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Primordial magnetic field limits from the CMB trispectrum:
Scalar modes and Planck constraints
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Cosmic magnetic fields are observed to be coherent on large scales and could have a primordial
origin. Non-Gaussian signals in the cosmic microwave background (CMB) are generated by primordial
magnetic fields as the magnetic stresses and temperature anisotropy they induce depend quadratically
on the magnetic field. We compute the CMB scalar trispectrum on large angular scales, for nearly scale-
invariant magnetic fields, sourced via the Sachs-Wolfe effect. The trispectra induced by magnetic
energy density and by magnetic scalar anisotropic stress are found to have typical magnitudes of
approximately 1072° and 107'°, respectively. The scalar anisotropic stress trispectrum is also calculated
in the flat-sky approximation and yields a similar result. Observational limits on CMB non-Gaussianity
from the Planck mission data allow us to set upper limits of By < 0.6 nG on the present value of the
primordial cosmic magnetic field. Considering the inflationary magnetic curvature mode in the
trispectrum can further tighten the magnetic field upper limit to By < 0.05 nG. These sub-nanoGauss
constraints from the magnetic trispectrum are the most stringent limits so far on the strength of
primordial magnetic fields, on megaparsec scales, significantly better than the limits obtained from the
CMB bispectrum and the CMB power spectrum.
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I. INTRODUCTION

Magnetic fields have been observed throughout the
Universe, on all scales probed so far, from planets and
stars to the large-scale magnetic fields detected in galaxies
and galaxy clusters [1-8]. Both large-scale as well as
stochastic components are present in magnetic fields
observed in galaxies with magnitudes from a few to tens
of microGauss. Coherent magnetic fields of a similar
strength are also observed in higher redshift galaxies
[9,10]. In clusters of galaxies, stochastic magnetic fields
of a few microGauss strength are present, correlated on ten
kiloparsec scales [3,4]. Moreover, there is circumstantial
evidence of an intergalactic magnetic field that is present
over most of the cosmic volume, even in the voids of
large-scale structure. A lower bound of 10711015 Gauss
for such a pervasive intergalactic magnetic field has been
derived from gamma-ray observations of blazars [11-13].

The origin as well as evolution of such large-
scale magnetic fields remains an outstanding problem.

fptn'vedi@physics.du.ac.in
'kandu@iucaa.ernet.in
*trs @physics.du.ac.in

1550-7998/2014/89(4)/043523(21)

043523-1

PACS numbers: 98.80.Cq, 98.62.En, 98.70.Vc, 98.80.Es

Magnetic fields in collapsed structures can arise from
dynamo amplification of seed magnetic fields [6-8]. The
seed field could in turn be generated in astrophysical
batteries [14—17] or due to processes in the early uni-
verse [18-28]. Indeed, the recent gamma-ray observations
suggesting a lower limit to an all-pervasive intergalactic
magnetic field [11-13] would perhaps favor a primordial
origin. A primordial magnetic field can be generated at
inflation [5,18-23], or arise out of other phase transitions in
the early Universe [24-28]. As yet there is no compelling
mechanism which produces strong coherent primordial
fields. Equally, the dynamo paradigm is not without its
own challenges in producing sufficiently coherent fields,
and with sufficient speed [6—8]. Therefore, it is useful to
keep open the possibility that primordial magnetic fields
originating in the early universe play a crucial role in
explaining the observed cosmic magnetism.

In this context it is important to investigate every
possible observable signature of the putative primordial
magnetic field. Magnetic fields give rise to scalar, vector
and tensor metric perturbations as well as fluid pertur-
bations via the Lorentz force. Constraints on large-scale
primordial magnetic fields have already been derived
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using the CMB temperature and polarization power
spectra [29-36] and Faraday rotation [37-39]. However,
the effects of a primordial magnetic field on the CMB
are relatively more pronounced in its non-Gaussian
correlations. This arises due to the fact that magnetic
fields induce non-Gaussian signals at lowest order as the
magnetic energy density and stress are quadratic in
the field. In contrast, the standard inflationary perturba-
tions, dominated by their linear component, can source
non-Gaussian correlations only with higher-order pertur-
bations and thus necessarily can only produce a small
amplitude of CMB non-Gaussianity (cf. [40-48]).
Primordial magnetic fields have been shown capable of
inducing appreciable CMB non-Gaussianity when con-
sidering the bispectrum [49-59]. Our earlier calculation
of the magnetic CMB bispectrum sourced by scalar
anisotropic stress led to a ~2 nG upper limit on the
primordial magnetic field’s amplitude on megaparsec
scales [59]. However, higher-order measures of non-
Gaussianity like the trispectrum have been less inves-
tigated and, as we show here, are very useful to set
further constraints on primordial magnetic fields.

In this paper we present in detail the primordial
magnetic field contribution to the CMB scalar mode
trispectrum. The principal results were summarized in our
earlier Letter [60], where WMAPS5 and WMAP7 con-
straints on non-Gaussianity were used to derive magnetic
field constraints. Here we present the full trispectrum
calculations as well as an additional flat-sky calculation
for the scalar anisotropic stress trispectrum. Furthermore,
the new constraints on non-Gaussianity from the Planck
mission 2013 data release [61] are utilized to obtain
improved magnetic field constraints. We find that the
trispectrum does better than the bispectrum at probing
magnetic fields on large scales. We also show that
even stronger constraints can be imposed on magnetic
fields by considering the recently discussed magnetic
inflationary curvature mode [62].

In the next section we describe the properties of the
stochastic primordial magnetic field assumed for our
calculations. The Sachs-Wolfe effect sourced by the
magnetic energy density of a stochastic primordial mag-
netic field is presented in Sec. III. The full mode-coupling
calculations are then presented for the four-point correla-
tion of magnetic energy density. In Sec. IV we present
the Sachs-Wolfe effect and four-point calculation for
magnetic scalar anisotropic stress. The magnetic CMB
trispectrum is then calculated for energy density and scalar
anisotropic stress in Sec. V. Additionally, in Sec. VI, the
trispectrum sourced by magnetic scalar anisotropic stress
is also calculated using the flat-sky approximation.
Finally, in Sec. VII, the Planck 2013 data release con-
straints on CMB non-Gaussianity [61] are used to place
improved upper limits on the strength of primordial
magnetic fields.
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II. PRIMORDIAL MAGNETIC FIELD

We consider a Gaussian random stochastic magnetic
field B characterized and completely specified by its power
spectrum M (k). We further assume that the magnetic field
is nonhelical. On scales that are galactic and larger, any
velocity induced by Lorentz forces is generally too small to
appreciably distort the initial magnetic field [63,64].
Therefore, the magnetic field simply redshifts away as
B(x, 1) = by(x)/a?, where, b is the magnetic field at the
present epoch (i.e. at z = 0 or a = 1). We define b(k) as the
Fourier transform of the magnetic field b,(x). The magnetic
field power spectrum is defined as

(bi(k)bj(q)) = (27)5(k — q)Pyy(K)M (k). (1)

where P;;(k) = (;; — k;k;/k*) is the projection operator
ensuring V -by = 0. This gives (b3) =2 [(dk/k)A7(k),
where A?(k) = k*M (k) /(2x?) is the power per logarithmic
interval in k space present in the stochastic magnetic field.
We also assume a power-law magnetic power spectrum,
M(k) = Ak" that is cutoff at k = k., where k. is the
Alfvén-wave damping length scale [63,64]. We then fix
the normalization A by setting the variance of the magnetic
field to be B, smoothed using a sharp k-space filter, over a
“galactic” scale k; = 1h Mpc~!. This gives, (for n > —3
and for k < k)

B2 kO 3+n
AR (k) = :7°(n+3)<g> )

We restrict the magnetic spectral index to values near and
above -3, i.e an inflation-generated field, as causal
generation mechanisms necessarily produce much bluer
magnetic power spectra [65]. Furthermore, blue spectral
indices, on large scales, are strongly disfavored by many
observational constraints on primordial magnetic fields like
the CMB power spectra [29-33].

III. CMB ANISOTROPY FROM MAGNETIC
ENERGY DENSITY AND FOUR-POINT
CORRELATION

The Sachs-Wolfe type of contribution to the CMB
temperature anisotropy sourced by the energy density of
magnetic fields [66—68], can be written as

AT

T (n) = RQp(xg — nD*). 3)

Here, Qp(x) = B*(x,1)/(87p,(t)) = b§(x)/(87zp,), where
p,(t) and p are the CMB energy densities at times ¢ and at
the present epoch, respectively. Like the usual Sachs-Wolfe
effect, the AT/T given above is for large-angular scales.
For calculating numerical values we adopt the R value
estimated by Bonvin and Caprini [Eq. (6.12) of [68])
which is expressed according to our definitions as
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R = —R,/15~—0.04, where R, ~0.6 is the fractional
contribution of radiation energy density towards the total
energy density of the relativistic component. The unit
vector n is defined along the direction of observation from
the observer at position xy and D* is the (comoving angular
diameter) distance to the surface of last scattering. We have
assumed instantaneous recombination which is a good
approximation for large angular scales.

