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We constrain several models of the early Universe that predict a statistical anisotropy of the cosmic
microwave background (CMB) sky. We make use of WMAP9 maps deconvolved with beam asymmetries.
As compared to previous releases of WMAP data, they do not exhibit the anomalously large quadrupole of
statistical anisotropy. This allows us to strengthen the limits on the parameters of models established earlier
in the literature. In particular, the amplitude of the special quadrupole is constrained as jg�j < 0.072 at
95% C.L. (−0.046 < g� < 0.048 at 68% C.L.) independently of the preferred direction in the sky. The
upper limit is obtained on the total number of e-folds in anisotropic inflation with the Maxwellian term
nonminimally coupled to the inflaton, namely Ntot < NCMB þ 82 at 95% C.L. (þ14 at 68% C.L.) for
NCMB ¼ 60. We also constrain models of the (pseudo)conformal universe. The strongest constraint is
obtained for spectator scenarios involving a long stage of subhorizon evolution after conformal rolling,
which reads h2 < 0.006 at 95% C.L., in terms of the relevant parameter. The analogous constraint is much
weaker in dynamical models, e.g., Galilean genesis.
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I. INTRODUCTION

The statistical isotropy of the cosmic microwave back-
ground (CMB) is one of the central pillars in modern
cosmology. Manifesting the direction independence of the
primordial spectrum at the onset of the hot era, it is
renowned for its robustness against modifications in the
bulk of inflationary models. Simple reasoning usually
invokes the cosmic no-hair conjecture [1] which states
the rapid isotropization of the Universe in the presence of a
positive constant energy density. Scalar fluctuations (e.g.,
carried by the inflaton) evolve in the rotationally invariant
metric and acquire a direction-independent spectrum, giving
rise to the statistical isotropy of CMB temperature fluctua-
tions. Clearly, a violation of this property observed in the
CMB sky would indicate a nontrivial extension of currently
conventional cosmology.
One way to break statistical isotropy is by introducing

vector fields with nonvanishing vacuum expectation values
[2–5]. For example, in the Ackermann-Carroll-Wise
(ACW) model [2], the idea is to add a massive vector
with a fixed space-like norm. This allows for the aniso-
tropic evolution of the Universe which introduced the
direction dependence into the power spectrum of the
primordial curvature perturbation ζ. For future conven-
ience, we write it in the generic form

PζðkÞ ¼ PζðkÞ
�
1þ aðkÞ

X
LM

qLMYLMðk̂Þ
�
: (1)

Here k̂ is the direction associated with the cosmological
wave vector k, the YLM’s are spherical harmonics, the
qLM’s are coefficients parametrizing the statistical
anisotropy, and aðkÞ is the direction-independent ampli-
tude. In the ACW model, the amplitude aðkÞ is constant,
i.e., it can be tuned to unity without loss of generality.
Furthermore, the predicted statistical anisotropy is of the
quadrupole type, i.e., only the coefficients q2M survive,
which are not independent. In particular, by an appropriate
choice of the reference frame, one can tune all the
coefficients q2M (except for q20) to zero. The z axis of
this reference frame is associated with the preferred
direction in the sky. Hereafter, we use the term special
quadrupole for this type of statistical anisotropy.
Soon afterwards, it was realized that the ACW model is

unstable [6]. This is due to the longitudinal component of
the massive vector that propagates as a ghost in the
inflationary background. Similarly, all vector models of
inflation violating gauge U(1) symmetry share the same
problem [6]. This problem does not arise in the models of
Ref. [7] that introduce the Maxwellian term modified by the
explicit coupling to the inflaton. Remarkably, for quite a
wide range of coupling functions and inflaton potentials,
one can achieve the anisotropic expansion of the Universe
[7] in a ghost-free manner [8]. (See also Refs. [9,10] for
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reviews.) The outcome of anisotropic inflation is still the
direction dependence of the ACW type, while the preferred
direction is associated with the electric component of the
electromagnetic field. Interestingly, the amplitude of the
special quadrupole relies on the overall number of e-folds
during inflation [11]. (See also Ref. [12].) In turn, this
means that the duration of inflation in those models can be
strongly constrained with the CMB data.
Statistical anisotropy may follow naturally from alter-

native frameworks, e.g., the (pseudo)conformal universe
[13–15]. Minimal models of this type incorporate at least
two fields: one—which we call ρ—with the conformal
weight Δ ≠ 0, and the zero-weighted conformal field σ. In
particular, the conformal rolling scenario [13] and Galilean
genesis [14]—two known incarnations of the (pseudo)
conformal universe—deal with the weight Δ ¼ 1 field ρ.
We focus on this case in the present paper. The field ρ is
then assumed to have the time-dependent solution

