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Complimenting recent work on the effective field theory of cosmological large scale structures, here we
present detailed approximate analytical results and further pedagogical understanding of the method. We
start from the collisionless Boltzmann equation and integrate out short modes of a dark matter/dark energy
dominated universe (ΛCDM) whose matter is comprised of massive particles as used in cosmological
simulations. This establishes a long distance effective fluid, valid for length scales larger than the nonlinear
scale ∼10 Mpc, and provides the complete description of large scale structure formation. Extracting the
time dependence, we derive recursion relations that encode the perturbative solution. This is exact for the
matter dominated era and quite accurate in ΛCDM also. The effective fluid is characterized by physical
parameters, including sound speed and viscosity. These two fluid parameters play a degenerate role with
each other and lead to a relative correction from standard perturbation theory of the form ∼10−6c2k2=H2.
Starting from the linear theory, we calculate corrections to cosmological observables, such as the baryon-
acoustic-oscillation peak, which we compute semianalytically at one-loop order. Due to the nonzero fluid
parameters, the predictions of the effective field theory agree with observation much more accurately than
standard perturbation theory and we explain why. We also discuss corrections from treating dark matter as
interacting or wavelike and other issues.
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I. INTRODUCTION

An effective field theory (EFT) is a description of a
system that captures all the relevant degrees of freedom and
describes all the relevant physics at a macroscopic scale of
interest. The short distance (“UV”) physics is integrated out
and affects the effective field theory only through various
couplings in a perturbative expansion in the ratio of
microphysical UV scale/s to the macroscopic (“IR”) scale
being probed. This technique has been systematically used
in particle physics and condensed matter physics for many
years (e.g., see [1–3]), but has not been fully used in
astrophysics and cosmology. The large scale properties of
the universe acts as an important application and is in need
of careful analysis.
Of current fundamental importance is to understand the

initial conditions, contents, evolution and formation of the
universe. It appears to be adequately described by the so-
called ΛCDM cosmological model in which the matter
content of the universe is primarily dark matter and the late
time dark energy is adequately described by a cosmological
constant. The early universe was dominated by a cosmic
plasma in which baryons were tightly coupled to photons

leading to so-called baryon-acoustic oscillations. The
evidence for this model comes from a range of sources,
including CMB data, lyman-α forrest, curvature con-
straints, supernovae type IA, weak lensing, and (of par-
ticular importance to the current discussion) structure
formation. In this cosmological model, structure formation
is primarily driven by the gravitational attraction of dark
matter, which led to the clumping of baryons including
stars, galaxies, and clusters of galaxies. This arose from
gravitational instabilities of the initial linear density fluc-
tuations that were approximately adiabatic, scale invariant,
and Gaussian (e.g., see [4–7]).
The power spectrum of large scale structure at late times

is corrected from the initial linear input in interesting and
important ways. For instance, nonlinear effects alter the
shape of the baryon-acoustic oscillations in the power
spectrum. The baryon-acoustic oscillations are a vitally
important probe of dark energy as they provide a standard
ruler to constrain the cosmological expansion history (e.g.,
see [8–11]). In general, one needs a proper understanding
of the departures from linear theory in order to constrain
fundamental physics, such as dark energy, primordial non-
Gaussianity, and other probes of microscopic physics.
There has been a substantial amount of work in the

literature to understand nonlinear structure formation in
the form of cosmological perturbation theory, including
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[12–30]. This includes what is usually referred to as
“standard-perturbation theory” (SPT). In this approach,
the continuity and Euler equations for a pressureless and
nonviscous dark matter fluid (with vanishing stress tensor)
is assumed. These nonlinear equations for the dark matter
are solved perturbatively around the linear solution and
corrections are obtained order by order, usually truncated at
the one-loop order. The theory involves integrating kmodes
in the entire domain 0 < k < ∞, which involves treating all
k modes as perturbative.
The analysis of the current paper stems from the fact that

this “standard” procedure necessarily has a qualitative and
quantitative problem. The density fluctuations are not
perturbative beyond a scale kNL, the “nonlinear scale”—
the scale at which density fluctuations are δ ∼Oð1Þ, where
gravitational collapse may occur. This scale is roughly
λNL ∼ 10 Mpc or so. Hence there are two regimes: k < kNL
which is weakly coupled and perturbative, and k > kNL
which is strongly coupled and nonperturbative. For cos-
mological purposes, we are normally interested in the low k
regime. However, these two regimes are coupled by non-
linearities, so we must be very careful in attempts to
describe the low k regime perturbatively. The rigorous
and complete method to do this is that of effective field
theory. The procedure is to introduce some arbitrary cutoff
Λ on the k modes of the fluid. We take this cutoff to be
Λ≲ kNL, so that all modes of the fluid are perturbative. This
means that the high k modes (k > Λ) must be “integrated
out.” In practice this means that these UV modes generate a
higher-order derivative and nonlinear corrections to the
fluid equations for the low k modes (k < Λ). We show that
this includes terms such as pressure and viscosity, precisely
the terms that are assumed to vanish in SPT. These terms
are a real property of the dark matter fluid and they alter the
power spectrum in an important and measurable way. These
fluid parameters can be determined by matching to the full
UV theory, i.e., N-body simulations. This furnishes an
effective field theory for dark matter. This is a fluid that
only involves weakly coupled modes and is connected to
the full microphysical theory through these higher-order
operators.
Important earlier work on this topic was performed in the

very interesting Ref. [31], where this basic conceptual
foundation was laid out with particular focus on the issue of
backreaction at the scale of the horizon. In our recent work,
which we continue here, we (i) focus on subhorizon scales,
(ii) obtain an explicit measurement of fluid parameters,
(iii) perform an explicit computation of the power spec-
trum, and (iv) provide further insight and clarifications. In
the present paper we compliment and extend our important
recent work in Ref. [32] in which the measurement of fluid
parameters was performed and the basic framework was
put together. Here we develop and describe in detail this
effective fluid description of dark matter (and by extension,
all matter, since baryons trace dark matter on large scales),

which is the complete description of large scale structure
formation. In particular, we recapitulate how to extract
various fluid parameters from N-body simulations and then
solve the effective fluid theory to some desired order in a
perturbative expansion which we formulate recursively. We
show how to approximately extract the time dependence in
a ΛCDM universe, which connects in a simple and intuitive
way with the previous standard perturbation theory, but
highlights the essential differences arising from the fluid
parameters. This leads to convenient and quite accurate
results. Our basic method and key results are summarized
in the following discussion.
If we assume that the matter content of the universe is

dominated by nonrelativistic matter, primarily dark matter
evolving under Newtonian gravity, we can smooth the
corresponding collisionless Boltzmann equation in an
expanding Friedmann-Robertson-Walker (FRW) back-
ground. This generates the usual continuity and Euler
equations. An important point stressed in Refs. [31,32]
is that the latter includes an effective stress tensor ½τij�Λ that
is sourced by the short modes δs. By defining the effective
stress tensor by its correlation functions, it can be expanded
in terms of the long density δl and velocity vil fields as

½τij�Λ ¼ δijpb þ ρb

�
c2sδijδl −

c2bv
Ha

δij∂kvkl

−
3

4

c2sv
Ha

�
∂jvil þ ∂iv

j
l −

2

3
δij∂kvkl

��
þ…: (1)

The individual parameters c2s and c2v ≡ c2sv þ c2bv are
degenerate with each other at the one-loop order since
we only track the growing modes, and degenerate with
other parameters at higher loop order, while the shear
viscosity parameter c2sv affects the vorticity, which is a
somewhat small effect. As analyzed in Ref. [32] one can
directly evaluate the stress tensor from the microphysical
theory, i.e., from N-body simulations to extract such
parameters. For smoothing scale Λ ¼ 1=3 ½h=Mpc� at z ¼
0 it is found c2s þ fc2v ≈ 9 × 10−7c2 (f is the logarithmic
derivative of the growth function). This direct measurement
can also be obtained from matching to the power spectrum
at some renormalization scale, resulting in a consistent
value and a positive check on the validity of the theory.
We establish recursion relations for the density fluctua-

tions and velocity field, allowing us to insert this measured
value of the fluid parameter and obtain correlation func-
tions. These parameters carry Λ dependence which balan-
ces the Λ dependence of the cutoff on the loops. If we take
Λ to large values the fluid parameters approach a finite
quantity, representing the finite error made in the standard
perturbation theory. In particular the fluid parameters
provide the following relative correction to the power
spectrum [suppressing the time dependence and Oð1Þ
factors]:
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δPðkÞ
PLðkÞ

∼ −
10−6c2k2

H2
; (2)

where PLðkÞ is the linear power spectrum. Note that the
pressure and viscosity act together to reduce the power
spectrum by acting oppositely to gravity. This simple, but
entirely real and rigorous correction to the power spectrum
is essential to explain the observed shape of the baryon-
acoustic oscillations in the power spectrum relative to
standard theory.
The outline of the paper is the following: In Sec. II

we describe the basic theoretical setup. Operating in the
Newtonian approximation in an expanding universe, we
smooth the Boltzmann equation to obtain an effective fluid
for cold dark matter. We recapitulate how to match its
parameters to the microphysical results from N-body
simulations. In Sec. III we solve the theory recursively
for a matter dominated universe by extracting the time
dependence, and lift this to ΛCDM in an approximate way
also. This allows us to semianalytically derive the power
spectrum at one-loop order. In Sec. IV we present our
numerical results for the power spectrum and compare to
linear theory and standard perturbation theory. In Sec. V we
discuss the fluid’s parameters, corrections from collisions,
wavelike behavior, higher-order moments, and the velocity
field. Finally, in Sec. VI we summarize the effective field
theory and its role in cosmology.

II. EFFECTIVE FLUID

A. Newtonian approximation

Cosmological perturbation theory around a flat FRW
background may be performed in many gauges. One
example is the Newtonian gauge. Scalar modes are cap-
tured by the following form for the metric:

ds2 ¼ −dt2ðc2 − 2ϕðx; tÞÞ þ aðtÞ2ð1 − 2ψðx; tÞ=c2Þdx2;

(3)

where a is the scale factor and x is a comoving coordinate.
The Newtonian approximation is a valid description for
nonrelativistic matter in an expanding background on
subhorizon scales, and will be sufficient for our purposes
as we will study evolution of matter after equality. In this
limit, only ϕ plays a role and not ψ . Here ϕ is the
Newtonian potential, sourced by fluctuations in matter
density [33]

∇2ϕ ¼ 4πGa2ðρðx; tÞ − ρbðtÞÞ; (4)

where ρ is the matter density, which is a combination of
dark matter and baryonic matter, and ρb ¼ hρi is the
background value, with ρbðtÞ ∝ 1=aðtÞ3. The Hubble
parameter is determined by the Friedmann equation

HðtÞ2 ¼ 8πG
3

ðρbðtÞ þ ρvacÞ (5)

in a flat ΛCDM universe. Here we allow for vacuum energy
in ρvac, which we assume to be the cosmological constant of
general relativity, as is consistent with all current data. The
ΛCDM concordance model indicates that this is a valid
description of the universe for all times well after matter-
radiation equality. Furthermore, after the baryons decouple
from the photons, the baryons tend to trace the dark matter
on large scales, leading to a single nonrelativistic fluid that
we will describe.

B. Phase space evolution

We treat dark matter as classical point particles and
ignore its quantum nature. This is a very good approxi-
mation for most dark matter candidates, but can break
down for extremely light axions which organize into a
state of very high occupation number, with quantum
pressure and associated sound speed cs ∼ ℏk

ama
[34]. For

QCD axions, this is ignorable on large scales (since it
vanishes for small k) and will be ignored here; see
Sec. V D for further discussion. Indeed N-body simula-
tions are ordinarily done with a set of classical point
particles. At each moment in time the output is a set of N-
vectors which we label n, with comoving coordinates xn,
and proper peculiar velocity vn.
Let fnðx;pÞ be the single particle phase space density

defined such that fnðx;pÞd3xd3p is the probability of
particle n occupying an infinitesimal phase space element.
For a point particle, the phase space density is

fnðx;pÞ ¼ δ3Dðx − xnÞδ3Dðp −mavnÞ (6)

(where both x and p are comoving). By summing over n,
we define the total phase space density f, mass density ρ,
momentum density πi, and kinetic-tensor σij as

fðx;pÞ ¼
X
n

δ3Dðx − xnÞδ3Dðp −mavnÞ; (7)

ρðxÞ ¼ ma−3
Z

d3pfðx;pÞ

¼
X
n

ma−3δ3Dðx − xnÞ; (8)

πiðxÞ ¼ a−4
Z

d3ppifðx;pÞ

¼
X
n

ma−3vinδ3Dðx − xnÞ; (9)
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σijðxÞ ¼ m−1a−5
Z

d3ppipjfðx;pÞ

¼
X
n

ma−3vinv
j
nδ3Dðx − xnÞ: (10)

The Newtonian potential is sensitive to an infrared quad-
ratic divergence in an infinite homogeneous universe. To
isolate this divergence we introduce an exponential infrared
regulator with cutoff μ (a “mass” term) and will take the μ →
0 limit whenever it is allowed. The Newtonian potential ϕ is

ϕnðxÞ ¼ −Ga2
Z

d3x0 ρnðx0Þ
jx − x0j e

−μjx−x0j

¼ −
mG

ajx − xnj
e−μjx−xnj; (11)

ϕðxÞ ¼ −Ga2
Z

d3x0 ρðx0Þ − ρb
jx − x0j e−μjx−x0j

¼
X
n

ϕn þ
4πGa2ρb

μ2
: (12)

Note that

μ2
X
n

ϕn → −4πGa2ρb as μ → 0: (13)

The k-space version of the Newtonian potential is

ϕnðkÞ ¼ −
4πmG

aðk2 þ μ2Þ e
−ik·xn ; (14)

ϕðkÞ ¼
X
n

ϕnðkÞ þ
4πGa2ρb

μ2
ð2πÞ3δ3DðkÞ; (15)

where the final term evidently subtracts out the zero mode.