The temperature fluctuations of the CMB can be
expanded in terms of spherical harmonics to give

AT(n)/T = Zlm aimYm(n), Where

d3k . \v* (b
@y =7 [ G ROV ). @
Note that Qp(k) is the Fourier transform of Qp(x). As
Qp(x) is quadratic in by(x), Qg(k) is given by the
convolution integral

3
k) = 555 [ o bilk+) e )

The trispectrum 7"}/, or the four-point correlation

function of the CMB temperature anisotropy in harmonic
space, in terms of the a;,’s is

1y Mmyn3my

Ll — <al|m1alzm2al3m3al4m4>' (6)

1y My M3 Ny
From Eq. (4) we can express T L 051, a8

1y My M3, R\* d3k ¥
Tlll 122133144 — (2—”2> / {H T Jji.(k;:D¥)

i=1

Yim, (ki) | 1234

) +M(|ky +ky+s]) (M
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FIG.

1 (color online).
wave vectors ki,k,, ks, and k, for the trispectrum with the
integration mode wave vector s that appears in the mode-coupling
integral.

The general configuration of four

C1o34 = (Qp (K )Qp(ky)Qp(k3)Qp(k4)). (®)

The four-point correlation function of Qg (k) involves an
eight-point correlation function of the magnetic fields.
Using Wick’s theorem, for Gaussian magnetic fields, we
can express the magnetic eight-point correlation as a sum of
105 terms containing the magnetic two-point correlation.
Neglecting 45 terms proportional to 5(k) that vanish and 12
terms proportional to §(k; + k;) that are the unconnected
part of the four-point correlation, 48 terms remain. A long
calculation using the relevant projection operators gives
123 = O(ky + ky + k3 + ky) w1234, Where yr 153, is a mode-
coupling integral over a variable s and also contains angular
terms. The general configuration of four wave vectors
ky,k,, k3, and k, for the trispectrum as well as the wave
vector s that we integrate over in the mode-coupling
integral is shown in Fig. 1.

The full expression for y,34 involving angular terms in
the mode-coupling integral is

(lky—s[) F5)+M(lks—s)F )] (9

a1y + aafs + Ar6Ys + PaPeYs) + 1 Peye

a1y + a1afe + asa6e + Pafees) + d1auPses

a0 fy + ayaqf7 + gy + Pafiryr) + Py

™)
with
|
8
W1234:W/d35M<5)M(|k1+S|)[M(|k1+k3+s|)( (Ikey —s[)F (1) + M(|ks —s[) F 2))
0
M(Jlky +Fy +5) (M ([ks =) F (3) + M (ks —]) F
with
Fo=—l+(@+a+at+p+p+7) —
Foy=—1+(af +aj+ag+p5+ 5 +eg) —
Fay=—1+(af +0o3+a5+p54p5+65) —
Fayy=—1+(af+ag+a5+p5+p5+e3)—
Fsy=—1+(ai+a+a+p5+65+7137)—
Fo=-1+(@+d+a+p+p+8) -

( )
( )
(1a3f3 + ayasPs + azasds + P3fs0s) + ayazfsos
(1a4fy + a1asPs + agases + fyfises) + ajaufses
( )
( )

aya3fp3 + ayaqfpr + 3707 + P3f767) + ayazfr67.

(10)
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The angular terms F contain angles defined according to

PHYSICAL REVIEW D 89, 043523 (2014)

—

b=k +s. =@ -ki—s. =0 k-5, Gi=0 -ki—s. Ps=d k +k +s,
¢6:d)'k1+k3+s, ¢7:(b‘k1+k4+s, (11)

where kl/—?s is a unit vector in the direction of (k; + s) and the angle ¢ denotes different angles for different values of the

unit vector @,

¢p=a ford =35, ¢=p forc?):kl/—lts,

¢=¢ fordw==ky—s,

For simplicity of calculation we evaluate the mode-
coupling integral yj,34 in two cases: (I) considering only
s-independent angular terms for all equal-sided configura-
tions and (II) taking all angular terms for the collinear
configuration.

A. Case I: s-independent terms for
equal-sided configurations

Considering only s-independent angular terms, for a
general configuration, we find 34 = —8/(87py)*Z,
where

I:/d3sM(s)M(|k1+s|)
X [M(|ky + ks +s[)(M(|ky —s|) + M(|ky —s]))

+ M(lky + ks + s) (M(|ks —s|) + M(|ky —s]))
+ M(|ky + ky + s])(M(|ky — s[) + M([k3 —s]))]
=Ty +Zo)+Za+Zuy+Iis) +Le). (13)

We perform the mode-coupling integral employing the
technique and approximations discussed in [59,69-71],
while adopting the mean (zero) value of k1 k3, to find, for
the first term,

(14)

To) = dnat 2 g | 2 1
(1) = 2 3{n+3_4n+3]'

The value of each of the Z ;) integrals for j =1 to 6 is
the same when all the k; wave vectors are of equal
magnitude |k;| = k. We perform the s-independent
(case I) trispectrum evaluation for such equal sided quadri-
lateral configurations. Hence, 7 = Z I =67), and
we obtain

p=vy ford):kz/:s,

¢ =« ford =k +k,+s,

¢p=296 ford):k;:s,

p=21 ford=Fk +k;+s. (12)

—8(24m) A% Iy ks
(87po)*
(2"2)(4n +3) — (n + 3)
(4n +3)(n +3)

Cio3a = O(ky + ko + ks + ky)

(15)

B. Case II: Equal-sided collinear configuration

We calculate the full mode-coupling integral 34
[Egs. (9),(10)] (over all angular terms for each F expres-
sion) for the case of the equal-sided collinear configuration.
All the four wave vectors are of equal magnitude with
configuration k; = k, = —k3 = —k,. We find that the 28
independent angles defined by Eqgs. (11),(12) reduce to just
six independent angles a;, a,, as, 55, 5 and y5. The angu-
lar expressions F also reduce in size from a total of 72 to 19
angular terms,

8
WCOH Ico]l , (16)
54 )

where

A —2/d3sM(s)M(|k+s|)
MM k=51 + 33 2+ )
+M(s)M(|k+s])(1+a3)+M(|2k +s|)M(|k+s|)

1
X <a§+a§+ﬂ§—ala5ﬁ5+§{6§+e§

+(Bs +a1065—a%/)75)(55+€5)})} (17)

Using the same technique of evaluating the mode-coupling
integrals as used earlier in Case I, we calculate the integrals
for each of the 19 angular terms that sum together to give
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g 2n/2 12
Icoll ~4 A4k2n+3knkn e _
R R T a3

} (18)

The four-point correlation of magnetic energy density for
the collinear configuration is

8(4rx A4k2n+3knkn
Cioag = 6(ky + ko + k3 + ky) (4m) A%k . 2R3
(87po)
8 2n/2 4 — (12
3@ +3) - (12)(n +3)) )
(4n+3)(n+3)

IV. CMB ANISOTROPY FROM MAGNETIC
SCALAR ANISOTROPIC STRESS AND
FOUR-POINT CORRELATION

The scalar anisotropic stress that is associated with a
primordial magnetic field, in addition to its energy density,
will also act as a separate source for CMB fluctuations—
the passive mode [68,72]. As we saw in our previous work
[59], the magnetic scalar anisotropic stress generates ~10°
times larger contribution to the CMB bispectrum compared
to magnetic energy density. With this motivation in mind
and employing the magnetic CMB trispectrum technique
developed above, we carry out a longer calculation for the
scalar anisotropic stress trispectrum.

On large angular scales, the magnetic contribution
to the temperature anisotropy is again via the magnetic
Sachs-Wolfe effect,

1 1
—(n) = §<I>(x0 —nD*) = gC(xo —nD*), (20)

in the matter-dominated era. We use the expression for the
curvature perturbation due to the passive mode scalar
anisotropic stress [72],

gz—%Ryan(Q>, @1

B

to obtain temperature anisotropy, sourced by magnetic
scalar anisotropic stress Ilg,

A—TT (n) = R,g(xg —nD*), (22)
where R, = R In(z,/75) = [-R,/15]In(T/T,) and 75
as well as 7, and T as well as T, are the conformal time
and temperatures at the epochs of magnetic field generation
and neutrino decoupling, respectively. None of the details
of the magnetic scalar anisotropic stress calculation were
included in our Letter [60] and they are presented below.

