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We use a dynamical systems approach based on the method of orthonormal frames to study the dynamics
of a nontilted Bianchi type IX cosmological model with a bulk and shear viscous fluid source. We begin by
completing a detailed fixed-point analysis which give the local sinks, sources and saddles of the dynamical
system. We then analyze the global dynamics by finding the α-and ω-limit sets which give an idea of the
past and future asymptotic behavior of the system. The fixed points were found to be a flat Friedmann-
LeMaître-Robertson-Walker (FLRW) solution, Bianchi type II solution, Kasner circle, Jacobs disc, Bianchi
type VII0 solutions, and several closed FLRW solutions in addition to the Einstein static universe solution.
Each equilibrium point was described in both its expanding and contracting epochs. We conclude the paper
with some numerical experiments that shed light on the global dynamics of the system along with its
heteroclinic orbits. With respect to past asymptotic states, we were able to conclude that the Jacobs disc in
the expanding epoch was a source of the system along with the flat FLRW solution in a contracting epoch.
With respect to future asymptotic states, we were able to show that the flat FLRW solution in an expanding
epoch along with the Jacobs disc in the contracting epoch were sinks of the system. We were also able to
demonstrate a new result with respect to the Einstein static universe. Namely, we gave certain conditions on
the parameter space such that the Einstein static universe has an associated stable subspace. We were,
however, not able to conclusively say anything about whether a closed FLRW model could be a past or
future asymptotic state of the model.
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I. INTRODUCTION

In this paper, we analyze a nontilted Bianchi type IX
cosmological model with a viscous fluid source containing
both bulk and shear viscosity. Such a cosmological model
is homogeneous on three-dimensional spacelike orbits of
the isometry group G3, and is therefore spatially homo-
geneous ([1], pages 22–23). We take the dimension of the
isotropy subgroup to be d ¼ 0, hence considering a
spatially homogeneous and anisotropic model of the uni-
verse. In this case, the Einstein field equations reduce to a
coupled system of nonlinear first-order ordinary autono-
mous differential equations. One can then use methods of
analyzing dynamical systems to obtain important informa-
tion about the dynamical evolution of such a universe
model, with particular emphasis on past and future asymp-
totic states.
The Bianchi type IX model is perhaps among the

most well-known and well-studied models in cosmology.
Belinskii and Khalatnikov [2] investigated the evolutionary
dynamics of the Bianchi type IX metric as it approached an

initial singularity. Belinksii, Lifshitz, and Khalatnikov [3]
showed that near the initial singularity, the Bianchi IX
model exhibits oscillatory behavior represented by a
series of Kasner-like “bounces.” Misner [4,5] applied
Hamiltonian methods to show that the dynamics of a
Bianchi IX model is equivalent to the classical problem
of a particle in a potential well. In the former paper, he
formulated a quantum theory based on this geometry by
setting up canonical commutation relations on the inde-
pendent canonical variables. In the latter paper, Misner
introduced the well-known Mixmaster universe as an
attempt to describe the present-day spatially homogeneous
and isotropic universe as a result of a “smoothing-out”
process of early-universe anisotropy. Matzner, Shepley, and
Warren [6] performed a detailed analytical and numerical
analysis of Bianchi type IX models containing dust. They
were able to prove the existence of regions of infinite
density and a time of maximum expansion. Ryan [7–9],
using the Hamiltonian methods of Arnowitt, Deser, and
Misner [10], analyzed Bianchi type IX universes which
simultaneously exhibited expansion, rotation, and shear
and placed particular emphasis on the dynamics near the
initial singularity in his analysis. Ryan also showed that the
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dynamical equations simplify in the region near the initial
singularity, and he used the concept of a point moving in
a set of potentials to analyze the dynamical behavior near
the singularity. Barrow and Matzner [11] analyzed the
evolution of a massive scalar field in a Bianchi type IX
model. They were able to show that the probability of a
bouncing epoch occurring at very early times is infinitesi-
mally small. Wald [12] examined the future asymptotic
behavior of initially expanding spatially homogeneous
models containing a positive cosmological constant. It
was shown that if the cosmological constant Λ is suffi-
ciently large compared with spatial-curvature terms, the
Bianchi type IX model exhibits stable future asymptotic
behavior only in the case of recollapse and an asymptotic
late-time approach to a de Sitter spacetime.
The problem of recollapse is one of the central themes of

this paper, and we will revisit it in the next section. Barrow
and Tipler [13] first showed that the existence of a maximal
hypersurface is a necessary and sufficient condition for the
existence of a final singularity in a universe with a compact
Cauchy surface. They further showed that a cosmological
model with topology S3 can admit such maximal hyper-
surfaces. Barrow, Galloway and Tipler [14] formulated the
closed-universe recollapse conjecture, where they showed
that if the positive pressure criterion, dominant energy and
matter regularity conditions hold, then a FLRW universe
with topology S3 must recollapse. They also considered a
number of Bianchi Type IX universes with various matter
tensors, and provided a new recollapse conjecture for such
matter-filled universes. Barrow [15] discussed in detail the
question of whether closed universes can avoid recollaps-
ing before an inflationary period ensues. It was shown that
closed universes in an extreme initial anistropic state cannot
recollapse until they are close to isotropy. Barrow made the
point that even if a universe possesses a S3 topology and
the strong energy condition holds, it is not known whether
all anisotropic closed universes recollapse. Lin and Wald
[16,17] showed that for matter which satisfies the dominant
energy condition in addition to having non-negative aver-
age principal pressures, there is no corresponding Bianchi
type IX model that expands for an infinite time. Burd,
Buric, and Ellis [18] performed a detailed study of the
chaotic behavior of the Bianchi type IX model. They
numerically calculated the Lyapunov exponent and showed
that it decreases steadily. In contradiction to this result,
Rugh and Jones [19] showed that the maximal Lyapunov
exponent for the phase flow is zero with respect to the time
variable used in previous studies for the Bianchi IX model,
but concluded that the deterministic model is unpredictable
due to a large non-negative entropy. Uggla and Zur-Muhlen
[20] investigated locally rotationally symmetric Bianchi
type IX models with a perfect fluid source. By considering
a locally rotationally symmetric model, they obtained a
reduced first-order system of differential equations that
allowed them so see the full set of solutions from the initial

big bang singularity to the final big crunch singularity.
Cornish and Levin [21,22] used coordinate-invariant
fractal methods to show that the Bianchi type IX model
is indeed chaotic, independent of any analysis using the
methods of calculating Lyapunov exponents. Rendall [23]
showed that for Bianchi IX models whose observers have
worldlines orthogonal to the spatial hypersurfaces, no
singularity can occur in finite time. Rendall [24] also
performed a detailed analysis of the asymptotic behavior
of the Bianchi type IX model. It was shown that there are
infinitely many oscillations near the singularity and that the
Kretschmann scalar is unbounded in that region. Van Den
Hoogen and Olasagasti [25] investigated the isotropization
of the Bianchi type IX model with an exponential potential
field. They found conditions on the potential exponent
that classified inflationary and isotropization behavior.
Ringström [26] used dynamical system methods to inves-
tigate the asymptotic behavior of the Bianchi type IX model
with an orthogonal perfect fluid close to the initial
singularity. It was found that in the case of a stiff fluid,
the solution converges to a point. For other types of matter,
the solutions converge to an attractor consisting of Bianchi
type II vacuum orbits. De Oliveira et al. [27] analyzed the
dynamics of a Bianchi type IX model with comoving dust
and a cosmological constant, in which they found evidence
of homoclinic chaos in the dynamical evolution. Barrow,
Ellis, Maartens, and Tsagas [28] showed that spatially
homogeneous Bianchi type IX models destabilize an
Einstein static universe. Heinzle, Röhr, and Uggla [29]
investigated a locally rotationally symmetric Bianchi type
IX model with an orthogonal perfect fluid source. They
showed that when the perfect fluid obeys the strong energy
condition, such a model expands from an initial singularity
and recollapses to a singularity. Heinzle and Uggla [30]
considered the past asymptotic dynamics of both a Bianchi
type IX vacuum and an orthogonal perfect fluid model.
They formulated precise conjectures regarding the past
asymptotic states using a dynamical systems approach.
They also made detailed comparisons with previous metric
and Hamiltonian approaches that also analyzed dynamical
behavior in the neighborhood of the initial singularity.
Heinzle and Uggla [31] also gave a new proof of the
Bianchi type IX attractor theorem which states that the past-
time asymptotic behavior of the Bianchi type IX solutions
is determined by Bianchi type I and II vacuum states.
Calogero and Heinzle [32] proved that there exists a class
of Bianchi type IX models that obey the strong energy
condition but do not recollapse, rather, they expand for all
times. Calogero and Heinzle [33] considered among other
models a locally rotationally symmetric Bianchi type IX
model containing Vlasov/collisionless matter, elastic mat-
ter, and magnetic fields. They discovered that generic
type IX solutions oscillate toward the initial singularity.
Barrow and Yamamoto [34] studied the stability of the
Einstein static universe as a nonlocally rotationally
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symmetric, that is, a general Bianchi type IX model with
both nontilted and tilted perfect fluids. They showed that
the Einstein static universe is unstable to homogeneous
perturbations of the Bianchi type IX model to both the
future and the past. Uggla [35] has described recent
developments with respect to oscillatory spacelike singu-
larities in Bianchi type IX models.
Bianchi type IX models containing viscous fluids have

also been studied in some detail. Caderni and Fabbri
[36,37] investigated the isotropization of the Bianchi type
IX model due to neutrino viscosity. Banerjee and Santos
[38] studied the dynamical effects of viscous fluids on the
Bianchi type IX model. Banerjee, Sanyal, and Chakraborty
[39] found exact solutions to the Einstein field equations
for a Bianchi type IX model with a viscous fluid distri-
bution. Chakraborty and Chakraborty [40] investigated the
dynamics of a Bianchi type IX model with a bulk viscous
fluid and variable gravitational and cosmological con-
stants. Pradhan, Srivastav, and Yadav [41] examined the
dynamics of a Bianchi type IX model with a varying
cosmological constant and both bulk and shear viscosities.
Bali and Yadav [42] investigated a Bianchi type IX model
with a viscous fluid containing both bulk and shear
viscosities.
As discussed by Grøn and Hervik ([43], Chap. 30),