ρ0 ¼
1

hðt� − tÞ ; (2)

spontaneously breaking the conformal group SO(4,2) down
to the de Sitter subgroup SO(4,1). The constant h is the
only relevant parameter of the conformal rolling scenario
or Galilean genesis. The symmetry-breaking pattern
SOð4; 2Þ → SOð4; 1Þ fixes the phenomenological proper-
ties of the weight-0 field perturbations δσ evolving in the
background (2) created by the field ρ. In particular—
regardless of the precise details of the microscopic physics
—one ends up with the scale-invariant power spectrum of
the perturbations δσ [15]. Thus, they may serve as the
source of primordial fluctuations in the standard matter at
the onset of the radiation-dominated (RD) stage.
The setup of the (pseudo)conformal universe leads

unavoidably to a nonzero statistical anisotropy [16–18].
This originates from the interaction between weight-0 and
weight-1 perturbations. There are two possible types of
predictions depending on the state of cosmological pertur-
bations at times when conformal symmetry becomes
irrelevant. If they are already superhorizon at these times,
the resulting direction dependence is of the quadrupole type
akin to anisotropic inflation [16,18]. The structure of the
statistical anisotropy is particularly rich in the situation with
subhorizon cosmological perturbations [17]. In that case,
all the coefficients qLM with even L are generically nonzero
in Eq. (1). In both cases, the direction dependence is
governed by the constant h. This gives a simple idea of how
to constrain the models of interest from the nonobservation
of statistical anisotropy in the CMB sky.
Our main goal in the present paper is to constrain models

of the early Universe that predict statistical anisotropy. We
do this in the same manner as in our previous paper [19],
where the conformal rolling scenario was constrained by
making use of the WMAP7 data. Namely, we apply

quadratic maximum likelihood (QML)-based estimators
[20] to the CMB data and establish upper limits on model
parameters. In the present paper, we turn to the WMAP9
maps. With the latter, there is a strong reason to anticipate
much tighter constraints. We expect that the WMAP9 data
lack the anomalously large quadrupolar statistical
anisotropy observed in the W band of the 5-year release
[21,22]. The anomaly was first interpreted as a hint towards
the ACW model. However, the preferred direction of the
signal was found to be highly aligned with poles of the
ecliptic plane [20–22]. Its frequency dependence was also
suspicious: the signal so prominent in the W band was
much weaker in the V band [20]. Finally, results from
alternative searches, i.e., large-scale structure surveys,
favor statistically isotropic primordial perturbations [23].
These three points strongly indicate the systematic origin of
the signal detected. In Ref. [20], it was suggested that beam
asymmetries not accounted for in the previous analysis
could strongly bias primordial statistical anisotropy.
Indeed, upon the inclusion of beam asymmetries into the
computational scheme, the large quadrupole statistical
anisotropy vanishes. This was first shown in Ref. [24]
for the W band of the WMAP7 data. To deal with this
effect in the 9-year final data release, the WMAP
Collaboration has produced the beam-symmetrized
temperature maps [25].
This paper is organized as follows. In Sec. II we review

vector models of inflation predicting statistical anisotropy.
We focus on the particular class of scenarios with the
Maxwellian term nonminimally coupled to the inflaton. We
review models of the (pseudo)conformal universe in
Sec. III. In Sec. IV we establish the estimators which
are most appropriate for our constraining purposes. In
Sec. V we apply the estimators to models of interest and
obtain constraints on their parameters. We compare our
constraints with similar bounds obtained from the Planck
data in Sec. VI.

II. ANISOTROPIC INFLATION

In this section we briefly discuss inflationary scenarios
which lead to statistical anisotropy. We focus on a par-
ticular class of slow-roll inflation that incorporates Abelian
gauge fields with U(1) gauge symmetry. The healthy
extension of inflation in terms of vectors is achieved by
the following modification of the standard Maxwellian
term [7]:

SA ¼ − 1

4

Z
d4x

ffiffiffiffiffiffi−gp
· f2ðϕÞ · FμνFμν:

Here fðϕÞ is some function of the inflaton φ, and Fμν is the
field strength of the vector field, Fμν ¼ ∂μAν − ∂νAμ. The
main statement of Ref. [7] is that for quite a wide range of
kinetic gauge functions fðϕÞ there is a chance of obtaining
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a prolonged anisotropic evolution. That is, the space-time
metric tends to the attractor solution

ds2 ¼ dt2 − e2Ht½e−4Σtdx2 þ e2Σtðdy2 þ dz2Þ�: (3)

Here Σ is the parameter which measures the deviation from
the rotational invariance. Furthermore, the evolution of
inflaton fluctuations in this “hairy” background (3) leads to
a directional dependence of the ACW type in the primordial
power spectrum. Here we write it in the conventional form,

PðkÞ ¼ PðkÞð1þ g�cos2θÞ; (4)

with θ being the angle between the wave vector k and
the direction Êcl of the electric field Ecl generated during
the inflationary stage. The amplitude g� is sourced by the
electric field, i.e., g� ∼ E2

cl, as we discuss in more detail in
what follows. The relationship between the power spectrum
(4) and the generic one (1) is given by the relations

q2M ¼ 8πg�
15

Y�
2MðÊÞ; g2� ¼

45

16π

X
M

jq2Mj2; (5)

which are valid in the approximation of a small amplitude
g� ≪ 1.1 Note that aðkÞ ¼ 1 in Eq. (1). To avoid confusion
in the future, let us make one remark here. Though we use
the terms “electric” and “magnetic,” our definitions of the
corresponding fields are different from the conventional
ones. Namely [11],

Ei ¼ − hfi
a2

A0
i; Bi ¼

hfi
a2

ϵijk∂jAk;

where hfi denotes the expectation value of the function
fðϕÞ, and a prime denotes the derivative with respect to
conformal time. With these definitions, the electromagnetic
energy density is given by the standard expression ρA ¼
E2þB2

2
at all times.