The CMB temperature fluctuations can be expanded
in terms of spherical harmonics to give AT(n)/T =

> im@imY 1 (), Where
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dr [ dk . s
Ajm :7/WRpHB(k)]l(kD VY5, (k). (23)

Here, I (k) is the Fourier transform of I3 (x) and we recall
the operator that projects out the scalar anisotropic stress
from the full magnetic stress I} (k),

1

My (k) = 5 (8, — 3k, I (k). (24)

Since I (x) is quadratic in by (x), we have a convolution of
magnetic fields,

3
nB(k):1(5,.].—31%,-1%J<)L/£b%(s)bj(k+s). (25)

2 4rnp, (2z)3 !

The trispectrum is 7"
Wiyl Ly

then given by

= <allmlalzm2al3m3al4m4> 18

My ny M3 m R 4 : dSki . 7
Ty 0 = <2—”Z> /[H 2 ]l,-(kiD*)YZmi(ki)} [C 12345

i=1
(26)

with [{1234];; defined as

(1234l = (T (ki )T g (ko )TTg (k3 )T 5 (Ky)). (27)

The four-point correlation function of ITgz(k), like that of
Qp(k), also involves an eight-point correlation function of
the fields. In similar fashion, using Wick’s theorem, for
Gaussian magnetic fields, we express the magnetic eight-
point correlation as a sum of 105 terms involving the
magnetic two-point correlation function. Then 45 terms
proportional to (k) vanish and we neglect the 12 terms
proportional to &(k; + k;) that represent the unconnected
part of the four-point correlation, to leave 48 terms. A long
calculation involving the relevant projection operators in
these terms gives [C1234]y = (k) + ko + k3 + k) [w1234]n,
where [y1,34]1 is @ mode-coupling integral over a variable s
and also involves angular terms. The key difference
between the Qp and the Il four-point correlations is the
number and type of operators acting on the magnetic field
eight-point correlation. In the case of energy density p,
the operator 6,,0.40,¢64, acted on

(bo(—s)by(ky + )b (—1)by(ky +1)b. (—1)bs
X (ks + )b, (—w)b), (ks +w)). (28)

However, in the case of scalar anisotropic stress I1p, there
are 16 operator terms:
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TABLE I. Angle definitions for scalar anisotropic stress IIz angular terms, with i =1 to 4.

a; Bi Vi 5; €; K; i Xi

kioki+s  kiky—s ki ki—s ki k,—s ki k +hky+s kK +hksts ki -k +hkyts

0
©w>

i

(8ap—3k1 Je1,) (Beq — 3k k) (8.p — 3hes Jes, ) (81 — ks s,
= 0ap0cdOefOgh — 3[5ab50d53fl}4_,7’}4h + 5ab5cdf‘3j‘3f5gh + éabI}ZCi%Zdﬁe Ogn + k 1,,’} 1,0ca0e O]
+ 9[5ab5cd’}3e’}3f’}4g’:’«4h + 5abi€2(ic2d(se fi‘4gif4h + 5abl}26i62[,i€38i%3 Ogn + i{lak 1b5cd5e'fi%4g]}4,,
+ ’A‘l,,’}lh5cd1}3e]}3f5gh + ]}lu]}l,,iclfczdéef&gh] - 27[5ab’}26’}2d]}3£]}3f124gi€4h + ’Aflaf‘],,5cdi€3j€3fi€4gi‘4h
oo o 3, o, + o e oo 5]+ 81y oy s e R,
=0+2l+ ... +[16] (29)

Each operator term X from 1 to 16 generates its own separate angular term expression .7-'. When summed over all X this
yields the angular term expression F ), where I takes values 1 to 6 in the six-term mode coupling integral [y 1234]p. As
operator [1] is identical to the operator for the Qp four-point correlation, the angular terms F for it are just given by
Equation (10). We give below the expressions for [y,34]; and the angular terms F generated by operators [2] and [16],
suppressing the IT subscript. The complete expression for the full set of over 1500 angular terms generated by all sixteen
operators [1| through is placed in the Appendix. The mode-coupling integral for scalar anisotropic stress is

ﬁ/d%M(S)M(IleI)[M(Ikl+k3+SI)( (ey = s)F 1) + M(Jky =) F2)) + M(|ky + k2 + 5])

X (M (|3 = s])F 3) + M(|ky — s)F ) + M([ky + ky + s[)(M(|ky — s|) F (5 + M(k3 — s[) F )] (30)
where py = po/3 and py is the present-day energy density in radiation. The angular expressmns F now involve 32 new
angles (with overbars) defined below, in addition to the 28 previously defined angles (without overbars) that appear in the
Qp expression—Eqs. (11),(12). The new angles defined in Table I arise from dot products of the four k wave vectors with

the vector § or with those combinations of s and the four k wave vectors that appear in the equation for 534
The angular terms for operator 2| are

[l//m4]

) =1 =i~ +a 184y —Ia[Aa—Pafls — 0406 +a184f6] — 74 (74 —Pafpr — Gacy + a1 B40a] +74hal16—PoPs — 220t + 1 a2 6]

) =1 =3 — 25 +B6hsPs—Es[es—PaBo—Ia€s + PoPace) — @[ty —Paas — Aaats +Poson] +Aueslas — a1 fa—ages + oo €]

) =1 =3 — G + o184y —Ry[Ry—Pafs — Ay ts + 104 fs] —04[04— Pu s — a3 + a1 P3| + 648 4[5 — 3 fs —az s + oy aa s

) =1 =3 —K5+PsRafa—Esl€4—Ryes—PaPs+PsPaes)— [y —Ryas —Pac +PsRaa | +ues[ay —ases —a fy - Psa 5]

) =1 —73— 05 + 08474 —Zalla—Tay7— 007 + 0284y = PalBa—TaPr—Guct) +aa7aay |+ PaZia|[fr—Pays — 10 +arys ]

) =1 =03 —&; + 38404 — 4 {4 —0a 07— 0457 +3887] = Palfa— sy — 6453+ azdsan | +-Bagalfr — anas — P67 +az, &)
(€29)

and angular terms for operator are

= (012—210)(013 = B183) (024 = 7274) (030 — A374) : (O14—@184) (013 —B1B3) (024 — E284) (023 — a3

= (013—183)(012 = P12) (030 — 5304) (024 — Ko = (012—0184) (012 = P1$2) (034 — &384) (023 — k)

= (012—8) (014 —P1Sa) (023 —7273) (O34 —374) : (013—@133) (014 —P154) (023 —6:83) (0rs —727s).  (32)

In addition to the angles defined in Table I, angular terms like 8, = IAcu . IAc,7 that are constant for a given (ky, k,, k3, ky)
configuration also appear. In total, as pointed out above, over 1500 angular terms are present in all the F expressions for
[¥1234]17, many more than the 72 terms for [y 5340 To arrive at a representative estimate for [y1,34]p;, we consider only the
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ky

(a) (b)

FIG. 2. The four specific configurations (a) collinear, (b) square,
(c) thombus and (d) tetrahedral, with each wave vector of equal
magnitude &, used to evaluate the magnetic scalar anisotropic stress
trispectrum.

s-independent angular terms and restrict ourselves to equal-
sided trispectrum configurations i.e. all |k;| = k. The
s-independent terms are

]_~g indep

=6[—13+9(6%, + 02, + 03, + 035 + 03, + 63,)
—27(012013023 + 6012614624 + 013014634 + 0530,4034)
+27(012013024034 + 012014023034 + 61360140230,4)].

(33)
We evaluate F3;"*P for specific equal-sided trispectrum
configurations: collinear, square, thombus, and tetrahedral,
as shown in Fig. 2. Table II lists the values of F};"*P for the
specific configurations (ky, k,, k3, k4 ), showing that the great-
est contribution to [y 234]; and therefore to the scalar
anisotropic stress trispectrum arises from the collinear con-
figuration. The values for F};"*P range from ~—2 to 14.
We adopt a value of 10 as a typlcal value for the sum of all s-
independent terms and denote it by £ We get a mode-coupling
integral with an integrand that matches the [y1,34]¢, for the Qp
s-independent equal-sided configuration case I, Eq. (13),

8 _ 8(3%)¢ T
© (8zpo)*T (8mpy)t

(34)
|

{V/1234]n

i = e Tiwe [EACE
X Y}:ml (kl) lym, (kZ) I3my (123) Y74m4 (k4)

Pk Bl dPlsdky
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TABLEIL The value of the s-independent terms F}; """ in four

different equal-sided configurations (kl,kz,k3,k4) with k| ~
ko ~ k3 ~ ky for evaluating the magnetic scalar anisotropic
stress trispectrum.

