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We show that the interaction of an axion field, or in general a pseudoscalar field, with the axial-vector
current generated by an electron through a derivative-type coupling can give rise to a time-dependent
mixing of opposite-parity states in atomic and molecular systems. Likewise, the analogous interaction of an
axion field with the axial-vector current generated by a nucleon can give rise to time-dependent mixing of
opposite-parity states in nuclear systems. This mixing can induce oscillating electric dipole moments,
oscillating parity nonconservation effects and oscillating anapole moments in such systems. By adjusting
the energy separation between the opposite-parity states of interest to match the axion mass energy, axion-
induced experimental observables can be enhanced by many orders of magnitude. Oscillating atomic
electric dipole moments can also be generated by axions through hadronic mechanisms, namely the
P,T-violating nucleon-nucleon interaction and through the axion-induced electric dipole moments of
valence nucleons, which comprise the nuclei. The axion field is modified by Earth’s gravitational field. The
interaction of the spin of either an electron or nucleon with this modified axion field leads to axion-induced
observable effects. These effects, which are of the form g · σ, differ from the axion-wind effect, which has
the form pa · σ.
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I. INTRODUCTION

The strong charge-parity (CP) problem, which seeks to
explain why quantum chromodynamics (QCD) does not
appear to violate the combined CP symmetry, remains one
of the most important outstanding problems in fundamental
physics to date. One possible resolution of the strong CP
problem is that the QCD CP-symmetry breaking parameter
θ becomes unobservable if at least one of the quarks is
massless (see, for instance, review [1]). However, there
does not appear to be empirical evidence to date that any
of the quarks in the Standard Model (SM) are massless and
so this resolution mechanism seems unlikely. An alternative
explanation of the strong CP problem is offered by the
Peccei-Quinn (PQ) theory, in which an additional global
U(1) symmetry, known as the PQ symmetry, is introduced
into the SM QCD Lagrangian and is subsequently broken
both spontaneously and explicitly [2,3]. See also Refs. [4–9].
The breaking of the PQ symmetry gives rise to a pseudo-
scalar pseudo-Nambu-Goldstone boson, known as the axion,
being born from the QCD vacuum and causes the θ
parameter to become effectively zero, thus in principle
alleviating the strong CP problem.
Another outstanding problem of great importance in

contemporary physics is that of dark matter, specifically
cold dark matter (CDM), the existence of which is gen-
erally accepted on the basis of overwhelming astrophysical
evidence (see e.g. Refs. [10–23]), but the composition of
which is much less clear. We do know, however, that the
matter-energy content of the Universe is overwhelmingly

dominated by CDM (∼23%) and dark energy (∼73%), with
only a few percent attributable to baryonic matter (see e.g.
Ref. [24]). There are several possible candidates for CDM,
including weakly interacting massive particles (WIMPs),
superweakly interacting massive particles (super-WIMPs),
massive astrophysical compact halo objects (MACHOs),
such as primordial black holes, and axions (see, for instance,
Ref. [25] and the plethora of references therein for further
details of the properties of and searches for these particles).
In the present work, we restrict our attention to axions.

For more details to the ensuing discussion of axion theories
for CDM, we refer the reader to Refs. [2,3,25–29]. Axion
theories for CDM predict that significant quantities of
axionic matter may have been formed shortly after the big
bang. At a sufficiently large temperature (well above the
QCD critical temperature), the axion is massless and the
axion field can have essentially any value, parametrized by
the misalignment angle θi. As the axion plasma cooled to
below the QCD critical temperature, the axion attained a
mass and, since the axion field was initially unlikely to be
near the minimum of the potential for the field, the axions
dissipated most of their kinetic energy as they fell into the
nearest potential minima via the so-called misalignment
mechanism. If axions have sufficiently low mass that no
other decay modes were possible during the misalignment
mechanism, then, due to the bosonic nature of axions, the
Universe would have been pervaded by a Bose-Einstein
condensate (BEC) of primordial axions possessing very
little kinetic energy. The suppression of other decay modes
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means that a remnant axionic background field should
still exist at present and, at least in principle, should be
detectable.
While there exist numerous schemes for the detection of

WIMPs, for instance, there are comparatively few detection
schemes for axionic dark matter. One of the main detection
schemes for axions involves detecting the conversion of
axions into photons in a microwave cavity, which is
permeated by a homogeneous magnetic field (see e.g.
Refs. [30–32]). Another popular detection scheme for
axions involves measuring the axioelectric effect, which
is the ionization of (usually atomic) matter by axions (as
opposed to by photons in the photoelectric effect) (see e.g.
Refs. [33–40]). There also exist variants of the axioelectric
effect involving Primakov conversion (see e.g. Ref. [41]),
as well as Compton and bremsstrahlunglike processes
involving axions (see e.g. Ref. [42]). Bounds obtained
from astrophysical data assist us in axion CDM searches by
ruling out a large region of the allowed values of axion
parameters [43,44].
More recently, Ref. [45] suggested to search for axionic

CDM through energy shifts in atomic systems arising from
the coupling of axions to gluons, a process which can also
give rise to a nonzero nucleon electric dipole moment
(EDM). In Refs. [46,47], another method is suggested to
search for axionic CDM using atomic systems. The essence
of this method is as follows. The Solar System rotates about
the center of the Milky Way Galaxy with a circular speed of
vrot ≈ 240 km=s [25]. Thus our Solar System should be
passing through an axion “wind.” Note that the present-day
background axionic field must invariably differ from the
primordial axionic BEC, which formed shortly after the big
bang, due to gravitational perturbations. As an estimate of
the velocities of the axions comprising the background
axionic field due to thermal motion, it is usual to assume
that the root-mean-squared velocity of the axions is given
by vrms ¼

ffiffiffiffiffiffiffiffi
3=2

p
vrot ∼ 290 km=s [48]. The background

axion field can interact with the axial-vector current
generated by electrons and nucleons through a deriva-
tive-type coupling (see e.g. Refs. [34,37,38]). The time-
dependent potential arising from the spatial components of
this interaction is proportional to pa · σλ, where pa is the
momentum of an axion comprising the axionic background
field relative to an observer on Earth and σλ is the spin
operator for an electron (λ ¼ e) or nucleon (λ ¼ N) in the
atomic, molecular or nuclear system of interest. Thus this
time-dependent interaction is of the same form as that due
to a time-dependent magnetic field applied to an atomic,
molecular or nuclear system, and can give rise to energy
level shifts in the species under consideration. These energy
shifts can be measured in principle. Such a method can
probe previously inaccessible regions of the axion param-
eter space [45,47].
In this paper, we show that this same interaction of an

