating
the geometrical meaning of pT as a negative quantity
[Eq. (74)], because the requirement of analyticity demands
a replacement Hphys ¼ jpϕj=jtj → Hphys ¼ jpϕj=t. For the
full time range, −∞ < t < ∞, this generates a physical
wave function,

Ψphysðt; pϕÞ ¼ ψðpϕÞ
�
t0
t

�
ijpϕj

: (109)

It has a branching point at t ¼ 0 and requires a prescription
for analytical continuation either from t > 0 to t < 0
(“contracting” wave function) or from t < 0 to t > 0
(“expanding”wave function).Moreover, the physical reduc-
tion at T ¼ 0 also becomes inconsistent because the main
ingredient of this reduction, the Faddeev-Popov factor
J ¼ −pTT2, gets degenerate at T ¼ 0, and again a special
prescription is needed to detour this point by the path in the
complex plane of T. Provided this is done, one can apply
Eq. (89) with an integration over a full range of T,
−∞ < T < ∞, and acquire

Ψðα; pϕÞ ¼
�
0;

ð1 − e−2πjpϕjÞΨþðα; pϕÞ;
(110)

where the first case corresponds to the analytic continuation
of Ψphysðt; pϕÞ from the positive values of t to the upper
shore of the branch cut at the negative semiaxis of t,
Ψphysð−jtj; pϕÞ ¼ Ψphysðeiπjtj; pϕÞ, and the second case
corresponds to the lower shore of this cut. Similar expres-
sions in terms ofΨ−ðα; pϕÞ can be obtained if we start with
the physical “expanding” wave function analytic near the
negative semiaxis of t and continue it to the branch cut along
the positive semiaxis. In both cases only one branch of the
general solution (106) Ψ�ðα; pϕÞ is generated and the
physical reduction leads to the selection of Wheeler-
DeWitt wave functions. Similar conclusions can be reached
within the cosmic time reduction with the extrinsic time
variable ~T.
Now it is hard to say how meaningful this unification of

expanding and contracting stages is. This is, of course, a
certain extension of the quantization concept in the physical
sector. Within the latter this unification seems as contrived
as it is in classical theory. Classical solutions having no
turning points at large values of the scale factor and no
bounces close to singularities imply that the quantum
dynamics is also entirely restricted to either expansion or
contraction, and both of them are related by time inversion.

12Note that the normalizability of this wave function with
respect to the L2 inner product in pϕ space is the same as that of
ψðpφÞ, because eπjpϕ j=2jΓð∓ijpϕjÞj ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π=jpϕj

p
, for jpϕj → ∞.
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A. Intrinsic time

The absence of turning points in classical dynamics
implies that the physical reduction can be done in the
intrinsic time, i.e., the situation when the time variable T is
chosen as a function of only the 3-metric of the theory and
does not involve its conjugated momenta. In the minisuper-
space context this means identifying T with, say, α and
imposing a simple gauge,

χ ¼ α − t: (111)

Then the physical Hamiltonian equals −pα and as a
solution of the constraint in our simple model with a
vanishing scalar potential V0 ¼ 0 it reads

Hphys ¼ −pα ¼ −3εjpϕj: (112)

In this case we do not have any reason to disregard any of
the ε ¼ �1 sign factors which correspond, respectively, to
expansion and contraction. The initial value data at a given
t—that is, at a given spacelike surface with the scale factor
e3t—includes the discrete degree of freedom ε indicating
the direction of evolution. The physical wave function
becomes a two-component vector Ψε

physðt; pϕÞ whose
components evolve with time differently under the action
of the Hamiltonian (112). Lifting this state to the level of
the Wheeler-DeWitt wave function implies the generalized
Fourier transform, analogous to Eq. (88) but apparently
including a summation over discrete values of ε. In this
simple model with V0 ¼ 0 it trivially leads to the super-
position (106) with absolutely independent func-
tions ψ1;2ðpϕÞ.
Note that in the case of the vanishing potential the