Conﬁguration (012, 913, 014, 923, 924, 934) j:-;_—[indep
Collinear (I,—1,—-1,—1,—-1,1) 14
Square (0,—1,0,0,—1,0) 5
Rhombus (3. -1—4.—-Ld) 2.1875
Tetrahedral (—3.0,—3,—3.0,—1) —2.3125
where

T= / BsM(s)M(|k, +s))
x [M(|ky +k3+s|)(M(|ky—s|) +M(|ks—s]))
+M(|ky +ky +s[)(M(|ks —s]) +M(|ky —s]))
+M(|ky +ky+s|)(M(|ky—s[) +M(lks —s]))].  35)

The integral 7 is evaluated as earlier to yield the four-point
correlation of the magnetic scalar anisotropic stress,

412n4+3 ,n1n
(1034l = (Kt +ky + ks +k4)3458(24”)A al 7 Kk
(87po)
(2"2)(4n +3) — (n + 3)
(4n+3)(n+3) ’ (36)

or simply expressed, in relation to the four-point correlation of
energy density,

[1234]n = 3*¢[—Cimsal - (37)

V. MAGNETIC CMB TRISPECTRUM

Having calculated the four-point correlations, in Fourier
space, of energy density [{j34]q and scalar anisotropic
stress [C1234)p1, We can now calculate the CMB trispectrum
sourced by each.

A. CMB trispectrum from magnetic energy density

For the trispectrum sourced by magnetic energy
density Qp, we insert Eq. (15) into Eq. (7) for the
trispectrum and following the approach of [73,74], we
decompose our delta function as §(k, +k, + k3 + k,) =
[ d®KS(ky + ky + K)S(k3 + ky — K). We can then write
the trispectrum as

Ji,(kyD*)ji, (kyD*) ji, (k3D*) jy, (k4 D)
—(1927)A* 5 5 (272 (4n+3) — (n+3)
e e S

(38)
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Using the integral form of the delta functions,

/d31<5(kl +ky, + K)S(ks + ky — K) :/

and the spherical wave expansion,

’k’—4ﬂZl Ju(k;r) Z Yl,m

m'=—1I

we perform the integrals over the angular parts of (ky,k,, k3, kg,

d’K
(27)°

PHYSICAL REVIEW D 89, 043523 (2014)

/ d3r? / d3r%e(k1+k2+K)-r1 e(k3+k4fK)-r2, (39)

+1
Y i (), (40)

K), with algebra similar to [49,59,75,76], to give

My momsm, R4 A
Tuin = {( 768) ]((8np0)

>4{(2"/2)(4n +3)—

(n+3)}
(4n+3)(n+3)

X/drﬂ’%/drzr%/dk1k%k%"+3jll(k1D*)j11(k1r1)/dkzk%kﬁljlz(’QD*)jzz(kzrl)
x / Ak, (ks (kar) / Ay, (ksD) i, (ara) S (— 1)

LM

< [ KK Kr)iu(Kr) [ d Y, (0T i ()Y 0 @1) [ d90Y10, Y i Y ). G

Here the K integral gives &(r; —r,)(n/2r2) using the
spherical Bessel function closure relation. This delta
function enables us to perform the r, integral trivially,
then r; replaces r, in the arguments of j; and j;. The
angular 7, and 7, integrals may be expressed as (e.g.
Eq. 5.9.1 (5) of [77])

/in,Yzlm,(f‘l)Yzzmz(i‘l)YLM(i‘l)

— \/(211 +1)2L+1)(2L+1)

iy,
<11 L, L) < [ L, L >
X
O O O mg my M
L I, L
=h , 42
z.uz<m1 s M> 42)

where we have defined £,,;;, above, in the same convention
as [73,74]. We use the relation

(A/8mpo)* = (2/3)*(m/kg)¥((n +3)/kGT)* V.3, (43)

where the Alfvén velocity V,, in the radiation-dominated
era, is defined as [63,64]

V4 = By/(167py/3)"/? 3.8 x 10*B_o,  (44)

with B_g = (B(/107° Gauss). From the definition of the
rotationally invariant angle-averaged trispectrum [78],

e B L L L
=2 (e )

LM mp N

I, I, L
x< o )Tgfj(L), (45)

ms My M

we separate out the reduced trispectrum Tll 2( ) (referred
to as the angular averaged trispectrum in [78]) from the full
trispectrum. We again use the spherical Bessel function
closure relation to perform the k, integral that yields
8(r;y — D*)(x/2r?). This facilitates the r; integral that
results in r; — D* in the arguments of j;, j, and j;, .
The k;, k, and k5 integrals containing a product of a power
law and j% can be evaluated in terms of gamma functions
(e.g. Eq. 6.574.2 of [79]). For a scale-invariant magnetic
index n — —3, we get

L1, . n+3 9 8
[T} (L)] =~ 5.8 x 10~ 29( 02 ) (T)

hy, i hugc,
l (L +D)h(L+1)5(l+1)°

(46)

This equation gives us the amplitude of the magnetic CMB
trispectrum sourced by the energy density Qp of a
primordial magnetic field, where we have used R ~
—0.04 [68]. A factor of 1/(D*kg)*"*3) also appears here
and it approaches unity for the case n — —3 (a scale-
invariant magnetic field index). When we evaluate the
magnetic trispectrum for a near scale-invariant index
n = —2.8, this factor has a value ~1/1500. It then turns
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out that this factor is almost entirely canceled by the
simultaneous increase in the value of the k integrals when
evaluated for n = —2.8 rather than n = —3.

For case 1, the collinear configuration case proceeding
from Eq. (19) in exactly the same way as case I, we find that
the amplitude of the collinear configuration trispectrum is

iy _ w(n+3 9\
s (12) (52)

IR INIA
+ DhL(L+1)5(5+1)°

X G (47)

which is similar in magnitude to the case I trispectrum, but
of positive sign.

B. CMB trispectrum from magnetic scalar

anisotropic stress

The scalar anisotropic stress trispectrum [T% (L)], can

be calculated in an analogous manner to the calculation
presented above for the case I s-independent [Tﬁ;fi (L)]
Using Egs. (26) and (36) we obtain

o

i, = (352) d-riiwl,

_ B EN/n+3\3/B_y\8
~11% 10 '9<E><02> (T)

hy, i, e,
X .
L(L 4+ 1D)L(L+1)5(15+1)

(48)

We see that the amplitude of the trispectrum sourced by
I for equal-sided quadrilateral configurations is approx-
imately 10'° times larger than that sourced by Q. Here, we
have used T = 10'* GeV (corresponding to the reheating
temperature) and T, = 1073 GeV.

VI. FLAT-SKY CALCULATION OF SCALAR
ANISOTROPIC STRESS CMB TRISPECTRUM

We now consider a flat-sky analysis of the trispectrum.
The flat-sky limit allows us to avoid the approxi-
mate treatment of the angular terms involving lAcl- while
performing the k angular integrals that led to Equation (41).
Therefore, to get a more accurate estimate of the
s-independent anisotropic stress trispectrum, we now adopt
the flat-sky limit for the CMB temperature anisotropy and
recompute the trispectrum.

In the flat-sky limit [80-82], the CMB temperature
fluctuations on the sky are expanded in terms of plane
waves using a Fourier basis rather than a spherical
harmonic basis,

PHYSICAL REVIEW D 89, 043523 (2014)

AT d’l
T®= / (22 ¢

a,g—/aan%(n)e

In the flat-sky coordinates, ¢ = (¢,.7,) is a two-
dimensional vector on the plane of the sky and n, is a
constant equal to unity at linear order. In order to check the
validity of our flat-sky technique, we first computed the
magnetic energy density bispectrum. We find a value for
the flat-sky bispectrum of order ~ 10723, which agrees well
with the original full-sky result [49]. This encourages us to
proceed to the flat-sky limit calculation of the scalar
anisotropic stress trispectrum.

The magnetic Sachs-Wolfe effect for scalar anisotropic
stress is given by

zfn

—itn, (49)

AT
T (n) = 7?“pHB(xO - nD*)
3
- [ rymmes 0
)
_ R 2 )% ilem)D" (51)

where in the last line we set the observer’s position x, to the
origin.

The flat-sky limit is accurate for 7 240 [80-82],
whereas the Sachs-Wolfe contribution is appreciable for
¢ <100 (but dominant only till # < 50) [83]. Therefore,
there exists an appreciable range of overlap 40 <7 < 100
in harmonic space, where we can treat the Sachs-
Wolfe contribution to the CMB temperature anisotropy
in the flat-sky limit.