axion field, or in general a pseudoscalar field, with the

axial-vector current generated by an electron field through
a derivative-type coupling can also give rise to a time-
dependent mixing of opposite-parity states in atomic and
molecular systems. An analogous effect also arises in
nuclear systems due to the interaction of an axion field
with the axial-vector current generated by a nucleon field
through a derivative-type coupling of the same form. This
mixing can induce oscillating EDMs, oscillating parity
nonconservation (PNC) effects and oscillating anapole
moments in such systems, the first of which can be
measured by the methods discussed in Refs. [45,47]. We
suggest that the first two of these effects can be measured
through the application of a static electric field to the
system of interest, and derive expressions for such axion-
induced EDMs in group I elements and systems possessing
a single nearly degenerate pair of opposite-parity states. By
adjusting the energy separation between the opposite-parity
states of interest to match the axion mass energy, axion-
induced experimental observables can be enhanced by
many orders of magnitude. This is essentially a resonance
phenomenon. Measurements of these effects permit either
the determination of or the placing of limits on important
physical axion parameters. We consider oscillating atomic
EDMs that can be generated by axions through hadronic
mechanisms, namely the P,T-violating nucleon-nucleon
interaction and through the axion-induced EDMs of
valence nucleons, the latter of which were considered in
Refs. [45,47], and derive corresponding expressions for the
axion-induced EDM for 199Hg, which at present provides
the most sensitive probe for static EDM measurements in
diamagnetic atoms [49,50], and 225Ra (also 223Rn and
223Ra) which can offer a several order-of-magnitude
enhancement in EDM magnitude over that for 199Hg. We
also show that the interaction of the spin of either an
electron or nucleon, which also interacts with an axion
field, with the gravitational field of a gravitating body can
give rise to axion-induced observable effects. These effects,
which are of the form g · σλ, differ from the axion-wind
effect, which has the form pa · σλ.
The structure of this paper is as follows. In Sec. II, we

present and derive necessary theory, showing how the
mixing of opposite-parity states can arise in atomic and
molecular systems due to the interaction of electrons with a
background axionic field, and likewise in nuclear systems
through the interaction of nucleons with a background
axionic field. We show how this mixing can induce
oscillating EDMs, oscillating PNC effects and oscillating
anapole moments in such systems, and derive correspond-
ing expressions for such axion-induced EDMs in group I
elements and systems with a single nearly degenerate pair
of opposite-parity states. In Sec. III, we briefly recapitulate
the essence of one particular Stark-interference technique
variant in atomic and molecular experiments designed to
measure the static mixing of opposite-parity states induced
by the neutral weak interaction. In Sec. IV, we show how
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the application of a static electric field can be used to
measure the oscillating EDMs and PNC effects of
Sec. II. Then in Sec. V, we consider oscillating atomic
EDMs that can be generated by axions through hadronic
mechanisms and derive corresponding expressions for the
axion-induced EDMs of 199Hg and 225Ra. In Sec. VI, we
show that the interaction of the spin of either an electron or
nucleon with an axion field, modified by the gravitational
field of a massive body, can give rise to axion-induced
observable effects. These effects, which are of the form
g · σ, differ from the axion-wind effect, which has the form
pa · σ. Finally, Sec. VII presents our conclusions.
Note that, unless explicitly stated, we employ the natural

units ℏ ¼ c ¼ 1 hereafter. We also employ the metric
signature ðþ − −−Þ for flat, Minkowskian spacetime in
this work, as well as the Einstein summation convention
over repeated indices, which run over μ ¼ 0, 1, 2, 3.

II. THEORY

The axion is a pseudoscalar particle and so must satisfy
the Klein-Gordon equation, which in flat spacetime
reads [51]

ð∂μ∂μ þm2Þφðr; tÞ ¼ 0; (1)

where ϕðr; tÞ is the axion field, which we assume to be
classical and hence real. The solution to Eq. (1) thus reads

ϕðr; tÞ ¼ a0 cos ðpa · r − εatþ ηÞ; (2)

where pa is the momentum of an axion, which comprises
the background axionic field, relative to an observer on
Earth, η is a phase factor that depends on the initial
conditions and εa is the energy of an axion particle, which
is given by the following dispersion relation (ma is the
axion mass):

εa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpaj2 þm2

a

q
: (3)

The stress-energy tensor for the axion field is given by [52]

Tν
μ ¼

∂LKG

∂ð∂νϕÞ
ð∂μϕÞ − LKGδ

ν
μ; (4)

where LKG is the Klein-Gordon Lagrangian density given
by [53]

LKG ¼ 1

2
½ð∂μϕÞð∂μϕÞ −m2ϕ2�: (5)

From Eqs. (4) and (5), we find

Tμν ¼ ð∂μϕÞð∂νϕÞ − 1

2
ð∂ρϕÞð∂ρϕÞgμν þ

m2ϕ2

2
gμν: (6)

Substituting Eqs. (2) and (3) into Eq. (6), we find the
energy density associated with the axion field to be

T00 ¼
a20
2
½m2

a þ 2jpaj2sin2ðpa · r − εatþ ηÞ�

¼ a20
2
ðm2

a þ jpaj2Þ; (7)

where in the second line of (7) we have have taken the time
average.
The background axionic field can interact with the axial-

vector current generated by an electron or nucleon (or any
SM fermion in general), with the corresponding Lagrangian
interaction density given by (see e.g. Refs. [34,37,38])

Lint ¼ −∂μϕ

fa
ψ̄γμγ5ψ ; (8)

where ψ is either the Dirac electron or nucleon field, ψ̄ ≡
ψ†γ0 is the corresponding Dirac adjoint field and fa is the
reciprocal of the coupling constant for the given interaction.
Since the speed of the background axion field relative to an
observer on Earth, the typical speed of an electron in an
atom or molecule, and the typical speed of a nucleon in a
nucleus are all ≪ 1, the interaction of interest is a non-
relativistic one and so we can take the nonrelativistic
limit of Eq. (8). The temporal component of (8) gives rise
to the following partial interaction Hamiltonian in the
nonrelativistic limit (see e.g. Ref. [34]):

Htemp
int ðtÞ ¼ ∂tϕ

fa

pλ · σλ
mλ

¼ a0εa
fa

pλ · σλ
mλ

sin ðpa · r − εatþ ηÞ; (9)

where pλ is the momentum operator for an electron (λ ¼ e)
or nucleon (λ ¼ N) in the atomic, molecular or nuclear
system of interest, σλ is the spin operator for the fermion of
interest, mλ is the fermion mass, and we have used Eq. (2)
in the second line of (9). The spatial components of (8) give
rise to the following partial interaction Hamiltonian in the
nonrelativistic limit:

Hspat
int ðtÞ ¼

ð∇ϕÞ · σλ
fa

¼ − a0 sin ðpa · r − εatþ ηÞ
fa

pa · σλ; (10)

where pa is the momentum of an axion comprising the
background axionic field relative to an observer on Earth,
and we have used Eq. (2) in the second line of (10). Thus
the time-dependent interaction (10) is of the same form as
that due to a time-dependent magnetic field applied to an
atomic, molecular or nuclear system, and can give rise
to energy level shifts in the species under consideration.
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This is the axion-wind effect, which was considered in
Refs. [46,47]. Note that the effective magnetic field for the

case of nucleons is given by Beff
N ðtÞ ¼ HintðtÞ

μN
, where μN ¼

e
2mp

is the nuclear magneton, while the effective magnetic

field for the case of electrons is given by Beff
e ðtÞ ¼ HintðtÞ

μB
,

where μB ¼ e
2me

is the Bohr magneton. Since μN ≪ μB,

Beff
N ðtÞ ≫ Beff

e ðtÞ, which implies that a larger signal-to-
noise ratio should be achievable for the case of nucleons.
We shall return to the axion-wind effect in Sec. VI.
Note that the interaction described by Eq. (9) is a P-odd

interaction, just like the the neutral weak interaction
between an atomic nucleus and an orbiting electron in
the nonrelativistic limit [54]. Consequently, the interaction
(9) can give rise to time-dependent mixing of opposite-
parity states in atoms, molecules and nuclei. In order to see
this, we first consider for simplicity a two-level subspace of
either an atomic or molecular system spanned by two
arbitrary, opposite-parity eigenstates jAi and jBi, before
proceeding to full calculations. For the resonance phe-
nomenon described at the end of the section, the two-level
approximation is likely to be a very good approximation in
most cases. The atomic or molecular system is at rest in
Earth’s frame of reference (that is, r is constant). Also,
since va ≪ 1, the dispersion relation (3) gives εa ≈ma. So
we can write (9) as follows:

Htemp
int ðtÞ ¼ a0ma

fa

pe · σe
me

cos ðmatþ η0Þ; (11)

where we have redefined the phase factor to be η0. Note that
(11) is a pseudoscalar interaction and so can only mix states
with the same values of j and jz. Using the operator identity
pe ¼ ime½H; re�, where H is the nonrelativistic atomic or
molecular Hamiltonian, we find

hAjHtemp
int ðtÞjBi ¼ ia0ma

fa
cos ðmatþ η0Þ

× ½ðεA − εBÞhAjre · σejBi
− hAjre · ½H;σe�jBi�; (12)

where re is the electron position operator. In the non-
relativistic limit, the commutator ½H;σe� vanishes in the
absence of external interactions. Hence we find that

hAjHtemp
int ðtÞjBi ¼ iHA cos ðmatþ η0Þ; (13)

where

HA ¼ a0maðεA − εBÞhAjre · σejBi
fa

: (14)

Note that the matrix element (13) between the opposite-
parity eigenstates jAi and jBi scales linearly with the

energy difference between these states and so for a nearly
degenerate pair of opposite-parity states is very small. In
such cases, relativistic calculations are needed to find the
matrix elements, since the spin-dependent relativistic cor-
rections cannot be neglected and may even give the
dominant contribution to the matrix element (13) [see
e.g. the commutator term in Eq. (12) which does not
contain the small energy difference]. Full relativistic many-
body numerical calculations require sophisticated computer
codes and will be performed in a separate publication. In
this paper, we perform analytical estimates only.
In the presence of the off-diagonal interaction (13), the

Hamiltonian for the two-level subspace spanned by the jAi
and jBi parity eigenstates thus reads

HðtÞ ¼
�

εA iHA cos ðmatÞ
−iHA cos ðmatÞ εB

�
; (15)

where we have set the phase factor η0 ¼ 0 from now on
without loss of generality, unless explicitly written other-
wise. Note that we neglect level widths for now. In the
interaction picture [55], the unperturbed system wave
function projection onto the two-level subspace of interest
reads

jψðtÞi ¼ cAðtÞe−iεAtjAi þ cBðtÞe−iεBtjBi; (16)

from which follow the following coupled differential
equations:

i
dcAðtÞ
dt

¼ hAjV intðtÞjBieiðεA−εBÞtcBðtÞ; (17)

i
dcBðtÞ
dt

¼ hBjV intðtÞjAieiðεB−εAÞtcAðtÞ; (18)

where V intðtÞ denotes the off-diagonal perturbative inter-
action in (15). We apply the slow turn-on perturbative
method [55], in which we multiply the off-diagonal
perturbative interaction in (15) by the factor eηt, where
η > 0. Solving Eq. (18) for cBðtÞ with the initial conditions
cAð−∞Þ ¼ 1, cBð−∞Þ ¼ 0 under the assumption that
cAðtÞ ≈ 1 [which is equivalent to the application of first-
order time-dependent perturbation theory (TDPT)], then
letting η → 0þ at the end of the calculation, gives the
perturbed wave function corresponding to the unperturbed
parity eigenstate jAi to be

j ~AðtÞi ¼ e−iεAt
�
jAi þ HA

ðεB − εAÞ2 −m2
a

× ½ma sin ðmatÞ þ iðεB − εAÞ cos ðmatÞ�jBi
�
: (19)

From (19), it follows that
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j ~AðtÞi ¼ e−iεAt
�
jAi þ iHA cos ðmatÞ

εB − εA
jBi

�
; (20)

when ma ≪ jεB − εAj, and

j ~AðtÞi ¼ e−iεAt
�
jAi −HA sin ðmatÞ

ma
jBi

�
; (21)

when ma ≫ jεB − εAj. Likewise, solving Eq. (17) for cAðtÞ
with the initial conditions cBð−∞Þ ¼ 1, cAð−∞Þ ¼ 0
under the assumption that cBðtÞ ≈ 1, then letting η → 0þ
at the end of the calculation, gives the perturbed wave
function corresponding to the unperturbed parity eigenstate
jBi as

j ~BðtÞi ¼ e−iεBt
�
jBi þ HA

ðεB − εAÞ2 −m2
a

× ½−ma sin ðmatÞ þ iðεB − εAÞ cos ðmatÞ�jAi
�
:

(22)

From (22), it follows that

j ~BðtÞi ¼ e−iεBt
�
jBi þ iHA cos ðmatÞ

εB − εA
jAi

�
; (23)

when ma ≪ jεB − εAj, and

j ~BðtÞi ¼ e−iεBt
�
jBi þHA sin ðmatÞ

ma
jAi

�
; (24)

when ma ≫ jεB − εAj. Note in particular the sign
differences in the coefficients of admixture in Eqs. (21)
and (24).
From Eqs. (19) and (22), we see that there exists an

oscillatory PNC effect due to the purely imaginary coef-
ficients of admixture (the purely imaginary coefficients of
admixture for the opposite-parity states ensure that there are
no contributions to the EDMs of the perturbed states from
these coefficients), as well as an oscillatory EDM (in
addition to the inherent PNC effect) due to the real
coefficients of admixture. From Eqs. (20) and (23), we
see that, when ma ≪ jεB − εAj, the oscillatory PNC effect
dominates, while from Eqs. (21) and (24), we see that, when
ma ≫ jεB − εAj, the oscillatory EDM effect dominates.
We now consider a full calculation of the mixing of

opposite-parity states caused by the interaction (11).
Consider the unperturbed eigenstate jBi, for instance. In
principle, any parity eigenstate of opposite parity to that of
jBi can mix with the unperturbed eigenstate jBi. By
analogy with Eq. (22), application of first-order TDPT,
with account of all possible states that can mix with jBi,
yields the following perturbed wave function correspond-
ing to the unperturbed parity eigenstate jBi:

j ~BðtÞi ¼ e−iεBt
�
jBi þ

X
m

Hm

ðεB − εmÞ2 −m2
a

× ½−ma sin ðmatÞ þ iðεB − εmÞ cos ðmatÞ�jmi
�
;