Let us discuss briefly the conditions at which statistical
anisotropy is generated. In the situation with the standard
Maxwellian term, i.e., provided that hfi ¼ 1, electric and
magnetic fields fall down rapidly with time, as does the
electromagnetic energy density ρA, which redshifts away as
ρA ∝ a−4. This standard prediction can be avoided given
the nontrivial structure of the function fðϕÞ. A constant
electric field is generated for the class of functions fðϕÞ
defined by [7]

fðϕÞ ¼ e
16cπ
M2
Pl

R
V
Vϕ

dϕ
; c > 1;

where VðϕÞ is the inflaton potential. In Ref. [7], the case
c ¼ 1 was argued to be the critical one, i.e., for c < 1 the
Universe is statistically isotropic and so is the primordial
power spectrum. On the other hand, for c > 1 one finds the
nontrivial attractor solution for the electric field and
the anisotropic metric of the form (3). The deviation from
the rotational invariance is measured by [7,26]

Σ
H

¼ 1

3

c − 1

c
ϵ; (6)

where ϵ is the slow-roll parameter. The amplitude of
statistical anisotropy is related to the violation of rotational
invariance, i.e., g� ∝ Σ=H.
In fact, even for the case c ¼ 1, one finds the anisotropic

power spectrum [11]. This is due to the enhancement of the
infrared fluctuations of the gauge field by the standard
inflationary mechanism. These quantum fluctuations
behave like the classical field after they exit the horizon.
Consequently, modes which exit the horizon before the
time NCMB ≈ 60 in the number of e-folds act as an
additional anisotropic background for inflaton fluctuations.
To account for this new effect (pointed out in Ref. [11]),
one should study the evolution of inflaton fluctuations in
the overall classical electric field,

Ecl ¼ E0 þEIR:

Here E0 follows from the equation of motion (e.o.m.),
while EIR originates from quantum fluctuations, which get
enhanced and classicalize before the time NCMB when
inflaton perturbations leave the horizon (hence the sub-
script “IR”). Note that EIR is a random Gaussian field
characterized by zero mean and variance [11],

hE2
IRi ¼

9H4

2π2
N: (7)

Here N is the number of e-folds from the beginning of
inflation until the time NCMB, i.e., N ¼ Ntot − NCMB, with
Ntot being the overall number of e-folds during inflation.
Taking into account both sources of statistical

anisotropy, one writes the amplitude g� as follows [11]:

g� ¼ − 24

ϵ
·
E2
cl

VðϕÞ · N
2
CMB: (8)

(See also Ref. [12].) Quite unexpectedly, one observes a
large magnitude of statistical anisotropy [7,11]. So, the
order-one amplitude g� ¼ Oð1Þ is obtained already for the
ratio ρA=V as tiny asOð10−5Þ. The point is that one expects
a much larger energy density ρA on rather general grounds.
Indeed, according to its quantum origin, we note that the

1Upon substituting the first relation of Eq. (5) into Eq. (1),
we obtain the power spectrum PζðkÞ ¼ PζðkÞð1þ g�cos2θ−
1=3 · g�Þ, which is somewhat different from the one given by
Eq. (4). The difference, however, is the direction-independent
piece, which can be absorbed into the redefinition of the spectrum
PζðkÞ.
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factor N in Eq. (7) is considered to be a large number in
conventional inflationary scenarios, which gives rise to the
naturally large amplitude g�. To handle the situation, one
assumes a tuned duration of inflation, i.e.,Ntot ∼ NCMB. We
reiterate this statement in the future, when imposing
constraints on model parameters. Furthermore, the purely
classical field E0 is related to the potential VðϕÞ by

E2
0 ¼

c − 1

c
VðϕÞϵ: (9)

Substituting this into Eq. (8), one observes that one needs
an extremely tuned value of the constant c. Namely,
the order-one amplitude g� is obtained provided that
c − 1 ∼ 10−5.
To summarize, the special quadrupole predicted in the

anisotropic inflation has a twofold origin, which translates
into the twofold treatment of the amplitude g�. If the purely
classical effect is most relevant, the quantity g� is directly
related to the intrinsic parameters of the model. There is no
direct matching provided that the amplitude g� is sourced
by the random field EIR. Barring fine-tuning, we focus on
these two situations in what follows:

(I) E0 ≫ EIR, and, consequently, Ecl → E0 is achieved
in the formal limit Ntot → NCMB. In this case, by
substituting Eq. (9) into Eq. (8) we obtain for the
amplitude

g� ¼ −24 · c − 1

c
· N2

CMB: (10)

(II) E0 ≪ EIR, and, consequently, Ecl → EIR, which
occurs for c → 1.