In the flat-sky limit, n, is constant and is unity to linear
order; hence, n -k - m -k, + k_, which gives

AT .
a, = /dzn (— (n)) e~
T flat sky
=R / Lk (k)e~ kD" / d*me=m U ThD) - (52)
p (271.)3 B
The m integral gives a delta function for k|,

/ dPme=m (kDY) — (27)252) (¢ + k| D*)

= (g) 25<2J (5* +kl) (53)

to yield
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R dk €\ _ap

This flat-sky a, for magnetic scalar anisotropic stress can
then be used to calculate the corresponding trispectrum in
the flat-sky limit,

—lk D*
<aflaf2af3af4>_< > [ / dk } 12345

(55)

where '5, is the four-point correlation of magnetic scalar
anisotropic stress in the flat-sky limit,

e {[ffe )]y

As before in the full sky for .34 (Eqgs. (27,36)), a four-
point correlation of Ilz produces delta functions times a
mode coupling integral .

Cay = 8(ky. + ko + k3. + ky.)

4 4 4 Cy
X5<><DL+D1+D1+ )[1//1234]f (57)

If we take the D}’s to be similar, we find

D = =0(ky, +ky + ks +ky)
X (D*)26 (&) + 5+ 3+ 1) winsally. (58)

Here the mode-coupling integral y is

a
l l
1 3 a/2 3

(@) (b)

FIG. 3. The three specific £ wave vector configurations (a) kite,
(b) trapezium (both cyclic quadrilaterals) and (c) scalene
(an irregular convex quadrilateral) used to evaluate the flat-sky
magnetic scalar anisotropic trispectrum. Trispectrum configura-
tion shapes (a) and (b) are also discussed in [84,85]
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st indep
Wil = WI’ (59

where the integral Z is the same as the one given by
Eq. (35) and the s-independent angular terms for Il are
denoted by Fii"P given by Eq. (33). In the flat-sky
approach we perform the mode-coupling integral for
general values of IAci -Ich and later evaluate the trispec-
trum for particular configurations that are not neces-
sarily equal sided. The first term (out of six terms) of
integral 7 is

k2—|—2k k-0 +k2)n/2 kn
Ifs ~4 A4k2n+3kn ( 1 1*3V13 3 _ 3 )
(h =R n+3 4n+3
(60)

Whereas, in the full-sky Ilp calculation we chose a
representative value & for F3;"'", we now integrate over
all 14 terms of Fi"* in the k integrals.

For each of the six terms of I the delta function of
k; 1is used to perform that particular k; integral (one out
of four) for which the variable k; that does not appear in
the arguments of the magnetic spectrum M. This
introduces substitutions in the angular structure
F;™MP  Then the remaining three k; integrals are
performed numerically and evaluated for several types
of configurations. We use the relation for the flat-sky
trispectrum (connected part) [73,74]

f 12
AL

(61)

<aflaf2afzaf4> = (271')25 (fl +52+bﬂ3 +f4)

to get [T E? ;Zi(L)} from the four-point correlation of

ay. The result of the k; integrals evaluated over all six
mode-coupling terms hke I‘ES), Eq. (35), and all 14
angular terms in F;"'", Eq. (55) is denoted by o.
Table III shows different values of o for different /-
space configurations with parameters q,, = [, /1, (ratio
of different sides) and ¢;-Z; (cosine of the angle
between sides). We note that all the configurations
thus evaluated in the flat-sky approach (for all s-
independent terms) give a negative o that lead to a
negative value of the trispectrum,’

'For some highly symmetrical configurations which have two
¢ vectors exactly antiparallel and of equal magnitude, the k,
integral becomes singular in the flat-sky limit. However, this is
due to the exact k;, D — map which is enforced in this limit. If
this were relaxed then we expect this mathematical pathology to
be just an integrable singularity. The measure of such configu-
rations in d*k is expected to go to zero faster than the reciprocal of
the integrand.
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TABLE IIl.  The value of o [the result of the k;_integrals evaluated over all six mode-coupling terms like 7 Esl), Eq. (35), and all 14
angular terms in F};"*", Eq. (55)] for the three different trispectrum configurations (shown in Fig. 3) considered for the flat-sky

magnetic scalar anisotropic stress trispectrum (Eq. (62)).

Configuration (912 913 G14- 923+ Q24 G34) (21 '22s21 '23321 ‘1?4»22‘2737272'?4,?3'24) o
Kite (v3,V3.1,1,1/3/3,1//3) (0,—/3/2,-1/2,1/2,—/3/2,0) —15.2
Trapezium (2.2/3,2,1/3,1,3) (1/2,-1,1/2,-1/2,-1/2,-1/2) —84.6
Scalene (1/3,2/3,0.4406, 2, 1.322,0.6609) (0, —\/§/2, 0.1317,-1/2,-0.9912,0.3815) —14.2
3 8 11 -
[T<?‘?)(L)] =394x 1079 (2 nt3 By Tlslj(L) ~ ZSCiWCiWC{WTNthUzhlsL14
(3.3 10/ \ 0.2 3 bk
. ~ 25431y, LLLM L,
X 5. (62) L+ Dyl + 1)L(L + 1)
hbl UNANINY,
~ 25A3{1>TNL 12 34
We see that the flat-sky evaluation of the scalar Lh+ Dh(L +1)5(5 +1)
anisotropic stress trispectrum with s-independent terms L+ 1)+ 1)
results in trispectra that are negative and roughly an L(ly +1)L(L +1)
order of magnitude larger in absolute magnitude hy by
than the corresponding full-sky trispectrum with s- ~25A37 12 34 , (66
pondinie Julleky isp RS A AR

independent terms (with £ ~ 10). The flat-sky and full-
sky trispectra are related by

22 Il
Tgfl,fj;(L)hlllehkLu ~ Ty (L). (63)
This allows us to compare the flat-sky trispectrum directly
to the full-sky trispectrum form given in Eq. (48).

VII. PRIMORDIAL MAGNETIC FIELD
CONSTRAINTS

We can now compare our magnetic trispectra with the
Sachs-Wolfe contribution to the standard CMB trispectrum
sourced by nonlinear terms in the inflationary perturbations
calculated by Okamoto and Hu [73] and Kogo and
Komatsu [74] (also see [47]),

TyR(L) ~ 9CHV CEV(25/9)rn, CY
+ 69NL(CISIW + Ciw)]hlllehl3Ll4- (64)

We neglect the gy; term that places far weaker con-
straints on the trispectrum compared to the 7p; term
considering the the current limits on gy; from WMAP
[86] and current limits on zy; from Planck [61]. The
CMB angular power spectrum C;V in the Sachs-Wolfe
approximation for a scale-invariant primordial power
spectrum for @ is

2 A
OV = = [ RdkPy(k)ji(kr.) = 2, (65
l 977:/ <I>( )]l( r*) l(l+1) ( )

where Ag is the amplitude of scalar potential perturba-
tions. This gives

where we also define a factor g = [[;(I; + 1)I5(I5 + 1)]/
[l4(I; +1)L(L 4+ 1)] which is of order unity for many
configurations. To calculate the value of A we begin
with the most recent Planck 2013 data release value for
the amplitude of scalar curvature perturbations on [29]
A, =22x107° at a pivot scale k, = 0.05 Mpc~!. For
the purpose of the Sachs-Wolfe contribution we then
calculate the scalar amplitude at the larger scale of ky =
0.002 Mpc~! using the Planck 2013 value for the scalar
spectral index n, = 0.96. After converting from curvature
to potential we get Ay = 6.96 x 107'%, Hence, we find
the amplitude for the Sachs-Wolfe contribution to the
standard CMB trispectrum sourced by inflationary per-
turbations to be

)P (L) ~ 84 x 107y,

hy i, b,

X .
LG+ DL+ D5+ 17

(67)

Equation (67) is of the same form as Eq. (46) and
Eq. (48) for the magnetic-field-induced trispectra, facili-
tating direct comparison of trispectra values.

A. Limits from magnetic energy density—Case I

We can put upper limits on the primordial magnetic field
by comparing the magnetic energy density trispectrum
Eq. (46) with the inflationary trispectrum Eq. (67),
although stronger constraints follow from magnetic aniso-
tropic stress. We take the two-sigma upper limit value on
7y, reported in the Planck 2013 data release, 7y; < 2, 800
[61], and use it also as a lower limit for possible negative
values of 7y, i.e. |zy.| < 2,800. This is tighter than the
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Ty > —6,000 negative-sided limit from WMAPS data
[86] that we employed in [60]. Magnetic field limits are
obtained by taking the one-eighth power of the appropriate
ratio of trispectra, which gives By < 19 nG at a scale of
kg = 1h Mpc~! for a magnetic spectral index of n = —2.8.
This trispectrum limit is almost a factor of 2 stronger than
the bispectrum upper limit By < 35 nG found for magnetic
energy density [49] for the same scale and magnetic index.