Hermiticity condition discussed above does not impose
restrictions on the general solution of the Wheeler-DeWitt
equation. The two terms in the general solution correspond,
respectively, to expanding and contracting universes. When
we construct the physical wave function based on the
intrinsic time choice we again obtain two physical wave
functions, which can be lifted to the level of two branches
of the general solution of the Wheeler-DeWitt equation.
However, if we consider instead the extrinsic time

parameter, then the corresponding physical wave function,
when lifted to the level of the solution of the Wheeler-
DeWitt equation, contains only one independent solution of
this equation. This is explained by the fact that the
introduction of the extrinsic time implies a unique evolu-
tion instead of two independent evolutions, i.e., contraction
and expansion. Namely, we have expansion-infinity-
contraction for the time parameter associated with the
Hubble variable and contraction-singularity-expansion
for the cosmic time parameter.
The selection of one branch of the Wheeler-DeWitt

equation solution via physical reduction with external time
might look unnatural. Such a selection is not enforced by

the Hermiticity requirement, but rather arises as an artifact
of unifying the expansion and contraction of the universe as
stages of unique evolution, whereas physically in this
model these stages are separated either by the cosmological
singularity or by a domain of asymptotically infinite size of
the universe. Thus, the intrinsic time treatment and intrinsic
time setting of the Cauchy problem seems more natural
here, because it yields two-component physical wave
functions, which give rise to two independent branches
of the Wheeler-DeWitt wave function, describing two
different types of evolution in the quantum ensemble,
i.e., expansion and contraction.

VII. PHANTOM SCALAR FIELD WITH A
POSITIVE CONSTANT POTENTIAL

In order to see that a nontrivial selection of solutions of
the Wheeler-DeWitt equation matches with the Hermiticity
requirements in the Dirac quantization we consider another
example: a phantom scalar field with a positive constant
potential. This field has a negative kinetic term,

S ¼
Z

dx
ffiffiffiffiffiffi−gp �

− R
16πG

− 1

2
gμνϕ;μϕ;ν − V0

�
;

V0 > 0;

(113)

and despite the obvious violation of unitarity in scattering
problems this model recently attracted a lot of interest in the
context of dark energy models [23]. As we will see it also
raises interesting issues of underbarrier semiclassical
behavior and boundaries in cosmological minisuperspace.
This happens because this model has a cosmological
bounce at small values of the scale factor, a situation
similar to known prescriptions for the cosmological wave
function of the Universe, based on the ideas of Euclidean
quantum gravity and quantum tunneling [24–27].
The Friedmann equations (61)–(66) with the inverted

kinetic term of the scalar field and inverted constant
potential (p2

ϕ → −p2
ϕ, V0 → −V0) have a solution which

in the cosmic time τ and the Hubble time t of Sec. V reads

e3α ¼ jpϕj
cosh

ffiffiffiffiffiffiffiffi
2V0

p
τffiffiffiffiffiffiffiffi

2V0

p ¼ jpϕjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV0 − t2Þ

p ; (114)

h ¼
ffiffiffiffiffiffiffiffi
2V0

p
3

tanh ð
ffiffiffiffiffiffiffiffi
2V0

p
τÞ ¼

ffiffiffi
2

p

3
t: (115)

The time variables of this cosmological evolution from the
moment of infinite size to the bounce and back to the
moment of infinite expansion run in the ranges

−∞ < τ < ∞; − ffiffiffiffiffiffi
V0

p
< t <

ffiffiffiffiffiffi
V0

p
: (116)
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In contrast to the model of Sec. V, here the range of Hubble
time is compact.
At the level of Dirac quantization the Wheeler-DeWitt

equation here reads

�
1

9

∂2

∂α2 − p2
ϕ þ 2V0e6α

�
Ψðα; pϕϕÞ ¼ 0; (117)

and has a general solution

Ψðα; pϕÞ ¼ ψ1ðpϕÞJjpϕjð
ffiffiffiffiffiffiffiffi
2V0

p
e3αÞ

þ ψ2ðpϕÞJ−jpϕjð
ffiffiffiffiffiffiffiffi
2V0

p
e3αÞ; (118)