We write the corresponding amplitude as follows:

g� ¼ −a2; a ¼ 24 · Δζ · NCMB ·
EIRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hE2

IRi1
p ; (11)

where we make use of the slow-roll relations

H2 ¼ 8π

3M2
Pl

VðϕÞ; Δζ ≡
ffiffiffiffiffiffi
Pζ

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
H4

4π2ϕ
: 2

s
;

_ϕ2

2V
¼ ϵ

3
:

The subscript “1” denotes the quantity hE2
IRi formally

calculated for the total number of e-foldsNtot ¼ NCMB þ 1.
The convenience of the vector a introduced in Eq. (11) is
that its components ai obey Gaussian statistics (unlike the
amplitude g�). Namely, they have zero means and variances
given by

ha2i i ¼ 96 · Pζ · N2
CMB · N: (12)

Considering the cases I and II separately is natural, since
the fields E0 and EIR are largely unrelated to each other

barring scenarios where two electric fields accidentally
cancel each other with a high accuracy. With this quali-
fication case I results in the constraint on the parameter c,
while case II leads to an upper limit on the duration of
inflation.
Equations (5), (10), and (12) will be the starting point of

our discussion in Sec. V, when constraining anisotropic
inflation.

III. THE (PSEUDO)CONFORMAL UNIVERSE

Generating statistical anisotropy at inflation requires
strong assumptions about the inflationary stage, at least
in the model we have discussed. On the other hand, a
violation of statistical isotropy may arise naturally in
alternative frameworks, e.g., the (pseudo)conformal uni-
verse. In Secs. III A and III B, we briefly summarize some
basic features inherent to this cosmological picture, while
referring to Refs. [13–15] for detailed discussions.
Predictions for statistical anisotropy are reviewed in
Secs. III C and III D.

A. Basic assumptions and the scale-invariant
power spectrum

In the (pseudo)conformal universe, the observed flatness
of the primordial power spectrum is due to conformal
symmetry at very early stages of the Universe. In more
detail, there are several conditions to be satisfied [15]:
(i) The space-time is described by the nearly Minkowski

metric at very early times.
(ii) The matter in the Universe is in the conformal field

theory state.
(iii) Among the field contents of the Universe there are at

least two scalars: one with the conformal weightΔ ≠ 0
and another with the weight Δ ¼ 0.

(iv) Classical equations of motion admit the nontrivial
time-dependent solution of the field with Δ ≠ 0.

(v) The action is invariant under the shift of the weight-0
field, σ → σ þ c.

Given these conditions, weight-0 field perturbations evolv-
ing in the background created by the Δ ≠ 0 conformal field
acquire a scale-invariant power spectrum. On the other
hand, relaxing one or more of the above conditions may
lead to the small scalar tilt [15,27], as required by the
experimental data [28].
Specifying to known realizations of the (pseudo)con-

formal universe, we choose the nonzero conformal weight
to be equal to 1. Then, the generic action of the (pseudo)
conformal universe can be written in the form

S ¼ SGþM þ Sρ þ
1

2

Z
d4x

ffiffiffiffiffiffi−gp
ρ2ð∂σÞ2; (13)

where SGþM is the action for gravity and some matter pre-
existing in the early Universe. The third term on the r.h.s.
describes the minimal conformal coupling of the weight-0
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field σ to the field ρ, while the second term encodes the
dynamics of the field ρ, which it has on its own. By
assumption, the action Sρ allows for the classical solution
of the field ρ given by Eq. (2), where the time dependence is
fixed by conformal invariance. We recall that the parameter
h entering Eq. (2) is the dimensionless constant originating
from the action Sρ, while t� is an arbitrary constant of
integration which has the meaning of the end-of-roll time.
The solution (2) spontaneously breaks the conformal

group SO(4,2) down to the de Sitter subgroup SO(4,1) [15].
Interestingly, this symmetry-breaking pattern uniquely
determines the phenomenological properties of perturba-
tions of the field σ. Namely, independently of the details of
the microscopic physics, the field σ acquires the power
spectrum of the Harrison-Zel’dovich type [15]. To show
this explicitly, one introduces the notation χ ¼ ρ0δσ. From
Eq. (13), one derives the e.o.m. for the field χ,

χ̈ − ∂i∂iχ − 2h2ρ20χ ¼ 0: (14)

(The unit scale factor a ¼ 1 is assumed here). We observe
that with the classical background ρ0 as in Eq. (2), the
e.o.m. (14) coincides with that of the massless scalar field
in the de Sitter background. Hence, the result is the same,
namely, a scale-invariant power spectrum which reads in
terms of σ perturbations [13–15]

Pδσ ¼
h2

4π2
:

We reiterate that the scale invariance as well as the results
summarized in the next subsections are largely independent
of the details of the microscopic physics. So far, two
concrete models have been proposed. These are the
conformal rolling scenario [13] and Galilean genesis [14].
The former represents perhaps the simplest realization of

the (pseudo)conformal universe. There the field ρ is a scalar
with the standard kinetic term rolling down the negative
quartic potential. The action for this rolling field is given
by [13]

Sρ ¼
Z

d4x
ffiffiffiffiffiffi−gp ½ð∂ρÞ2 þ h2ρ4�: (15)

It is straightforward to show that the classical field ρ has an
attractor solution given by Eq. (2). The conformal rolling
scenario is natural from both the dynamical and spectator
prospectives. In the former situation, the Universe driven
by the field ρ undergoes a slow contraction [15] akin to
ekpyrotic scenarios [29]. Alternatively, one treats the field ρ
as a spectator. In that case, the Minkowski metric can be
imposed “by hand.” The other possibility discussed in the
original proposal of the conformal rolling scenario [13] is
to conformally couple the spectator field ρ to gravity. The
background evolution of the Universe is then allowed to be
arbitrary during the conformal phase. In what follows, we

assume the minimal coupling to gravity with minimal loss
of generality.
Galilean genesis is the other example of a (pseudo)

conformal universe model [14]. Its action is given by

Sπ¼
Z
d4x

ffiffiffiffiffiffi−gp �
−f2e2πð∂πÞ2þ f3

Λ3
G
ð∂πÞ2□πþ f3

2Λ3
G
ð∂πÞ4

�
;

where the field π, the Galileon, is defined by ρ ¼ feπ.
Despite the higher-derivative structure of the Galilean
genesis action, the e.o.m. is second order in derivatives
of the field π. Moreover, the e.o.m. admits a solution of the
form (2). In fact, the correspondence between Galilean
genesis and the conformal rolling scenario is much deeper:
the predictions of the two models are the same modulo the
replacement

h2 ↔
2

3

Λ3
G

f3
: (16)

Note that the Galileon π is naturally treated as a dynamical
field. Driven by the field π, the Universe is nearly static at
very early times, but slowly expands. Thus, the first
condition outlined in the beginning of this section is
satisfied automatically, at least at early times.

B. Weight-0 perturbations: next-to-leading order

The interaction between weight-0 and weight-1 field
perturbations sources nontrivial phenomenology in
(pseudo)conformal universe models [16–18,30]. In par-
ticular, it gives rise to some amount of statistical anisotropy.
Perturbations of the field ρ have a red power spectrum

whose form is fixed by the symmetry-breaking pattern
SOð4; 2Þ → SOð4; 1Þ. As discussed in Refs. [13–16], they
can be absorbed into the redefinition of the end-of-roll time
t�, i.e.,

ρ ∝
1

t�ðxÞ − t
: (17)

Here

t�ðxÞ ¼ t� þ δt�ðxÞ;
and the shift of time δt�ðxÞ is the random field with the red
power spectrum

hδt2�ðxÞi ∝ h2
Z

dp
p2

;

where p ¼ jpj are wave numbers characterizing the Fourier
modes of the field ρ. Clearly, the shift δt� as it stands is
irrelevant from the physical point of view, since it can be
absorbed into the redefinition of the end-of-roll time t�.
Interesting effects appear once we consider the spatial
variation of t�ðxÞ. It is convenient to introduce the notation
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vi ¼ −∂it�ðxÞ;

while keeping the standard notation for the second deriva-
tive, i.e., ∂i∂jt�. The field v is a random Gaussian field with
zero mean and variance,

hv2i i ¼
3h2

8π2
ln
H0

Λ
: (18)

Here H0 is the present Hubble rate; Λ is an infrared cutoff.
To account for the interaction with long-ranged radial
perturbations, one studies the evolution of weight-0 per-
turbations in the inhomogeneous background (17). This
calculation was done in Ref. [16] including corrections of
the orders ∂i∂jt�=k and v2. The result for the perturbations
δσ in the late-time regime kðt� − tÞ ≪ 1 is

δσðx; ηÞ ¼
Z

d3kffiffiffi
k

p h

4π3=2γðkþ kvÞ
× eikx−ikt�ðxÞ

�
1− π

2k

kikj
k2

∂i∂jt� þ
π

6k
∂i∂it�

�
Ak

þH:c: (19)

Here γ ¼ ð1 − v2Þ−1=2, and the expansion to order v2 is
understood; Ak is the annihilation operator for the pertur-
bations δσ. Note that perturbations of the weight-0 field σ
remain frozen out until the end of conformal rolling.
After conformal symmetries get broken, the form of the

solution (19) is no longer protected. Still, there is the option
that cosmological modes of interest are already super-
horizon at this time, and the perturbations δσ remain
unchanged until the RD stage. In the nomenclature of
Ref. [19], this is “sub-scenario A.”Note that sub-scenario A
is natural from both the dynamical and spectator prospec-
tives. Alternatively, the cosmological perturbations δσ may
be subhorizon by the end of the roll. In that case, the
perturbations δσ evolve before the beginning of the hot era.
This option is not particularly natural in dynamical
models, but can be well accommodated in spectator
versions of the (pseudo)conformal universe. We call this
option “sub-scenario B.”
The two sub-scenarios lead to drastically different

predictions for statistical anisotropy, as we discuss below.