(25)

where

Hm ¼ a0maðεm − εBÞhmjre · σejBi
fa

; (26)

and we have made use of the fact that hmjre · σejBi ¼ 0 if
the parity eigenstate jmi has the same parity as jBi does, so
that the sum over m in (25) runs over the complete set of
unperturbed parity eigenstates for the system of interest.
Fortunately, formula (25) can simplify tremendously
depending on the system and property of the perturbed
wave function of interest. Recalling that the axion mass ma
at present is generally believed to lie in the range
10−6–1 eV, in some systems the condition jεB − εmj ≫
ma may hold for all states jmiwith parity opposite to that of
jBi. In such a case, formula (25) simplifies to

j ~BðtÞi ¼ e−iεBt
�
jBi − ia0ma cos ðmatÞ

fa
re · σejBi

�
; (27)

where we have neglected the real contribution to the
coefficients of admixture, which are suppressed compared
with the purely imaginary contribution in this case. Here
re · σejBi gives a projection onto the subspace of parity
eigenstates with opposite parity to that of jBi.
Note that formula (27) also applies to nuclei, under the

same assumptions made for atomic and molecular systems.
Moreover, (27) has the same form as that of the wave
function, which gives rise to the nuclear anapole moment and
reads as follows in the coordinate-space representation [56]:

ψðrÞ ¼
�
1 − iGFgNρ0ffiffiffi

2
p σ · r

�
ψ0ðrÞ; (28)

where GF is the Fermi constant of the weak interaction, gN is
a dimensionless constant that is expressed through constants
of the weak meson-nucleon interaction and is different for
a proton and neutron, and ρ0 is the average nuclear density.
The wave function (28) gives rise to the following anapole
moment [56]:

a ¼ GFgNρ0ffiffiffi
2

p 2πeμN
mN

KI
IðI þ 1Þ hr

2i; (29)

where I is the nuclear spin, μN is the nucleon magnetic
moment in nuclear magnetons, mN is the nucleon mass,
K ¼ ðI þ 1=2Þð−1ÞIþ1=2−l, with l being the orbital angular
momentum of the nucleon, and hr2i is the square radius of
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the nucleon of interest. Likewise, Eq. (27) gives rise to
oscillating anapole moments associated with both the elec-
trons and the nucleons, which by analogy with Eqs. (28) and
(29) can be written as

aλ ¼
a0ma cos ðmatÞ

fa

2πeμλ
mλ

KλIλ
IλðIλ þ 1Þ hr

2iλ; (30)

where λ ¼ e denotes an electron and λ ¼ N denotes a
nucleon, Iλ denotes either the electron or nucleon spin as
appropriate, and all other variables are defined analogously,
depending on whether λ ¼ e or λ ¼ N, to those in formula
(29): μe ¼ 1, μp ¼ 2.8, μn ¼ −1.9. The anapole moments
induce PNC effects in atoms and molecules [56].
Interaction (11) may also generate a PNC electric dipole

amplitude EPNC between states of the same parity, e.g. in
the 6s–7s transition in atomic caesium, where the most
accurate measurements and calculations of EPNC generated
by the weak interaction have been performed. However,
for the wave function (27), obtained in the nonrelativistic
approximation, this amplitude vanishes and one should
perform the relativistic calculation instead. Numerical
relativistic many-body calculations of EPNC values will
be presented in a separate publication.
Now suppose that we are interested solely in measuring

the EDM of a state with a single valence electron in the s
wave. In this case, the oscillating EDM associated with the
state j ~BðtÞi, which follows from formula (25), is

da ¼ h ~BðtÞjeðreÞzj ~BðtÞi ¼ − 2a0m2
aαzzðmaÞ
faα

e sin ðmatÞ;
(31)

where αzzðmaÞ is the dynamic polarizability with the
applied frequency given by ω ¼ ma [57]:

αzzðmaÞ ¼ 2
X
m≠B

ðεm − εBÞjhmjeðreÞzjBij2
ðεB − εmÞ2 −m2

a
: (32)

As an application of formula (31), we consider hydrogen
and the alkali metals in their respective ground states. The
polarizabilty of an alkali atom is dominated by its valence
s-wave electron. If we assume that the condition
jεB − εmj ≫ ma holds for all states jmi with parity opposite
to that of jBi, then αzzðmaÞ ≈ αzzð0Þ. Furthermore, since the
ground states of interest are spherically symmetric,
αzzð0Þ ¼ αs, where αs is the scalar static polarizability.
Thus (31) becomes

da ¼ − 2a0m2
aαs

faα
e sin ðmatÞ: (33)

We further assume that axions saturate the entire CDM
content of the Universe and that there is no fine-tuning of
the misalignment angle θi (that is, θi ∼ 1). We thus take

ma ∼ 10−4 eV and fa ∼ 1020 eV for our estimate [25]. In
order to ascertain an estimate for a0, we take the non-
relativistic limit of Eq. (7) and solve

a20m
2
a

2
¼ ρCDM; (34)

where ρCDM ∼ 7.6 × 10−4 eV4 (0.4 GeV=cm3 in more
conventional units) is the local CDM density
[1,25,48,58–60]. This gives a0 ∼ 4 × 102 eV. We summa-
rize our estimates of the induced EDMs for the group I
elements according to Eq. (33) in Table I, from which we
see that the oscillating EDM induced in caesium is of the
same order of magnitude as our estimate for the oscillating
EDM induced in the atomic species 199Hg through hadronic
mechanisms [see Eq. (58)]. This is significant, because
199Hg currently provides the most sensitive probe for static
EDMmeasurements in diamagnetic atomic species [49,50].
Note, however, that when the condition jεB − εmj ≫ ma
holds for all states jmi with parity opposite to that of jBi,
the EDM effect is suppressed compared with the PNC
effect by a factor ∼ ma

Δε ≪ 1, as evident from Eq. (25). [See
also Eqs. (35) and (36) for the other limiting case.]
If one is again interested solely in measuring the EDM of

a state, then, recalling Eq. (24), it might happen that the
conditionma ≫ jεB − εmjmight only be satisfied for one or
possibly only a few states jmi of opposite parity to that of
jBi, in which case only these states will contribute
significantly to the overall EDM. The existence of a pair
of nearly degenerate levels of opposite parity in atomic and
molecular systems is quite uncommon, so the condition
ma ≫ jεB − εmj is most likely to be satisfied for either one
or no such state jmi. Since we are not interested in the
imaginary component of the coefficients of admixture in
(25), the perturbed wave function for the purpose of
calculating the EDM of a state takes on the same form
as (24) if the condition ma ≫ jεB − εmj holds for only the
one pair of states, and an analogous form with additional
admixture terms for each additional state jmi that satisfies
the condition ma ≫ jεB − εmj. Now suppose that the
condition ma ≫ jεB − εmj holds only for the state jmi with
m ¼ A and that ma ≪ jεB − εmj for all other states with

TABLE I. Estimated magnitudes of oscillating EDMs induced
in group I atomic species, as predicted by formula (33). Values for
scalar static polarizabilities were taken from Ref. [61] and
references therein.