1. Boltzmann equation

Cold dark matter candidates, such as weakly interacting
massive particles (WIMPs) and axions, have very small
scattering cross sections with itself and standard model
particles. Here we make the approximation that we can
ignore the scattering altogether (see Sec. V C for further
discussion). Restricting our attention then to collisionless
classical particles interacting only via gravity, the
Boltzmann equation is

�
pμ ∂

∂xμ þ Γμ
αβp

αpβ ∂
∂pμ

�
fn ¼ 0: (16)

In the Newtonian limit in a flat FRW expanding back-
ground, the collisionless Boltzmann equation becomes

0¼Dfn
Dt

¼∂fn
∂t þ p

ma2
·
∂fn
∂x −m

�X
n̄≠n

∂ϕn̄

∂x
�
·
∂fn
∂p ; (17)

where the self-force has been subtracted out of the sum over
n̄ in the last term. By summing over n we have

0 ¼ Df
Dt

¼ ∂f
∂t þ

p
ma2

·
∂f
∂x −m

X
n̄≠n

∂ϕn̄

∂x ·
∂fn
∂p ; (18)

where the final term now involves a double summation over
n̄ and n.

C. Smoothing

From this we would like to construct various quantities
that describe an effective fluid at large length scales [31].
Most importantly, we need the effective stress tensor τij that
is sourced by the short wavelength modes. In order to
define a fluid we must perform a smoothing of the output
data from the simulation.
To this end let us define the following Gaussian

smoothing function

WΛðxÞ≡
�

Λffiffiffiffiffiffi
2π

p
�

3

exp

�
−
Λ2x2

2

�
∶ (19)

(here Λ is a smoothing scale and should not be confused
with the cosmological constant) which is normalized such
that

R
d3xWðxÞ ¼ 1. Of course our results will not depend

on the choice of smoothing function, but the Gaussian is
chosen for convenience. (In fact we will later include
numerical results for the sinc function corresponding to a
step function in k space). In k space the Gaussian
smoothing function is

WΛðkÞ ¼ exp

�
−

k2

2Λ2

�
: (20)

This will smooth the fluid quantities on (comoving) length
scales ≫ Λ−1, acting as a cutoff on modes k≳ Λ. We
should choose Λ≲ kNL, were kNL is the wave number
where modes have become nonlinear, so that we integrate
out the nonlinear modes. Given the form of WΛ, we can
estimate a rough value for the smoothing scale in position
space as λUV ∼ 2π=Λ.
For certain observables OðxÞ, we will define the

smoothed value by the convolution

OlðxÞ ¼ ½O�ΛðxÞ≡
Z

d3x0WΛðx − x0ÞOðx0Þ: (21)

The smoothed versions of the phase space density fl,
mass density ρl, momentum density πil, stress tensor σ

ij
l , and

derivative of Newtonian potential ∂iϕl are

flðx;pÞ ¼
X
n

WΛðx − xnÞδ3Dðp −mavnÞ; (22)

ρlðxÞ ¼
X
n

ma−3WΛðx − xnÞ; (23)
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πilðxÞ ¼
X
n

ma−3vinWΛðx − xnÞ; (24)

σijl ðxÞ ¼
X
n

ma−3vinv
j
nWΛðx − xnÞ: (25)

The “l” subscript indicates that these only depend on the
long modes. Similarly, the smoothed version of the
Newtonian potential ϕl is

ϕl;nðxÞ ¼ −
mG

ajx − xnj
Erf

�
Λjx − xnjffiffiffi

2
p

�
e−μjx−xnj; (26)

ϕlðxÞ ¼
X
n

ϕl;n þ
4πGa2ρb

μ2
: (27)

Here we used the Gaussian smoothing function to
explicitly evaluate ϕlðxÞ in terms of the error function
ErfðzÞ≡ 2ffiffi

π
p

R
z
0 dte

−t2 .
We now write down the smoothed version of (18) by

multiplying it by WΛ and integrating over space

0¼
�
Df
Dt

�
Λ
¼∂fl

∂t þ
p

ma2
·
∂fl
∂x

−m
X
n≠n̄

Z̄
d3x0WΛðx−x0Þ∂ϕn

∂x0 ðx0Þ ·∂fn̄∂p ðx0;pÞ; (28)

where we used linearity to express the first two terms
directly in terms of fl. However the third term is more
complicated. The equations of motion are obtained by
taking moments of this smoothed Boltzmann equation, i.e.,

0 ¼
Z

d3ppi1 � � �pim

�
Df
Dt

�
Λ
ðx;pÞ: (29)

One often subtracts out traces of the tensor structure of the
higher-order moments for convenience. Here we will only
make use of the zeroth and first moments, so this detail is
not important for us.

D. Effective continuity equation

The zeroth moment gives the continuity equation, which
we find to be

ρ
:
l þ 3Hρl þ

1

a
∂iðρlvilÞ ¼ 0: (30)

Here we introduced the velocity field

vilðxÞ≡ πilðxÞ
ρlðxÞ

¼
P

nv
i
nWΛðx − xnÞP

nWΛðx − xnÞ
: (31)

The continuity equation relates the zeroth moment of the
phase space distribution, ρl, to the first moment of the phase
space distribution, ρlvil. We now turn to the next moment of

the Boltzmann equation to obtain an equation for the
velocity field itself.

E. Effective Euler equation

The first moment gives the Euler equation, which we
find to be

v
: i
l þHvil þ

1

a
vjl∂jvil þ

1

a
∂iϕl ¼ −

1

aρl
∂j½τij�Λ; (32)

where the effective stress tensor that is sourced by the short
modes is given by

½τij�Λ ¼ κijl þ Φij
l : (33)

The Euler equation relates the first moment of the phase
space distribution vil, to the second moment of the phase
space distribution, σijl . Here κ

ij
l is a type of kinetic dispersion

and Φij
l is a type of gravitational dispersion, namely

κijl ¼ σijl − ρlvilv
j
l ; (34)

Φij
l ¼ −

wkk
l δij − 2wij

l

8πGa2
þ ∂kϕl∂kϕlδ

ij − 2∂iϕl∂jϕl

8πGa2
; (35)

where

wij
l ðxÞ ¼

Z
d3x0WΛðx − x0Þ½∂i0ϕðx0Þ∂j0ϕðx0Þ

−
X
n

∂i0ϕnðx0Þ∂j0ϕnðx0Þ�: (36)

Note that we have subtracted out the self-term in wij
l , and

used ∇2ϕ ¼ 4πGa2ðρ − ρbÞ and ∇2ϕl ¼ 4πGa2ðρl − ρbÞ
to expressΦl in terms of ϕ and ϕl. In the limit in which there
are no short modes, it is simple to see from the definition of
κl and Φl that they vanish in this limit. More mathematical
details of this are given in Appendix A.

1. Derivative of stress tensor

In the general relativistic theory the absolute value of the
stress tensor will act as a source for gravity, and could, in
principle, be important at the scale of the horizon. This
includes the trace of the stress tensor that is a type of
pressure, which we discuss in Appendix B. On subhorizon
scales, however, a nonrelativistic analysis is applicable in
which the right-hand side of the Euler equation only
involves the derivative of the stress tensor:

Jil ¼
1

aρb
∂j½τij�Λ: (37)

Here we divided by the background density ρb for
convenience. This quantity will be quite important in our
analysis, and takes on the following explicit form:
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aρbJil ¼ ∂jðσijl − ρlvilv
j
lÞ þ

X
n≠n̄

½ρn∂iϕn̄�Λ − ρl∂iϕl: (38)

The smoothed quadratic form can be expressed as

½ρn∂iϕn̄�Λ¼
m2Gðxin−xin̄Þ
a4jxn−xn̄j3
×ð1þμjxn−xn̄jÞe−μjxn−xn̄jWΛðx−xnÞ; (39)

which requires one to perform a double summation over n and
n̄, which can be computationally expensive. Notice, however,
that while the stress tensor involves an integral over the
gravitational potential in Eq. (36), the derivative of the stress
tensor does not require this (by making use of the Poisson
equation and then integrating over the delta-functions).

F. Fluid parameters

The effective stress tensor ½τij�Λ comes from smoothing
over the short modes and therefore is “sourced” by the short
modes. However, the important quantities that will arise
when we later compute N-point functions, such as the two-
point function, involves correlation functions of the stress
tensor with the long modes,

vilðxÞ and δlðxÞ≡ ρlðxÞ
ρb

− 1 (40)

(note that ϕl is determined as a constrained variable
through the Poisson equation ∇2ϕl ¼ 4πGa2ρbδl). For
instance, the expectation value h½τij�Λi is some background
pressure. More importantly though is the mode-mode
coupling. Coupling between long modes is connected to
the nonlinear terms in the continuity and Euler equations,
while coupling between long and short modes is connected
to the stress tensor, which generates nonzero correlation
functions h½τij�Λδli and h½τij�Λvkl i. The long-long and short-
short mode couplings are represented by vertices in Fig. 1.
Note that the dark matter gas is nonthermal, and this
indicates that the stress tensor cannot be derived by some
analytical thermal argument, such as would be the case for
air under ordinary conditions. However, the reason one can
make progress is to recognize that the stress tensor
organizes itself in terms of length scales with coefficients
that come from matching; this organization is guaranteed
by the principles of effective field theory.
In order to extract this dependence of the stress tensor on

the long modes, we implicitly write the stress tensor as an
expansion in terms of the long fields, whose coefficients are
determined by various correlation functions. This involves
a type of pressure perturbation term ∝ δijδl, a shear
viscosity term ∝ ∂jvil þ ∂ivjl −

2
3
δij∂kvkl , and a bulk vis-

cosity term ∝ δij∂kvkl . Demanding rotational symmetry, we
write a type of effective field theory expansion for the stress
tensor as

½τij�Λ ¼ ρb

�
c2sδijðγ−1 þ δlÞ −

c2bv
Ha

δij∂kvkl

−
3

4

c2sv
Ha

ð∂jvil þ ∂ivjl −
2

3
δij∂kvkl Þ

�
þ Δτij; (41)

where γ would correspond to the ratio of specific heats in an
ordinary fluid (e.g., γ ¼ 5=3 for an ideal monatonic gas),
but here it just parametrizes the background pressure term,
cs is a sound speed, and csv, cbv are viscosity coefficients
with units of speed. Note that cs, csv, cbv are allowed to
depend on time, but not space. Our fluid coefficients are
related to the conventional fluid quantities: background
pressure pb, pressure perturbation δp, shear viscosity η, and
bulk viscosity ζ by

pb ¼
c2sρb
γ

; δp ¼ c2sρbδl;

η ¼ 3ρbc2sv
4H

; ζ ¼ ρbc2bv
H

: (42)

In addition to what is included in (41) there is an entire
tower of higher-order corrections carrying the appropriate
rotational symmetry, guaranteed to exist by the principles
of effective field theory. These will be parametrically
suppressed at low wave number k compared to the non-
linear wave number kNL, and will not enter to the order we
shall work [which will beOðδ4Þ], and so shall be ignored in
the present discussion. Here Δτij represents stochastic
fluctuations due to fluctuations in the short modes, with
hΔτiji ¼ 0. We will return to this issue in Appendix D.
For convenience, let us define the following quantities

from the stress tensor:

Jil ≡ 1

aρb
∂j½τij�Λ; (43)

FIG. 1. Vertex for interaction between long-long mode cou-
pling or long-short mode coupling.
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Aki
l ≡ 1

a2ρb
∂k∂j½τij�Λ ¼ ∂kJil=a; (44)

Al ≡ 1

a2ρb
∂i∂j½τij�Λ ¼ ∂iJil=a; (45)

Bl ≡ 1

a2ρb

�
∂i∂j −

δij

3
∂2

�
½τij�Λ: (46)

Now we introduce the dimensionless velocity divergence

Θl ≡ −
∂kvkl
Ha

; Θki
l ≡ −

∂kvil
Ha

: (47)

Then according to our ansatz (41) (and ignoring stochastic
fluctuations for now) we have

aJil ¼ c2s∂iδl þ
3

4
c2sv∂jΘ

ji
l þ

�
c2sv
4

þ c2bv

�
∂iΘl; (48)

a2Aki
l ¼ c2s∂k∂iδl þ

3

4
c2sv∂k∂jΘ

ji
l þ

�
c2sv
4

þ c2bv

�
∂k∂iΘl;