We note that if we update the value of R used in
the earlier bispectrum calculation [49] to the currently
adopted value of R [68] then the magnetic energy density
bispectrum yields a tighter upper limit of B < 30 nG.
The trispectrum constraint we calculated above,
By <19 nG, seems significantly stronger than the bisec-
trum constraint (by a factor of 1.6). However, since the
energy density bispectrum calculation [49] was performed,
the f¢ two-sigma upper limit has tightened from
~ 100 (WMAPS5) [87] to 74 (WMAP7) [88] to 14.3
(Planck 2013) [61]. Recalculation of the magnetic field
constraint from the magnetic energy density bispectrum,
now using fi¢ < 14.3, yields By < 22 nG. We see that the
corresponding magnetic energy density trispectrum limit
(19 nG) found in this work is, nevertheless, slightly
stronger than the updated bispectrum limit.

B. Limits from magnetic energy
density—collinear configuration

We have also calculated the magnetic energy density
trispectrum considering all the angular terms that appear
for the collinear configuration (case II). Comparing the
collinear configuration energy density trispectrum Eq. (47)
to the inflationary trispectrum Eq. (67) leads to upper
limits on the primordial magnetic field of By < 20 nG,
having employed the positive-sided limit zy; < 2,800
[61]. This By limit from the collinear configuration trispec-
trum that considers the full mode-coupling integral over
all angular terms is similar to the limit above from case I:
only s-independent angular terms for any equal-sided
configuration.

C. Limits from scalar anisotropic stress

The trispectrum from magnetic scalar anisotropic stress
Eq. (48) was found to be 10'° times larger than the
trispectrum from magnetic energy density. Comparing it
with the trispectrum from inflationary perturbations
[Eq. (67)] gives a much stronger magnetic field constraint of

By <0.9 nG, (63)

using the positive-sided limit z,; < 2,800 from the Planck
2013 data release [61].

This By < 0.9 nG limit is over two and a half times as
strong as the B, limit (2.4 nG) obtained from the Il
bispectrum [59]. In addition, for those theories of inflation,
which lead to 7y; = (6/5fy.)> we could perhaps use the
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relatively tighter limits on fp;. The two-sigma limits on
floe are —8.9 < f19¢ < 14.3, obtained from searching for
the CMB primordial bispectrum signal in Planck 2013 data
[61]. This gives a primordial magnetic field limit of

B, <0.7 nG (69)

for both the negative and positive f1%¢ limits separately.
We employ the local configuration f; limits as the
uncertainties o, in the other orthogonal and equilateral
configurations are about an order of magnitude larger.

D. Limits from scalar anisotropic stress—flat sky

We can also compare the flat-sky calculation of the scalar
anisotropic stress trispectrum to the trispectrum from
inflationary perturbations (Eq. (67)) and obtain magnetic
field limits using the negative-sided limit of |zy; | < 2, 800
to get

By < 0.6-0.8 nG. (70)

The range of magnetic field upper limits reflects the range
of o values (—84.6 to —14.2) in Table III for different
configurations of the flat-sky trispectrum. As before, we
may again consider those theories of inflation which lead to
7y = (6/5fy.)? and use the relatively tighter limits on
fne, e —8.9 < fl¢ < 14.3 [61] to place magnetic field
upper limits of

By £0.4-0.6 nG, (71)

where we take the combined effect of the slightly different
(positive and negative) limits for f; as well as the range of
values of ¢ to arrive at the range of B, upper limits.

For magnetic scalar anisotropic stress, the flat-sky
trispectra values give magnetic field upper limits that are
slightly stronger but consistent with the sub-nanoGauss
values derived from the full-sky trispectrum.

E. Limits from inflationary magnetic curvature mode

Recently, Bonvin et al. [62,89] have found a magnetic
mode in the curvature perturbation that is present only
when magnetic fields are generated at inflation. This
magnetic mode is always scale-invariant and is absent
when magnetogenesis occurs causally e.g. via a phase
transition. This inflationary magnetic mode is seen to exist
in addition to the compensated and passive modes and
dominates over them in the CMB anisotropy. The ratio of
the passive mode power spectrum to the new inflationary
magnetic mode power spectrum is proportional to €* where
€ ~ 1072 is the inflationary slow-roll parameter. We cal-
culate the passive to inflationary power spectrum ratio
using the relation given between Egs. (45) and (46) in
Bonvin et al. [62], for n —» —3,
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TABLE IV. Comparison of upper limits on primordial magnetic fields from magnetic mode contributions to the CMB power spectra,
bispectra and trispectra (this work). We quote limits derived for close to scale-invariant magnetic fields and an early generation epoch

(10" GeV) for magnetic passive modes.

CMB probe Magnetic modes Magnetic field upper limit B, (nG) Reference
Power Spectrum scalar, vector and tensor 34 [29]
Bispectrum energy density 22 [49]
Bispectrum scalar anisotropic stress 2.4 [59]
Bispectrum vector 10 [52]
Bispectrum tensor 3.2 [55]
Trispectrum energy density 19 this work
Trispectrum scalar anisotropic stress 0.6 this work
Trispectrum magnetic inflationary mode 0.05 this work; using [62]

*The magnetic field upper limit from [49] has been updated with the current values for R and current upper limit for fy;

C?asswe _ €21n2 (&) <,£) 2n+6 F(—n _ 2)

cinfl- mag. 1) \ito [(—n—3)
X [2+61n2 ("—) : (72)
Mo
to find
Cpassive
=47 x 107 (73)
Cm . mag.
[

Now consider the magnetic CMB trispectrum sourced by
this inflationary magnetic mode. We assume the trispectra
ratio scales approximately as the power spectrum ratio
squared and magnetic field constraint will come from one-
eighth power of trispectra ratio. The magnetic field con-
straint is then found to be significantly stronger than from
magnetic passive modes (i.e. scalar anisotropic stress Ip)
roughly by a factor ~ (4.7 x 107°)702% ~ 12. The mag-
netic field upper limit from the inflationary magnetic mode
CMB trispectrum is then
By <0.05 nG i.e By <50 picoGauss. (74)
For this inflationary magnetic mode, the trispectrum, as
well as other CMB correlations, give magnetic field upper
limits that are an order of magnitude stronger than those
derived from the magnetic passive mode (scalar anisotropic
stress) alone. Clearly, the new inflationary magnetic mode
presented by Bonvin et al. [62] seems to place stronger
constraints on primordial magnetic fields from its CMB
correlations and we hope to return to this in greater detail in
future work.

VIII. CONCLUSIONS

We have presented the full calculation for the CMB
trispectrum sourced by primordial magnetic field scalar
modes, first reported in our Letter [60]. In addition, we have
calculated the scalar anisotropic stress trispectrum in the
flat-sky limit. Together with recent improved observational

constraints on primordial non-Gaussianity from the Planck
mission 2013 data, the magnetic scalar trispectrum enables
us to place sub-nanoGauss upper limits on the strength
primordial magnetic fields.

Magnetic energy density gives rise to a trispectrum of
magnitude =~ 1072, for s-independent terms. Also, the
collinear configuration trispectrum for energy density,
including all angular terms, gives a result that is very similar
to the case of s-independent terms for energy density.

For magnetic scalar anisotropic stress, we find a
trispectrum of magnitude =~ 10~'°, which is ten orders
of magnitude larger than the magnetic energy density
trispectrum. We also present an independent flat-sky
limit calculation of this trispectrum with its angular
structure that yields a slightly larger trispectrum of
magnitude ~ 10718,

The magnetic energy density trispectrum allows us to
place stronger upper limits on the primordial magnetic field
compared to a similar calculation with the magnetic energy
density bispectrum [49-51]. Further, the much larger
trispectrum due to magnetic scalar anisotropic stress leads
to the tightest constraint so far on large-scale magnetic
fields of ~0.6 nG. This is approximately four times as
strong as the corresponding upper limit from our previous
bispectrum calculation (~2.4 nG) [59]. We note that the
vector and tensor mode bispectra have been calculated
numerically [52,53,55] and give magnetic field limits of
~3-10 nG. Recently, polarization bispectra [56] con-
straints on magnetic fields have been forecast to be
~2-3 nG from expected Planck mission CMB polarization
data. However, the scalar temperature trispectrum calcu-
lated in this work gives stronger magnetic fields constraints
compared to the various kinds of bispectra that have been
calculated [see Table IV]. The trispectrum’s sensitivity can
be illustrated by the magnetic to inflationary scalar trispec-
trum ratio, which is ~10% compared to ~0.1 for the ratio of
magnetic to inflationary scalar bispectra (taking fy; ~ 10
and By ~ 3 nG).