Species jdaj=10−38 e · cm sin(mat)

H 2
Li 70
Na 70
K 100
Rb 100
Cs 200
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opposite parity to that of jBi. In this case, from Eq. (24), the
oscillating EDM associated with the state j ~BðtÞi is given by

da ¼
2a0ðεA − εBÞhAjre · σejBihBjðreÞzjAi

fa
e sin ðmatÞ:

(35)

The matrix elements of interest in (35) are typically
jhBjðreÞzjAij ∼ jhAjre · σejBij ∼ aB, where aB ¼ 1

αme
is

the Bohr radius. Taking jεA − εBj ¼ 10−5 eV and using
our previous estimates for the other quantities in Eq. (35),
an order-of-magnitude estimate of the oscillating EDM
induced in an atomic or molecular species, possessing a
single nearly degenerate pair of opposite-parity states, by a
background axion field via the interaction (8) is

jdaj ∼ 1 × 10−34 e · cm sin ðmatÞ; (36)

which is of the same order of magnitude as estimates for the
oscillating EDM of a free neutron, which arises from the
coupling of the axion field to gluons, in Refs. [45,47] [see
also Eq. (55) later in this work], and is roughly 2 orders of
magnitude greater than our estimates for the oscillating
EDM induced in caesium through the same mechanism
(see Table I) and the atomic species 199Hg through hadronic
mechanisms [see Eq. (58)]. Note that closed shell electronic
and nucleonic configurations do not contribute to the
overall atomic or molecular EDM, since any EDM must
be directed along the total angular momentum of the system
and the total angular momentum of such closed shell
configurations is necessarily zero. The possibility of an
EDM of any sort arising from the interaction (8) is quite
intriguing, since in the static limit [cos ðmatÞ → constant],
the Hamiltonian (15) cannot give rise to an EDM—see the
wave functions (20) and (23) for comparison.
An oscillatory EDM can be detected through energy level

shifts or one of the methods suggested in Refs. [45,47].
We also describe a general scheme, which is based on the
Stark-interference technique, for the detection of an oscil-
latory EDM and oscillatory PNC effects in Sec. IV.
Finally, we note that if one solves Eq. (17) for cAðtÞ with

the initial conditions cBð−∞Þ ¼ 1, cAð−∞Þ ¼ 0 under the
assumption that cBðtÞ ≈ 1, then one finds that the magni-
tude of the coefficient of admixture for the parity eigenstate
jAi in the perturbed wave function corresponding to the
unperturbed parity eigenstate jBi tends to infinity as
ma → jεB − εAj, as evident from Eq. (22). The condition
ma ¼ jεB − εAj indicates that a resonance transition is
being induced between the parity eigenstates jAi and
jBi. The singularity in the wave function is an artifact of
our assumption of first-order TDPT and neglect of the
natural widths of the states considered, at least one of which
must be nonzero. This artificial singularity is removed
when we take into account the natural widths of the
states of interest, but the resonant behavior remains, as

we now show. Suppose that jεB − εAj ≫ ΓA=2 ≫ ΓB=2.
In the presence of the off-diagonal interaction (13), the
Hamiltonian for the two-level subspace spanned by the jAi
and jBi parity eigenstates, with account of the more
dominant width of the two only, reads

HðtÞ ¼
�

εA − iΓA=2 iHA cos ðmatÞ−iHA cos ðmatÞ εB

�
: (37)

We write the unperturbed system wave function projection
onto the two-level subspace of interest, again with account
of the more dominant width of the two only, as

jψðtÞi ¼ cAðtÞe−iεAte−ΓAt=2jAi þ cBðtÞe−iεBtjBi; (38)

from which follows the coupled differential equation:

i
dcAðtÞ
dt

¼ hAjV intðtÞjBieiðεA−εBÞteþΓAt=2cBðtÞ; (39)

where V intðtÞ is the off-diagonal perturbation in (37).
Suppose without of loss generality that ma ¼ εA − εB.
Solving Eq. (39) for cAðtÞ with the initial conditions
cBð−∞Þ ¼ 1, cAð−∞Þ ¼ 0 under the assumption that
cBðtÞ ≈ 1, gives the perturbed wave function corresponding
to the unperturbed parity eigenstate jBi as

j ~BðtÞi ¼ e−iεBt
�
jBi þHAe−imat

ΓA
jAi

�
; (40)

where we have ignored contributions from all the other
states, which may be admixed into (40), since their coef-
ficients of admixture are likely to be overwhelmingly small
compared with that for the parity eigenstate jAi. Comparing
(40) with (23) and (24), we see that when the resonant
condition ma ¼ jεB − εAj is satisfied, the coefficient of
admixture is enhanced by a factor of ∼ ma

ΓA
compared with

the values away from the resonance. Enhancement is greater
when the natural widths of the states are smaller. Molecular
species are particularly advantageous in this regard, with
widths of ∼1 Hz quite common (see e.g. Ref. [62]). For the
valuesma ¼ 10−4 eV and ΓA ¼ 4 × 10−15 eV, the enhance-
ment on resonance is 10 orders of magnitude from this
consideration alone. In order to take advantage of such long
lifetimes in practice, one would need to work with trapped
molecular species in a collision-free environment.

III. OVERVIEW OF CONVENTIONAL
STARK-INTERFERENCE EXPERIMENTS

We recapitulate the essence of one particular variant
of the Stark-interference technique through recourse to the
atomic dysprosium experiment of Ref. [63], which seeks
to measure the static weak interaction-induced mixing
of the pair of opposite parity eigenstates, jAi and jBi,
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which are first brought to near degeneracy through the
application of a uniform magnetic field, the strength of
which can be varied in order to fine-tune the energy
separation between the states of interest (Fig. 1). Note that
in this section, jAi and jBi are specific states, whereas in the
other sections of this paper, they are arbitrary. State jAi is the
more unstable state of the two, with a lifetime of τA ¼ 7.9
μs, while state jBi is essentially stable on the time scale of
the whole experiment, with a lifetime in excess of 200 μs.
The parity eigenstate jAi is populated by a broad (in
frequency) two-step pulse excitation from the ground state
jGi via state jBi. This is followed almost immediately by a
π-pulse transfer from jAi to jBi. In order to obtain clean
initial conditions for the subsequent Stark-interference step,
a waiting period of roughly 10τA is executed. During this
time, the jAi component of the wave function for the system
undergoes decay, leaving jBi as the only occupied parity
eigenstate of the two-level system spanned by jAi and jBi.
Thus the initial conditions for the Stark-interference step are
cBð0Þ ¼ 1, cAð0Þ ¼ 0. The Stark-interference step consists
of applying an oscillating electric field of the form EðtÞ ¼
E0 cos ðωtÞ, which induces oscillations in the population of
state jAi, with the frequency of the applied electric
field being much larger than the energy separation,
Δ ¼ εB − εA, between states jAi and jBi. The time-depen-
dent Hamiltonian describing the system in the presence of
the weak interaction and oscillating electric field reads

HðtÞ ¼
�

εA − iΓA=2 iHw þ dE0 cos ðωtÞ−iHw þ dE0 cos ðωtÞ εB − iΓB=2

�
;

(41)

where the purely imaginary, time-reversal invariant weak
interaction matrix elements between the states jAi and jBi

are defined by VðWÞ
AB ¼ iHW ¼ −VðWÞ

BA , d denotes the real
electric dipole matrix element between the states jAi and
jBi, and ΓA and ΓB are the natural widths of the states jAi
and jBi respectively. The corresponding observable, which
is derived from TDPT, reads as follows (with ΓB ¼ 0):

jhAjψðtÞij2 ¼
�
dE0

ω

�
2

sin2ðωtÞ

−
2dE0Hw

ω

�
Δ

Δ2 þ Γ2
A=4

�
sin ðωtÞ: (42)

Measurement of the characteristic second term in Eq. (42),
which changes sign upon the reversal of the applied electric
field direction [the first term in (42) does not change sign]
and has a different time dependence compared with the first
term, then permits a determination of the magnitude of the
weak interaction matrix element jHW j.