(49)

a2Al ¼ c2s∂2δl þ ðc2sv þ c2bvÞ∂2Θl; (50)

a2Bl ¼ c2sv∂2Θl: (51)

In order to extract the coefficients, we multiply each of
these by the functions on the right-hand side and then
form a position space correlation function h…i, say
hψ1ðxþ x0Þψ2ðx0Þi. We will need the following set of
correlation functions:

PAδðxÞ≡ hAlðxþ x0Þδlðx0Þi; (52)

PAΘðxÞ≡ hAlðxþ x0ÞΘlðx0Þi; (53)

PAkiΘkiðxÞ≡ hAki
l ðxþ x0ÞΘki

l ðx0Þi; (54)

PBΘðxÞ≡ hBlðxþ x0ÞΘlðx0Þi; (55)

PδδðxÞ≡ hδlðxþ x0Þδlðx0Þi; (56)

PδΘðxÞ≡ hδlðxþ x0ÞΘlðx0Þi; (57)

PΘΘðxÞ≡ hΘlðxþ x0ÞΘlðx0Þi; (58)

PΘjiΘkiðxÞ≡ hΘji
l ðxþ x0ÞΘki

l ðx0Þi: (59)

By rearranging, we find the following expressions for the
fluid parameters:

c2s ¼
PAΘðxÞ∂2PδΘðxÞ − PAδðxÞ∂2PΘΘðxÞ

ð∂2PδΘðxÞÞ2=a2 − ∂2PδδðxÞ∂2PΘΘðxÞ=a2
; (60)

c2v ¼
PAδðxÞ∂2PδΘðxÞ − PAΘðxÞ∂2PδδðxÞ

ð∂2PδΘðxÞÞ2=a2 − ∂2PδδðxÞ∂2PΘΘðxÞ=a2
; (61)

c2sv ¼
4

3

PAkiΘkiðxÞ − PAΘðxÞ
∂2PΘkiΘkiðxÞ=a2 − ∂2PΘΘðxÞ=a2

¼ PBΘðxÞ
∂2PΘΘðxÞ=a2

;

(62)

where

c2v ≡ c2sv þ c2bv (63)

is the sum of the viscosity coefficients. The final result for
each of the fluid coefficients will surely have some spatial
dependence, so one should take the x ≫ λNL limit of the
final result to extract a constant value. Note that in Eq. (62)
we have provided two alternate expressions for c2sv. In the
linear theory, δ ∼ Θ, allowing one to approximate the sum

c2s þ c2v ≈
PAΘðxÞ

∂2PΘΘðxÞ=a2
≈

PAδðxÞ
∂2PδδðxÞ=a2

: (64)

These expressions may also be given in k space by taking
the k ≪ kNL limit. To do so we Fourier transform each of
the correlation functions. We define the Fourier transform
as

OðkÞ≡
Z

d3xe−ik·xOðxÞ: (65)

By translational invariance, each k-space correlation func-
tion takes the form

hψ1ðkÞψ2ðk0Þi ¼ ð2πÞ3δ3Dðkþ k0ÞPψ1ψ2
ðkÞ; (66)

where Pψ1ψ2
ðkÞ is the Fourier transform of Pψ1ψ2

ðxÞ. This
allows us to write the fluid parameters as

c2s ¼
PAΘðkÞPδΘðkÞ − PAδðkÞPΘΘðkÞ

−k2PδΘðkÞ2=a2 þ k2PδδðkÞPΘΘðkÞ=a2
; (67)

c2v ¼
PAδðkÞPδΘðkÞ − PAΘðkÞPδδðkÞ

−k2PδΘðkÞ2=a2 þ k2PδδðkÞPΘΘðkÞ=a2
; (68)

c2sv ¼
4

3

PAkiΘkiðkÞ − PAΘðkÞ
−k2PΘkiΘkiðkÞ=a2 þ k2PΘΘðkÞ=a2

¼ PBΘðkÞ
−k2PΘΘðkÞ=a2

: (69)

We shall soon see why the combination c2s þ c2v is most
important for the leading correction to the power spectrum.
Whether it is possible to measure each of these parameters
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individually, or only certain combinations, is discussed
later in Sec. V B.

G. Relative size of terms

Let us recall the primordial power spectra. In the first part
of this subsection we will focus on a pure Einstein de Sitter
universe, i.e., ignore the turnover in the power spectrum
due to the transfer function TðkÞ (see next section for its
description). We will then include comments on the change
that occurs when the transfer function is included, and all
our numerical results in the latter part of this paper will be
for the real universe including the full transfer function.
The primordial power spectrum in the Newtonian poten-

tial is approximately scale invariant (in this section we will
suppress factors of 2π)

PϕϕðkÞ ∼
10−10c4

k3
: (70)

For subhorizon modes that entered the horizon in a
matter dominated era, the Poisson equation gives k2ϕk ¼
− 3

2
H2a2δk and the corresponding power spectra is

PδδðkÞ ∼
10−10c4k
H4a4

: (71)

This means that the characteristic value of δl in position
space, on a scale set by k, is

δl ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3PδδðkÞ

q
∼ 10−5

�
ck
Ha

�
2

: (72)

This estimate is valid for k≲ keq. For k > keq the rise in δl
is only logarithmic.
Let us now compare the relative size of the terms that

appear in the Euler equation. We use the Hubble friction
term Hvil as the quantity to compare to. The relative size of
the pressure c2s∂iδl=a or viscosity c2v∂i∂kvkl =ðHa2Þ ∼
c2v∂iδl=a is

pressure; viscosity
Hubble; friction

∼
c2s;vkδl=a

Hvl
(73)

∼c2s;v
�

k
Ha

�
2

∼
c2s;v

10−5c2
δl: (74)

The relative size of the nonlinear piece of the velocity
convective derivative vil∂jvil=a is

nonlinear viscosity
Hubble friction

∼
kv2l =a
Hvl

(75)

∼10−5
�
ck
Ha

�
2

∼ δl: (76)

Note that since we expect c2s ∼ c2v ∼ 10−5c2 for a pure
Einstein de Sitter universe, then the pressure, viscosity, and
nonlinear velocity piece appear to be comparable on all k
scales and all are ∼δl. This also means that the terms
δð1ÞJið1Þ and Jið2Þ, which appear in the Taylor expanded
Euler equation, are suppressed by a factor of ∼δ2l and so are
all higher order again. These estimates are consistent with
the fact that we should only probe scales larger than the
nonlinear scale, i.e., k−1 ≳ k−1NL ∼ 10−2.5c=ðHaÞ.
On the other hand, our analysis is not applicable in the

regime approaching the horizon scale where general
relativistic corrections will be important. For instance,
general relativity (GR) will change the partial derivatives
to covariant derivatives leading to Hubble corrections. This
leads us to estimate

GR correction
Newtonian approximation

∼
�
Ha
ck

�
2

∼
10−5

δl
: (77)

In other words, we should only probe scales smaller than
Hubble, i.e., k−1 ≲ k−1H ∼ c=ðHaÞ.
For baryon-acoustic oscillations the relevant scale is

roughly k−1dec ∼
cffiffi
3

p ðHdecadecÞ−1 at the time of decoupling,
where cffiffi

3
p is the sound speed of the photon-baryon plasma

(the associated peak in the fluctuations will be at a
somewhat smaller scale when all modes are properly
included). Red-shifting to today gives an estimate for δl
that is somewhat less than 1 on this scale. So this appears to
fit nicely in the window where our approximations are
valid. However, this estimate is overly simplistic, as it
ignores the turnover in the power spectrum for modes that
enter during the radiation dominated era as described by the
transfer function TðkÞ. Nevertheless, this qualitatively sets
the basic hierarchy.
Turning then to the various length scales in the real

universe, the characteristic length scale for baryon-acoustic
oscillations is λBAO ∼ 120 Mpc (see Fig. 4). The nonlinear
scale is not sharply defined, since the power spectrum turns
over to a logarithm for modes that entered in the radiation
dominated era, but a characteristic value is λNL ∼ 10 Mpc.
This suggests we put the cutoff scale on the effective fluid
at λUV ∼ 2π=Λ ∼ 20 Mpc, or so, in order for it to be just
above the nonlinear scale. The Hubble scale dH ∼ 4 Gpc is
a lot larger and so too is the scale of equality
λeq ∼ 600 Mpc. A summary of this hierarchy is

λNL < λUV < λBAO < λeq < dH: (78)

Although one should be careful here; although the baryon-
acoustic-oscillation scale is ∼120 Mpc, its width is much
smaller ∼20 Mpc. So one may actually need a somewhat
smaller λUV than ∼20 Mpc to fully resolve the baryon-
acoustic-oscillation peak. But this then starts to push up
against the nonlinear scale ∼10 Mpc. However, we will
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eventually send λUV → 0, once we have removed the cutoff
dependence, so this is not necessarily a problem.

III. PERTURBATION THEORY

A. Linear power spectrum

Inflation generates the primordial power spectrum,
which we assume to be Gaussian

hδLðkÞδLðk0Þi ¼ ð2πÞ3δ3Dðkþ k0ÞPinfðkÞ; (79)

where the “L” subscript indicates that the initial fluctua-
tions are in the linear regime. Here Pinf ∝ kns , with ns ¼ 1
for a scale invariant spectrum. After inflation, one draws
δðkÞ from PinfðkÞ, as well as photons, electron fields etc.,
and evolves with a program such as CMBFAST or CAMB
to sometime after recombination. This should be
adequately captured by the linear evolution, but should
be a fully relativistic calculation.
Let us call the initial scale factor after inflation ai and the

late time to which we evolve under linear evolution by alate.
The final density fluctuation will be related to the initial
density fluctuation by the transfer function TðkÞ and the
growth function DðaÞ. One defines the transfer function as
the ratio of the gravitational potentials on a given scale to
that on the large scales, i.e.,

TðkÞ ¼ ϕðk; alateÞ
ϕlsðk; alateÞ

: (80)

In particular for modes that enter during the matter
dominated era, we have Tðk≲ keqÞ ≈ 1. The transfer
function decreases for modes that entered in the radiation
dominated era. In particular

TðkÞ ≈ 12k2eq
k2

ln

�
k

8keq

�
; k ≫ keq (81)

with the wave number at equality [35]

keq ≈ 0.073 Mpc−1Ωm;0h2: (82)

Plus, there are corrections from baryon-acoustic oscilla-
tions etc. on the spectrum which CMBFAST or CAMB
should provide.
At the linear level, we must then simply multiply by the

growth function DðaÞ to reach today’s spectrum. We
express the evolution in the Newtonian potential as follows:

ϕLðk; aÞ ¼
9

10
ϕinfðkÞTðkÞ

DðaÞ
a

; (83)

where the 9=10 prefactor is from the Sachs-Wolfe effect,
ϕinf is the primordial fluctuation, TðkÞ is the transfer
function, and DðaÞ is the growth factor normalized to
the scale factor a for convenience. Later we will generalize

the growth factor fromDðaÞ → Dðk; aÞ to account for the k
dependence in the resummed linear theory, but let us
suppress that for now.
For subhorizon modes, the Poisson equation gives the

following relationship between density and Newtonian
potential:

δL ¼ 2k2ϕLa
3Ωm;0H2

0

; (84)

where Ωm;0 and H0 are today’s values. So the density
fluctuation is given in terms of the primordial fluctuations,
transfer function, and growth factor by

δLðk; aÞ ¼
3

5

k2

Ωm;0H2
0

ϕinfðkÞTðkÞDðaÞ: (85)

The primordial power spectrum generated during inflation
is

PϕðkÞ ¼
8πG
9k3

H2
inf

ϵ
: (86)

For a power law, we write the power spectrum as

PϕðkÞ ¼
50π2

9k3

�
k
H0

�
ns−1

δ2H

�
Ωm;0

Dða ¼ 1Þ
�

2

; (87)

where we followed [35] in the definition of the amplitude,
denoted δH. Combining the above, we have the linear
power spectrum in the density as

PLðk; aÞ ¼ 2π2δ2H
kns

Hnsþ3
0

T2ðkÞ
�

DðaÞ
Dða ¼ 1Þ

�
2

: (88)

From running CAMB, a plot of this linear power spectrum
is given in Fig. 2. The dimensionless variance is defined as

Δ2
δðk; aÞ≡ k3PLðk; aÞ

2π2
: (89)

Note that on Hubbles scales today; Δ2
δðH0; a ¼ 1Þ ¼ δ2H,

which explains the unconventional normalization chosen in
PϕðkÞ. The measured value of the amplitude of density
fluctuations on the scale of the horizon is δH ≈ 1.9 ×
10−5 [36].
The standard deviation Δδðk; aÞ is a measure of the

fluctuations in δ on a scale k, which we plot in Fig. 3. Since
these fluctuations become larger than 1 at high k, the theory
is nonlinear in this regime, which sets a nonlinear scale of
kNL ∼ 0.5 ½h=Mpc�, or so. This defines the perturbative
regime in which the effective fluid description is applicable
for k < kNL and the nonperturbative regime in which the
effective fluid description breaks down for k > kNL. The
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scale kNL acts a type of “coupling” in the effective field
theory and organizes the expansion into powers of k=kNL.
By reverting back to position space we can define the

correlation function ξ. Using statistical homogeneity and
isotropy, it is related to the variance by

ξðr; aÞ≡ hδðx; aÞδðxþ r; aÞi ¼
Z

d ln k
sinðkrÞ
kr

Δ2
δðk; aÞ

(90)

and is in Fig. 4. The correlation function evidently includes
the baryon-acoustic-oscillation peak. Its precise shape is
subject to nonlinearities that we would like to compute
accurately; although this is analyzed most cleanly in k
space, which will be our focus.