viscous models have become of general interest in early-
universe cosmologies largely in two contexts. First, in
models where bulk viscous terms dominate over shear
terms, the universe expands to a de Sitter-like state, which
is a spatially flat universe neglecting ordinary matter,
and including only a cosmological constant. Such models
isotropize indirectly through the massive expansion.
Second, in the absence of any significant heat flux, shear
viscosity is found to play an important role in models of the
universe at its early stages. In particular, neutrino viscosity
is considered to be one of the most important factors in the
isotropization of our universe.
All of the aforementioned methods that consider viscous

fluids employ the metric formalism of general relativity
and assume supplemental conditions between the different
metric components in order to obtain exact solutions. In this
paper, we will use dynamical systems methods built upon
the pioneering framework of orthonormal frames initiated
by Ellis and MacCallum [44] to analyze the behavior of the
Bianchi type IX model with a viscous fluid with respect to
early times, late times, and intermediate times. Dynamical
systems methods have been used to study viscous cosmol-
ogies by van den Hoogen and Coley [45], and Kohli and
Haslam [46,47]. This approach will allow one to fully
ascertain the effects of the bulk and shear viscous coef-
ficients on the dynamics of the Bianchi type IX model, and
will therefore be more general than the metric approach
taken so far. We note that to the best of the authors’
knowledge at the time of writing this article, such an

approach based on dynamical systems theory has not been
investigated in the literature.

II. THE VISCOUS FLUID MATTER SOURCE

In the absence of heat conduction, the energy-momentum
tensor corresponding to a viscous fluid with fluid velocity
four-vector is given by [46]

Tab ¼ ðμþ pÞuaub þ gabp − 3ξHhab − 2ησab; (1)

where μ, p, and σab denote the fluid’s energy density,
pressure, and shear, respectively, while ξ and η denote the
bulk and shear viscosity coefficients of the fluid. Throughout
this paper, both coefficients are taken to be non-negative
constants. It is of interest to note that the case where these
coefficients are not constant has been studied in some detail.
In particular, Barrow [48] showed that models of an infla-
tionary universe driven by Witten strings in the very early
universe are equivalent to the addition of bulk viscosity to
perfect fluidcosmologicalmodelswithzerocurvature. In this
work, Barrow considered the case where the bulk viscosity
has a power-law dependence upon the matter density. It was
shown that if the exponent is greater than 1=2, there exist
deflationary solutions which begin in a de Sitter state
and evolve away from it asymptotically in the future. On
the other hand, if this exponent is less than 1=2 (which
includes the case considered in our present work), then
solutions expand from an initial singularity towards a de
Sitter state. Barrow [49] estimated the entropy production
associated with anisotropy damping in the early universe by
considering a Bianchi type I metric with an equilibrium
radiation gas and anisotropic stresses produced by shear
viscosity. It was shown that the shear viscosity based on
kinetic theory has the general form of being proportional to
the matter density and that the entropy production due to
collisional transport is negligible in such amodel. Coley [50]
considered non-constant bulk viscosity coefficients in ana-
lyzing FLRW spacetimes.H denotes the Hubble parameter,
and hab ≡ uaub þ gab is the standard projection tensor
corresponding to the metic signature (−, þ, þ, þ).
We additionally assume that this fluid obeys a barotropic

equation of state, p ¼ wμ, where w∶ fw∈R∶− 1≤w≤ 1g
is an equation of state parameter. Some typical values for
w are w ¼ 0 (dust), w ¼ −1 (cosmological constant),
w ¼ 1=3 (radiation), and w ¼ 1 (stiff fluid). In order to
derive a set of evolution equations for the model, we will
need expressions for the total energy density μ̄, total
pressure p̄, and total anisotropic stress π̄ab. Using the
definitions

μ̄ ¼ Tabuaub; p̄ ¼ 1

3
habTab;

π̄ab ¼ hcahdbTcd − p̄hab; (2)

we find that
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μ̄ ¼ μ; p̄ ¼ wμ; and π̄ab ¼ −2ησab: (3)

III. THE DYNAMICAL EQUATIONS

The Bianchi cosmologies are described by a four-
dimensional pseudo-Riemannian manifold M, a corre-
sponding metric tensor g defined onM, and a fundamental
four-velocity u that we will take to be orthogonal to the
group orbits. Denoting the orthonormal basis vectors by eα
and the unit vector normal to the orbits of G3 by n, and
using the quantities in Eq. (3), the Einstein field equations
take the form ([1], page 39)

H
: ¼ −H2 − 2

3
σ2 − μ

�
1

6
þ 1

2
w

�
; (4)

σ
:
ab ¼ −3Hσab þ 2ϵuvðaσbÞuΩv − Sab − 2ησab; (5)

μ ¼ 3H2 − σ2 þ 1

2
R; (6)

0 ¼ 3σuaau − ϵuva σbunbv; (7)

where Sab and R are the three-dimensional spatial curvature
and Ricci scalar and are defined as

Sab ¼ bab − 1

3
buuδab − 2ϵuvða nbÞuav; (8)

R ¼ −
1

2
buu − 6auau; (9)

where bab ¼ 2nuanub − ðnuuÞnab. We have also denoted by
Ωv the angular velocity of the spatial frame. The matrix nab
and vector ac are used in decomposing the structure
constants of G3 and classify the Bianchi cosmologies (see
[1], page 36, for more details). Using the Jacobi identities,
one obtains evolution equations for these variables as well:

n
:
ab ¼ −Hnab þ 2σuðanbÞu þ 2ϵuvða nbÞuΩv; (10)

a
:
a ¼ −Haaσbaab þ ϵuva auΩv; (11)

0 ¼ nbaab: (12)

The contracted Bianchi identities give the evolution equation
for μ as ([1], page 40)

μ
: ¼ −3Hðμþ pÞ − σbaπ

a
b þ 2aaqa: (13)

The algebraic constraints for the Bianchi type IX model
are

aa ¼ 0; nab ¼ diagðn11; n22; n33Þ; where n11 > 0;

n22 > 0; n33 > 0: (14)

Note that, for the Bianchi class A models, it can also be
shown that Ωv ¼ 0.
The standard way to proceed from this point is to use

expansion-normalized variables, for which one reduces the
dimension of the state space by introducing a dimension-
less time variable τ. In this approach, the Raychaudhuri
equation Eq. (4) decouples from the system of differential
equations, yielding a reduced system of autonomous first-
order ordinary differential equations. The problem with
using this method for the Bianchi type IX model is that as
we discussed in the Introduction, the Bianchi type IX
model has the potential to recollapse. The notion of
recollapse has been investigated for cosmological models
whose spatial sections have topology S3 or S2 × S1 (see the
references in the Introduction). It should be noted that such
models do not always recollapse, but have the potential to
do so. Therefore, in order to get a complete picture of the
dynamics of the system, one needs to employ a different
normalization than the standard expansion-normalized
variables.
We will make use of the approach outlined by Hewitt,

Uggla, and Wainwright ([1], Chap. 8) in which H assumes
all real values so as to include a recollapsing epoch
ðH < 0Þ. The evolving state vector has the form
x ¼ ðσþ; σ−; n1; n2; n3Þ, where we have defined

σþ ≡ 1

2
ðσ22 þ σ33Þ; σ− ≡ 1

2
ffiffiffi
3

p ðσ22 − σ33Þ; (15)

and

n11 ≡ n1; n22 ≡ n2; n33 ≡ n3: (16)

We will normalize this state vector by a normalization
factor D, defined by

D≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ 1

4
ðn1n2n3Þ2=3

r
: (17)

The resulting state vector is given by

~x ¼ ð ~H; ~Σþ; ~Σ−; ~N1; ~N2; ~N3Þ; (18)

where

~H ¼ H
D
; ~Σ� ¼ σ�

D
; ~Nα ¼

nα
D

: (19)

These variables satisfy the constraint

~H2 þ 1

4
ð ~N1

~N2
~N3Þ2=3 ¼ 1: (20)
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We will additionally define a dimensionless time variable ~τ
such that

dt
d~τ

¼ 1

D
: (21)

Hewitt, Uggla, and Wainwright then obtain the evolution
equation for D as

dD
d~τ

¼ −ð1þ ~qÞ ~HD; (22)

where

~q ¼ ~H2q: (23)

Wewill also define several quantities in addition to Eq. (19)
that will be needed in deriving the full set of evolution
equations and their corresponding constraints. Analogous
to the case of expansion-normalized variables as found in
the appendix of [51], we have

~Sij ¼
Rhiji
D2

; ~Ω ¼ μ̄

3D2
; ~P ¼ p̄

3D2
;

~Πij ¼
π̄ij
D2

; 3~ξ0 ¼
ξ

D
; 3~η0 ¼

η

D
; Σ̂2 ¼ σ2

3D2
;

(24)

where expressions for μ̄, p̄, and π̄ij were derived in Eq. (3).
Note that we have additionally used the abbreviation
Σ̂2 ¼ ~Σ2

þ þ ~Σ2−. The angled brackets indicate that the
projected symmetric trace-free components are to be taken.
Note that for clarity in notation, we have left off the
standard “three” superscript on Rhiji. In this paper, it is to be
assumed that Rij indicates the three-dimensional Ricci
curvature, and R the corresponding three-dimensional
Ricci scalar.
First applying the Bianchi type IX algebraic constraints

as given in Eq. (14) to Eqs. (4), (5), (11), and (13), and then
normalizing these equations according to Eqs. (17), (19),
(21), (22), and (24) we obtain the full set of evolution
equations as

~H0 ¼ −ð1 − ~H2Þ ~q; (25)