We also note that the magnetic field upper limit at
megaparsec scales derived from just the scalar mode
magnetic CMB trispectrum is already several times better
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than the upper limit from the magnetic CMB power
spectrum combining scalar, vector and tensor modes:
34 nG from Planck mission 2013 data [29] and
(~2-6 nG) from WMAP data [30-33]. Non-Gaussian
correlations like the bispectrum and especially the trispec-
trum are better able to constrain primordial cosmological
magnetic fields than the CMB power spectrum.

Finally, we have utilized the recently uncovered mag-
netic inflationary mode [62] as a source for the CMB
trispectrum. This new magnetic mode dominates over both
energy density and scalar anisotropic stress and leads to an
order of magnitude stronger constraint on the primordial
magnetic field of ~0.05 nG. Further detailed investigation
of the role this magnetic mode can play in sourcing various
CMB correlations will be important. It will also be of
interest to look in more detail at the coupling between
inflationary magnetogenesis and CMB signatures as
in [90,91].

Table IV summarizes the current constraints on primor-
dial magnetic fields derived from various probes using
CMB anisotropies, Thus, the CMB trispectrum is a new and
more powerful probe of large-scale primordial magnetic
fields in the Universe.

Future consideration of magnetic vector and tensor
modes in the trispectrum is likely to give additional
constraints on primordial magnetic fields. Further improve-
ment in magnetic field constraints is also possible from

V1234 = (8”7

+ M(lky + ko +s|) (M (Jks — s[) F
+ M(lky +ky +s|)(M(Jky — s[) F

PHYSICAL REVIEW D 89, 043523 (2014)

better z); constraints that may emerge from a detailed
analysis of the full Planck mission data.

ACKNOWLEDGMENTS

P.T. and T. R. S. would like to acknowledge the [UCAA
Associateship Program as well as the facilities at the
IUCAA Resource Center, University of Delhi. P. T. would
like to acknowledge support from Sri Venkateswara
College, University of Delhi, in pursuing this work.
T.R.S. acknowledges support from CSIR India via
Grant-in-Aid No. 03(1187)/11/EMR-IL

APPENDIX

In this Appendix we present the complete expressions
for all angular terms generated by the sixteen operators
present in the four-point correlation of magnetic anisotropic
stress (I (ky)IIg(ky)p(ks3)Mg(ky)) [Eq. (29)]. The
extensive angular term expressions presented below have
also been checked by taking an alternative order of
contraction while calculating angular terms.

Each operator term X from 1 to_16 generates its own
separate angular term expression )1(). When summed over
all X this yields the angular term expression F/;), where 1
takes values 1 to 6 in the six-term mode-coupling integral

[V 1234]51 below:

° ] /d3sM(S)M(|k1+S)[M(|k1+k3 +5)(M(lky —s|) F 1) + M(Jky —s[) F 2))

o)+ M(Jks — 5)) F o))
5+ M(ks = 5)F )]

As seen in Eq. (29), the angular term expressions F generated by operators |2] to [S| will carry a prefactor of (—3), angular
term expressions generated by [6] to will carry a prefactor of (9), angular term expressions generated by to will
carry a prefactor of (—27) and the angular term expressions generated by will have a prefactor of (81). For clarity, we
suppress these prefactors while writing out the full angular term expressions below. The angles involved in these
expressions have been defined earlier in Eqs. (11), (12) and in Table L.

The angular terms for operator |1| are

— I+ (B B+R+B+L+1) -

:—1+

(

Fl =14

(

A =

(

——1+

<
=1+ (@B + G+ &+ i+ + 5

a1y + aafs + arasys + PaPers) + 1aPeys
a1y + a1afe + 40666 + PaPe€s) + a1asPses

)

+a4+a6+ﬂ4+ﬂ6+e )
a3 + ayasPs + azasds + Pz fsds) + ayazfsos

)

)

)

+ a4+ 1+ PR+ €2) — (ajaufy + ayasPs + agases + PaPses) + ajayPses

+ a3 + oF + B3+ E + 73 a mfy + a7 + g7 + Pofryr) + avaafiys

( (
(af )= (
(af + a3 + a3 + 5+ 3+ 6%) — (
+ (of (
(af 7) = (
( )= (

aya3fi3 + ayafr + aza767 + P3f767) + ayazfr67.

(A
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The angular terms for operator 2| are

) =1-a& -+ aapy  —7alts — @y — Bafa + a1 facts)]
— ZalAs — @406 — Pafs + 1@ufs) + Tadalre — aras — Pafs + a1asfe]
) = 1= — 2 + BolaPa — aulag — Paa; — Ayag + Polaay]

— &4[e4 — PaPs — A€o + PoPacs) + tuEslay — a1 fy — ages + Poai€6)

) =1 —a =} + q@ufs — 64004 — aus — Pufps + a1 faas]

— Ry[Ry — Qyats — fufis + a18ufs] + 64%4[65 — azas — B3fs + ayasfs]
) =1 — ] = &G + PsRaPa — aulay — Paoy — Ryas + Psikaa]

— €4[84 — faPs — Kyes + PsPaes] + aslay — arfy — ases + fsayes]
) =1-a — 75 + ¥y — Palfs — duay — 74Py + 741y

— Xalla — Qa7 = 7ay7 + wdurq) + PafalPr — aray — Pars + aaanyd]
) =1 —a; — 6, + auby — falBs — auay — 643 + 3641

= Yalta — @407 — 8487 + a3@487) + Paialfs — aray — 35, + a3 59). (A2)

The angular terms for operator |3] are

A

—

L =1—-3 — 73 + adsy; — Bilfs — asa; — 735 + anfsay]

—

— W33 — @305 — V376 + adt376) + B3ds[fs — a1as — Pave + arave)

_ o e A _ -
=1 — a5 — & + aa38; — P33 — a3y — €344 + auéza]

ot

—

— W33 — @305 — €366 + A4d366) + P3A3[Be — a1 — Paes + s €q)

) =1— % — &3 + Pspsics — as[a; — Psay — Kyas + Psiza]
— 03183 — B33 — K385 + PsP30s] + @303]as — a3 — asSs + fsa; Ss)
) =1-a — 5+ aiafpy — €63 — a3a4 — B3y + a1 3]

— K3[k3 — @yas — Pafs + a1@3fs] + Esks[es — agas — fufis + ayaufs)

5 I . _ _
) =1—-a— 3+ ai@fs — 73[73 — a0 — i + a1 fr)]

- 1313 — @307 — B3fr + aafr] + 73k lrr — may — Boffr + ayan i)
3 - — - _ — = - _ _
) =1—=B3 =13 + PPz — s[5 — By — 307 + Brgzay]

— 83103 — B3B3 — 1367 + P1P367) + a3ds[az — ayfy — az87 4 Py 57). (A3)
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The angular terms for operator (4| are

) =1 =5 =13 + PePrla — to|@y — Pray — drae + Pehra]

= 72[72 = Pabr — Aav6 + BePare] + aialan — anfy — agys + Petyvel
) =1 - — 5 + q@fy — &6, — day — Pofs + a1 pray]

~ Jolha — @6 — Pofs + a1826] + Exal€6 — Ay — Paf + 1 aufie]

) =1-@ — 8 + atd; — bl — tay — 665 + azdra4]

— Ra[Ry — Bpas — 6,85 + a3y 85 + Poka|[fs — ayas — P65 + aza 5s)
) =1 =@ — & + qume; — bl — oy — &4 + ada]

— Ro[Ry — By — Ex65 + aulzes] + iy [Bs — ayas — Paes + agaes]
) = 1= =75 + Pibotz — @iy — Proy — Ji2as + Prjtaa]

= 72[72 = Pobr = Zav7 + Pabare] + @apalan — aify — azys + Brarys
) =1-3 5+ admf,— 66 —aa; — pofs + aifras]

— altr — @07 — Pofpr + ay@af] + 62702 [67 — azay — B3y + ayaz ). (A4)

The angular terms for operator |5] are

[«

=1 =71 =4 +rehh — & [@ — 710 — Lia + v6h @]
= PilBy — 7152 — WP + 1671 B6) + a1 Brlar — @y — afis + 16@af]
1 — & — 23 + €681 ) — @y [@, — &0y — A6 + €61 a)
— P1lPy — €1Ps — 1B + €6€16) + @ifi (a1 — aufs — aPs + €60uPe)
=1—56 — & + 850,k — a)[a, — 6,03 — ka5 + S5k a3]

= BilBy — 8183 — kifs + 8561 85] + a1 1 lay — azfs — asPs + Ssazfs)