IV. DETECTION OF OSCILLATING EDMS AND
OSCILLATING PNC EFFECTS USING
STARK-INTERFERENCE TECHNIQUE

Suppose that ΓA=2 ≫ ΓB=2, and that the parity eigen-
state jBi has been populated, with the opposite-parity
eigenstate jAi unpopulated, say, through an E1 transition
from a remote state, induced by a laser pulse of sufficiently
short duration that the frequency width of the pulse (Γp)
is much greater than the energy separation between the
parity eigenstates jAi and jBi, that is, Γp ≫ jεB − εAj. At
time t ¼ 0, we apply a static electric field E ¼ E0ẑ to the
system. The Hamiltonian for the two-level subspace
spanned by the jAi and jBi parity eigenstates reads, with
the aid of Eq. (13),

HðtÞ ¼
�

εA − iΓA=2 iHA cos ðmatÞ þ dE0−iHA cos ðmatÞ þ dE0 εB

�
;

(43)

where d is the real electric dipole matrix element between
the jAi and jBi parity eigenstates, and we have taken into
account the more dominant width of the two only. For
sufficiently small perturbations, cBðtÞ ≈ 1 and we find by
solving the differential equation (39) subject to the initial
conditions cBð0Þ ¼ 1, cAð0Þ ¼ 0,

cAðtÞ¼þdE0ðe−iΔteΓAt=2−1Þ
ΔþiΓA=2

þHA

2i

�½eiðma−ΔÞteΓAt=2−1�
ma−Δ−iΓA=2

− ½e−iðmaþΔÞteΓAt=2−1�
maþΔþiΓA=2

�
;

(44)

where Δ ¼ εB − εA. If we detect the parity eigenstate jAi,
then the predicted observable for times t such that ΓAt=2 ≫ 1
and to first order in HA is given by

FIG. 1. Schematic of relevant parity eigenstates in atomic
dysprosium experiment. Figure reproduced from Ref. [63] with
permission.
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jhAjψðtÞij2 ¼ ðdE0Þ2
Δ2 þ Γ2

A=4
−HAdE0

�−ΓAma
2

cosðmatÞ þ ðΔ2 þ Γ2
A=4 −maΔÞ sinðmatÞ

ðΔ2 þ Γ2
A=4 −maΔÞ2 þ Γ2

Am
2
a=4

þ
ΓAma
2

cosðmatÞ − ðΔ2 þ Γ2
A=4þmaΔÞ sinðmatÞ

ðΔ2 þ Γ2
A=4þmaΔÞ2 þ Γ2

Am
2
a=4

�
: (45)

The second term in Eq. (45) is the term of interest—it is
distinguished from the first term by the presence of the
time-dependent factors cosðmatÞ and sinðmatÞ, as well as its
sign reversal upon the reversal of the applied electric field
direction (E0 → −E0); the first term, however, is un-
changed upon the reversal of the applied electric field
direction. The measurement of this second term provides a
means of determining the axion parameters ma and a0=fa.
We note also that the presence of a static weak interaction
between the two states of interest, characterized by a matrix
element of magnitude jHwj [see e.g. the Hamiltonian (41)],
cannot give rise to an analogous observable term that both
changes sign upon the reversal of the applied electric field
direction and contains either of the time-dependent factors
cosðmatÞ or sinðmatÞ. Hence the second term in Eq. (45)
bears a unique signature.

V. AXION-INDUCED OSCILLATING EDMS
GENERATED THROUGH HADRONIC

MECHANISMS

For a neutral, nonrelativistic classical or quantum system
that consists of pointlike, charged particles, which possess
permanent EDMs and interact with each other only by means
of the electrostatic interaction, there exists complete shielding
of the constituent EDMs when the system is exposed to an
arbitrary external electric field. This is the essence of Schiff’s
theorem [64]. In real atomic systems, shielding is incomplete
and so a permanent atomic EDM can in principle be borne.
For heavy atoms, such as 199Hg and 225Ra, the primary cause
of incomplete screening is finite nuclear size and the degree
of incomplete screening is quantified by the nuclear Schiff
moment S. It is common to express the nuclear contribution
to the EDM of an atom in terms of S. Calculations have been
performed to determine how the nuclear Schiff moment-
induced EDMs of 199Hg (see e.g. [65–69]) and 225Ra (see e.g.
[67,70,71]) depend on S. In the present work, we use the
result of Ref. [69] for 199Hg

dð199HgÞ ¼ −2.6 × 10−17
�

S
e · fm3

�
e · cm; (46)

and the result of Ref. [67] for 225Ra

dð225RaÞ ¼ −8.5 × 10−17
�

S
e · fm3

�
e · cm: (47)

There are two distinct contributions to the EDMs of 199Hg
and 225Ra from hadronic mechanisms. One contribution is

from the P,T-violating nucleon-nucleon interaction mediated
by pion exchange (see e.g. Refs. [72–74]), which can be
presented as

Wðr1 − r2Þ ¼ − g
8πmN

�
∇1

�
e−mπr12

r12

��
· fðσ1 − σ2Þ

× ½ḡ0τ1 · τ2 þ ḡ2ðτ1 · τ2 − 3τ1zτ2zÞ�
þ ḡ1ðτ1zσ1 − τ2zσ2Þg; (48)

where g ¼ 13.5 is the strong P,T-conserving πNN coupling
constant, mN is the nucleon mass, mπ is the pion mass, σ is
the nucleon spin, τ is the nucleon Pauli isospin matrix in
vectorized form and r12 is the internucleon separation. The
constants ḡ0, ḡ1 and ḡ2 represent the strengths of the
isoscalar, isovector and isotensor couplings respectively.
The interaction (48) gives rise to a nuclear Schiff moment,
which can be presented in the following form:

S ¼ gðb0ḡ0 þ b1ḡ1 þ b2ḡ2Þ e · fm3: (49)

Calculation of the parameters b0, b1 and b2 in expression
(49) carries a large theoretical uncertainty and is strongly
dependent on the particular phenomenological model chosen
(see e.g. Refs. [65,66,74–77] for calculations pertaining to
199Hg and Ref. [78] pertaining to 225Ra). For 199Hg, we use
the results of the most recent calculation of Ref. [77] for
the Skyrme interaction SLy4 [79] solved in the full Hartree-
Fock (projected) approximation: b0 ¼ 0.013, b1 ¼ −0.006
and b2 ¼ 0.022. For 225Ra, we use the results of Ref. [78]
for the Skyrme interaction SLy4: b0 ¼ −3.0, b1 ¼ 16.9
and b2 ¼ −8.8.
So far our discussion has been general. The link of the

above discussion to axion-induced effects is made
when one recalls that the QCD Lagrangian contains the
P, CP-violating term (see e.g. Refs. [72,80–83])