where JνðxÞ are the Bessel functions. Their leading
behavior at x → ∞ is

JνðxÞ ∼
ffiffiffiffiffi
2

πx

r
cos

�
x − νπ

2
− π

4

�
; (119)

and therefore the Hermiticity requirement at α → ∞ does
not impose any restriction on the branches of Eq. (118).
However, at the cosmological singularity α → −∞ the
Bessel function of a negative order diverges as xν, and the
requirement of Hermiticity selects only the first term
of Eq. (118).
Let us see if this selection also works if we start with

quantization in the physical sector. By repeating the steps
of Sec. V in the gauge χ ¼ T − τ ¼ 0, where the Hubble
time variable is chosen similarly to Eq. (73) (the opposite
sign is taken to match the start of contraction from infinity
with the negative value T ¼ − ffiffiffiffiffiffi

V0

p
),

T ¼ − 1

3
ffiffiffi
2

p pαe−3α; pT ¼
ffiffiffi
2

p
e3α: (120)

The Hamiltonian constraint, the Faddeev-Popov factor, and
the physical Hamiltonian now read

H0ðT; pT; pϕÞ ¼ − 1

2
p2
TðT2 − V0Þ − 1

2
p2
ϕ; (121)

J ¼ −pTðV0 − T2Þ; (122)

Hphys ¼ −pT̄ ¼ − jpϕjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 − t2

p ; (123)

and the relevant solution of the Schrödinger equation is

Ψphysðt; pϕÞ ¼ ψ0ðpϕÞ exp
�
ijpϕj arcsin

tffiffiffiffiffiffi
V0

p
�
; (124)

where of course ψ0ðpϕÞ is the physical data at t ¼ 0.
Similarly to Eqs. (88)–(89), the transition from

Ψphysðt; pϕÞ to Ψðα; pϕÞ becomes

Ψðα; pϕÞ ¼
ffiffiffiffiffiffi
3

2π

r Z ffiffiffiffi
V0

p

− ffiffiffiffi
V0

p
dTΨphysðT; pϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T2 − V0

p e−i
ffiffi
2

p
e3αT þOðℏÞ;

(125)

where we retain the integration range (116) where only the
unitary evolution with a real arcsinðt= ffiffiffiffiffiffi

V0

p Þ is possible.
Introducing a new variable,

θ≡ arcsin
Tffiffiffiffiffiffi
V0

p ; (126)

we get

Ψðα; pϕÞ ¼
ffiffiffiffiffiffi
6π

p
ψ0ðpϕÞIðx; νÞ; (127)

Iðx; νÞ≡ 1

2π

Z
π=2

−π=2
dθe−ix sin θþiνθ; (128)

x≡ ffiffiffiffiffiffiffiffi
2V0

p
e3α; ν≡ jpϕj: (129)

A. Underbarrier domains and minisuperspace
boundaries

Now we have to remember that our formalism of
quantum physical reduction is known only semiclassically,
up to OðℏÞ terms which extend beyond one-loop order
(classical exponent and prefactor). So let us check the
consistency of the obtained result and, in particular, the
integration range in Eq. (128) within this approximation. It
corresponds to the limit when both x and ν are large,

x; ν ¼ O

�
1

ℏ

�
→ ∞: (130)

The classically allowed domain is defined by the over-
barrier range of these parameters [Eq. (129)],

x > ν; (131)

where the asymptotic expansion for the integral in
Eq. (127) is given by the contributions of its two real
stationary phase points θ� ¼ � arccosðν=xÞ,

Iðx; νÞ ¼
ffiffiffi
2

π

r
sin ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − ν2

p − ν arccos ν
x − π

4
Þ

ðx2 − ν2Þ1=4 þOðℏÞ:
(132)

This coincides with the asymptotic approximation of the
Bessel function JνðxÞ of simultaneously large argument
and order (“approximation by tangents” Eq. 8.453.1 of
Ref. [28]), so that in this domain of parameters the integral
(128) is in fact the “one-loop” approximation of the Bessel
function,
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Iðx; νÞ ¼ JνðxÞ þO