~Σ0
þ ¼ ~Σþ ~Hð−2þ ~qÞ − 6 ~Σþ ~η0 − ~Sþ; (26)

~Σ 0− ¼ ~Σ− ~Hð−2þ ~qÞ − 6 ~Σ− ~η0 − ~S−; (27)

~N1
0 ¼ ~N1ð ~H ~q−4 ~ΣþÞ; (28)

~N2
0 ¼ ~N2ð ~H ~qþ2 ~Σþ þ 2

ffiffiffi
3

p
~Σ−Þ; (29)

~N3
0 ¼ ~N3ð ~H ~qþ2 ~Σþ − 2

ffiffiffi
3

p
~Σ−Þ; (30)

~Ω0 ¼ ~Ω ~H ð−1þ 2~q − 3wÞ þ 9 ~H2 ~ξ0 þ 12~η0ð ~Σ2
þ þ ~Σ2−Þ;

(31)

where

~q ¼ 2ð ~Σ2
þ þ ~Σ2−Þ þ

1

2
~Ωð1þ 3wÞ − 9

2
~ξ0 ~H: (32)

The variables ~S� were obtained by normalizing the
components of the trace-free spatial Ricci tensor given
by Eq. (6.6) in [1], and computed to be

~Sþ ¼ 1

6
½ð ~N2 − ~N3Þ2 − ~N1ð2 ~N1 − ~N2 − ~N3Þ�; (33)

~S− ¼ 1

2
ffiffiffi
3

p ½ð ~N3 − ~N2Þð ~N1 − ~N2 − ~N3Þ�: (34)

The additional constraint on the dynamical system
Eqs. (25)–(31) is given by the generalized Friedmann
equation (6). We first note that the Ricci scalar as defined
in Eq. (9) upon applying the Bianchi type IX algebraic
constraints Eq. (14) takes the form

R ¼ − 1

2
½n21 þ n22 þ n23 − 2ðn1n2 þ n2n3 þ n3n1Þ�: (35)

Applying Eqs. (19), (24), and (35) to Eq. (6), we obtain

~Ω ¼ ~H2 − Σ̂2 þ R
6D2

: (36)

Upon further applying the constraint Eq. (20) to Eq. (36),
we obtain

~Ωþ Σ̂2 þ ~V ¼ 1; (37)

where

~V ¼ 1

12
½ ~N2

1 þ ~N2
2 þ ~N2

3 − 2 ~N1
~N2 − 2 ~N2

~N3 − 2 ~N3
~N1

þ 3ð ~N1
~N2

~N3Þ2=3�: (38)

An important point to note is that from Eq. (20) we have
that

−1 ≤ ~H ≤ 1: (39)

We also can see from Eq. (38) that

~V ≥ 0: (40)
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These subsequent conditions were also noted in [1]
(page 181).
Before we proceed, we feel that a technical point is in

order. In the standard expansion-normalized variables
approach to analyzing the Bianchi cosmologies, one
typically reduces the dimension of the dynamical system
state space by using the generalized Friedmann equation to
eliminate ~Ω from the system of equations, thereby making
~Ω0 an auxiliary equation. The problem with this is that in
our approach because the constraint equation for ~Ω Eq. (37)
contains ~V, the Jacobian matrix will not be defined at all
equilibrium points. For example, if were to use Eq. (37) to
eliminate ~Ω from the system of equations, each term would
be replaced with a term that contained ~V as given by
Eq. (38), in particular, a factor of ð ~N1

~N2
~N3Þ−1=3 would

enter into each equation, which of course is not defined
when any one of ~N1;2;3 ¼ 0, even if both constraint
equations (20) and (37) above are satisfied. Therefore, we
will not in this paper eliminate ~Ω from the dynamical system
of equations, as we wish to ascertain the dynamical behavior
of all possible equilibrium points. This same methodology
was employed by Barrow and Yamamoto [34].

IV. A QUALITATIVE ANALYSIS OF THE
DYNAMICAL SYSTEM

With the dynamical equations (25)–(31) and their con-
straints (20) and (37) in hand, we are in position to perform
a detailed analysis of the fixed points of the system. Before
we proceed, however, we would like to note some impor-
tant qualitative properties that can be deduced from the
dynamical system.

A. Symmetries and invariant sets

We note that the dynamical system given by
Eqs. (25)–(31) has three symmetries given by

½ ~H; ~Σþ; ~Σ−; ~N1; ~N2; ~N3; ~Ω� → ½ ~H; ~Σþ; ~Σ−;− ~N1; ~N2; ~N3; ~Ω�;
(41)

½ ~H; ~Σþ; ~Σ−; ~N1; ~N2; ~N3; ~Ω� → ½ ~H; ~Σþ; ~Σ−; ~N1;− ~N2; ~N3; ~Ω�;
(42)

½ ~H; ~Σþ; ~Σ−; ~N1; ~N2; ~N3; ~Ω� → ½ ~H; ~Σþ; ~Σ−; ~N1; ~N2;− ~N3; ~Ω�:
(43)

The dynamical system is therefore invariant with respect to
spatial inversions in the functions ~N1, ~N2, and ~N3, which
implies that we can take ~N1 ≥ 0, ~N2 ≥ 0, and ~N3 ≥ 0. We
can also see that these correspond to the invariant sets of the
system. Recall that if we letM be phase space of the flow of
the dynamical system, then an invariant set is a set A ⊂ M
such that gtA ¼ A, ∀ t, where fgtg represents the

dynamical system on the phase space M, and t ∈ R. In
other words, the invariant set consists of entire trajectories
[52]. Tavakol ([1], Chap. 4) discusses a simple way to
obtain the invariant sets of a dynamical system. Let us
consider a dynamical system x

: ¼ vðxÞ, x ∈ R7. Let Z:
R7 → R be a C1 function such that Z0 ¼ αZ, where α:R7 is
a continuous function. Then the subsets of R7 defined by
Z > 0, Z ¼ 0, and Z < 0 are invariant sets of the flow of
the dynamical system. Applying this proposition to our
dynamical system in combination with the symmetries
found above, we see that ~Ni > 0 and ~Ni ¼ 0, where i ¼ 1,
2, 3 are invariant sets of the system.
Combinations of ~Ni > 0 and ~N ¼ 0 determine various

Bianchi types of class A. However, because of the con-
straint (20), these combinations necessarily restrict the
value of ~H as well. We list these Bianchi invariant sets
based on the description given in [1] (page 126) in Table I.
The dynamical system also admits shear invariant sets

which arise from enforcing certain restrictions on the shear
variables. It follows from Eqs. (25)–(31) that

~Σ− ¼ 0 ⇒ ~N2 ¼ ~N3 > 0; ~N1 ¼ 0;

~H ¼ �1; for Bianchi types VII0; IX; (44)

~Σ− ¼ 0 ⇒ ~N2 ¼ ~N3 ¼ 0; ~N1 > 0;

~H ¼ �1; for Bianchi type II: (45)

We have summarized these shear invariant sets with the
corresponding cosmological model and notation in
Table II, and refer the reader to [1] (page 127) for
further details. Note that in Table II, LRS stands for
locally rotationally symmetric. Therefore, all the models
corresponding to the shear invariant sets are the locally
rotationally symmetric Bianchi models. These models are
still homogeneous on spacelike orbits, but the dimension
of the isotropy subgroup is one greater than the non-
locally rotationally symmetric Bianchi models. That is,

TABLE I. The various Bianchi invariant sets, with α ¼ 1, 2, 3.

Notation Restrictions on ~Ni ≥ 0 Restriction on ~H

BðIÞ All zero ~H2 ¼ 1
BαðIIÞ One nonzero ~H2 ¼ 1
BαðVII0Þ Two nonzero ~H2 ¼ 1
BðIXÞ All nonzero ~H2 þ 1

4
ð ~N1

~N2
~N3Þ2=3 ¼ 1

TABLE II. The various shear invariant sets, with α ¼ 1, 2, 3.

Notation Class of models

SαðIIÞ LRS Bianchi II
SαðVII0Þ LRS Bianchi VII0
SαðIXÞ LRS Bianchi IX
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the LRS Bianchi models belong to the isometry group G4

([1], pages 22–23).

V. A FIXED-POINT ANALYSIS

In this section we list the equilibrium points of the
dynamical system (25)–(31). This is an autonomous
system, and can be written in the form

x
: ¼ vðxÞ; x ∈ R7: (46)

An equilibrium point of the system is a point at which
the vector field, vðxÞ ∈ R7 vanishes. In our analysis of
the stability of these equilibrium points, we first note that
an equilibrium point of a differential equation is hyper-
bolic if no eigenvalue of the linear part of the equation at
this singular point lies on the imaginary axis ([52],
page 47). We then make use of the Grobman-Hartman
theorem ([52], page 48; [1], pages 95–96) which says
that a C1 vector field is topologically equivalent to its
linear part in a neighborhood of a hyperbolic equilibrium
point. As a consequence of this theorem, if the eigen-
values of the linear part of the system evaluated at the
hyperbolic equilibrium point are strictly negative, the
equilibrium point will be a local sink of the system.
Similarly, if the eigenvalues of the linear part of the
system evaluated at the hyperbolic equilibrium point are

strictly positive, the equilibrium point will be a local
source of the system. A hyperbolic equilibrium point
which is neither a source nor a sink is termed a saddle
point. We will then make use of the invariant manifold
theorem which will allow us to classify orbits that are
either attracted to or repelled by certain hyperbolic
equilibrium points as τ → �∞.