Lθ
QCD ¼ θ

g2

32π2
Fμν
a F�

aμν; (50)

where θ is the dimensionless parameter, which quantifies
the degree of CP violation; F and F� are the gluonic field
tensor and its dual respectively; a is the color index; and
g2=4π is the color coupling constant. Account of weak
interaction effects results in a shift of θ from its bare value
to the observable value θ̄ (see e.g. Ref. [84] and references
therein). The θ̄ term is an isoscalar and so contributes to
the CP-violating isoscalar coupling constant ḡ0 in Eq. (48)
as follows [85,86]:
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ḡ0 ¼ 0.027θ̄: (51)

In axion models, the physically observable parameter θ̄
is recast into the form of an axion field, ϕðr; tÞ=fa. Thus a
background axion field can induce an oscillating EDM in
atomic species through the P, T-violating nucleon-nucleon
interaction, which for the case of 199Hg is given by

dð199HgÞ ¼ −1.2 × 10−19 a0
fa

sin ðmatÞ e · cm

¼ −5 × 10−37 sin ðmatÞ e · cm; (52)

where we have used Eqs. (46), (49) and (51), the known
value for g and calculated value for b0 in 199Hg, as well as
Eq. (2) in the first line of (52), while in the second line of
(52) we have used our estimate a0

fa
¼ 4 × 10−18 from Sec. II.

Likewise, the oscillating EDM induced in 225Ra by the
same mechanism is given by

dð225RaÞ ¼ 9.3 × 10−17 a0
fa

sin ðmatÞ e · cm

¼ 4 × 10−34 sin ðmatÞ e · cm; (53)

where we have used Eqs. (47), (49) and (51), the known
value for g and calculated value for b0 in 225Ra, as well as
Eq. (2) in the first line of (53), while in the second line of
(53) we have again used our estimate a0

fa
¼ 4 × 10−18.

The second contribution to an atomic EDM from
hadronic mechanisms arises from the intrinsic EDMs of
valence nucleons within the nucleus of the atomic species
of interest. 199Hg and 225Ra both possess odd-neutron,
even-proton nuclei. In the single-particle approximation of
the nuclear shell model [87], the contribution to the Schiff
moments of 199Hg and 225Ra from their valence nucleon
EDMs is simply that due to the EDM of a single neutron,
induced by an axion field, dn, multiplied by the appropriate
Schiff screening factor, which is much less than unity. The
dependence of dn on θ̄ is given by [88]

dn ¼ 1.2 × 10−16θ̄ e · cm: (54)

With our estimate a0
fa
¼ 4 × 10−18 and from Eq. (54), our

estimate for the axion-induced EDM of a free neutron is

dn ¼ 5 × 10−34 sin ðmatÞ e · cm: (55)

Note that our estimate (55) differs from those in
Refs. [45,47], due to differences in estimates for a0

fa
.

On the basis of (53) and (55), we can see that in the
single-particle approximation, the contribution of valence
nucleon EDMs to the EDM of 225Ra is negligible compared
with the contribution from the P,T-violating nucleon-
nucleon interaction. Thus Eq. (53) is a good estimate for
the axion-induced EDM of 225Ra through hadronic mech-
anisms. The contribution of valence nucleon EDMs to the

EDM of 199Hg cannot be neglected, however. The EDM of
199Hg arising from the EDMs of its valence nucleons is
due predominantly to the Schiff moment induced by the
EDM of the valence neutron, with the EDMs of core
protons also contributing to a lesser extent due to configu-
ration mixing [67,89]. We use the following result of
Ref. [89] for the Schiff moment of 199Hg induced by the
EDMs of its constituent protons and neutrons:

Sð199HgÞ ¼ ð1.9dn þ 0.2dpÞ fm2: (56)

If we neglect the contribution from the proton EDM in
Eq. (56), then the EDM of the valence neutron, induced by
an axion field, in 199Hg contributes the following amount to
the axion-induced oscillating EDM of 199Hg:

dð199HgÞ ¼ −5.9 × 10−20 a0
fa

sin ðmatÞ e · cm

¼ −2 × 10−37 sin ðmatÞ e · cm; (57)

where we have used Eqs. (46), (56) and (54), as well as
Eq. (2) in the first line of (57), while in the second line of
(57) we have used our estimate a0

fa
¼ 4 × 10−18 from Sec. II.

From (52) and (57), the overall axion-induced EDM of
199Hg through both hadronic mechanisms is hence

dð199HgÞ ¼ −1.8 × 10−19 a0
fa

sin ðmatÞ e · cm

¼ −7 × 10−37 sin ðmatÞ e · cm: (58)

Comparing our estimates in (53) and (58), we see that 225Ra
can offer roughly a 3 order-of-magnitude enhancement in
terms of its axion-induced oscillating EDM generated
through hadronic mechanisms compared with 199Hg.
This is due to both collective effects and small energy
separation between members of the parity doublet of
interest, which occurs in nuclei with octupolar deformation
and results in a significant enhancement of the nuclear
Schiff moment [70,71]. Some other systems with similar
enhancement of the nuclear Schiff moment through such
mechanisms include 223Ra, 223Rn, 223Fr and 229Pa [70,71].
These systems should also exhibit analogous enhancements
in the magnitudes of their oscillating EDMs generated
through the P,T-violating nucleon-nucleon interaction.

VI. AXIONS IN GRAVITATIONAL FIELDS:
SPIN-GRAVITY AND SPIN-AXION

MOMENTUM COUPLINGS

All of the results of the previous sections, which were
derived from the interaction Lagrangian density (8),
assumed that the interaction took place in flat,
Minkowskian spacetime. However, experiments for axion
detection, which involve atomic, molecular and nuclear
systems, invariably take place on the surface of Earth,
where there exists a gravitational field directed radially
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inwards. As a result of Earth’s gravitational field (or any
other such spherically symmetric gravitational field for that
matter), there is an increased axion density near the surface
of Earth (or in general near the surface of the gravitating
body of interest) compared with that at large distances away
from Earth, which can result in an enhancement in axion-
induced effects. In this section, we focus on a relative of the
axion-wind effect of Refs. [46,47] and show that the
interaction of the spin of either an electron or nucleon,
which also interacts with an axion field, with the
gravitational field of a gravitating body can give rise to
axion-induced observable effects, which differ from the
axion-wind effect—see (10) for theHamiltonian responsible
for the conventional axion-wind effect in flat spacetime.
The potential experienced by an axion in Earth’s

gravitational field is Coulomb-like. The wave function of
an axion in a continuum state of Earth’s gravitational field,
propagating toward Earth along the z axis with momentum
pa ¼ paẑ, hence reads [90]

ψðr; tÞ ¼ eipaz−iεat
1F1½in; 1; ikðr − zÞ�; (59)

where n ¼ GmaM
ℏva

in SI units and 1F1 is the confluent
hypergeometric function of the first kind. For an axion
located at the surface of Earth, paðr − zÞ ≫ 1 unless r ≈ z.
The large argument expansion of the confluent hyper-
geometric function in (59) gives