C. Sub-scenario A

In sub-scenario A, the primordial power spectrum of
scalar perturbations is derived directly from Eq. (19). For
reasons which will become clear shortly, we write it up to
the quadratic order in the constant h,

PζðkÞ ¼ PζðkÞ½1þQ1ðkÞ þQ2ðkÞ�: (20)

Here Q1ðkÞ is the leading-order contribution, which is
already nonzero at the linear order in h [16,18],

Q1ðkÞ ¼ − π

k
k̂ik̂j∂i∂jt�: (21)

This encodes a statistical anisotropy of the general quadru-
pole type in contrast to the inflationary predictions of
Sec. II. The third term in the square brackets in Eq. (20) is
given by [16,18]

Q2ðkÞ ¼ − 3

2
vivjk̂ik̂j: (22)

The direction dependence present here is of the special
quadrupole type akin to inflation with vector fields. Note its
quadratic dependence on the “velocity,” which implies the
suppression by the additional power of the constant h as
compared to the contribution (21). This, however, does not
mean that the special quadrupole can be ignored in the data
analysis. Moreover, if the constant h is not particularly
small, the term (22) effectively makes a larger imprint on
the CMB sky than the general quadrupole with the
amplitude decreasing as k−1. At the level of cosmological
measurements, the latter property translates into the sup-
pression at large CMB multipole number l ∝ H0k−1. As a
result, we have low statistics for the multipoles that are
relevant in this analysis, and hence a very weak constraint
on the parameter h from the nonobservation of the general
quadrupole [19]. We will return to this discussion in Sec. V,
when constraining sub-scenario A.
Let us rewrite Eq. (21) in the conventional form,

Q1ðkÞ ¼ aðkÞ
X
M

q2MY2Mðk̂Þ: (23)

Here q2M are random Gaussian quantities with zero means
and variances,

hq2Mq�2M0 i ¼ πh2

25
δMM0 ; (24)

while the direction-independent amplitude aðkÞ is given by

aðkÞ ¼ H0k−1: (25)

On the other hand, the special quadrupole corresponding
to the subleading-order statistical anisotropy is character-
ized by the scale-independent amplitude

g� ¼ − 3

2
v2; (26)

and the preferred direction is associated with the unit
random vector v̂ ¼ v=v. Remarkably, this prediction is very
similar to the statistical anisotropy following from case II of
anisotropic inflation, sourced by the Gaussian random
vector EIR. Formally equating the amplitudes (11) and
(26), and using Eqs. (12) and (18), we conclude that the
duality holds up to the replacement
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h2 ln
H0

Λ
↔

512π2

3
PζN2

CMBN: (27)

We exploit this duality when constraining sub-scenario A
in Sec. V.

D. Sub-scenario B

If cosmological modes are subhorizon by the end of the
roll, they proceed to evolve at the so-called intermediate
stage [17] which ends as modes of interest leave the
horizon. In the conformal rolling scenario, the end of
the roll is realized by relaxing the form of the potential in
Eq. (15), so that it has a minimum at some large field value
ρ ¼ f. After the field ρ reaches its minimum, the field σ
evolves as the massless scalar minimally coupled to gravity.
We claim that the evolution during the intermediate stage is
long enough, i.e., r≡ t1 − t� ≫ k−1, where t1 is the time
when the perturbations δσ get frozen out (in the conven-
tional sense). Second, cosmological evolution at the inter-
mediate stage must be described by the nearly Minkowski
metric. Otherwise, the flat spectrum of perturbations
generated by the end of the conformal phase would be
grossly modified. With these assumptions, the dynamics at
the intermediate stage is fairly nontrivial, and the final
expression for the perturbations δσ is quite complicated.
Here we simply write down the result for the power
spectrum of primordial scalar perturbations [17],

PζðkÞ ¼ PζðkÞ½1þ nkðvðnkrÞ − vð−nkrÞÞ�:

Remarkably, the direction dependence present here is
nonzero already at the linear order in the constant h.
Moreover, it encodes the statistical anisotropy of all even
multipoles starting from the quadrupole of the general type,
i.e., all the coefficients qLM with even L are nonzero in
Eq. (1). They are random Gaussian variables with zero
means and variances given by [17]

hqLMq�L0M0 i≡QLδLL0δMM0 ¼ 3

π

h2

ðL − 1ÞðLþ 2Þ δLL0δMM0 :

(28)

Remarkably, the amplitude aðkÞ does not depend on the
wave number k, i.e., aðkÞ ¼ 1.
The prediction of sub-scenario B for statistical

anisotropy is in sharp contrast to that of inflationary
scenarios.