A. Flat Friedmann-LeMaître-Robertson-Walker
(FLRW) equilibrium points: F�

1. The expanding epoch

Fþ∶ ~Σþ ¼ ~Σ− ¼ 0; ~N1 ¼ ~N2 ¼ ~N3 ¼ 0;

~H ¼ 1; ~Ω ¼ 1: (47)

The eigenvalues are found to be

λ1 ¼ λ2 ¼ λ3 ¼
1

2
ð1þ 3w − 9~ξ0Þ;

λ4 ¼ λ5 ¼ 1þ 3w − 9~ξ0;

λ6 ¼ λ7 ¼
3

2
ð−1þ w − 4~η0 − 3~ξ0Þ: (48)

Fþ is a local sink of the system if

~η0 ≥ 0∧
��

0 ≤ ~ξ0 ≤
4

9
∧ − 1 ≤ w <

1

3
ð−1þ 9~ξ0Þ

�
∨
�
~ξ0 >

4

9
∧ − 1 ≤ w ≤ 1

��
: (49)

There regions where Fþ corresponds to a saddle point of the system are

~η0 ¼ 0∧
��

~ξ0 ¼ 0∧ − 1

3
< w < 1

�
∨
�
0 < ~ξ0 <

4

9
∧ 1

3
ð−1þ 9~ξ0Þ < w ≤ 1

��
; (50)

and

~η0 > 0∧ 0 ≤ ~ξ0 <
4

9
∧ 1

3
ð−1þ 9~ξ0Þ < w ≤ 1: (51)

We note that there exists now, ~ξ0, ~η0 corresponding to−1 ≤ w ≤ 1, ~ξ0 ≥ 0 and ~η0 ≥ 0 such that the eigenvalues presented
in Eq. (48) are strictly positive. Hence, the equilibrium point, Fþ corresponding to a flat expanding FLRW solution is not a
local source of the system.

2. The contracting epoch

In the contracting epoch,

F−∶ ~Σþ ¼ ~Σ− ¼ 0; ~N1 ¼ ~N2 ¼ ~N3 ¼ 0; ~H ¼ −1; ~Ω ¼ 1; (52)

the eigenvalues are found to be

λ1 ¼ λ2 ¼ λ3 ¼
1

2
ð−1 − 3w − 9~ξ0Þ; λ4 ¼ λ5 ¼ − 3

2
ð−1þ wþ 4~η0 þ 3~ξ0Þ; λ6 ¼ λ7 ¼ −1 − 3w − 9~ξ0: (53)
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F− is a local sink of the system in three separate regions of the parameter space. These are given by

~η0 ¼ 0∧
��

0 < ~ξ0 ≤
2

3
∧ 1 − 3~ξ0 < w ≤ 1

�
∨
�
~ξ0 >

2

3
∧ − 1 ≤ w ≤ 1

��
; (54)

0 < ~η0 ≤
1

3
∧
��

0 ≤ ~ξ0 <
1

3
ð2 − 4~η0Þ∧ 1 − 4~η0 − 3~ξ0 < w ≤ 1

�
∨
�
~ξ0 ¼

1

3
ð2 − 4~η0Þ∧ − 1 < w ≤ 1

�

∨
�
~ξ0 >

1

3
ð2 − 4~η0Þ∧ − 1 ≤ w ≤ 1

��
; (55)

and

~η0 >
1

3
∧
��

0 ≤ ~ξ0 ≤
2

9
∧ 1

3
ð−1 − 9~ξ0Þ < w ≤ 1

�
∨
�
~ξ0 >

2

9
∧ − 1 ≤ w ≤ 1

��
: (56)

F− is a local source in two separate regions of the parameter space. These are given by

0 ≤ ~η0 ≤
1

3
∧ 0 ≤ ~ξ0 <

2

9
∧ − 1 ≤ w <

1

3
ð−1 − 9~ξ0Þ; (57)

and

1

3
< ~η0 <

1

2
∧ 0 ≤ ~ξ0 <

1

3
ð2 − 4~η0Þ∧ − 1 ≤ w < 1 − 4~η0 − 3~ξ0: (58)

F− also represents a saddle point in the following regions of the parameter space:

~η0 ¼ 0∧
��

~ξ0 ¼ 0∧ − 1

3
< w < 1

�
∨
�
0< ~ξ0 ≤

2

9
∧ 1

3
ð−1− 9~ξ0Þ < w < 1− 3~ξ0

�
∨
�
2

9
< ~ξ0 <

2

3
∧ − 1 ≤ w < 1− 3~ξ0

��
;

(59)

0< ~η0 <
1

3
∧
��

0 ≤ ~ξ0 ≤
2

9
∧ 1

3
ð−1− 9~ξ0Þ < w < 1− 4~η0 − 3~ξ0

�
∨
�
2

9
< ~ξ0 <

1

3
ð2− 4~η0Þ∧ − 1 ≤ w < 1− 4~η0 − 3~ξ0

��
;

(60)

1

3
< ~η0 <

1

2
∧
��

0 ≤ ~ξ0 ≤
1

3
ð2 − 4~η0Þ∧ 1 − 4~η0 − 3~ξ0 < w <

1

3
ð−1 − 9~ξ0Þ

�

∨
�
1

3
ð2 − 4~η0Þ < ~ξ0 <

2

9
∧ − 1 ≤ w <

1

3
ð−1 − 9~ξ0Þ

��
; (61)

~η0 ¼
1

2
∧
��

~ξ0 ¼ 0∧ − 1 < w < − 1

3

�
∨
�
0 < ~ξ0 <

2

9
∧ − 1 ≤ w <

1

3
ð−1 − 9~ξ0Þ

��
; (62)

and
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~η0 >
1

2
∧ 0 ≤ ~ξ0 <

2

9
∧ − 1 ≤ w <

1

3
ð−1 − 9~ξ0Þ: (63)

B. Bianchi type II equilibrium points: BðIIÞ
1. The expanding epoch

The Bianchi type II equilibrium point corresponding to the expanding epoch, ~H ¼ 1, shall be denoted by PþðIIÞ. This
point is given by

~Σþ ¼ 1

16
½17þ 3wþ 3~η0 þ 9w~η0 − γ�;

~Σ− ¼ 0;

~N1 ¼
1

4

ffiffiffi
3

2

r
½−3ð63 − 38~η0 − 9~η20 þ 3ðwþ 3w~η0Þ2 − 2wð1 − 42~η0 þ 9~η20ÞÞ þ γð13þ 3w − 9~η0 þ 9w~η0Þ − 288~ξ0�1=2;

~N2 ¼ ~N3 ¼ 0; ~H ¼ 1;

~Ω ¼ 1

32
½15 − 3w − 54~η0 − 18w~η0 − 9~η20 − 27w~η20 þ ð1þ 3~η0Þγ�; (64)

where

γ ¼ ½ð17þ 3~η0 þ wð3þ 9~η0ÞÞ2 − 64ð1þ 3w − 9~ξ0Þ�1=2: (65)

The regions of the parameter space that correspond to this point are

~η0 ¼ 0∧
��

~ξ0 ¼ 0∧ − 1

3
< w < 1

�
∨
�
0 < ~ξ0 <

4

9
∧ 1

3
ð−1þ 9~ξ0Þ < w ≤ 1

��
; (66)

and

~η0 > 0∧ 0 ≤ ~ξ0 <
4

9
∧ 1

3
ð−1þ 9~ξ0Þ < w ≤ 1: (67)

Under the first set of inequalities in Eq. (66), namely,
~ξ0 ¼ ~η0 ¼ 0, −1=3 < w < 1, the point PþðIIÞ takes the
form

~Σþ ¼ 1

8
ð1þ 3wÞ; ~Σ− ¼ 0;

~N1 ¼
3

4
ð1þ 2w − 3w2Þ1=2; ~N2 ¼ ~N3 ¼ 0;

~H ¼ 1; ~Ω ¼ − 3

16
ð−5þ wÞ; (68)

where − 1
3
< w < 1. The eigenvalues corresponding to

Eq. (68) are given by

λ1 ¼
3

2
ð−1þ wÞ; λ2 ¼ λ3 ¼

3

4
ð1þ 3wÞ;

λ4 ¼ λ5 ¼ ð1þ 3wÞ; λ6 ¼ − 3

8
ð2 − 2wþ βÞ;

λ7 ¼
3

8
ð−2þ 2wþ βÞ; (69)

where

β ¼ ð−6 − 26wþ 38w2 − 6w3Þ1=2:
By examining these eigenvalues, one sees that the equilib-
rium point PþðIIÞ can only be a saddle point of the system.
The corresponding parameter space region is given by

− 1

3
< w ≤

1

3
ð8 − ffiffiffiffiffi

73
p

Þ; ~ξ0 ¼ ~η0 ¼ 0: (70)

To analyze the stability of the equilibrium point as
defined in Eq. (64) in the rest of the parameter space as
given in Eqs. (66) and (67), we must resort to numerical
techniques. The reason is that the characteristic polynomial
of the Jacobian matrix in each of the reasons admits roots
that cannot be written down in closed form. We conducted a
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variety of numerical experiments that demonstrated that
indeed PþðIIÞ is a saddle point of the system. The results of
some of these experiments can be seen in Figs. 3 and 4.

2. The contracting epoch

The Bianchi type II equilibrium point corresponding to
the contracting epoch, ~H ¼ −1, which we denote by
P−ðIIÞ is given by

~Σþ ¼ 1

8
ð1þ 3wÞ; ~Σ− ¼ 0;

~N1 ¼
1

4
ð1þ 2w − 3w2Þ1=2; ~N2 ¼ ~N3 ¼ 0;

~H ¼ −1; ~Ω ¼ 1; (71)

where

~η0 ¼
1

3
; ~ξ0 ¼

7

64
; w ¼ − 1

2
: (72)

The eigenvalues of the Jacobian matrix at the point P−ðIIÞ
corresponding to the region Eq. (72) are found to be

λ1 ¼ λ2 ¼ λ3 ¼ − 1

2
; λ4 ¼ λ5 ¼ − 3

8
;

λ6 ¼ − 1

4
; λ7 ¼

15

64
: (73)

Clearly, the point P−ðIIÞ corresponding to the region
Eq. (72) is a saddle point of the dynamical system, which
is always unstable. In this region of the parameter space, the
deceleration parameter ~q and the shear scalar Σ̂2 take the
form

~q ¼ 31

128
> 0; Σ̂2 ¼ 1

256
> 0; (74)

which shows that this solution indeed corresponds to a
contracting epoch that does not isotropize.
We note that to the best of our knowledge, the con-

tracting Bianchi type II solution as presented in Eq. (71)
with the corresponding parameters in Eq. (72) has not been
presented before in the literature, and hence it represents a
new solution to the Einstein field equations. Both equilib-
rium points P�ðIIÞ belong to the invariant set SαðIIÞ as
listed in Table II, which corresponds to the class of locally
rotationally symmetric Bianchi type II cosmological
models.