ψðr; tÞ ≈ e−nπ=2e−iεat
jΓð1þ inÞj

�
eipaz−in ln½paðr−zÞ�þiσn

þ n
paðr − zÞ e

iparþin ln½paðr−zÞ�−iσn
�
; (60)

where the phase factor σn is defined by Γð1þ inÞ ¼
jΓð1þ inÞjeiσn . We again assume that the axion field is
classical and, therefore, real. In the nonrelativistic limit,
εa ≈ma from the dispersion relation (3). We also define the
axion field prefactor to be a0 in accordance with Eq. (2).
Hence the axion field near the surface of Earth can be
written as

φðr; tÞ ≈ a0

�
cos ðpaz −mat − n ln½paðr − zÞ� þ σnÞ

þ n
paðr − zÞ cos ðpar −mat

þ n ln½paðr − zÞ� − σnÞ
�
: (61)

The first term in (61) is essentially the analogue of the free
axion field in Eq. (2), but note the presence of the additional
phase factor n ln½paðr − zÞ� in (61). This additional phase
factor remains for a particle in a Coulomb-like potential
even in the r → ∞ limit, but the second term in Eq. (61)
tends to zero in the same limit for a fixed value of z.
The second term in Eq. (61) is responsible for the increase
in axion density near the surface of a gravitating body,
compared with that at large distances away from the
gravitating body. For an axion located at the surface of
Earth, n

par
≈ 10−3, while for an axion located at the surface

of the Sun, n
par

≈ 3. An increased axion density can thus
result in an enhancement of axion-induced phenomena.
We now consider a relative of the axion-wind effect of

Refs. [46,47], which exists only in the presence of a
gravitating field. With the aid of the first line of (10),
the Hamiltonian governing the axion-wind effect in the
presence of a gravitational field reads

Hspat
int ðtÞ ¼

a0paσλ
fa

·

�
ẑ sinðmatþ η0Þ

�
1þ n

paðr − zÞ
�
− r̂

n sinðmatþ η0Þ
paðr − zÞ þ r̂

n sinðmatþ η00Þ
paðr − zÞ

�
1þ n

paðr − zÞ
�

− ẑ
n2 sinðmatþ η00Þ

p2
aðr − zÞ2 þ r̂

n sinðmatþ η00 − π
2
Þ

p2
aðr − zÞ2 − ẑ

n sinðmatþ η00 − π
2
Þ

p2
aðr − zÞ2

�
; (62)

where the phase factors η0 and η00 are in general not equal, and
σλ is the spin operator for an electron (λ ¼ e) or nucleon
(λ ¼ N) in the atomic, molecular or nuclear system of
interest. There are two distinct contributions (direction-wise)
to the generalized axion-wind effect in a gravitational field,
described by Eq. (62). The first is directed along the
background axionic field’s direction of propagation in space
and is proportional to σλ · pa, while the second is directed
along the gravitational field generated by the body of interest
and is proportional to σλ · g. By averaging over the period of
the rotation of Earth about its own axis, the terms propor-
tional to σλ · pa average to zero and only the terms propor-
tional to σλ · g remain. After such averaging, one can also

search for the σλ · g effect. Thus the interaction of the spin of
either an electron or nucleon, which also interacts with an
axion field, with the gravitational field of a gravitating body
can give rise to axion-induced observable effects. The static
interaction of the spin of a SM fermion with either a
gravitational field or some preferred direction in space
has previously been considered; see e.g. Refs. [91–95].

VII. CONCLUSIONS

We have shown that the interaction of an axion field, or
in general a pseudoscalar field, with the axial-vector current
generated by an electron through a derivative-type coupling
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according to the Lagrangian density (8) can give rise to
time-dependent mixing of opposite-parity states in atomic
and molecular systems. Likewise, the analogous interaction
of an axion field with the axial-vector current generated
by a nucleon can give rise to time-dependent mixing of
opposite-parity states in nuclear systems. This mixing can
induce oscillating EDMs, oscillating PNC effects and
oscillating anapole moments in such systems. We suggest
that the first two of these effects can be measured by
applying a static electric field to the system of interest.
We have derived corresponding expressions for such axion-
induced EDMs in group I elements and systems with a
single nearly degenerate pair of opposite-parity states. By
adjusting the energy separation between the opposite-parity
states of interest to match the axion mass energy, axion-
induced experimental observables can be enhanced by
many orders of magnitude. Measurements of these effects
permit either the determination of or the placing of limits on
important physical axion parameters, namely ma and
a0=fa. We have considered the oscillating atomic EDMs
that can be generated by axions through hadronic mech-
anisms, namely the P,T-violating nucleon-nucleon interac-
tion and through the axion-induced EDMs of valence
nucleons, the latter of which was considered in
Refs. [45,47], and derived corresponding expressions for
the axion-induced EDM for 199Hg, which at present
provides the most sensitive probe for static EDM mea-
surements in diamagnetic atoms [49,50], and 225Ra, which
can offer a several order-of-magnitude enhancement in
EDM magnitude over that for 199Hg. Finally, we have
shown that the interaction of the spin of either an electron or
nucleon, which also interacts with an axion field, with the
gravitational field of a gravitating body can give rise to
axion-induced observable effects. These effects, which are
of the form g · σ, differ from the axion-wind effect, which
has the form pa · σ.
Regarding the choice of system, with which to perform

the Stark-interference experiments described in Sec. IV, it is
important to bear in mind how the to-be-determined axion
mass ma might compare with the energy separation
between the opposite-parity levels of interest. Searching
for resonance-enhanced axion-induced effects by using a

static, external magnetic field to vary the energy separation
between the opposite-parity states of interest is one possible
strategy. Note that there is no significant advantage in using
heavy atomic or molecular (that is, containing at least one
heavy atom) systems for such axion detection experiments,
unlike in experiments that search for static effects of
PNC mixing of opposite-parity states induced by the
neutral weak interaction, where the desired effects scale
approximately as Z3 [54,96] and so there is an obvious
advantage in using heavy atomic or molecular systems for
such experiments. Therefore, there are many possible
candidate systems for such axion detection schemes.
Atomic systems, which may be useful in such axion
detection experiments, include Dy, Cs, Yb, Tl, Ra and
Raþ. Diatomic molecular radical species are particularly
advantageous with regard to searches for resonance-
enhanced axion-induced effects, since energy separations
between opposite-parity states in the range 10−6–1 eV, in
which the axion mass is currently believed to lie, are
easily achieved in such species. Compared with atomic
species, the levels of diatomic molecular radical species
also have quite narrow natural widths, which should
enhance the axion-induced resonance signal to a greater
degree in molecular systems. A further advantage of
molecular radical species, such as SrF, ZrN, BaF, YbF,
AlS, GaO, MgBr, LaO, PbF and ThO, is that they are
already considered for high precision experiments to study
violations of the fundamental symmetries of nature (see e.g.
Refs. [97–99]). Finally, we mention that a significant
reduction in relative statistical error may be achieved in
solid-state experiments. Static electron EDM experiments
in ferroelectrics are discussed in Refs. [100,101], for
instance. Several detection schemes have also recently
been proposed to detect axionic dark matter in solid-state
systems [102,103].
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