B. Evolution equations

In order to study nonlinear corrections, we begin by
recalling here our equation of motion for the velocity field
for the stress tensor ansatz we made earlier

v
: i
l þHvil þ vjl∂jvil þ

1

a
∂iϕl ¼ −

1

a
c2s∂iδl þ

3c2sv
4Ha2

∂2vil

þ 4c2bv þ c2sv
4Ha2

∂i∂jv
j
l − ΔJi;

(91)

where ΔJi ≡ ρ−1b ∂jΔτij=a, which is complimented by the
Poisson and continuity equations. Our ansatz for ½τij�Λ
suggests that the right-hand side of (91) should be
multiplied by an overall prefactor 1=ð1þ δlÞ. But since
we have only included linear terms in our ansatz for ½τij�Λ it

would not be self-consistent to include this prefactor.
Furthermore, the leading order from such terms would
enter parametrically at third order in an expansion in
powers of the linear density field δð1Þ as c2s∇2δð1Þδð1Þ.
This would correct the two-point correlation function as
hc2s∇2δð1Þδð1Þδð1Þi, which obviously vanishes when the
primordial spectrum is Gaussian (or just even in δð1Þ).
Hence we can drop such corrections.

1. Curl of velocity

Before examining the density fluctuations in detail, let us
briefly mention the vorticity. The curl, or vorticity, of the
velocity field

wl ≡∇ × vl; or in k spacewl ≡ ik × vl; (92)

is determined by taking the curl of the Euler equation. We
use the vector identity

∇ × ðvl ·∇ÞvlÞ ¼ −∇ × ðvl × ð∇ × vlÞÞ (93)

to obtain the nonlinear vorticity equation

�
d
dt

þH −
3c2sv∇2

4Ha2

�
wl ¼ ∇ ×

�
1

a
vl × wl − ΔJ

�
: (94)

Let us first discuss this at the linear level wð1Þ where we
ignore the right-hand side. Even in the absence of viscosity,
the vorticity wð1Þ is being driven to zero in an expanding
universe as wl ∝ 1=a, which is a well-known result. In the
presence of viscosity, this happens all the more rapidly
(assuming c2sv > 0). The curl of velocity in a matter
dominated universe is plotted in Fig. 5. This means that
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FIG. 2 (color online). Linear power spectrum of density
fluctuations PLðkÞ computed from CAMB, with ns ¼ 0.96,
z ¼ 0, Ωm ¼ 0.226, Ωk ¼ 0. The plot for k < keq shows the
approximate scale invariance of the spectrum.
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FIG. 3 (color online). Linear standard deviation of density
fluctuations ΔδðkÞ computed from CAMB, with ns ¼ 0.96,
z ¼ 0, Ωm ¼ 0.226, Ωk ¼ 0. The plot indicates that the evolution
is perturbative for small k and nonperturbative for high k.
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at the linear level, studied at late times, we cannot see the
effect of the shear viscosity as the transient vorticity will
have decayed away. The nonlinear term on the right-hand
side also vanishes when wl ¼ 0 and therefore vorticity is
not generated, unless it is present initially (although the curl
of the stochastic fluctuations ∇ × ΔJ could alter this).
However, other nonlinear terms that we have neglected,

such as the overall prefactor 1=ð1þ δlÞ, will generate
vorticity. These are required for the shear viscosity to have
an explicit effect, if we cannot track the initial transient
viscosity. On the other hand, the combination of viscosities
c2v ¼ c2sv þ c2bv will appear in the divergence of the Euler
equation [see Eq. (98)] and can play an important role at
late times. For the present discussion, let us assume the
vorticity is negligible. This is consistent with simulations
and observations which find the vorticity to be small, albeit
nonzero.

2. Divergence of velocity

The divergence of the velocity

θl ≡∇ · vl; or in k space θl ≡ ik · vl; (95)

is coupled to the density fluctuation δl. Let us write down
the coupled equations using conformal time and the
associated Hubble parameter

τ ¼
Z

dt
aðtÞ ; H ¼ 1

a
da
dτ

: (96)

In the absence of vorticity, and ignoring stochastic fluctua-
tions for now (see Appendix D for its inclusion), the
evolution equations for the pair δl, θl are found to be

dδl
dτ

þ θl ¼ −
Z

d3k0

ð2πÞ3 αðk;k
0Þδlðk − k0Þθlðk0Þ; (97)

dθl
dτ

þHθlþ
3

2
H2Ωmδl¼−

Z
d3k0

ð2πÞ3βðk;k
0Þθlðk−k0Þθlðk0Þ

þc2sk2δl−
c2vk2

H
θl; (98)

which comes from taking a divergence of the Euler
equation. Here

αðk;k0Þ≡ k · k0

ðk0Þ2 ; (99)

βðk;k0Þ≡ k2k0 · ðk − k0Þ
2jk0j2jk − k0j2 (100)

appear as the kernels of the above convolution integrals.
The convolution integrals on the right-hand side of
Eqs. (97)–(98) arise from long-long mode coupling, while
the cs and cv terms arise from long-short mode coupling.

C. Recursion relations

Since we will be evolving the universe fully linearly
during the radiation dominated era, until after decoupling,
the subsequent evolution will be during a matter dominated
era. Although the late time behavior with a cosmological
constant will alter this quantitatively, let us ignore this for
now and study the matter dominated era for analytical
simplicity; the generalization to the ΛCDM case will be
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FIG. 4 (color online). Linear density correlation function ξðrÞ
computed from CAMB in a ΛCDM universe, with ns ¼ 0.96,
z ¼ 0, Ωm ¼ 0.226, Ωk ¼ 0. This clearly shows the baryon-
acoustic-oscillation peak at r ∼ 120 ½Mpc=h�.
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FIG. 5 (color online). Curl of velocity w (normalized to some
initial value) in a k mode as a function of time in a matter
dominated era in the linear approximation. Lower (blue) is for
c2sv > 0 with resummation and upper (red) is for c2sv ¼ 0. This
shows the decay in vorticity over time at this order of analysis.
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performed in Sec. III F. In the matter dominated case we
have

Ωm ¼ 1; H ¼ 2

τ
; a ¼

�
τ

τ0

�
2

: (101)

Given this, we would like to extract the time dependence in
the problem, by performing a self-consistent expansion in
the scale factor, as Hubble is the only time scale in the
problem.
Recently in Ref. [32] we exploited the use of Green’s

functions to capture the time dependence, which is a very
powerful technique. This led to result in terms of integrals
over factors of Green’s functions, etc. Here we would like
to extract the time dependence in a more explicit and
intuitive way to compliment the previous powerful results.
Since the density field and velocity field is small at early
times, we expand our fields in powers of the scale factor as
follows:

δlðk; τÞ ¼
X∞
n¼1

anðτÞδnðkÞ; (102)

θlðk; τÞ ¼ −H
X∞
n¼1

anðτÞθnðkÞ; (103)

where we have suppressed “l” subscripts in the perturbed
expansion on the right-hand side, although they are all long
modes. This cleanly separates out the time dependence and
the k dependence. Ordinarily, the higher-order contribu-
tions to the density fields δn can be counted in powers of the
linearized density fluctuation δ1, namely δn ∼ θn ∼ δn1.
However, the presence of the fluid corrections alters this
simple counting here. Note that the leading-order terms
satisfy δ1 ¼ θ1, with growth factor DðaÞ ¼ a. The linear
density fluctuation δ1ðkÞ is therefore drawn from the time
independent power spectrum

P11ðkÞ≡ PLðk; aÞ
a2

WΛðkÞ2 (104)

¼ 2π2δ2H
kns

Hnsþ3
0

T2ðkÞWΛðkÞ2; (105)

where the factor WΛðkÞ2 comes from smoothing and TðkÞ
is the transfer function that includes the full effects from the
radiation dominated era as computed by a program such as
CMBFAST or CAMB.
If we substitute the expansions for δl and θl into the

continuity and Euler equations, we can equate powers of
the scale factor a, giving a pair of recursion relations for δn
and θn. This will depend on the time dependence of the
fluid parameters cs and cv. In a matter dominated era, we
will show in Sec. III E, that the approximate time

dependence of the fluid parameters is that they increase
with the scale factor a. To capture this we introduce

c2sða;ΛÞ ¼ ac2s;0ðΛÞ; c2vða;ΛÞ ¼ ac2v;0ðΛÞ; (106)

and we define the following time independent dimension-
less parameters:

Cs;0ðkÞ≡ c2s;0k
2

H2
0

; Cv;0ðkÞ≡ c2v;0k
2

H2
0

; (107)

where the Λ dependence is implied. For n > 1 we find the
following set of relationships between the fields at different
orders:

AnðkÞ ¼ nδnðkÞ − θnðkÞ; (108)

BnðkÞ ¼ 3δnðkÞ − ð2nþ 1ÞθnðkÞ − 2Cs;0ðkÞδn−2ðkÞ
− 2Cv;0ðkÞθn−2ðkÞ;

(109)

where the terms on the left-hand side are the following
nonlinear integrals

AnðkÞ ¼
Z

d3k1
ð2πÞ3

Z
d3k2δ3Dðk1 þ k2 − kÞ

× αðk;k1Þ
Xn−1
m¼1

θmðk1Þδn−mðk2Þ; (110)

BnðkÞ ¼ −
Z

d3k1
ð2πÞ3

Z
d3k2δ3Dðk1 þ k2 − kÞ

× 2βðk;k1Þ
Xn−1
m¼1

θmðk1Þθn−mðk2Þ: (111)

These relationships allow us to express the m ¼ nth value
of the fields in terms of the m < nth value of the fields.
Namely, we have the following recursion relations for
n > 1:

δnðkÞ ¼
1

ð2nþ 3Þðn − 1Þ ½ð2nþ 1ÞAnðkÞ − BnðkÞ

− 2Cs;0ðkÞδn−2ðkÞ − 2Cv;0ðkÞθn−2ðkÞ�; (112)

θnðkÞ ¼
1

ð2nþ 3Þðn − 1Þ ½3AnðkÞ − nBnðkÞ

− 2nCs;0ðkÞδn−2ðkÞ − 2nCv;0ðkÞθn−2ðkÞ� (113)

with starting values θ1ðkÞ ¼ δ1ðkÞ. This allows us to, in
principle, solve for all the higher-order fields in terms
of δ1ðkÞ.
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The solution for δn and θn can be expressed in terms of
kernels Fn;j and Gn;j, rather than left in terms of the
stochastic variable δ1. Let us write our fields as

δnðkÞ ¼
Xn
j¼1

Z
d3q1
ð2πÞ3 …

Z
d3qjδ3Dðq1 þ � � � þ qj − kÞ

× Fn;jðq1;…;qjÞδ1ðq1Þ…δ1ðqjÞ; (114)

θnðkÞ ¼
Xn
j¼1

Z
d3q1
ð2πÞ3 …

Z
d3qjδ3Dðq1 þ � � � þ qj − kÞ

×Gn;jðq1;…;qjÞδ1ðq1Þ…δ1ðqjÞ:
(115)

Then by substituting into (112)–(113) we establish recur-
sion relations for Fn;j and Gn;j with starting values
F1;1 ¼ G1;1 ¼ 1. At the one-loop order, we will find that
only Fn;n, Gn;n and Fn;1, Gn;1 will enter, if the primordial
fluctuations are Gaussian. So we report on their values here.
First, Fn;n and Gn;n are independent of the fluid parameters
and are given recursively by

Fn;nðq1;…;qnÞ¼
Xn−1
m¼1

Gm;mðq1;…;qmÞ
ð2nþ3Þðn−1Þ

×½ð2nþ1Þαðk;k1ÞFn−m;n−mðqmþ1;…;qnÞ
þ2βðk1;k2ÞGn−m;n−mðqmþ1;…;qnÞ�;

(116)

Gn;nðq1;…;qnÞ ¼
Xn−1
m¼1

Gm;mðq1;…;qmÞ
ð2nþ 3Þðn − 1Þ

× ½3αðk;k1ÞFn−m;n−mðqmþ1;…;qnÞ
þ 2nβðk1;k2ÞGn−m;n−mðqmþ1;…;qnÞ�:

(117)

On the other hand, Fn;1ðkÞ and Gn;1ðkÞ are determined
entirely by the fluid parameters. We find them to be the
following products (n > 1)

Fn;1ðkÞ¼
Yn

m¼3;5;…

−2ðCsðkÞþðm−2ÞCvðkÞÞ
ð2mþ3Þðm−1Þ ; for n odd;

(118)

Gn;1ðkÞ¼n
Yn

m¼3;5;…

−2ðCsðkÞþðm−2ÞCv;0ðkÞÞ
ð2mþ3Þðm−1Þ ; for n odd;

(119)

and we find Fn;1 ¼ Gn;1 ¼ 0 for n even. Note that
Gn;1 ¼ nFn;1.