�
1

x
;
1

ν

�
: (133)

The phase of the sine in Eq. (132) is of course the function
Sðx; νÞ satisfying in terms of α and pϕ the Hamilton-Jacobi
equation for Eq. (117),

− 1

9

�∂S
∂α

�
2 − p2

ϕ þ 2V0e6α ¼ 0: (134)

However, in the underbarrier regime of the semiclassical
approximation

x < ν; (135)

the integral is given asymptotically by contributions of the
boundary points θ ¼ �π=2, because there are no stationary
phase points between them. These contributions are
Oð1=x; 1=νÞ ¼ OðℏÞ and go beyond the one-loop approxi-
mation. This means that the expression (127) does not
reproduce the correct semiclassical limit because it lacks
the leading classical and one-loop terms in the underbarrier
regime.
On the other hand, underbarrier phenomena are usually

described by the transition into a complex plane of the time
variable. This serves as a strong motivation to extend the
range of the variable θ beyond�π=2 to the upper half of the
complex plane,

θ ¼ � π

2
þ iρ; 0 ≤ ρ < ∞: (136)

This, in turn, corresponds to the extension of the range of
the physical time variable from the segment ½− ffiffiffiffiffiffi

V0

p
;

ffiffiffiffiffiffi
V0

p �
to the full real axis,

−∞ < T < ∞: (137)

On the new regions with jTj > ffiffiffiffiffiffi
V0

p
the physical

Hamiltonian (123) is imaginary, and the physical wave
function becomes exponentially decaying for ρ → ∞,

Ψphysð�
ffiffiffiffiffiffi
V0

p
cosh ρ; pϕÞ ¼ ψ0ðpϕÞe�i

πjpϕ j
2

−jpϕjρ; (138)

at the classically forbidden intervals of the whole time
range t ¼ ffiffiffiffiffiffi

V0

p
sinð�π=2þ iρÞ ¼ � ffiffiffiffiffiffi

V0

p
cosh ρ.

Thus, if we want to include in the Wheeler-DeWitt
formalism a description of underbarrier phenomena the
generalized Fourier transform from Ψphys to Ψðα; pϕÞ
defined by Eqs. (127)–(128) should involve an integration
over the full real axis of T, or in terms of θ,

Ψðα; pϕÞ ¼
ffiffiffiffiffiffi
6π

p
ψ0ðpϕÞJðx; νÞ; (139)

Jðx; νÞ ¼ 1

2π

Z
π=2þi∞

−π=2þi∞
dθe−ix sin θþiνθ: (140)

Here the integration contour runs vertically down from θ ¼
−π=2þ i∞ to θ ¼ −π=2, then along the real axis to
θ ¼ π=2, and eventually goes vertically up to θ ¼
π=2þ i∞. In the underbarrier range (135) this integral
has a saddle point θþ ¼ i lnðν=xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2=x2 − 1

p
Þ, which

contributes the leading one-loop term

Jðx;νÞ¼ e
ffiffiffiffiffiffiffiffiffi
ν2−x2p

ffiffiffiffiffiffi
2π

p ðν2−x2Þ1=4
�

x

νþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2−x2

p
�

ν

þOðℏÞ (141)

missing in Iðx; νÞ. This term is again the asymptotic
expression for the Bessel function of large argument and
order with x < ν.
Moreover, as shown in Appendix B, the integral (140) is

exactly the representation of the Bessel function JνðxÞ for
real positive argument x and order ν,

Jðx; νÞ ¼ JνðxÞ; x > 0; ν > 0; (142)

so that finally

Ψðα; pϕÞ ¼
ffiffiffiffiffiffi
6π

p
ψ0ðpϕÞJjpϕjð

ffiffiffiffiffiffiffiffi
2V0

p
e3αÞ þOðℏÞ; (143)

which is one of the branches of the general solution of the
Wheeler-DeWitt equation (118), selected also by the
Hermiticity requirement.
An extension of integration range from Eq. (128) to