C. Kasner equilibrium points

There are two possible Kasner equilibrium points,
differing only by the value of ~H:

K�∶ ~Σ2
þ þ ~Σ2− ¼ 1; ~N1 ¼ ~N2 ¼ ~N3 ¼ 0;

~Ω ¼ 0; ~H ¼ �1; (75)

where in both cases we have

~ξ0 ¼ ~η0 ¼ 0; −1 ≤ w < 1: (76)

Following [53], we note that the constant values of ~Σ� at
K� are related to the Kasner exponents of the Kasner
solution:

p1 ¼
1

3
ð1 − 2 ~ΣþÞ; p2 ¼

1

3
ð1þ ~Σþ þ

ffiffiffi
3

p
~Σ−Þ;

p3 ¼
1

3
ð1þ ~Σþ − ffiffiffi

3
p

~Σ−Þ: (77)

1. The expanding epoch

The eigenvalues corresponding to Kþ are given by

λ1 ¼ λ2 ¼ 4; λ3 ¼ 0; λ4 ¼ 3ð−1þ wÞ;
λ5 ¼ 6p1; λ6 ¼ 6p3; λ7 ¼ 6p2: (78)

The zero eigenvalue in Eq. (78) indicates that Kþ is a one-
dimensional family of equilibrium points. Additionally, this
zero eigenvalue implies the existence of a one-dimensional
center manifold. The Kasner exponents p1, p2, p3 obey the
relations

p1 þ p2 þ p3 ¼ 1; p2
1 þ p2

2 þ p2
3 ¼ 1; (79)

which implies that exactly one of λ5, λ6, or λ7 in Eq. (78) is
negative except when

ðpiÞ ¼ ð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þ≡ ðTiÞ;
ði ¼ 1; 2; 3Þ: (80)

The points Ti are the Taub points corresponding to Taub
flat spacetime metric ([1], page 132). We see that in
the region −1 ≤ w < 1, λ4 < 0, and therefore, Kþ is a
(normally hyperbolic) saddle point. If on the other hand,
w ¼ 1, then λ4 ¼ 0, which leads to the creation of a two-
dimensional center manifold, and the stability behavior in
this case cannot be determined by linearization.

2. The contracting epoch

The eigenvalues corresponding to K− are found to be

λ1 ¼ λ2 ¼ −4; λ3 ¼ 0; λ4 ¼ 3ð−1þ wÞ;
λ5 ¼ −4þ 6p1; λ6 ¼ −1 − 3p1 − 3p2 þ 3p3;

λ7 ¼ −1 − 3p1 þ 3
ffiffiffi
3

p
p2 − 3

ffiffiffi
3

p
p3: (81)

In general, since the Kasner exponents pi, (i ¼ 1, 2, 3)
must obey the Kasner relations as given in Eq. (79), λ5, λ6,
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and λ7 in Eq. (81) will in general have alternating signs.
Therefore, in the full state space, K− is also a saddle point.

D. Jacobs disc

We see that two Jacobs disc solutions, corresponding to
expanding and contracting epochs, are equilibrium points
of the system as well:

J �∶ ~Σ2
þ þ ~Σ2− < 1; ~N1 ¼ ~N2 ¼ ~N3 ¼ 0;

0 < ~Ω < 1; ~H ¼ �1; (82)

where ~η0 ¼ ~ξ0 ¼ 0, and w ¼ 1.

1. The expanding epoch

The eigenvalues corresponding to J þ are found to be

λ1 ¼ λ2 ¼ 4; λ3 ¼ λ4 ¼ 0; λ5 ¼ 6p1;

λ6 ¼ 6p3; λ7 ¼ 6p2; (83)

where pi, (i ¼ 1, 2, 3) are the Kasner exponents as given in
Eq. (77) and satisfy the Kasner relations as given in
Eq. (79). The two zero eigenvalues in Eq. (83) indicate
that J þ is a two-dimensional set of equilibrium points. As
can be shown, the eigenspaces associated with λ5, λ6, and
λ7 in Eq. (83) are parallel to the ~N1, ~N2, and ~N3 axes. We
can therefore conclude that the subset for which λ5;6;7 > 0
is a source in the interior of the Kasner circleKþ, belonging
to the Jacobs disc J þ.

2. The contracting epoch

The eigenvalues corresponding to J − are found to be

λ1 ¼ λ2 ¼ −4; λ3 ¼ λ4 ¼ 0; λ5 ¼ −4þ 6p1;

λ6 ¼ −1 − 3p1 − 3p2 þ 3p3;

λ7 ¼ −1 − 3p1 þ 3
ffiffiffi
3

p
p2 − 3

ffiffiffi
3

p
p3; (84)

where pi, (i ¼ 1, 2, 3)are the Kasner exponents as given in
Eq. (77) and satisfy the Kasner relations as given in
Eq. (79). The two zero eigenvalues in Eq. (84) indicate
that J − is a two-dimensional set of equilibrium points.
As in the expanding epoch case, we still have that the
eigenspaces associated with λ5, λ6, and λ7 in Eq. (84) are
parallel to the ~N1, ~N2, and ~N3 axes. However, we find that
λ5;6;7 < 0 in Eq. (84) if p1 þ p2 þ p3 ¼ 1, that is, the first
of the Kasner relations in Eq. (79) is satisfied and

− 1

3
< p1 <

2

3
; p1 þ p2 >

1

3
;

9þ
ffiffiffi
3

p
þ 3ð−3þ ffiffiffi

3
p

Þp1 > 18p2: (85)

Therefore, we conclude that J − is a local sink of the
system. One can also show that there exists no real values
for p1;2;3 such that the eigenvalues λ5;6;7 in Eq. (84) are
greater than zero. Hence, J − is never a source of the
dynamical system.

E. Bianchi type VII0 equilibrium points

1. Line of equilibrium points originating on Kþ
The Line of equilibrium points originating on Kþ is

given by

Lþ
1 ∶ ~Σþ ¼ −1; ~Σ− ¼ 0; ~N1 ¼ 0;

~N2 ¼ ~N3 ¼ k > 0; ~H ¼ 1; ~Ω ¼ 0;

k ∈ R; ð~ξ0 ¼ ~η0 ¼ 0; −1 ≤ w < 1Þ: (86)

The eigenvalues corresponding to Lþ
1 are found to be

λ1 ¼ 6; λ2 ¼ λ3 ¼ 4; λ4 ¼ 0; λ5 ¼ −2ik;
λ6 ¼ 2ik; λ7 ¼ 3 − 3w; (87)

where k > 0 ∈ R.
In general, we see that Lþ

1 is not hyperbolic because
three of its eigenvalues lie entirely on the imaginary axis.
In addition, in the case where −1 ≤ w < 1, there are
four eigenvalues that are positive, so that Lþ

1 has a
three-dimensional unstable set. However, because of the
nonhyperbolic nature of this point, its stability in the full
state space cannot be determined by linearization meth-
ods. We also note that Lþ

1 is a line of equilibrium points
originating from the Taub point T1 on Kþ. We can,
however, restrict the dynamical system to the shear
invariant set S1ðIXÞ as described in Eq. (44). Within
this shear invariant set, only the eigenvalues λ1, λ2, λ3, λ4,
and λ7 in Eq. (87) arise. Therefore, we have that within
S1ðIXÞ, Lþ

1 is a local source.

2. Line of equilibrium points originating from F�

a. Expanding epoch

Fþ
1 ðVII0Þ∶ ~Σ� ¼ 0; ~N1 ¼ 0; ~N2 ¼ ~N3 ¼ d > 0 ∈ R; ~H ¼ 1; ~Ω ¼ 1;

Fþ
2 ðVII0Þ∶ ~Σ� ¼ 0; ~N2 ¼ 0; ~N1 ¼ ~N3 ¼ d > 0 ∈ R; ~H ¼ 1; ~Ω ¼ 1;

Fþ
3 ðVII0Þ∶ ~Σ� ¼ 0; ~N3 ¼ 0; ~N1 ¼ ~N2 ¼ d > 0 ∈ R; ~H ¼ 1; ~Ω ¼ 1; (88)

where the eigenvalues for each point described by Eq. (88) are found to be
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λ1 ¼ λ2 ¼ λ3 ¼ λ4 ¼ 0; λ5 ¼ −2 − 6~η0; λ6 ¼ −1 − 3~η0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4d2 þ ð1þ 3~η0Þ2

q
;

λ7 ¼ −1 − 3~η0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4d2 þ ð1þ 3~η0Þ2

q
; (89)

with

~η0 ≥ 0; 0 ≤ ~ξ0 ≤
4

9
; w ¼ 1

3
ð−1þ 9~ξ0Þ: (90)

One can see that from Eq. (89) the four zero eigenvalues indicate that Fþ
i ði ¼ 1; 2; 3Þ each represent a four-dimensional set

of equilibrium points, which implies the existence of a four-dimensional center manifold. It is not possible to determine the
stability of these equilibrium points by linearization methods because they are clearly nonhyperbolic. However, an
interesting feature to note is that these equilibrium points are only defined in a very specific region of parameter space
described by Eq. (90). Moreover, these lines of equilibrium points originate from the flat equilibrium point Fþ and
determine the destabilization of Fþ at w ¼ ð1=3Þð−1þ 9~ξ0Þ.
b. Contracting epoch

F−
1 ðVII0Þ∶ ~Σ� ¼ 0; ~N1 ¼ 0; ~N2 ¼ ~N3 ¼ d > 0 ∈ R; ~H ¼ −1; ~Ω ¼ 1;