D. Power spectrum

Wewill go to one-loop order in the power spectrum. This
will require the second- and third-order density corrections.
At second order, we have the following (symmetrized)
kernels:

FðsÞ
2;2ðk1;k2Þ ¼

5

7
þ 2

7

ðk1 · k2Þ2
k21k

2
2

þ k1 · k2

2

�
1

k21
þ 1

k22

�
;

(120)

GðsÞ
2;2ðk1;k2Þ ¼

3

7
þ 4

7

ðk1 · k2Þ2
k21k

2
2

þ k1 · k2

2

�
1

k21
þ 1

k22

�
;

(121)

F2;1ðkÞ ¼ 0 (122)

G2;1ðkÞ ¼ 0: (123)

At third order we need F3;3, G3;3, F3;1, and G3;1 which we
find to be the following (unsymmetrized) kernels:

F3;3ðq1;q2;q3Þ¼
1

18
½7αðk;q1ÞF2;2ðq2;q3Þ

þ2βðq1;q2þq3ÞG2;2ðq2;q3Þ
þð7αðk;q1þq2Þ
þ2βðq1þq2;q3ÞG2;2ðq1;q2Þ�; (124)

G3;3ðq1;q2;q3Þ ¼
1

18
½3αðk;q1ÞF2;2ðq2;q3Þ

þ 6βðq1;q2 þ q3ÞG2;2ðq2;q3Þ
þ ð3αðk;q1 þ q2Þ
þ 6βðq1 þ q2;q3ÞG2;2ðq1;q2Þ�;

(125)

F3;1ðkÞ ¼ −
1

9
ðCs;0ðkÞ þ Cv;0ðkÞÞ (126)

G3;1ðkÞ ¼ −
1

3
ðCs;0ðkÞ þ Cv;0ðkÞÞ: (127)

The two-point function for δl defines the smoothed
power as follows:

hδlðk; τÞδlðk0; τÞi ¼ ð2πÞ3δ3Dðkþ k0ÞPðk; τÞ: (128)

We now substitute in the expansion (102) for δl in powers
of the scale factor to give the two-point function the form
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hδlðk; τÞδlðk0; τÞi ¼ a2ðτÞhδ1ðkÞδ1ðkÞi
þ 2a3ðτÞhδ1ðkÞδ2ðk0Þi
þ a4ðτÞ½2hδ1ðkÞδ3ðk0Þi
þ hδ2ðkÞδ2ðk0Þi� þ � � � : (129)

In order to organize this into an expansion in power spectra,
let us define the power spectrum that contributes at nth
order as

hδmðkÞδn−mðk0Þi ¼ ð2πÞ3δDðkþ k0ÞPmn−mðk; τÞ: (130)

By inserting this into (129) we obtain the following
expansion for the power spectrum:

Pðk; τÞ ¼ a2ðτÞP11ðkÞ þ 2a3ðτÞP12ðkÞ
þ a4ðτÞ½2P13ðkÞ þ P22ðkÞ� þ…: (131)

We assume that the primordial power spectrum is
Gaussian, allowing us to simplify this expansion. This
implies that

P12 ¼ 0; (132)

due to δ2 being symmetric under δ1 → −δ1. At the next
order, we find various contributions including the four-
point function of δ1, which can be simplified using Wick’s
theorem. The final result for P13 and P22 will in general
have two contributions: the contributions from IR modes
and the contribution from UVmodes, which we write in the
following obvious notation:

P13ðkÞ ¼ P13;IRðk;ΛÞ þ P13;UVðk;ΛÞ; (133)

P22ðkÞ ¼ P22;IRðk;ΛÞ þ P22;UVðk;ΛÞ; (134)

where we have reinstated the Λ dependence on the right-
hand side as it separates the IR and the UV modes. By the
IR contribution we mean the usual one-loop contribution,
but cut off at wave number Λ; this is given by the following
loop integrals:

P13;IRðk;ΛÞ ¼ 3P11ðkÞ
Z

Λ d3q
ð2πÞ3 F

ðsÞ
3;3ðq;−q;kÞP11ðqÞ;

(135)

P22;IRðk;ΛÞ ¼ 2

Z
Λ d3q
ð2πÞ3 ½F

ðsÞ
2;2ðq;k − qÞ�2

× P11ðqÞP11ðjk − qjÞ: (136)

These contributions have a Feynman diagram representa-
tion that we present in Fig. 6. We have put a Λ superscript

on the integrals as a reminder that they are cut off by the
smoothing function WΛðkÞ that appears in P11. By the UV
contribution we mean the new fluid contribution that we are
for the first time including in this work. This is given by the
following:

P13;UVðk;ΛÞ ¼ F3;1ðk;ΛÞP11ðkÞ

¼ −
ðc2s;0ðΛÞ þ c2v;0ðΛÞÞk2

9H2
0

P11ðkÞ; (137)

P22;UVðk;ΛÞ ¼ ΔP22ðk;ΛÞ: (138)

Here P13 is set by the (Λ dependent) sound speed and
viscosity, and ΔP22 is set by the stochastic fluctuations that
we elaborate on in Appendix D; the latter we find to be
smaller than the former at low k as there is a suppression in
the UV part of the integral by the transfer function. The IR
contributions are associated with the long modes δl running
in the loop, while the UV contributions are associated with
the short modes δs running in the loop.

E. Cutoff dependence of fluid parameters

For the cutoff in the perturbative regime (Λ≲ kNL), the Λ
dependence of the fluid parameters is adequately described
by the linear theory. This allows us to estimate the value of

l,s

3 1

l,s

2 2

FIG. 6. One-loop Feynman diagrams for P13 (top) and P22

(bottom) after having extracted the time dependence. The crossed
circles represent an insertion of the linear power spectrum and the
loops represent convolution integrals cut off at q ∼ Λ.
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the fluid parameters c2s and c2v and their time dependence as
a function of the linear power spectrum. The sound speed is
roughly given by the velocity dispersion, so in linear theory
we estimate the sound speed by an integral over the velocity
dispersion of the short modes. The linear theory is not
applicable at very high k, so we shall include a constant
correction as follows:

c2sða;ΛÞ ¼ α

Z
Λ
d ln qΔ2

vðqÞ þ c2sða;∞Þ; (139)

where Δ2
v is the velocity dispersion, α is an Oð1Þ constant

of proportionality (which we will fix later), andR
Λ d ln q≡ R

d ln qð1 −WΛðkÞÞ2 since the sound speed
arises from integrating out the short modes. In the Λ → ∞
limit, which we shall eventually take once we cancel the Λ
dependence, we find that c2sðΛÞ is nonzero (due to the UV
dependence), which we account for with the c2sð∞Þ
constant correction.
Now we would like to relate the velocity to the power

spectrum in terms of ϕ or δ. In the linear theory in a matter
dominated universe, we have the growing mode solution

vL ¼ iHk
k2

δL; (140)

which is the first-order description of modes in the
perturbative regime. This includes the short modes vs
and δs in the regime Λ < k < kNL, which is a nonempty
set if we choose small Λ.
This gives the following linear relationship between the

variance in the velocity and the density fluctuations:

Δ2
vðkÞ ¼

H2

k2
Δ2

δðkÞ; (141)

whereΔ2
δðkÞ is related to the density power spectrum PLðkÞ

as given in Eq. (89). For a scale invariant primordial power
spectrum we have

Δ2
δðkÞ ∼

8<
:

10−10 k4c4

H4 ; k ≪ keq;

10−8
k4eqc4

H4 ln

�
k

8keq

�
2

; k ≫ keq
(142)

(see Fig. 3), where we have taken into account the
transfer function which separates the modes that enter
before or after matter domination. Inserting this into
Eq. (139) leads to the following rough estimate for the
sound speed:

c2sða;ΛÞ ∼
�
10−10

k2eqc4

H2 þ c2sð∞Þ; Λ ≪ keq;

10−8
k4eqc4

H2Λ2 þ c2sð∞Þ; Λ ≫ keq;
(143)

where we have ignored logarithmic corrections, etc., so
these estimates are only rough. In order to probe baryon-
acoustic oscillations, we shall need the effective description
in the regime k≳ keq and so we need to take Λ ≫ keq
which is the latter result. The full result from carrying out
the integral over the wave number is given in Fig. 7, where
we form a linear combination of pressure and viscosity. In
the next subsection we will fix the coefficient α and the
large Λ asymptotic value [c2sð∞Þ] that were used to
produce this plot.
Notice that c2s is time dependent, due to the 1=H2 factor,

and that it explicitly depends on the cutoff scale, due to the
1=Λ2 factor. A similar scaling goes through for the
viscosity c2v. This leads to the 1=H2 ∝ a scaling that we
stated earlier in Eq. (106).

1. Cutoff independence of physical results

The cutoff Λ explicitly alters the density field δl, velocity
field θl, etc., and hence it affects the size of the loops. It also
affects the size of the (bare) fluid parameters cs, cv etc., as
summarized in Fig. 7. However, all the cutoff dependence
must drop out of any physical results. In order to ensure this
occurs, here we examine the form of the loop integrals
(135), (136).
By using isotropy, the full angular integral in P13;IR can

be performed, and the azimuthal integral can be performed
in P22;IR; this leads to

P13;IRðk;ΛÞ ¼
1

504

k3

4π2
P11ðkÞ

Z
Λ=k

0

drP11ðkrÞ
�
12

r2
− 158þ 100r2 − 42r4 þ 3

r3
ðr2 − 1Þ3ð7r2 þ 2Þ ln

���� 1þ r
1 − r

����
�
; (144)

P22;IRðk;ΛÞ ¼
1

98

k3

4π2

Z
Λ=k

0

dr
Z

1

−1
dxP11ðkrÞP11ðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 − 2rx

p
Þ ð3rþ 7x − 10rx2Þ2

ð1þ r2 − 2rxÞ2 : (145)

In order to extract the Λ dependence of P13ðk;ΛÞ we take the large r limit inside the integrand (which corresponds to the
regime k ≪ Λ). In this limit the integrand approaches the value −488=5, leading to

EFFECTIVE FIELD THEORY OF DARK MATTER AND … PHYSICAL REVIEW D 89, 043521 (2014)

043521-15



P13;IRðk;ΛÞ ¼ P13;IRðk;Λ1Þ

−
488

5

1

504

k2

4π2
P11ðkÞ

Z
Λ

Λ1

dqP11ðqÞ;

(146)

where Λ1 is an arbitrary scale in the regime k ≪ Λ1 < Λ.
On the other hand, the UV contribution is given in
Eq. (137) as

P13;UVðk;ΛÞ ¼ −
ðc2s;0ðΛÞ þ c2v;0ðΛÞÞk2

9H2
0

P11ðkÞ: (147)

Notice that the Λ dependent parts of the IR and UV pieces
have precisely the same time and k dependence
∼a4k2P11ðkÞ. Hence in order for the result to be explicitly
cutoff independent, we must have

c2s;0ðΛÞ þ c2v;0ðΛÞ ¼
�
488

5

1

504

9H2
0

4π2

Z
Λ
dqP11ðqÞ

�

þ c2s;0ð∞Þ þ c2v;0ð∞Þ: (148)

This fixes the coefficient α that we mentioned earlier at
α ¼ 488

5
1

504
9
2
(when combined with the viscosity term). The

constant contributions are determined by explicit matching
to numerical simulations.
To make this more precise, let us separate the bare

fluid parameters into a renormalized part c2ren;0ðrtenÞ
and a counterterm c2ctr;0ðkren;ΛÞ at some renormalization
scale kren,

c2ren;0ðkrenÞ þ c2ctr;0ðkren;ΛÞ≡ c2s;0ðΛÞ þ c2v;0ðΛÞ: (149)

We define the counterterm to cancel the loop correction at
the renormalization scale kren, i.e., the counterterm is
defined through

P13;IRðkren;ΛÞ −
k2renc2ctr;0ðkren;ΛÞ

9H2
0

P11ðkrenÞ ¼ 0; (150)

while the renormalized piece is defined such that the total
power spectrum agrees with the full nonlinear PðkÞ result at
this renormalization scale, i.e.,

Pðkren; τÞ ¼ a2ðτÞP11ðkrenÞ − 2a4ðτÞ c
2
renðkrenÞk2ren

9H2
0

þ a4ðτÞP22ðkrenÞ: (151)

Alternatively, by measuring the bare couplings directly
from a measurement of the stress tensor ½τij�Λ in simu-
lations, we fix c2s;0ðΛÞ þ fc2v;0ðΛÞ at some chosen Λ. The
results of this numerical work we describe in detail
in Sec. IV.