Eq. (140) still might seem contrived because it implies a
violation of the principles of physical reduction. This
reduction starts entirely in classical terms and remains
consistent unless the Faddeev-Popov factor (122) degen-
erates to zero and the physical evolution violates unitarity,
that is, for the domain jTj < ffiffiffiffiffiffi

V0

p
. However, this domain

does not cover the full minisuperspace of T or α, and the
artificial boundary at T ¼ � ffiffiffiffiffiffi

V0

p
would mean a nonzero

boundary value of Ψðα; pϕÞ at α → −∞ (or x ¼ 0),
because the integral (128) has a finite limit Ið0; νÞ ¼
Oð1Þ rather than exponential falloff xν ∼ e3α. Therefore,
no Hermiticity properties of momentum operators in the
reduced superspace− ffiffiffiffiffiffi

V0

p
< T <

ffiffiffiffiffiffi
V0

p
can be spoken of.13

This strongly suggests an extension of the minisuperspace
of T up to infinity. This extension embraces a classically
forbidden domain at the cost of adding nonunitary dynam-
ics in the physical sector (complex time or imaginary
physical Hamiltonian), but it retains real values of the
minisuperspace variable T and α.

13Not to mention that with the integration limits T ¼ � ffiffiffiffiffiffi
V0

p
,

the “integration by parts” of ð∂=i∂TÞ−1=2 in the derivation of
Eq. (125) [cf. discussion of Eq. (88)] is impossible without
uncontrollable boundary terms.
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VIII. CONCLUSIONS

The Dirac quantization of constrained systems does not
form a closed physical theory. Quantum Dirac constraints,
which in a gravity theory context form the set of Wheeler-
DeWitt equations, have many more solutions than those
corresponding to the physical setting of the problem. The
way to select physically meaningful solutions matching
with quantum initial value data may consist in the reduced
phase-space quantization. Performing a reduction to a
physical sector results after a quantization in the physical
wave function that can be raised to the level of the wave
function in the superspace of the 3-metric and matter fields.
This superspace wave function forms a subset of solutions
of the Wheeler-DeWitt equations parametrized by the
physical initial data.
This program can explicitly be realized in a spatially

homogeneous (minisuperspace) setup with one
Hamiltonian constraint, and this was demonstrated for
three simple but essentially nonlinear models: a flat
FRW cosmology with a scalar field having a negative
constant potential (or negative Λ term), a vanishing
potential and, finally, a phantom scalar field with a positive
constant potential. Quite remarkably, the resulting selection
rules for solutions of the minisuperspace Wheeler-DeWitt
equation leave us only with those of its wave functions
which guarantee the Hermiticity of the canonical phase-
space operators of the theory. This property is an important
ingredient of the Dirac quantization scheme, but it is not a
priori guaranteed to be true: a generic set of solutions of the
Wheeler-DeWitt equation is not square integrable and
violates the Hermiticity of canonical momenta operators.
The central point of physical reduction is the choice of

temporal gauge condition, or the choice of time T as a
function of phase-space variables, which allows one to
disentangle physical degrees of freedom, their Hamiltonian,
and the unitarily evolving quantum state, i.e., the physical
wave function. The consistency of this gauge-fixing pro-
cedure, or the nondegeneracy of the corresponding
Faddeev-Popov operator, is equivalent to the requirement
that a monotonically growing time variable should be in
one-to-one correspondence with the evolving state of the
system. The key for constructing T comes from considering
two different types of the classical cosmological evolution:
those with or without turning points, i.e., the points of
maximal expansion or the points of minimal contraction
(bounces).
In the case when the classical evolution represents only

expansion or contraction, it is sufficient to use gauges
which fix the so-called intrinsic time parameter, i.e., a
parameter which depends on the cosmological scale factor
and is independent of its conjugated momentum. Two
different physical Hamiltonians, as solutions of the quad-
ratic Hamiltonian constraint equation, and the correspond-
ing two physical wave functions arise in this case. The latter
additively enter their Wheeler-DeWitt counterpart in