—
—
—

o

=

a}

=

) = 1-& — 2 + 6581k — &y [@, — E104 — K15 + €58 a4]

= BilB1 — &1Bs — RiPs + esefis] + ai Py — aufhy — asPs + esau s
) =17 =7 +rnd —ala — e =70 + o)

= BilBy — 712 —nPr + ran Bl + Py — aofpy, — azpy + rr00f)
) =1 =6 — i + &6 — @@ — 6103 — 1107 + 67713]

= B1lB1 — 6185 — i1B7 + 6:0187] + a1 B[y — azfs — az 7 + 8737 (A5)
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The angular terms for operator [6] are

FE = 103 — BsPa — 7aFs — Bos) — (s — ) + Faea(s — )] (03 — Jaa)
ﬂ(% = (034 — @3y — fafs + 01@4f3) (034 — €384 — I3dy + €6E4153)

f% = [03 — a3y — &4 (K3 — as@3) — fu(B3 — a1@3) + Kafs (B3 — 013)] (634 — 6364)
]—'4(% = (034 — @38y — R3(Ry — asdy) — P3(Ba — @) + K35 (By — a134)] (034 — €384)
P& = (03— Bsbs — 7374 — BoBa) — 3@ — na) + 7aea(@s — nBa)) (O34 — 73a)

6 = (034 — @38, — P3Ps + 1834) (034 — 8304 — X374 + 516374)- (A6)

=)
=

The angular terms for operator |7| are

A0

—

= (004 — @28y — Ay (Ay — a62) — B4 (B2 — 1) + Aufs(Ba — 1)) (024 — 7274)
= [0y — My — A (A — ass) — P2 (Ba — 1) + Mofs(Ba — a1@4)] (024 — €284)

= 024 — Pofs — 64(05 — PaPa) — au(@y — a1 B2) + S405(ar — 1 3)] (024 — RKoky)

Ny

-

=

= (024 — Moty — Pofy + 184 2) (024 — €84 — KoKy + €5E4K2)

)= (
) (024 — @ty — Pofs + 1@:P4) (024 — V274 — Zodla + v17274)

o= G}%G} Q}

) = 024 — Pofs — 62(84 — P3Pa) — @x(@s — a1 fa) + Sr03 (s — a14)| (024 — 7274)- (A7)

The angular terms for operator (8| are

AR

=

= (023 — Mm@ — Pofs + @1@f3) (023 — V273 — Aads + 767243)
= (023 — Py — €285 — PuPs) — @2(a3 — a1 B3) + E04(85 — a1 B3)] (023 — Ao ds)

= (023 — M@ — Pofs + a1@31) (023 — 8205 — KoKz + 5503K2)

a

= =

= 023 — o3 — €3(82 — Pufr) — @3(2 — a1 ) + E304(@y — a1 $2)] (023 — Kak3)

z

= 003 — d@; — i3 (2 — a782) — P3(Ba — au @) + 73 P71(Ba — 1 @) (623 — 7273)

N

st ol st ofa ol

=

= 003 — d@3 — 2 (Ts — a73) — Po(B3 — a1 @3) + P71 (B3 — 1@3)] (025 — 8205). (A8)

The angular terms for operator [9] are

= (014 — 8y — 7174 + 01 74) (014 — B1Bs — Mg + asPily)
= (014 = B1Bs — &a(&1 — PaBr) — Aa(As — BoB1) + Eaes(A1 — BoB1)) (014 — a1)
= (014 — @ 4 — 6,64 + 0@,04) (014 — P1 By — KiKy + BsPiRy)
) = 014 = BiBy — (&1 — BuB1) — Ra(Ry — PsPr) + Eaes(ky — Bspr)] (014 — a14)
= (014 — 10 — 74 (01 — @) = 7a(71 — @) + Zay7 (71 — 0o@r)] (014 — B1fa)

=014 — @@y — pa(t1 — ar@y) — 84(8) — a3d;) + 46781 — az@1)] (014 — B1Ba). (A9)

=

(

o

Y

(

oh

Nt

(

=)
=
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The angular terms for operator are

Foy =013 — aay — 5(A — apity) — 73(71 — miy) + Aays(71 — ao@y)] (013 — B1B3)

—_
(=]

= [013 — a5 — A3 (A — o)) — &3(8) — au@y) + Ases(&) — au))] (013 — B15s)

(013 — P13 — 85(51 — B3p1) — ks (ky — Bsp) + 6385(ky — Bsp)] (013 — &y @3)

—
5
—

I

—
=z

—_
(=]

013 — @ — €18 + a1 &) (013 — P13 — Kiks + Bspik3)

—
~
Nl

(
(

—
(=]

013 — @133 — 7173 + @i 73) (013 — BiBs — 71kt3 + Pibiis)

A
1
g =@

) = 013 = P1fs = 63(81 — BaPr) — Za (21 — Bar) + 836,00y — o)) (013 — a13). (A10)

=)
=

The angular terms for operator [11] are

S5

—

=012 — 1o — 72(71 — BaBr) — Za(A1 — BePr) + 7ar6( — BeP1)] (012 — 1)
= (012 — 1@ — &8 + 043,8) (012 — f1 2 — hido + PePila)

= 01y — @@, — Ko (k) — as@;) — 62(0) — a3@;) + K285(5, — a3@1)] (612 — B1 )

~T=
58}
— = =

E

—
w
=

§E
I

(012 — @13y — Ky (K — as@y) — E2(&) — au@y) + Kae5(€) — @@y )] (012 — B1Ba)
=012 — 1Bo — 72(71 — BoBr) — 22ty — BaPr) + 72r2Ger — BaP1)] (612 — @)

= (01 — ;@ — 8105 + a32,0,) (012 — B1 S — 71702 + BrBr22)- (A11)

=
==

—
:E
2

The angular terms for operator are

(923 — a3 — Bzﬁa + 0167233)(‘924 - 7274)(934 - /13/14)
= (034 — G304 — P3Py + 0104f3) (024 — ©284) (023 — 1 43)
= (623 — @03 — Poffs + 1@3f32) (034 — 6364) (624 — RaRs)
= (04 — D@y — Pofs + 1@4f2) (034 — E384) (023 — Koi3)
= (024 — @by — Pofs + 1 @B4) (023 — 7273) (034 — 7374)
= (034 — @38y — P34 + a1@3P4) (023 — 6203) (024 — 7274)- (A12)

The angular terms for operator are

= (014 — M@y — 7174 + @174) (013 — B1B3) (034 — A3Ay)
= (034 — €384 — A3y + €6€423) (013 — 153) (014 — @1 34)
= (014 — P1Bs — KiKy + PsPika) (013 — @133) (034 — 5364)
= (013 — B1Bs — K1k3 + BsP1R3) (014 — @y @4) (034 — E3E4)
= (013 — @@ — 7173 + 020173) (014 — P154) (034 — 7374)
= (034 — 6364 — 2374 + 670374) (015 — @1@3) (014 — B1s). (A13)
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The angular terms for operator are
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—7:5 = (014 — P1Ba — MiAs + BoPr12a) (012 — @122) (024 — T274)
= (012 — B1Ba — MiAa + PeP17a2) (014 — 2,8,) (024 — E2E4)
= (014 — @184 — 6104 + a3,64) (013 — B12) (024 — Kaky)
= (024 — 8284 — KoRy + €5E453) (012 — 1) (014 — @14)
= (024 — 7274 — ZoXa + 1772004) (012 — @1@3) (014 — P1B3)
= (012 — @18 — 616, + a3@,6,) (014 — P1Ba) (Oas — F2dta)- (A14)
The angular terms for operator are
= (023 = 7273 — ol + 167224) (012 — 1) (013 — 1 53)
= (012 — @@ — &8 + 0@, &) (013 — B13) (023 — o ls)
= (03 — 6203 — Kok + 8563%2) (012 — 1) (013 — a,@3)
= (013 — 1@ — €& + @83) (012 — 1) (023 — Kak3)
= (013 = B1Bs — 123 + Pab173) (012 — 2132) (623 — 7273)
= (012 = P1fr — 2o + PaBrita) (013 — @1@3) (023 — 6,53). (A15)
Finally, the angular terms for operator are
= (012 — &1@) (013 — B153) (024 — 7274) (034 — 23s)
= (014 — @134)(013 — B13) (024 — €284) (023 — 2o 23)
= (013 — @, @)(012 — B12) (034 — 8304) (024 — Koiy)
= (014 — 0134) (012 —,31,52)(934 — E384) (023 — Kok3)
= (012 — 01@) (014 — P1P4) (023 — 7273) (034 — Z34)
= (013 — 01@3) (014 — P1S4) (023 — 6:83) (024 — 7oia)- (A16)
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