F. Generalization to ΛCDM

In the previous sections we have focused on a matter
dominated era, in which case the only time scale is set by
Hubble. When we include dark energy this changes the
background dynamics and the evolution. Assuming the
dark energy is a cosmological constant, and operating at
the linear level, the velocity field is related to the density
fluctuation by

vL ¼ iHfk
k2

δL: (152)

Here f is related to the growth function

DðaÞ ¼ 5

2
H2

0HðaÞ
Z

a

0

da0

ðHða0Þa0Þ3 (153)

by

f ≡ d ln D
d ln a

: (154)

This can be evaluated in terms of hypergeometric functions,
which we do not reproduce here. So the corresponding
relationship between the variances is

Δ2
vðkÞ ¼

H2f2

k2
Δ2

δðkÞ: (155)

This leads to the fluid parameters carrying the following
time dependence:

0.1 0.2 0.3 0.4 0.5
0

5. 10 7

1. 10 6

1.5 10 6

h Mpc

c s
2

f
c v

2
c2

FIG. 7 (color online). The (bare) fluid parameter ðc2sðΛÞ þ
fc2vðΛÞÞ=c2 at z ¼ 0. The Λ dependence is chosen to cancel
against the Λ dependence of the loop integral in P13. Note that the
fluid parameter is nonzero as Λ → ∞, which we call
c2sð∞Þ þ fc2vð∞Þ. The growth parameter f is different from 1
in a ΛCDM universe which is described in Sec. III F.
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c2sða;ΛÞ ¼
f2H2D2

f20H
2
0D

2
0

c2s;0ðΛÞ;

c2vða;ΛÞ ¼
fH2D2

f0H2
0D

2
0

c2v;0ðΛÞ
(156)

(where the 0 subscripts indicate the z ¼ 0 value, as before).
Given the numerical solution forD [see the blue curve in

Fig. (8)] and the time dependence of the fluid parameters,
one can, in principle, construct the full time dependent
nonlinear solution perturbatively using Green’s functions;
however, this is quite nontrivial as the Green’s function is
not known. To proceed, we can make use of an approxi-
mation that is known to work reasonably well; we assume
that the time dependence of the nth-order term is simply
Dðk; τÞn [14]. So to generalize the expansion (102) for the
matter dominated universe to the ΛCDM universe, we write

δlðk; τÞ ¼
X∞
n¼1

DðτÞnδnðkÞ; (157)

θlðk; τÞ ¼ −Hf
X∞
n¼1

DðτÞnθnðkÞ: (158)

The approximation is finalized by taking each δnðkÞ to be
the value in the D → a theory, i.e., the previously found
solution for the matter dominated universe, which we

denote with an “EdS” subscript. The corresponding
approximation for the one-loop power spectrum is

Pðk; τÞ ¼ DðτÞ2P11ðkÞ þDðτÞ4½2P13ðkÞ þ P22ðkÞ�EdS;
(159)

where P11ðkÞ is the expression from Eq. (105), P13ðkÞ is the
expression from (135), and P22ðkÞ is the expression from
(136). The reason this approximation works well is
ultimately due to the fact that the dimensionless matter
density Ωm is approximately given by

Ωm ≈ f2 (160)

in a ΛCDM universe at all times. A full treatment of the
time dependence was performed recently in [32] in terms of
numerically evaluated Green’s functions. These results can
be compared and are found to be remarkably similar. The
approximate results obtained provide useful analytical
results and intuition, while the full Green’s functions can
be used for improved accuracy.
As before, P13 includes a UV contribution from the fluid

parameters. Generalizing the previous result from (137) to
the ΛCDM case, we have

P13;UVðk;ΛÞ ¼ −
ðc2s;0ðΛÞ þ f0c2v;0ðΛÞÞk2

9f20H
2
0D

2
0

P11ðkÞ; (161)

which is of the form reported earlier in the introduction in
Eq. (2) (where we suppressed the detailed time depend-
ence). TheΛ dependence of the fluid parameters is given by

c2s;0ðΛÞ þ f0c2v;0ðΛÞ ¼
�
488

5

1

504

9H2
0f

2
0D

2
0

4π2

Z
Λ
dqP11ðqÞ

�

þ c2s;0ð∞Þ þ f0c2v;0ð∞Þ:
(162)

Evidently, the important combination is c2s þ fc2v, which is
the value we measured and reported on in Fig. 7.

G. Summing the linear terms

In the previous section we treated the fluid terms
perturbatively. This meant we took the leading term in
the expansion to be the usual growing mode in a matter
dominated era δ1 ¼ fθ1 ∝ DðaÞ, and the fluid parameters
provided corrections in an expansion in powers of the scale
factor. However, since the sound speed and viscosity enter
the linear theory, we can resum their contributions and form
a new type of expansion in powers of the density field. In
this way, all linear terms enter at first order, and only
nonlinear terms enter at second order, etc. This method
treats the sounds speed and viscosity as independent
parameters that can be measured separately. Although this
is not necessarily possible in practice due to degeneracy
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FIG. 8 (color online). Resummed growth function Dðk; aÞ with
k fixed at k as a function of scale factor a, with standard
cosmological parameters for a ΛCDM universe. The upper (red)
curve is for k ¼ 0, i.e., the usual growth function in a ΛCDM
universe, which also coincides with SPT for all k with vanishing
fluid parameters. The lower (blue) curve is for the EFT with
k ¼ 0.2 ½h=Mpc� and representative fluid parameters c2s ¼ 7.2 ×
10−9c2 and c2v ¼ 2.7 × 10−9c2 (although they exhibit
degeneracy, as we discuss in Sec. V B).
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with higher-order terms in the stress tensor expansion, as
we explain in Sec. V B, this gives a sense of the conse-
quences of summing a large number of terms.
Let us write the expansion schematically as

δlðk; τÞ ¼
X∞
n¼1

δðnÞðk; τÞ; (163)

θlðk; τÞ ¼
X∞
n¼1

θðnÞðk; τÞ: (164)

The equations of motion (97) and (98) give us the following
linear-order equations:

dδð1Þ

dτ
þ θð1Þ ¼ 0; (165)

dθð1Þ

dτ
þHθð1Þ þ 3

2
H2Ωmδ

ð1Þ − c2sk2δð1Þ þ
c2vk2

H
θð1Þ ¼ 0:

(166)

By substituting Eq. (165) into Eq. (166) and rearranging,
we obtain a second-order ordinary differential equation
(ODE) for δð1Þ. Let us express δð1Þ in terms of a growth
factor Dðk; τÞ and a stochastic variable δ1ðkÞ, i.e.,

δð1Þðk; τÞ ¼ Dðk; τÞδ1ðkÞ: (167)

The growth factorD satisfies the same ODE as δð1Þ, namely

d2D
dτ2

þH
�
1þ c2vk2

H2

�
dD
dτ

−
3

2
H2

�
Ωm −

2c2sk2

3H2

�
D ¼ 0:

(168)

We impose the asymptotic condition Dðk; τÞ → aðτÞ for
small a. The solution is plotted in Fig. 8 for typical values
of c2s , c2v.
Although there is no simple analytical form for Dðk; τÞ,

we can exhibit its structure. In particular, it has a self-
similar behavior, making it (up to a rescaling) only a
function of a combination of a particular product of k, τ,
rather than k and τ independently (the product is kτ when
the fluid parameters are treated as time independent andffiffiffi
k

p
τ when they are treated as time dependent). For the case

in which we take c2s , c2v to be time independent, let us
rescale time to the following dimensionless variable

T ≡ ffiffiffiffiffiffiffiffiffi
cscv

p
kτ: (169)

We then find that in a matter dominated universe the ODE
(168) simplifies to

d2D
dT2

þ 2

T

�
1þ b

T2

4

�
dD
dT

−
6

T2

�
1 −

1

b
T2

6

�
D ¼ 0; (170)

where b≡ cv=cs. Of course this ODE has infinitely many
solutions. Let us focus on one particular solution, which we
denoteDðTÞ, that satisfies the special asymptotic condition
DðTÞ → T2 for small T. For any value of k the solution
for Dðk; τÞ is obtained from the one parameter function
DðTÞ by

Dðk; τÞ ¼ Dð ffiffiffiffiffiffiffiffiffi
cscv

p
kτÞ

cscvk2τ20
: (171)

This clearly has the correct asymptotic behavior Dðk; τÞ →
a ¼ ðτ=τ0Þ2 for small a, since DðTÞ → T2 for small T.
In the case in which we take the fluid parameters to be

time dependent, as examined in Sec. III E with time
dependence given in Eq. (106), the analysis is slightly
altered. In this case we introduce the dimensionless variable

T ≡ ðcs;0cv;0Þ14
ffiffiffi
k

p
ffiffiffiffi
τ0

p τ; (172)

and the corresponding ODE in a matter dominated universe
is

d2D
dT2

þ 2

T

�
1þ b0

T4

4

�
dD
dT

−
6

T2

�
1 −

1

b0

T4

6

�
D ¼ 0;

(173)

where b0 ≡ cv;0=cs;0. Note the different powers of T in the
parentheses, compared to Eq. (170). Again we define the
function DðTÞ as the solution to this ODE with asymptotic
condition DðTÞ → T2 for small T. The corresponding
solution for the growth factor is

Dðk; τÞ ¼ Dððcs;0cv;0Þ14
ffiffiffi
k

p
τ=

ffiffiffiffi
τ0

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cs;0cv;0

p
kτ0

: (174)

For the power spectrum, we simply use the same form as
before (159), but now dropping the F3;1 terms as they are
built (and resummed) into the linear piece. This approxi-
mation for Pðk; τÞ is overly simplistic, however, since the
growth function D is k dependent. A better approximation
is to embed Dðk; τÞ inside the convolution integrals of
(135) and (136). Indeed we expect it to give somewhat
accurate results, as has been the case in related calculations
[14], and we shall use this approximation in Sec. IV. The
differential equations, whose solutions give the first few
terms in the exact expansion, are provided in Appendix C.

IV. POWER SPECTRUM RESULTS

By matching to N-body simulations, as described in
detail in Ref. [32], one can measure the linear combination
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c2s;0 þ f0c2v;0. For simulation parameters, Ωm ¼ 0.25,
ΩΛ ¼ 0.75, h ¼ 0.7 (H ¼ 70 ½km=s=Mpc�), σ8 ¼ 0.8,
and ns ¼ 1, with measurements described taking place at
z ¼ 0, and choosing a smoothing scale of Λ ¼
1=3 ½h=Mpc� it was found

c2s;0 þ f0c2v;0 ≈ 9 × 10−7c2: (175)

Having obtained this linear combination, this completes
the required quantities in order to compute the one-loop
power spectrum that we derived earlier to the desired
approximation. The single combination c2s þ fc2v can be
used as a single insertion by the formulas for PðkÞ derived
in Sec. III D, or we can assume approximate individual
values for c2s and c2v separately in the resummed formulas
for the growth functionDðk; τÞ and hence PðkÞ as indicated
in Sec. III G, although there is degeneracy in their values as
we explain later in Sec. V B.
Our results for the full power spectrum PðkÞ in both of

these approximations is given in Fig. 9. It is normalized to
the no-wiggle power spectrum PnwðkÞ of [37], which is the
linear power spectrum without baryon-acoustic oscilla-
tions. For convenience, we have taken the large Λ limit,
by using the Λ dependence that we derived earlier in
Eq. (162). This causes the fluid parameters to asymptote to
a slightly lower value, roughly

c2s;0ð∞Þ þ f0c2v;0ð∞Þ ≈ 8 × 10−7c2: (176)

In Fig. 9 we have also included the result for SPT for
comparison and a nonlinear reference value. We see that the
power spectra of the EFT are much better than both the
linear theory and SPT. The resummed case is arguably
better at lower k, though it is somewhat degenerate with
higher-order effects, and since the other higher-order
effects are not included here there is some disagreement
at higher k. The single insertion is very accurate also. The
fact that the fluid parameters asymptote to a finite nonzero
value in the Λ → ∞ limit represents the finite error made in
SPT. When made dimensionless, by multiplicity by
c2k2=H2 (say at z ¼ 0), it leads to an important correction
to the power spectrum as we increase k, as seen in Fig. 9.
Note that the EFT result is quite accurate; roughly at the 1%
level out to k ∼ few × 0.1 h=Mpc.

V. DISCUSSION

In this section we briefly mention some interesting issues
surrounding the effective fluid, including its Reynolds
number, degeneracy of parameters, the inclusion of colli-
sions or wavelike behavior, higher-order moments, and the
velocity field.

A. Reynolds number

For viscous fluids there is a famous dimensionless
number which captures its tendency for laminar or turbu-
lent flow: the “Reynolds number." The Reynolds number is
defined as

Re ≡ ρvL
η

; (177)

where η is shear viscosity, ρ is density, v is a characteristic
velocity, and L is a characteristic length scale. This is

Re ∼
HvL
c2sv

∼
H2a2

c2svk2
δ≲ 10: (178)

Hence the Reynolds number is not very large, and the
system is therefore not turbulent. Furthermore, if we were
to estimate the viscosity by Hubble friction, then we would
have Re ∼ δ and so the Reynolds number would be even
smaller in the linear or weakly nonlinear regime.
For cosmological parameters ρb ∼ 3 × 10−30 ½g=cm3�,

H ¼ 70 ½km=s=Mpc�, and if we take a plausible value
for the shear viscosity of c2sv ∼ 2 × 10−7c2, then the
viscosity coefficient is found to be

η ∼ 20 Pa s; (179)

which is perhaps surprisingly not too far from unity in SI
units. (For instance, it is somewhat similar to the viscosity
of some everyday items, such as chocolate syrup.) A proper
measurement of c2sv would come from a detailed
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FIG. 9 (color online). Power spectrum, normalized to the no-
wiggle spectrum of [37] at z ¼ 0 for ΛCDM universe. Red is the
linear theory (from CAMB), black is the full nonlinear reference
value, magenta is the one-loop SPT, green is the one-loop EFT
with a single insertion of fluid parameters, and blue is the one-
loop EFTwith a resummation of fluid parameters as discussed in
Sec. III G.
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measurement of vorticity; a point that we will return to in
the following subsection.