F−
2 ðVII0Þ∶ ~Σ� ¼ 0; ~N2 ¼ 0; ~N1 ¼ ~N3 ¼ d > 0 ∈ R; ~H ¼ −1; ~Ω ¼ 1;

F−
3 ðVII0Þ∶ ~Σ� ¼ 0; ~N3 ¼ 0; ~N1 ¼ ~N2 ¼ d > 0 ∈ R; ~H ¼ −1; ~Ω ¼ 1; (91)

where the eigenvalues for each point described by Eq. (91) are found to be

λ1 ¼ λ2 ¼ λ3 ¼ λ4 ¼ 0; λ5 ¼ 2 − 6~η0; λ6 ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4d2 þ ð1 − 3~η0Þ2

q
− 3~η0;

λ7 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4d2 þ ð1 − 3~η0Þ2

q
− 3~η0; (92)

with

~η0 ≥ 0; 0 ≤ ~ξ0 ≤
2

9
; w ¼ 1

3
ð−1 − 9~ξ0Þ: (93)

One can see that from Eq. (92) the four zero eigenvalues
indicate that F−

i ði ¼ 1; 2; 3Þ each represent a four-
dimensional set of equilibrium points, which implies
the existence of a four-dimensional center manifold. It is
also not possible as in the case of the expanding epoch
to determine the stability of these equilibrium points by
linearization methods because they are clearly non-
hyperbolic. Moreover, these lines of equilibrium points
originate from the flat equilibrium point F− and deter-
mine the destabilization of F− at w ¼ ð1=3Þð−1 − 9~ξ0Þ.

F. Bianchi type IX equilibrium points

The equilibrium points in the interior of BðIXÞ are
generally described by the following values of the dynami-
cal variables and normalized shear viscosity parameter ~η0:

Fc∶ ~Σ� ¼ 0; ~N1 ¼ ~N2 ¼ ~N3 ¼ f > 0 R;

~Ω ¼ 1; ~η0 ≥ 0; (94)

where Fc denotes a closed FLRW universe, of which the
Einstein static universe is a special case. With the defi-
nitions in Eq. (94), there are four possibilities involving the
values of the other dynamical variables and parameters w
and ~ξ0, which we list below in succession. Before contin-
uing, an important point must be made. Upon observing
Eq. (94), one will notice an apparent contradiction between
~Ω ¼ 1, and that ~N1 ¼ ~N2 ¼ ~N3 ¼ f > 0; f ∈ R, since this
seems to imply that there is a solution to the Einstein field
equations that has constant positive curvature, but with
unit matter density. This confusion arises because in
standard cosmology theory (which includes the expansion-
normalized variables approach to the Bianchi cosmologies
based on the theory of orthonormal frames), one relates the
curvature of the universe to the matter density in that
universe via the generalized Friedmann equation ([1],
page 114)

Ω ¼ 1 − Σ2 − K; (95)

which is obtained by normalizing Eq. 6 with the Hubble
parameter, H (see [1,53,54] and references therein for
further details). In Eq. (95), Ω is the expansion-normalized
density parameter, Σ2 is the expansion-normalized shear
scalar parameter, andK is the negated expansion-normalized
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three-dimensional Ricci scalar. For simplicity, let us assume
that the universe we are considering is isotropic so that Σ2

vanishes. It is then clear from Eq. (95) that for a positively
curved universe, K < 0 which implies that Ω > 1. For a
negatively curved universe, we have that K > 0, which
implies that Ω < 1. For a flat universe, K ¼ 0, which
implies that Ω ¼ 1; it is from this point that the confusion
arises.
In our work, because we have normalized our variables

with powers of D and not H, we have a slightly different
analog of the Friedmann equation as given in Eq. (37).
Considering the definitions in Eq. (94), we have from
Eq. (38) that ~V ¼ 0, and so ~Ω ¼ 1. However, the three-
dimensional Ricci scalar as defined in Eq. 9 for
n1 ¼ n2 ¼ n3 ¼ f > 0, f ∈ R evaluates to

R ¼ 3

2
f2; (96)

which is always positive for f > 0. Therefore, the apparent
confusion arises due to our choice of normalization
variable, and is therefore of no real concern with respect
to our analysis of the interior of the BðIXÞ equilibrium
points.

1. Case 1: The Einstein static universe

The line element for the Einstein static universe is given
by ([1], page 55)

ds2 ¼ −dt2 þ l2½dr2 þ sin2 rðdθ2 þ sin2 θϕ2Þ�; (97)

where l > 0 is a constant. It can be shown that the energy
density and pressure corresponding to this line element are
given by

μ ¼ 3

l2
; p ¼ − 1

l2
; (98)

which implies that the equation of state parameter has the
value w ¼ −1=3. Therefore, it is not necessary to describe
the Einstein static universe using a two-fluid description as
done in [34] for example. It is, however, the more popular
choice to consider two noninteracting fluids that have
separate equations of state described by two separate
equations of state parameters w1 and w2. Einstein himself
took w1 ¼ 0, and w2 ¼ −1, with the latter being equivalent
to the cosmological constant ([1], page 55). However,
as discussed by Ellis and Wainwright ([1], page 55), a
spatially homogeneous and isotropic universe with constant
positive curvature as we have described in Eq. (94) with
equation of state parameter w ¼ −1=3 is indeed the
Einstein static universe.
This equilibrium point is described by

~H ¼ 0; w ¼ − 1

3
; f ¼ 2; ~ξ0 ≥ 0: (99)

We find that the eigenvalues are given by

λ1 ¼ λ2 ¼ 0; λ3 ¼ λ4 ¼ −3~η0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−8þ 9~η20

q
;

λ5 ¼ λ6 ¼ −3~η0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−8þ 9~η20

q
; λ7 ¼

9~ξ0
2

: (100)

We note that λ3;4;5;6 in Eq. (100) are strictly negative if and
only if ~η0 ≥ 2

ffiffiffi
2

p
=3. That is, if ~η0 ≥ 2

ffiffiffi
2

p
=3, the static

universe under consideration admits a four-dimensional
stable subset. The stability of the Einstein static universe
has been a major topic of study in cosmology ever since
Einstein introduced the idea [55]. The stability properties
were first studied by Lemaître [56,57] and Eddington [58].
More recent studies of the stability of the Einstein static
universe were completed by Barrow, Ellis, Maartens, and
Tsagas [28] and Barrow and Yamamoto [34] as mentioned
in the Introduction.

2. Case 2: A set of closed FLRW universes
in a contracting epoch

This equilibrium point is described by

−1 < ~H < 0; 0 ≤ ~ξ0 ≤ − 2

9 ~H
;

w ¼ 1

3
ð−1þ 9 ~H~ξ0Þ; f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 4 ~H2

p
; (101)

where there is a unique solution for each value of ~H for
−1 < ~H < 0. The eigenvalues are found to be

λ1 ¼ λ2 ¼ 0;

λ3 ¼ λ4 ¼ − ~H − 3~η0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−8þ 9 ~H2 þ 6 ~H ~η0 þ 9~η20

q
;

λ5 ¼ λ6 ¼ − ~H − 3~η0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−8þ 9 ~H2 þ 6 ~H ~η0 þ 9~η20

q
;

λ7 ¼ −
9

2
ð−1þ ~H2Þ~ξ0: (102)

The two zero eigenvalues in Eq. (102) indicate that the
equilibrium point admits a two-dimensional center mani-
fold. However, because of these two zero eigenvalues, the
equilibrium point is nonhyperbolic, and its stability cannot
be determined by linearization methods. We also note
that there are no values for ~H and ~η0 that satisfy Eqs. (101)
and (94) such that λ3;4;5;6;7 < 0 simultaneously. Indeed,
λ3;4;5;6;7 > 0 simultaneously if and only if

0 < ~ξ0 ≤
2

9
; −1 < H < 0;

~η0 ≤ −H
3
− 2

3

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~H2

p
(103)

or
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~ξ0 >
2

9
; − 2

9 ~H
≤ ~H < 0;

~η0 ≤ − ~H
3
− 2

3

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~H2

p
: (104)

Therefore, there is strong evidence to suggest that if
one could find some subset of the domain R7 such that
λ3;4;5;6;7 > 0 while satisfying the parameter conditions in
Eqs. (103) and (104), then this equilibrium point would
represent a local source at least within this subset.

3. Case 3: A set of closed FLRW universes
in an expanding epoch

This equilibrium point is described by

0 < ~H < 1; 0 ≤ ~ξ0 <
4

9 ~H
; w ¼ 1

3
ð−1þ 9 ~H~ξ0Þ;

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 4 ~H2

p
; (105)

where there is a unique solution for each value of ~H for
0 < ~H < 1. The eigenvalues are found to be

λ1 ¼ λ2 ¼ 0;

λ3 ¼ λ4 ¼ − ~H − 3~η0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−8þ 9 ~H2 þ 6 ~H ~η0 þ 9~η20

q
;

λ5 ¼ λ6 ¼ − ~H − 3~η0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−8þ 9 ~H2 þ 6 ~H ~η0 þ 9~η20

q
;

λ7 ¼ −
9

2
ð−1þ ~H2Þ~ξ0: (106)

The two zero eigenvalues in Eq. (108) indicate that the
equilibrium point has associated with it a two-dimensional
center manifold. However, because of these two zero
eigenvalues, the equilibrium point is nonhyperbolic, and
its stability cannot be determined by linearization methods.
We also note that there are no values for ~H and ~η0
that satisfy Eqs. (107) and (94) such that λ3;4;5;6;7 < 0 or
λ3;4;5;6;7 > 0 simultaneously.