IV. ESTIMATORS

As the first step, we discuss estimators for the amplitudes
qLM entering the primordial power spectrum (1). Following
Ref. [20], we make use of the QML methodology. This
technique was argued to be in good agreement with the
exact likelihood methods applied to the search for the

statistical anisotropy with the WMAP5 data [21,22]. In our
previous paper, we applied QML-based estimators to the
7-year release of the WMAP data and constrained the
conformal rolling scenario from the nonobservation of
statistical anisotropy.
Let us recall the main ideas behind the QML estimator.

One starts with the log-likelihood L of the observed sky Θ̂
with respect to the coefficients qLM of statistical anisotropy.
Assuming that these parameters are small enough, one
expands the log-likelihood up to the quadratic order in the
qLM’s,

LðΘ̂jqÞ ¼ L0 þ q† ∂L
∂q†

����
0

þ 1

2
q†

	 ∂2L
∂q†∂q


����
0

q; (29)

where the subscript “0” denotes that corresponding quan-
tities are calculated in the absence of statistical anisotropy.
In Eq. (29) we replaced the second derivative of the log-
likelihood by its expectation value. The QML estimator for
q is obtained by setting the derivative of the quadratic
log-likelihood to zero with respect to q†,

q ¼ F−1 ∂L
∂q†

����
0

: (30)

Here F is the Fisher matrix defined as

F≡
	∂L
∂q

∂L
∂q†


����
0

¼ −
	 ∂2L
∂q†∂q


����
0

:

The equality here follows from the normalization condition
for the likelihood.
To concretize the form of the estimator, we assume

Gaussian temperature fluctuations. The log-likelihood then
reads

−LðΘ̂jqÞj0 ¼
1

2
Θ̂†C−1Θ̂þ 1

2
ln detC; (31)

where C denotes the covariance matrix incorporating the
theoretical covariance as well as the instrumental noise,
C ¼ SþN. The first derivative of the log-likelihood (31) is
given by

∂L
∂q† ¼

1

2
Θ̄† ∂C

∂q† Θ̄ − 1

2

	
Θ̄† ∂C

∂q† Θ̄


: (32)

The vector Θ̄ represents the collection of CMB temperature
coefficients filtered with the inverse isotropic covariance,

Θ̄ ¼ ðSi þNÞ−1Θ̂: (33)

Here Si is the theoretical covariance calculated in the
absence of statistical anisotropy,
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Silm;l0m0 ¼ Clδll0δmm0 ; (34)

with the Cl’s representing the standard angular power
spectrum. The derivative of the covariance with respect
to the coefficients q�LM is given by

∂Clm;l0m0

∂q�LM ¼ il
0−lCll0

Z
dΩkY�

lmðk̂ÞYl0m0 ðk̂ÞY�
LMðk̂Þ; (35)

where

Cll0 ¼ 4π

Z
d ln kΔlðkÞΔl0 ðkÞaðkÞPζðkÞ; (36)

and ΔlðkÞ is a transfer function. For the particular case of
l ¼ l0 and a constant amplitude aðkÞ ¼ 1, the coefficients
Cll0 reduce to the angular power spectrum Cl. Equation (35)
follows from the expression for the theoretical covariance S
which we write here for future reference,

Slm;l0m0 ¼ 4πil
0−l

Z
dk
k3

Y�
lmðk̂ÞYl0m0 ðk̂ÞΔlðkÞΔl0 ðkÞPζðkÞ:

(37)

It takes the diagonal form (34) for a statistically isotropic
power spectrum PζðkÞ ¼ PζðkÞ.
The straightforward way to evaluate the Fisher matrix

entering Eq. (30) is to average the product of two log-
likelihood derivatives over the large number of statistically
isotropic Monte Carlo (MC) maps. A good forecast,
however, is given in terms of the analytic Fisher matrix
calculated in the homogeneous noise approximation. Only
diagonal elements of the Fisher matrix survive in that
case, i.e.,

FLM;L0M0 ≡ FLδLL0δMM0

¼ δLL0δMM0fsky
X
l;l0

ð2lþ 1Þð2l0 þ 1Þ
8π

×

�
L l l0

0 0 0

�
2 C2

ll0

Ctot
l Ctot

l0
; (38)

where Ctot
l ¼ Cl þ Nl; the prefactor fsky is an unmasked

fraction of the sky. The formula (38) completes the
derivation of the estimators for the coefficients qLM. Out
of the amplitudes qLM, one further reconstructs the coef-
ficients Cq

L defined in the standard manner,

Cq
L ¼ 1

2Lþ 1

X
M

jqLMj2: (39)

These can be used to test the CMB statistical anisotropy in a
model-independent way.