B. Degeneracy in parameters

Earlier we discussed the individual parameters: the
sound speed c2s , shear viscosity c2sv, and bulk viscosity
c2bv. We showed that by taking the curl of the Euler equation
we obtained an equation for vorticity that involves c2sv.
Hence a careful analysis of vorticity could reveal the value
of c2sv—such a value would enter our discussion of
Reynolds number of the previous subsection, although
not the bulk of this paper. Since the vorticity is rather small,
this would be nontrivial to measure, though possible.
On the other hand, by taking the divergence of the Euler

equation we obtained coupled equations for θl and δl that
involves the sound speed c2s and the combination of viscosity
c2v ¼ c2sv þ c2bv. One could try to measure these two param-
eters independently using Eqs. (60)–(61) from N-body
simulations. However one should be careful as to how to
interpret this result. At the one-loop level, we saw that it was
only a certain linear combination that appeared in the result,
namely c2s þ fc2v. In other words, the two parameters appear
in a degenerate way at one loop. This degeneracy would be
broken at higher-loop order. However, to be self-consistent
one should then also include new couplings (for instance,
representing higher derivative operators in the stress tensor
expansion) which would also enter, leading to a new con-
straint and a new type of degeneracy with the new parameters.
This reason for this degeneracy is the following. In a

universe in which one could track the full evolution of the
initial state, one would observe that c2s and c2v affect the
one-loop theory differently. However, in the real universe,
there is a growing mode and a decaying mode. In practice,
one does not track the decaying mode, only the growing
mode, as studied here in this paper. For this single mode the
parameters enter in a special linear combination.

C. Interactions

In this paper, we have treated dark matter as being
comprised of collisionless particles, interacting only
through gravity. Of course we expect that there are also
some finite nongravitational interactions. These effects can
be treated perturbatively in the effective field theory by
identifying the relevant length scale, which is the mean free
path between scattering.
As an example, for WIMPs the scattering cross section is

roughly σ ∼ g2=m2
W, where g ∼ 0.1 is a dimensionless

coupling and mW ∼ 100 GeV is of order the weak scale.
The mean free path between scatterings is

λMFP ¼
1

nσ
∼

m3
W

ρbg2
: (180)

The background density, in Planck units, is
ρb ∼ 10−120M4

Pl. Hence,

λMFP ∼ 1017dH

�
0.1
g

�
2
�

mW

100 GeV

�
3

; (181)

where dH ¼ 1=H0 is the present Hubble length. As another
example, for QCD axions scattering due the ϕ4 term in the
potential VðϕÞ ¼ Λ4

bcdð1 − cosðϕ=FPQÞÞ, the mean free
path is much larger still.
On the other hand, gravity introduces a nonlinear scale of

the order λNL ∼ 10−4dH (which can be thought of as the
mean free path between gravitational scattering of a point
particle off a large nonlinear clump). Since the collisional
mean free path in these examples satisfies λMFP ≫ λNL it
can be ignored at first approximation. Though in principle it
can be included perturbatively in the effective field theory,
but suppressed by a hierarchy λNL=λMFP, which may be
of interest for some highly nonstandard dark matter
candidates.

D. Wavelike behavior

In this paper we have treated the dark matter as
comprised of classical pointlike particles. This obviously
ignores its quantum mechanical wavelike behavior. For
most dark matter candidates, such as a typical WIMP with a
weak scale mass, the de Broglie wavelength is extremely
small and ignorable. For extremely light (pseudo)scalars,
such as axions, it is conceivable that their de Broglie
wavelength is large and relevant.
For a classical scalar field and also for a Bose-Einstein

condensate [34], one can show that in the linear theory,
there is a correction to the pressure of the form

δp ¼ −
ℏ2

4a2m2
∇2ρ: (182)

This provides a contribution to a type of scale dependent
sound speed δc2s ∼ ℏ2k2=ða2m2Þ. Now recall that the
characteristic correction from the sound speed is
∼c2sk2=ðH2a2Þ. This means that a rough estimate for the
dimensionless correction from the quantum character of the
particles is (at z ¼ 0)

quantum correction ∼
ℏ2k4

m2H2
0

: (183)

The relative size of this contribution obviously depends on
the mass of the particle m. It is important to note that in the
point-particle treatment, the mass m dropped out of all
results. But by including such UV physics, we gain more
sensitivity in the effective field theory to such physical
parameters.
The dark matter particle mass m can in principle be very

small. For instance, in the so-called string axiverse it is
suggested that there may be a range of extremely light
axions [38]; one of which could provide the bulk of the
dark matter (though there are important constraints from
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isocurvature bounds on light axions [39,40], while the
classic axion window is still very promising [41,42]). Here
we would like to mention that the mass of a dark matter
particle presumably cannot be arbitrarily small because its
de Broglie wavelength λdB ∼ ℏ=ðmvÞ would then smear it
out over scales larger than that of a galaxy Lgal, and yet we
know dark matter clumps on galactic scales. By imposing
λdB < Lgal this gives the bound

m >
ℏ

Lgalv
: (184)

Hence we have a bound on the dimensionless correction
from the wavelike character of light scalars as

correctiomquantum <
k4L2

galv
2

H2
0

; (185)

where v is a characteristic dispersion velocity associated
with the dark matter. By estimating v ∼ 10−3c, then we can
estimate H0=v ∼ kNL, leading to the rough bound

quantum correction <
k4L2

gal

k2NL
: (186)

Since Lgal is much smaller than the nonlinear scale (for
instance, Lgal may be as small as dwarf galaxy size) we see
that the quantum correction must always be very small in
the regime in which the effective field theory is valid
(i.e., k < kNL).

E. Higher-order moments

In principle, one can study a higher-order moment of the
Boltzmann equation. In Sec. II we considered the zeroth
moment (continuity) and first moment (Euler), and then
built a derivative expansion for the effective stress tensor
that appears on the right-hand side of the Euler equation.
The stress tensor involves two contributions: kinetic and
gravitational. The kinetic piece κijl includes the second
moment of the velocity distribution (minus the long
modes), and so it evolves under the second moment of
the Boltzmann equation. The trace of the kinetic part of the
stress tensor is proportional to a type of “kinetic temper-
ature” T ∼ κl=ρl, although the system is not in thermal
equilibrium, so this name is only by analogy to classical
systems which are.
However, since the stress tensor also includes the

gravitational piece wij, we do not have an evolution
equation for the full stress tensor. Parametrically these
two contributions are of the same order (for instance they
cancel each other in the virial limit). So this requires the
use of a derivative expansion to capture the effects of
these higher-order moments and interactions, in the effec-
tive field theory sense.

F. Velocity field

Let us also make some comments on the computation of
correlation functions, such as the two-point function,
involving the smoothed velocity field. In Sec. III E 1 we
demonstrated how the cutoff dependence in the expansion
for δl cancels out when we form the two-point correlation
function for density, which involved the fluid parameter’s
canceling the Λ dependence of the P13 loop. However, once
the fluid counterterms are introduced to cancel this
dependence, then they cannot also be used to cancel the
cutoff dependence appearing in the loops of correlation
functions of other fields. In particular, consider the velocity
field. Recall that it is defined by the ratio vil ¼ πil=ρl. If we
Fourier transform this, then examine the regime k < Λ, we
are still left with Λ dependence, even though both ρl and πil
are cut off independently for k < Λ. This is similar to
certain kinds of nonlinear objects that one might define to
describe pions, such as a bi-linear in the quark fields, which
depends explicitly on the cutoff. This means that the
velocity field vil is inherently cut off dependently even
in the k ≪ Λ regime, while δl is not.

VI. SUMMARY AND OUTLOOK

In this paper we have examined and developed the
effective field theory of dark matter and structure formation
on subhorizon scales, emphasizing detailed analytical and
semianalytical results, including a recursion relation for the
perturbative expansion and an approximate extraction of
the time dependence of the growing modes. This works
compliments and extends the important recent work in
Ref. [32]. These works can be viewed as a precise
realization of the conceptual foundation laid out in
Ref. [31], where special focus was placed on the issue
of backreaction at the scale of the horizon, though the
present focus is on subhorizon scales and the explicit
computation of the power spectrum. The effective field
theory is an expansion for wave numbers k less than the
cosmological nonlinear scale kNL. It is a cosmological fluid
description for cold dark matter, and by extension all matter
including baryons which trace the dark matter. The micro-
physical description was in terms of a classical gas of point
particles, which we smoothed at the level of the Boltzmann
equation and used the Newtonian approximation for sub-
horizon modes. We exhibited the various couplings that
appear in the effective field theory, namely pressure and
viscosity, whose linear combination was obtained by
matching to N-body simulations in Ref. [32], finding
c2s þ fc2v ∼ 10−6c2. This represents the finite error made
in standard perturbation theory and has important conse-
quences for the power spectrum. We see that standard
perturbation theory would only be correct if the linear
power spectrum was very UV soft so that the theory
remains perturbative to arbitrarily high k; this would allow
one to send Λ → ∞ and there would be no stress tensor at
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all as it is sourced only be the short modes. However the
presence of the nonlinear scale forces one to introduce the
cutoff Λ and a finite stress tensor, which evidently does not
vanish in the large Λ limit (which can be formally taken
order by order after the Λ dependence is canceled).
We developed the perturbative expansion for the power

spectrum, which we recast into a recursive formula and
extracted the time dependence in a convenient way. The
power spectrum was then computed at the one-loop order.
We found that the corrections from the fluid parameters led
to a power spectrum in good agreement with the full
nonlinear spectrum. Unlike the standard perturbation
theory that deviates substantially from the true nonlinear
power spectrum, especially at low z, suggesting that the
nonlinear wave number is low, the effective field theory
exhibits ∼1% level accuracy for k ∼ few × 0.1 h=Mpc,
suggesting that the true nonlinear wave number may be
higher than ordinarily thought. Furthermore, the general
success of the effective field theory approach suggests that
any deviations from the ΛCDM model should fit into this
framework by altering the fluid parameters.
The effective field theory approach to large scale

structure formation is complimentary to N-body simula-
tions by providing an elegant fluid description. This
provides intuition for various nonlinear effects, as well
as providing computational efficiency, since the numerics
required to measure the fluid parameters can be less
computationally expensive than a full scale simulation.
Of course, since the couplings are UV sensitive, it still
requires the use of some form of N-body simulation to fix
the physical parameters, either by matching to the stress
tensor directly or to observables; a point analyzed in detail
in Ref. [32]. But this matching is only for a small number of
physical parameters at some scale and then the constructed
field theory is predictive at other scales. The formulas for
the power spectrum, exhibited in Eqs. (131)–(137) and
(148) for matter dominated and Eqs. (159)–(162) for
ΛCDM, should be quite powerful and convenient in this
area of cosmological research.
There are several possible extensions of this work. A first

extension is to go beyond the one-loop order to two-loop
order, or higher. It is important to note that the treatment
can in principle capture the full power spectrum to arbitrary
accuracy if carried out to the required order. Here we have
computed the power spectrum at one loop, which is order
δ4, but higher order is possible. This will require the
measurement of several new parameters that will enter the
effective stress tensor at higher order. Another extension is
to fully measure the stochastic fluctuations, which will
involve measuring the correlation function of the stress
tensor with itself. These effects are somewhat reduced at
low k, especially due to the suppression of modes in the
integrand due to the turnover in the transfer function in
Eq. (138), but are of significant interest and should improve
the agreement at higher k. Another extension is to include

the small but finite contributions from vorticity, or to
compute higher-order N-point functions, which can probe
non-Gaussianity, or to consider different cosmologies, and
to include baryons, etc.
In general it is essential to gain insight and precision into

the mapping between the microphysics that determines the
early universe, including the distribution of primordial
fluctuations and the contents of the universe, and the
output universe that we can observe today. This approach,
when complimented with N-body simulations and obser-
vations, may ultimately give new insights into fundamental
questions in cosmology. This is an exciting and promising
way to learn about fundamental physics.
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APPENDIX A: SHORT MODES

Although we use the full stress tensor in (33)–(35) as a
generating functional of the effective theory, in this
appendix we demonstrate that we can separate out the
long modes from the short modes in the Euler equation. To
do so, we define the short modes to be

σijs ≡m−1a−5
Z

d3pðpi−pi
lðxÞÞðpj−pj

lðxÞÞfðx;pÞ (A1)