minisuperspace and give its two independent branches
without any selection rule. This, however, does not contra-
dict the Hermiticity requirement, because both branches
turn out to be square integrable and admit integration of the
derivatives by parts, which implies the Hermiticity of the
canonical momenta. This happens in the scalar field model
with a vanishing potential.
A qualitatively different situation arises in models whose

evolution includes turning points, i.e., those with a constant
negative potential or those with a phantom field with a
positive potential. In this case, the intrinsic time gauges are
inadequate, because a single value of the cosmological
scale factor labels two different states: expansion and
contraction. Instead, one should use extrinsic time, which
is a function of the Hubble parameter whose values at least
classically are in one-to-one correspondence with consecu-
tive moments of the cosmological evolution, including the
turning points and bounces. We made a physical reduction
with this Hubble time T, found the physical state evolving
in this time, and then raised it to the level of the wave
function in the minisuperspace of the scale factor eα by a
kind of generalized Fourier transform from T to α. The
critical point of this procedure is a nontrivial selection rule:
the result selects one branch of the generic solution of the
Wheeler-DeWitt equation, which is square integrable and
satisfies the Hermiticity requirement.
Note that the above method can also be extended to the

degenerate case—the minisuperspace FRW model without
matter fields entirely driven by a cosmological constant,
which was used in pioneering papers for the construction of
the tunneling [25,26] and no-boundary [24] wave functions
of the Universe. The absence of physical degrees of
freedom in this case does not prevent us from applying
the above procedure of raising the physical wave function
to the minisuperspace level. The resulting selection rule,
however, turns out to be different from the outgoing-waves
version of the tunneling cosmological state [29]. It also is
not related to cosmological singularities or the behavior of
the wave function at the infinity of the scale factor. Rather,
it is connected with the behavior in classically forbidden
domains in minisuperspace, i.e., the shadow regions behind
the turning point. Namely, in such regions one of the
branches of the general solution of the Wheeler-DeWitt
equation is infinitely growing and, hence, should be
discarded. In this respect our selection rule seems closer
to the no-boundary proposal of Hartle and Hawking [24],
but a detailed comparison would require the introduction of
a spatial curvature and will be considered in a future
publication.
As we saw, for a vanishing potential no selection rules

are enforced. This is natural because in this case one does
not have classically forbidden regions in minisuperspace.
This sounds like the classical-to-quantum correspondence
in cosmology. The structure of a classical evolution (the
presence or absence of turning points) determines the

A. O. BARVINSKY AND A. YU. KAMENSHCHIK PHYSICAL REVIEW D 89, 043526 (2014)

043526-16



correct class of gauge conditions and the absence or
presence of selection rules for the solution of the
Wheeler-DeWitt equation.14

The formalism of the quantum reduction to the physical
sector [7,11,18] is known only semiclassically (including
the tree-level exponential and one-loop prefactor). The
obtained results also hold with the same precision.
Moreover, the conformity of the reduced phase-space
quantization with the Dirac quantization was found in
Refs. [7,11,18] only in the classically allowed (overbarrier)
semiclassical domain. It holds in the sense that unitary
evolution in the physical sector was mapped onto semi-
classical oscillating solutions of the Wheeler-DeWitt equa-
tion. The model with a phantom scalar field shows that this
mapping can be extended to the classically forbidden
(underbarrier) domain with exponentially damped wave
functions. This represents the extension beyond original
principles of the reduced phase-space quantization, because
in this domain it deals with nonunitary dynamics in the
physical sector. In particular, this extension uses a complex
physical Hamiltonian or complex physical time and
encounters the degeneration of the Faddeev-Popov factor
(122) to zero at the boundary between the classically
allowed domain and the forbidden one, jTj ¼ ffiffiffiffiffiffi

V0

p
.