4. Case 4: A set of closed FLRW universes
in an expanding epoch

This equilibrium point is described by

0 < ~H < 1; ~ξ0 ¼
4

9 ~H
; w ¼ 1; f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 4 ~H2

p
;

(107)

where there is a unique solution for each value of ~H for
0 < ~H < 1. This equilibrium point only arises for w ¼ 1,
which corresponds to a stiff fluid. The eigenvalues are
found to be

λ1 ¼ λ2 ¼ 0; λ3 ¼
2

~H
− 2 ~H;

λ4 ¼ λ5 ¼ −H − 3~η0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−8þ 9 ~H2 þ 6 ~H ~η0 þ 9~η20

q
;

λ6 ¼ λ7 ¼ − ~H − 3~η0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−8þ 9 ~H2 þ 6 ~H ~η0 þ 9~η20

q
:

(108)

The two zero eigenvalues in Eq. (108) indicate that the
equilibrium point has associated with it a two-dimensional
center manifold. However, because of these two zero
eigenvalues, the equilibrium point is nonhyperbolic, and
its stability cannot be determined by linearization methods.
We also note that there are no values for ~H and ~η0 that
satisfy Eqs. (107) and (94) such that λ3;4;5;6;7 < 0 or
λ3;4;5;6;7 > 0 simultaneously.

G. Global behavior

Complementing the preceding fixed-point analysis, we
wish to obtain some information about the asymptotic
behavior of the dynamical system as τ → �∞. To accom-
plish this, we make use of both the LaSalle invariance
principle and monotonicity principle. According to [1]
(Theorem 4.11), the LaSalle invariance principle for ω-
limit sets is stated as follows. Consider a dynamical system
x0 ¼ fðxÞ on Rn, with flow ϕt. Let S be a closed, bounded,
and positively invariant set of ϕt and let Z be a C1

monotone function. Then ∀ x0 ∈ S, we have that
ωðx0Þ⊆fx ∈ SjZ0 ¼ 0g, where Z0 ¼ ∇Z · f. The extended
LaSalle invariance principle for α-limit sets can be found in
Proposition B.3. in [59]. To use this principle, one simply
considers S to be a closed, bounded, and negatively
invariant set. Then ∀ x0 ∈ S, we have that
αðx0Þ⊆fx ∈ SjZ0 ¼ 0g, where Z0 ¼ ∇Z · f.
The monotonicity principle ([60], Proposition A1) says

if ϕt is a flow onRn with S an invariant set, and if Z: S → R
is a C1 function whose range is the interval ða; bÞ, where
a ∈ R∪ f−∞g, b ∈ R∪ fþ∞g, and a < b, then if Z is
monotone decreasing on orbits in S, for all x ∈ S we have
that ωðxÞ⊆fs ∈ S̄\S∶ limy→sZðyÞ ≠ bg, αðxÞ⊆fs ∈ S̄\S∶
limy→sZðyÞ ≠ ag.
Let us first consider the function

Z1 ¼ ~Ω: (109)

Upon using Eqs. (31), (32), (37), and (38), we see that

Z1
0 ¼ −~η0ð−12þ δþ 12 ~ΩÞ − 1

3
~H½27 ~H~ξ0ð−1þ ~ΩÞ

þ ~Ωð−9þ δþ 9wþ 9 ~Ω − 9w ~ΩÞ�; (110)

where
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δ ¼ ~N2
1 þ ~N2

2 − 2 ~N2
~N3 þ ~N2

3 þ 3ð ~N1
~N2

~N3Þ2=3

− 2 ~N1ð ~N2 þ ~N3Þ: (111)

In the Bianchi I invariant set BðIÞ with ~H ¼ 1, Eq. (110)
becomes

Z1
0 ¼ −3ð−1þ ~ΩÞ½4~η0 þ ð3 ~H~ξ0 þ ~Ω − w ~ΩÞ�: (112)

This is monotone decreasing in two cases. First, if
~η0 ¼ ~ξ0 ¼ 0, then Z1 is monotone decreasing if

ðw ¼ 1; 0 < ~Ω < 1Þ∨ð ~Ω ¼ 0;−1 ≤ w ≤ 1Þ: (113)

Second, in the general viscous case where ~ξ0 ≥ 0, ~η0 ≥ 0,
Z1 is monotone decreasing if

−1 ≤ w ≤ 1; ~Ω ≥ 1: (114)

On the other hand, considering the BðIÞ set with ~H ¼ −1,
Eq. (110) becomes

Z1
0 ¼ −3ð−1þ ~ΩÞ½4~η0 þ 3~ξ0 þ ð−1þ wÞ ~Ω�: (115)

This is monotone decreasing if

~ξ0 ¼ 0; ~η0 ¼ 0; 0 ≤ ~Ω ≤ 1; −1 ≤ w ≤ 1: (116)

By the LaSalle invariance principle and the preceding
fixed-point analysis, we conclude that for any orbit Γ

αðΓÞ ∈ F− ∈ BðIÞ; ωðΓÞ ∈ Fþ ∈ BðIÞ: (117)

We can also conclude that in the expanding epoch, where
~H ¼ 1,

αðΓÞ ∈ J þ ∈ BðIÞ; ~η0 ¼ ~ξ ¼ 0; w ¼ 1: (118)

For the contracting epoch, where ~H ¼ −1, we have that

ωðΓÞ ∈ J − ∈ BðIÞ; ~η0 ¼ ~ξ ¼ 0; w ¼ 1: (119)

Let us now consider the function

Z2 ¼ ð ~N1
~N2

~N3Þ2 (120)

as suggested in [1] (page 149). Upon using Eqs. (28), (29),
(30), and (32), we see that

Z2
0 ¼ 3 ~HZ2ð−9 ~H~ξ0 þ 4Σ̂2 þ ~Ωþ 3w ~ΩÞ: (121)

Therefore, Z2 is strictly monotone decreasing in the
invariant set

S1 ¼ fx∶ − 1 < ~H < 0∧ ~N1;2;3 > 0∧ Σ̂2 > 0∧ ~Ω > 0g;
(122)

where −1=3 ≤ w ≤ 1. The boundary of S1 is the invariant
set

S̄1\S1 ¼ fx∶ ~H ¼ −1g∪ fx∶ ~H ¼ 0g∪ fx∶ ~N1;2;3 ¼ 0g
∪ fx∶ ~Σ2

þ þ ~Σ2− ¼ 0g∪ fx∶ ~Ω ¼ 0g: (123)

Therefore, by the monotonicity principle,

ωðxÞ⊆fx∶ ~N1;2;3 ¼ 0g: (124)

What this shows is that the future asymptotic state of the
BðIXÞ invariant set belongs to the set fx∶ ~N1;2;3 ¼ 0g,
which according to our fixed-point analysis can either
correspond to the Jacobs disc J − or the flat FLRW
universe F−.
Consider the function

Z3 ¼ ~Σ2−; (125)

which was suggested as a monotone function on orbits of
BðIIÞ by Wainwright ([1], page 150). Upon using
Eqs. (27), (32), (37), and (38), and restricting to the
BðIIÞ invariant set (with ~H ¼ 1), we see that

Z3
0 ¼ Z3

�
−12~η0 − 9~ξ0 − 1

3
~N2
1 − 3 ~Ωð1 − wÞ

�
: (126)

Therefore, Z3 is strictly monotone decreasing in the
invariant set

S2 ¼ fx∶ ~Σ− > 0∧ ~N1 > 0∧ ~Ω > 0g: (127)

The boundary of S2 is the invariant set

S̄2\S2 ¼ fx∶ ~Σ− ¼ 0g∪ fx∶ ~N1 ¼ 0g∪ fx∶ ~Ω ¼ 0g: (128)

Therefore, by the monotonicity principle,

ωðxÞ⊆fx∶ ~Σ− ¼ 0g; (129)

αðxÞ⊆fx∶ ~N1 ¼ 0; ~Ω ¼ 0g: (130)

This result shows that although in the full state space the
point PþðIIÞ according to our fixed-point analysis repre-
sented a saddle point, restricting to the Bianchi II shear
invariant set, the point PþðIIÞ is a local sink by the
monotonicity principle.

H. Bifurcations

The dynamical system under study admits some bifur-
cations. That is, some of the equilibrium points found
above change their stability behavior for different values of
the equation of state parameter w, and the bulk and shear
viscosity parameters ~ξ0 and ~η0. A local bifurcation occurs
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FIG. 1 (color online). Dynamical system behavior for ~ξ0 ¼ 0, ~η0 ¼ 1=2, and w ¼ −1=3. The plus sign denotes the equilibrium point
Fþ. The model also isotropizes as can be seen from the last figure, where ~Σ� → 0 as τ → ∞. Numerical solutions were computed for
0 ≤ τ ≤ 1000. For clarity, we have displayed solutions for shorter time scales.
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when the Jacobian matrix of the corresponding equilibrium
point has at least one eigenvalue with zero real part. If this
eigenvalue lies entirely on the real axis, the bifurcation is
known as a steady-state bifurcation.

With respect to local bifurcations, we consider
only hyperbolic equilibrium points. Looking first at
the equilibrium point Fþ, local bifurcations can
occur if
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FIG. 2 (color online). Dynamical system behavior for ~ξ0 ¼ 0, ~η0 ¼ 1=3, and w ¼ 1. The plus sign denotes the equilibrium point F−.
The model also isotropizes as can be seen from the last figure, where ~Σ� → 0 as τ → ∞. Numerical solutions were computed for
0 ≤ τ ≤ 1000. For clarity, we have displayed solutions for shorter time scales.