¼
X
n

m
a3

ðvin − vilðxnÞÞðvjn − vjlðxnÞÞδ3Dðx − xnÞ (A2)

ϕs;n ≡ ϕn − ϕl;n (A3)

∂iϕs ¼
X
n

∂iϕs;n (A4)

wij
s ≡ ∂iϕs∂jϕs −

X
n

∂iϕs;n∂jϕs;n; (A5)

where pi
lðxÞ≡mavilðxÞ. Note that σijs ≠ σij − σijl , but

they are related as follows:

σijl ¼ ½σijs �Λ þ ½ρmvilvjl �Λ
þ ½vilðπj − ρmv

j
lÞ þ vjlðπi − ρmvilÞ�Λ: (A6)

The second term is approximately ρlvilv
j
l (so it approx-

imately cancels with −ρlvilv
j
l in κijl ) and the final term is

small (as it is an overlap between short and long modes).
Following the methods of [31] we obtain

κijl ¼ ½σijs �Λ þ ρl∂kvil∂kv
j
l

Λ2
þO

�
1

Λ4

�
: (A7)
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Similarly, one can prove that Φij
l satisfies

Φij
l ¼ −

½wkk
s �Λδij − 2½wij

s �Λ
8πGa2

þ ∂m∂kϕl∂m∂kϕlδ
ij − 2∂m∂iϕl∂m∂jϕl

8πGa2Λ2
þO

�
1

Λ4

�
:

(A8)

So altogether we obtain the effective stress tensor

½τij�Λ ¼ ½τijs �Λ þ ½τij�∂2 ; (A9)

where

½τijs �Λ ¼ ½σijs �Λ −
½wkk

s �Λδij − 2½wij
s �Λ

8πGa2
; (A10)

½τij�∂2 ¼ ρl∂kvil∂kv
j
l

Λ2

þ ∂m∂kϕl∂m∂kϕlδ
ij − 2∂m∂iϕl∂m∂jϕl

8πGa2Λ2

þO
�

1

Λ4

�
: (A11)

We see that ½τij�Λ is sourced by short wavelength fluctua-
tions plus higher derivative corrections.
Note that by taking the derivative ∂j this leading piece

becomes

∂j½τijs �Λ ¼ ∂j½σijs �Λ þ ½ρs∂iϕs�Λ (A12)

with

½ρs∂iϕs�Λ ¼
X
n≠n̄

ma−3∂iϕs;n̄ðxnÞWΛðx − xnÞ − ½ρl∂iϕs�Λ;

(A13)

where the first term in (A13) is given by

X
n≠n̄

ma−3∂iϕs;n̄ðxnÞWΛðx − xnÞ

¼
X
n≠n̄

m2G
a4

ðxn − xn̄Þi
jxn − xn̄j3

×

�
Erfc

�
Λjxn − xn̄jffiffiffi

2
p

�
þ 4πjxn − xn̄j

Λ2
WΛðxn − xn̄Þ

�

×WΛðx − xnÞ; (A14)

and the second term in (A13) can be expanded as

½ρl∂iϕs�Λ ¼ −
1

2Λ2
ρl∂i∂2ϕl þ…; (A15)

and this term should be included since it involves the
background piece ρb, and so it includes a first-order
contribution.

APPENDIX B: TRACE OF STRESS TENSOR

It is of some interest to compute the trace of the stress
tensor, which is the so-called “mechanical pressure." This
includes the gravitational piece

Φl ¼ −
wkk
l

8πGa2
þ ∂kϕl∂kϕl

8πGa2
: (B1)

The first term is approximately given by

−
wkk
l

8πGa2
≈
1

2

Z
d3x0WΛðx − x0Þ

×

�
δρðx0Þϕðx0Þ −

X
n

δρnðx0Þϕnðx0Þ
�

(B2)

¼ −
1

2

X
n≠n̄

Gm2

a4jxn − xn̄j
e−μjxn−xn̄jWΛðx − xnÞ

þ 1

2

X
n

4πGmρb
aμ2

WΛðx − xnÞ; (B3)

where we have used the identity

ð∇ϕÞ2 ¼ −ϕ∇2ϕþ 1

2
∇2ðϕ2Þ (B4)

and dropped all terms that are suppressed by the ratio of
low k modes to high k modes in (B2). If we let an s
subscript denote the short modes (see Appendix A for
details), then the trace of the stress tensor is roughly

½τ�Λ ≈
Z

d3x0WΛðx − x0Þ
�
ρðx0Þ

�
vsðx0Þ2 þ 1

2
ϕsðx0Þ

�

−
1

2

X
n

ρs;nðx0Þϕnðx0Þ
�
: (B5)

The background pressure has the zero-mode contribution

pb ¼
1

3
h½τ�Λi; (B6)

where we have ignored a correction from the bulk viscosity.
There are also stochastic fluctuations to the pressure, which
we discuss separately in Appendix D. Now, since the
density field ρðxÞ can be arbitrarily large for dense objects
on small scales, it suggests that each of the contributions to
the renormalized pressure, both the kinetic and the gravi-
tational, can be quite large. However, for virialized
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structures, these two terms cancel each other [31]. Hence
the only significant contribution to the integral comes from
modes of order k ∼ kNL which have yet to virialize. For a
pure Einstein de Sitter universe, this leads to the estimate
pb ∼ 10−5ρbc2, where the factor of 10−5c2 is the typical
value of the potential ϕ from the primordial power
spectrum. However, due to the turnover in the power
spectrum at matter-radiation equality, we are led to a value
that is about an order of magnitude smaller; see Sec. III E.

APPENDIX C: EXACT EXPANSION

The expansion in Sec. III G should be compared to the
exact expansion, which we briefly mention. The second-
order density fluctuation δð2Þ can be written in terms of a
pair of time dependent kernels D2A and D2B as follows:

δð2Þðk; τÞ ¼ 1

7

Z
d3k0

ð2πÞ3 δ1ðk − k0Þδ1ðk0Þ

× ½5αðk;k0ÞD2Aðk;k0; τÞ
þ 2βðk;k0ÞD2Bðk;k0; τÞ�: (C1)

The kernels satisfy the following ODEs:

L̂D2A ¼ 7

5

�
dD
dτ

ðjk − k0jÞ dD
dτ

ðk0Þ

þ 3

2
H2

�
Ωm −

2c2sk2

3H2

�
Dðjk − k0jÞDðk0Þ

�
; (C2)

L̂D2B ¼ 7

2

dD
dτ

ðjk − k0jÞ dD
dτ

ðk0Þ; (C3)

where L̂ is the linear operator

L̂≡ d2

dτ2
þH

�
1þ c2vk2

H2

�
d
dτ

−
3

2
H2

�
Ωm −

2c2sk2

3H2

�
:

(C4)

We have suppressed the τ dependence in the argument ofD
and the τ, k, k0 dependence in the argument of D2� in (C2)
and (C3). As usual we impose the asymptotic condition
D2� → a2 for small a. By numerically solving this pair of
ODEs, we can compare to the approximation in (158) and
(159) in which we replace D2�ðk;k0; τÞ → Dðk; τÞ2 in the
power spectrum. At third order, we again expand δð3Þ in
kernels D3� to obtain ODEs whose solutions can be
compared to the approximation in (158) and (159) in
which we replace D3�ðk;k0;k″; τÞ → Dðk; τÞ3. These
expressions can also be given in terms of Green’s functions
as we emphasized recently in [32]. As can be checked, the
approximate and intuitive analytical results are quite close
to the exact results.

APPENDIX D: STOCHASTIC FLUCTUATIONS
AND PRESSURE

The effective stress tensor ½τij�Λ fluctuates with the short
modes, leading to a stochastic departure from the results
computed thus far. This effect should be reduced at low k
since the transfer function softens the UV modes in the
corresponding loop integral, but we would like to mention
the formal procedure to include such finite size effects here,
although we will not compute it precisely.
Again ignoring vorticity, but allowing for stochastic

fluctuations, the evolution equations for the pair δl and
θl are as given in Eqs. (97) and (98), but with an additional
stochastic source term js

dδl
dτ

þ θl ¼ −
Z

d3k0

ð2πÞ3 αðk;k
0Þδlðk − k0Þθlðk0Þ; (D1)

dθl
dτ

þHθlþ
3

2
H2Ωmδl¼−

Z
d3k0

ð2πÞ3βðk;k
0Þθlðk−k0Þθlðk0Þ

þc2sk2δl−
c2vk2

H
θl−js; (D2)

where js ¼ jsðk; τÞ. In position space js is defined from a
scalar contraction of the fluctuations in the stress tensor,
namely

js ≡ 1

ρb
∂i∂jΔτij; (D3)

where Δτij is implicitly defined through Eq. (41). So (up to
higher-order corrections) it is therefore related to the
function Al by

a2Al ¼ c2s∂2δl −
c2s∂2θl
H

þ js: (D4)

Note that js does not enter the two-point correlation
functions we defined earlier, such as hAlδli, since the
averaging annihilates any overlap between the nonstochas-
tic pieces δl, θl and the stochastic piece js. However, a two-
point correlation function involving only the stochastic
piece hjsjsi would be nonzero.
We treat the js term as entering at higher order in a field

expansion of the form (163) and (164). As before, the first-
order term δð1Þ is given by the growth function D, defined
through Eqs. (167) and (168). At second order, let us split
the density field into two pieces

δð2Þ ¼ δð2Þ0 þ Δδð2Þ; (D5)

where δð2Þ0 is defined as the contribution that arises even in
the js → 0 limit that we computed previously, i.e., δð2Þ0 is
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given by Eq. (C1) (or earlier approximate forms), while
Δδð2Þ is the correction that arises from the stochastic
contribution js. This new piece satisfies

L̂Δδð2Þ ¼ js: (D6)

Formally, this may be solved by Green’s functions. So let
us introduce GðtÞ, defined as a particular solution of the
same differential equation, but with a Dirac-delta function
on the right-hand side

L̂Gðk; τ; τ0Þ ¼ δ1Dðτ − τ0Þ: (D7)

Then the contribution to the second-order density from the
stochastic fluctuations may be formally given by

Δδð2Þðk; τÞ ¼
Z

dτ0Gðk; τ; τ0Þjsðk; τ0Þ: (D8)

We note that one can use this Green’s function to express
the solution in (C1).
The two-point correlation function hδð2Þδð2Þi has

three contributions when we expand using (D5). The first

term hδð2Þ0 δð2Þ0 i is as we computed earlier. The cross term

hδð2Þ0 Δδð2Þi vanishes, leaving only a single new term
hΔδð2ÞΔδð2Þi, i.e.,

hδð2Þδð2Þi ¼ hδð2Þ0 δð2Þ0 i þ hΔδð2ÞΔδð2Þi: (D9)

The new term may be expressed in terms of the Green’s
functions and the stochastic contraction of the stress tensor
js as

hΔδð2Þðk;τÞΔδð2Þðk0;τÞi¼
Z

dτ0
Z

dτ00Gðk;τ;τ0Þ

×Gðk0;τ;τ00Þhjsðk;τ0Þjsðk0;τ00Þi:
(D10)

This requires one to obtain the ensemble average
hjsðk; τ0Þjsðk0; τ00Þi, which may be difficult to obtain
numerically. Using isotropy we may partially simplify it to

hjsðk; τ0Þjsðk0; τ00Þi ¼ ð2πÞ3δ3Dðkþ k0ÞPjjðk; τ0; τ00Þ:
(D11)

This leads to the following contribution to the two-point
power spectrum:

ΔP22ðk;τÞ¼
Z

dτ0
Z

dτ00Gðk;τ;τ0ÞGðk;τ;τ00ÞPjjðk;τ0;τ00Þ:
(D12)

This term should be understood as providing the UV part
(k > Λ) of the P22 Feynman diagram drawn in Fig. 6. We
have checked that these corrections are small at low k due
to the transfer function TðkÞ in the real universe (though
this would not be the case in pure Einstein de Sitter), and
therefore was not included in our numerics. On the other
hand, the contribution from the UV part of P13 contains the
leading departure from SPT and is connected to the fluid
parameters, as we have computed.
Related to this is how much the effective stress tensor

½τij�Λ varies from patch to patch. This is measured by
contractions of the variance

Var½τ�ii0jj0Λ ðt; t0Þ ¼ h½τij�ΛðtÞ½τi0j0 �Λðt0Þi
− h½τij�ΛðtÞih½τi0j0 �Λðt0Þi: (D13)

If we contract over i, j and i0, j0, and set t0 ¼ t, then this
measures the fluctuations in the pressure—a type of
stochastic pressure

ðΔpÞ2 ¼ 1

9
ðh½τ�2Λi − h½τ�Λi2Þ: (D14)

This is the fluctuation around the background value given
by the mean pb ¼ 1

3
h½τ�Λi (B6). The absolute pressure does

not affect the Newtonian dynamics (although it does affect
the metric in GR). Instead the important fluctuations are
those that arise from derivatives of the stress tensor and are
connected to the UV part of the P22ðkÞ contribution to the
power spectrum. These are small at low k, due to the
transfer function in high k modes as we mentioned
previously, but can play an important role at higher k
approaching kNL.
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