Nevertheless, this extended quantum reduction provides
important Hermiticity properties in the Dirac quantization
and the selection of L2-integrable Dirac-Wheeler-DeWitt
wave functions. Moreover, as was discussed in Ref. [20],
the caustic in the congruence of classical histories in
superspace separating its overbarrier domains from the
underbarrier ones always leads to a vanishing Faddeev-
Popov factor. This maintains the spirit of Euclidean
quantum gravity, the concept underlying the notion of
the no-boundary wave function which describes both
classically allowed and forbidden phases of the cosmo-
logical state by real superspace variables [24–27].
Our principal conclusion on the conformity of the

physical reduction and the Hermiticity selection rules
was attained only in simple models. A consideration of
more complicated cosmological models with a full set of
(inhomogeneous) field-theoretical modes can pose addi-
tional problems. For example, the one-loop approximation
raises the issue of correspondence between covariant
calculations and those based on an explicit reduction to
physical degrees of freedom. This was intensively dis-
cussed in the cosmological context [31] and in the context
of the vacuum energy calculation on the background of
wormholes and gravastars [32]. This means that beyond the
minisuperspace approximation one should be more cau-
tious with regard to physical reduction. However, the
semiclassical nature of the method which captures the

effect of superspace boundaries and underbarrier domains
gives hope that our main conclusion might be a generic
feature of Dirac quantization, and we hope to study this
conjecture in the future.
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APPENDIX A: UNITARY CANONICAL
TRANSFORMATIONS

Here we review the formalism of the unitary trans-
formation (36) corresponding to the classical canonical
transformation (30)–(31). The latter implies that old and
new canonical variables are related by

pm ¼ ∂Fðq; ~qÞ
∂qm ; ~pm ¼ −∂Fðq; ~qÞ

∂ ~qm : (A1)

To guarantee the Hermiticity of canonical operators at the
quantum level this transformation should be specified by
Weyl ordering in the right-hand sides of these relations,

p̂m ¼ NW
∂Fðq̂; ~̂qÞ
∂q̂m ; ~̂pm ¼ −NW

∂Fðq̂; ~̂qÞ
∂ ~̂qm : (A2)

The kernel of the unitary transformation hqj ~qi can be
found in the first (one-loop) order of the ℏ expansion by the
following sequence of relations. First, we rewrite the Weyl
normal ordering in terms of q ~q ordering, when all operators
q̂ stand to the left of the operators ~̂q,

NW
∂Fðq̂; ~̂qÞ
∂q̂m ¼Nq ~q

�∂Fðq̂; ~̂qÞ
∂q̂m −1

2
½q̂n; ~̂qk� ∂2

∂q̂n∂ ~̂qk
∂Fðq̂; ~̂qÞ
∂q̂m

�

þOðℏ2Þ; (A3)

where the commutator ½q̂n; ~̂qk� with the same precision is
given by the Poisson bracket

½q̂n; ~̂qk� ¼ iℏfq̂n; ~̂qkg þOðℏ2Þ ¼ iℏ
∂ ~̂qk
∂p̂n

þOðℏ2Þ

¼ iℏ

�∂2Fðq̂; ~̂qÞ
∂q̂n∂ ~̂qk

�−1
þOðℏ2Þ: (A4)

14Another example of the classical-to-quantum correspon-
dence in cosmology was recently discussed in the context of
soft cosmological singularities [30].
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Therefore, since hqjNq ~qfðq̂; ~̂qÞj ~qi ¼ fðq; ~qÞhqj ~qi for any
function fðq̂; ~̂qÞ of noncommuting operators, we have

ℏ
i

∂
∂qm hqj ~qi¼ hqjp̂mj ~qi

¼ ∂
∂qm

�
F− iℏ

2
ln det

∂2F
∂qn∂ ~qk

�
hqj ~qiþOðℏ2Þ;

(A5)

whence

hqj ~qi ¼
����det 1

2πℏ
∂2Fðq; ~qÞ
∂qi∂ ~qk

����1=2ei
ℏFðq; ~qÞ þOðℏÞ; (A6)

where the normalization coefficient follows from the
unitarity requirement,

R
d ~qhqj ~qih ~qjq0i ¼ δðq − q0Þ. In fact,

this expression represents the Pauli–Van Vleck-Morette
equation for the kernel of unitary evolution from ~q to q
when Fðq; ~qÞ is identified with the relevant Hamilton-
Jacobi function.
The case of contact canonical transformations (37),

q → ~q ¼ ~qðqÞ, requires a somewhat different consideration
because its classical generating function relates the old
coordinates q with the new momenta ~p,

dFðq; ~pÞ ¼ pdqþ ~qd ~p; (A7)