DYNAMICS OF A CLOSED VISCOUS UNIVERSE PHYSICAL REVIEW D 89, 043518 (2014)

043518-17



−1.5
−1

−0.5
0

0.5
1

1.5

−0.5
−0.4

−0.3
−0.2

−0.1
0

0.1
0.2

0.3
0.4

0.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

FIG. 3 (color online). Dynamical system behavior for ~ξ0 ¼ 0, ~η0 ¼ 1=2, and w ¼ 1=3. The plus sign denotes the equilibrium point
PþðIIÞ. Numerical solutions were computed for 0 ≤ τ ≤ 1000. For clarity, we have displayed solutions for shorter time scales.
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FIG. 4 (color online). Dynamical system behavior for ~ξ0 ¼ 2=9, ~η0 ¼ 0, and w ¼ 1. The plus sign denotes the equilibrium point
PþðIIÞ. Numerical solutions were computed for 0 ≤ τ ≤ 1000. For clarity, we have displayed solutions for shorter time scales.
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0 ≤ ~ξ0 ≤
4

9
; w ¼ 1

3
ð−1þ 9~ξ0Þ (131)

or

~ξ0 ¼ 0; ~η0 ¼ 0; w ¼ 1: (132)

At the equilibrium pointF−, local bifurcations can occur if

~η0 ≥ 0; 0 ≤ ~ξ0 ≤
2

9
; w ¼ 1

3
ð−1 − 9~ξ0Þ; (133)

or

~ξ0 ¼ 0; ~η0 ¼ 0; w ¼ 1: (134)

The only other purely hyperbolic points are P�ðIIÞ,
which as can be seen from the corresponding eigenvalues,
that never admit local bifurcations.

I. Heteroclinic orbits

From the preceding fixed-points analysis, one can obtain
information about heteroclinic orbits produced by the
dynamical system. Heteroclinic orbits are simply orbits
that connect distinct equilibrium points. A very interesting
heteroclinic orbit is generated via the equilibrium points
J �. In the interior of K�, we have

J þ↔J −

where J þ was found to be a local source within Kþ and
J − was found to be a local sink within K−.
Another interesting heteroclinic orbit is one that con-

nects the equilibrium points K�. That is,

Kþ↔K−:

We can also have

where F− is a local source, and K� are saddle points.

J. Mixmaster attractor

We now briefly describe the famous mixmaster attractor
that generically appears in the study of the dynamics of
BðIXÞ models. One typically observes very complex
dynamical behavior, albeit chaotic behavior as such models
are evolved in the past towards K�. As our fixed-point
analysis demonstrated, one can only hope to evolve
towards K� if ~η0 ¼ ~ξ0 ¼ 0. There are numerous studies
in the literature of mixmaster dynamics and chaotic
behavior in perfect-fluid BðIXÞ models, many of which
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FIG. 5 (color online). Dynamical system behavior for ~ξ0 ¼ 0, ~η0 ¼ 0, and w ¼ 1. The plus sign denotes the equilibrium point J þ,
while the diamond denotes the equilibrium point J −. Notice how all of the orbits are repelled by J þ but attracted by J −. Numerical
solutions were computed for 0 ≤ τ ≤ 1000. For clarity, we have displayed solutions for shorter time scales.
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FIG. 6 (color online). Dynamical system behavior for ~ξ0 ¼ 0, ~η0 ¼ 0, and w ¼ 1=3. The circular boundary defines the Kasner circle
Kþ. In the last image, our numerical solutions for Δ as defined in Eq. (142) and ~Ω are displayed. Based on the conjecture discussed
above, these results provide strong evidence that Mþ is indeed a past attractor for the dynamical systems. Numerical solutions were
computed for 0 ≤ τ ≤ −1000. For clarity, we have displayed solutions for shorter time scales. Note how in the first image half-ellipsoids
form in the vertical direction as was predicted by the preceding analysis.
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we have mentioned in the Introduction. The interested
reader should refer to the papers listed there for further
elaboration on the points we make in this subsection.
We begin by noting that in the interior of BðIXÞ, there

exists no equilibrium point that is a well-defined local
source. Following Sec. 6.4 and the references therein in [1],
we attempt to construct a compact invariant set in BðIXÞ ¼
BðIXÞ∪∂BðIXÞ that is conjectured to be a past attractor.
We know from our analysis of the point Kþ, that there are
six families of Taub orbits. Let us consider Eqs. (37) and
(38) in the vacuum boundary, ~Ω ¼ 0. Each family lies on a
half-ellipsoid. The closures of these six half-ellipsoids are
defined as

Eþ
1 ∶ ~Σ2

þ þ ~Σ2− þ 1

12
~N2
1 ¼ 1; ~N1 > 0; ~N2 ¼ ~N3 ¼ 0;

(135)

E−
1 ∶ ~Σ2

þ þ ~Σ2− þ 1

12
~N2
1 ¼ 1; ~N1 < 0; ~N2 ¼ ~N3 ¼ 0;

(136)

Eþ
2 ∶ ~Σ2

þ þ ~Σ2− þ 1

12
~N2
2 ¼ 1; ~N2 > 0; ~N1 ¼ ~N3 ¼ 0;

(137)

E−
2 ∶ ~Σ2

þ þ ~Σ2− þ 1

12
~N2
2 ¼ 1; ~N1 < 0; ~N1 ¼ ~N3 ¼ 0;

(138)

Eþ
3 ∶ ~Σ2

þ þ ~Σ2− þ 1

12
~N2
3 ¼ 1; ~N3 > 0; ~N2 ¼ ~N1 ¼ 0;

(139)

E−
3 ∶ ~Σ2

þ þ ~Σ2− þ 1

12
~N2
3 ¼ 1; ~N3 < 0; ~N2 ¼ ~N1 ¼ 0:

(140)

The Taub orbits Ti, (i ¼ 1, 2, 3) and equilibrium points on
Kþ imply the existence of infinite heteroclinic sequences
that map Kþ onto itself. The chaotic dynamical behavior
can be seen from the basic notions that first, BðIXÞ is
conjectured to be an attractor. Second, since orbits have to
be confined within the region of the attractor and Kþ is a
saddle, orbits will indefinitely leave Kþ and then approach
Kþ via the Taub points. This suggests that in the case where
−1 ≤ w < 1, and ~ξ0 ¼ ~η0 ¼ 0, as τ → −∞ the union ofKþ
and the family of Taub orbits is the past attractor of the
dynamical system. Specifically, we have that

Mþ∶ Eþ
1 ∪Eþ

2 ∪Eþ
3 ; (141)

where Mþ denotes the mixmaster attractor. Let us addi-
tionally define the scalar quantity

Δ ¼ ð ~N1
~N2Þ2 þ ð ~N2

~N3Þ2 þ ð ~N3
~N1Þ2: (142)

Showing that Mþ is indeed an attractor requires one to
show that both Δ and ~Ω vanish as τ → −∞. In the next
section, we perform some numerical experiments to test
this hypothesis.

VI. NUMERICAL SOLUTIONS

In this section, we perform numerical experiments to
complement the analysis of the dynamical system in the
previous sections. For all of the numerical experiments,
initial conditions denoted by asterisks in the figures were
chosen such that Eqs. (20) and (37) were satisfied. The
goal of this section is to complement the preceding
stability analysis of the equilibrium points with extensive
numerical experiments in order to confirm that the local
results are in fact global in nature. The details of the
parameters used are described in the captions of the
respective figures and are based on the fixed-point
analysis that characterized the stability of the equilibrium
points in the different regions of the parameter
space f~η0; ~ξ0; w∶ ~η0 ≥ 0; ~ξ0 ≥ 0;−1 ≤ w ≤ 1g.
We display in Figs. 1 and 2 the results of a numerical

experiment that show that F� are local sinks of the
system.
In Figs. 3 and 4, we display the results of a numerical

experiment that show that the points P�ðIIÞ correspond to
saddles of the system.
In Fig. 5, we display the results of a numerical experi-

ment that show that the Jacobs disc set of equilibrium
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FIG. 7 (color online). Dynamical system behavior for ~ξ0 ¼ 0,
~η0 ¼ 0, and w ¼ 1=3. Our numerical solutions for Δ as defined in
Eq. (142) and ~Ω are displayed. Based on the conjecture discussed
above, these results provide strong evidence that Mþ is indeed a
past attractor for the dynamical systems. Numerical solutions
were computed for 0 ≤ τ ≤ −1000. For clarity, we have dis-
played solutions for shorter time scales.
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points J � correspond to a local source and sink, respec-
tively. The same figure also shows the heteroclinic orbit
behavior between J þ and J −.
In Figs. 6 and 7 we display the results of a numerical

experiment that show the mixmaster oscillatory behavior as
the past orbits approach Kþ.
In Fig. 8 we display the results of a numerical experiment

that shows the heteroclinic orbits between Kþ and K−.

VII. CONCLUSIONS

We have presented in this paper a comprehensive
analysis of the dynamical behavior of a Bianchi type IX
viscous cosmology. We began by completing a detailed
fixed-point analysis which gave the local sinks, sources,
and saddles of the dynamical system. We then proceeded to
analyze the global dynamics by finding the α- and ω-limit

sets which gave an idea of the past and future asymptotic
behavior of the system. The fixed points found were a flat
FLRW solution, Bianchi type II solution, Kasner circle,
Jacobs disc, Bianchi type VII0 solutions, and several closed
FLRW solutions in addition to the Einstein static universe
solution. Each equilibrium point was described in both its
expanding and contracting epochs.
With respect to past asymptotic states, we were able to

conclude that the Jacobs disc in the expanding epoch was a
source of the system along with the flat FLRW solution in a
contracting epoch. With respect to future asymptotic states,
we were able to show that the flat FLRW solution in an
expanding epoch along with the Jacobs disc in the
contracting epoch were sinks of the system. We were also
able to demonstrate a new result with respect to the Einstein
static universe. Namely, we gave certain conditions on the
parameter space such that the Einstein static universe has a
stable subspace. We were, however, not able to conclu-
sively say anything about whether a closed FLRW model
could be a past or future asymptotic state of the model.
The flat FLRW solution is clearly of primary importance

with respect to modeling the present-day universe, which is
observed to be very close to flat. We gave conditions in the
parameter space for which this solution represents a saddle
and a sink. When it is a saddle, the equilibrium point attracts
along its stable manifold and repels along its unstable
manifold. Therefore, some orbits will have an initial attrac-
tion to this point, abut will eventually be repelled by it. In the
case when it was found to be a sink, all orbits approach the
equilibrium point in the future. Therefore, there exists a time
period and two separate configurations for which our
cosmological model will isotropize and be compatible with
present-day observations of a high degree of isotropy in the
cosmic microwave background.
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