]and equals Fðq; ~pÞ ¼ ~pm ~qmðqÞ. Therefore, the kernel of
transformation from q̂ to ~̂p—the generalized Fourier
transform—reads, according to Eq. (A6),

hqj ~pi ¼
����det 1

2πℏ
∂ ~q
∂q

����1=2ei
ℏ ~p ~qðqÞ þOðℏÞ; (A8)

and the coordinate representation kernel

hqj ~qi ¼ 1ffiffiffiffiffiffiffiffi
2πℏ

p
Z

d ~phqj ~pie− i
ℏ ~p ~q

¼
����det ∂ ~q∂q

����1=2δð ~qðqÞ − ~qÞ (A9)

yields the transformation law (37).

APPENDIX B: INTEGRAL REPRESENTATIONS
FOR BESSEL AND MODIFIED BESSEL

FUNCTIONS

Equation (92) is based on the integral representation for
the MacDonald function KνðxÞ [33],

KνðxÞ ¼
1

2
e−1

2
νπi

Z
∞

−∞
dte−ix sinh t−νt; (B1)

which is valid for real positive argument x and order ν
belonging to the range −1 < Re ν < 1. Using the sym-
metry K−νðzÞ ¼ KνðzÞ and changing the sign of the
integration parameter t, we immediately come to

KνðxÞ ¼
1

2
e
1
2
νπi

Z
∞

−∞
dteix sinh t−νt; (B2)

which is just Eq. (92).
To derive the exact integral representation (140) for the

Bessel function (142) we start with Eq. 8.412.6 of
Ref. [28],

JνðzÞ ¼
1

2π

Z
πþi∞

−πþi∞
dθe−iz sin θþiνθ; Re z > 0: (B3)

The contour of integration here starts at θ ¼ −π þ i∞, runs
vertically down to θ ¼ −π, follows along the real axis to
the point θ ¼ π, and then goes vertically up to θ ¼ π þ i∞.
The integral (140) has an integration contour similar to

that of Eq. (B3) with the points θ ¼ �π replaced, respec-
tively, by θ ¼ �π=2. Besides, the parameters x and ν in the
integrand of Eq. (140) are both real and positive. We want
to show that this integral also gives the Bessel function
JνðxÞ. SinceZ

π=2þi∞

−π=2þi∞
dθe−ixsinθþiνθ

¼
�Z

πþi∞

−πþi∞
−
Z −π=2þi∞

−πþi∞
−
Z

πþi∞

π=2þi∞

�
dθe−ixsinθþiνθ; (B4)

this statement reduces to the fact that the last two integrals
on the right-hand side of this equation vanish. To prove it,
we consider the first of these two integrals. It coincides with
the integral over the horizontal segment of

θ ¼ β þ iΛ; (B5)

with the real part of θ running between −π and −π=2,
−π ≤ β ≤ −π=2, and the constant imaginary part Λ tending
to infinity, Λ → ∞. At this segment the exponential of the
integrand,

e−ix sin θþiνθ ¼ e−ix sin β coshΛþx cos β sinhΛþiνβ−νΛ; (B6)

is dominated by a large real part, x cos β sinhΛ − νΛ,
which is negative in view of cos β ≤ 0 and ν > 0.
Therefore, in the limit Λ → ∞ the integrand uniformly
tends to zero, and the integral

R−π=2þi∞
−πþi∞ e−ix sin θþiνθdθ

vanishes. The same is true for the second integralR
πþi∞
π=2þi∞ e−ix sin θþiνθdθ. Thus, for real positive x and ν the
integral (140) coincides with the integral representation of
the Bessel function (B3) for z ¼ x.
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