A. Statistical anisotropy of the special quadrupole
type with constant amplitude

To constrain the statistical anisotropy of the special
quadrupole type, we slightly modify the above procedure.
Our first goal is to construct the estimator for the amplitude
g� given some fixed preferred direction d. For this purpose,
we consider the log-likelihood as the function of the unique
parameter g�, i.e., LðΘ̂jg�Þ. Then, following the same steps
outlined above, we obtain

g� ¼
3

2
· Re

�X
M

q2MY2MðdÞ
�
: (40)

So, the estimate for the amplitude g� is reproduced
immediately from estimates for the coefficients q2M.
Furthermore, the estimator (40) is unbiased and has a
minimal variance.
Recall that the early Universe models generically do not

predict the preferred direction of statistical anisotropy. To
estimate the amplitude g� in a universal way, we exploit the
second relation in Eq. (5),

g2� ¼
45

16π

X
M

jq2Mj2 ≡ 225

16π
Cq
2: (41)

Though this estimator has an intuitively clear form, it is
“blind” to the sign of the amplitude g�. The other
disadvantage of the estimator (41) is that it does not
discriminate between the special and general types of
quadrupoles. Consequently, we expect somewhat weaker
constraints than in the case with the specified preferred
direction. This is the price we pay for our ignorance about
the latter.

B. Statistical anisotropy of the general type
with Gaussian qLM’s

Generically, statistical anisotropy is described by the
infinite number of random parameters qLM. First, we treat
the case of Gaussian coefficients qLM as in sub-scenario B
of the (pseudo)conformal universe. In this situation, the
likelihood of the observed sky Θ̂ is naturally considered as
a function of the parameter h2. The corresponding estimator
was derived in our previous paper [19]. Let us briefly recall
the main idea of the calculation. We write the likelihood of
interest as the product of two likelihoods integrated over all
possible sets of coefficients fqLMg, i.e.,

WðΘ̂jh2Þ ¼
Z

WðΘ̂jqÞWðqjh2Þdq: (42)

Here WðΘ̂jqÞ ¼ expðLÞ, and L is given by Eq. (31);
Wðqjh2Þ denotes the likelihood of the particular realization
q for a given value of the parameter h2. Upon using the
approximation (29), we obtain the simple Gaussian form
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for the integrand in Eq. (42). Then the integral (42) is
evaluated in a straightforward manner. Finally, setting the
derivative of the joint likelihood with respect to the
parameter h2 to zero, we end up with the estimator [19]

h2
X
L

ð2Lþ 1ÞF2
L
~Q2
L

ð1þ FL
~QLh2Þ2

¼
X
L

ð2Lþ 1ÞFL
~QL

ð1þ FL
~QLh2Þ2

ðFLC
q
L − 1Þ:

(43)

Here the ~QL’s are defined by QL ¼ ~QLh2, and the QL’s are
given by Eq. (28). The estimator (43) is simplified con-
siderably in the case of the quadrupole statistical anisotropy
with the Gaussian q2M’s,

h2 ≃ Cq
2 − F−1

2 ; (44)

where we omitted the irrelevant constant prefactor. We
exploit this estimator in Sec. V when constraining the
quadrupole of the general type predicted in the leading
order of sub-scenario A of the (pseudo)conformal universe.
Finally, let us discuss estimators for statistical anisotropy

of the special quadrupole type governed by the non-
Gaussian amplitude g�. This type of direction dependence,
we recall, arises in sub-scenario A of the (pseudo)con-
formal universe (in the subleading order) as well as in
anisotropic inflation (case II). In that case, the discussion
above is not applicable. Still, at the price of optimality, we
choose to work with simple quadratic estimators built of
estimators for the coefficients q2M. Namely,

N2; h4ln2
H0

Λ
≃ Cq

2: (45)

V. DATA ANALYSIS AND RESULTS

In the present section, we constrain early Universe
models by applying the estimators (40), (41), (43), (44),
and (45) to theWMAP9 data. The 9-year data set includes a
new product: a set of beam-symmetrized maps, produced
by a deconvolution procedure to eliminate the effects of the
asymmetric beam [25]. The latter effects were responsible
for the strong bias in the measurements of the statistical
anisotropy [24]. One may treat the deconvolved map as a
map measured by a hypothetical WMAP-like satellite with
a symmetric beam transfer function. Therefore, a simple
relation between real and observed signals is assumed in
deconvolved maps,

Θ̂lm ¼ BlΘlm þ Nlm; (46)

where Bl is a symmetric part of the beam transfer function
and Nlm is a noise. The same relation was used in the
previous analyses [19,20]. With this said, we can estimate
the coefficients qLM and Cq

L literally following the tech-
niques in Ref. [20]. The first and most costly step here is to

provide the inverse-variance filtering (33). For the purpose
of the numerical computations, we rewrite Eq. (33) in the
equivalent form

½ðSiÞ−1 þ ~Y†N−1 ~Y�SiΘ̄ ¼ ~Y†N−1Θ̂: (47)

Here ~Y is a matrix which relates the harmonic space
covariance and the observed map,

~Yilm ¼ BlYlmðiÞ:

To solve the system (47), we make use of the multigrid
preconditioner proposed in Ref. [31]. Having inversed
filtered temperature anisotropies for both real data and a
large number of MC maps, we evaluate estimators for the
coefficients qLM by using Eq. (30) and substituting
Eqs. (32), (35), (36), and (38). We compute the integral
over three spherical harmonics in Eq. (35) using the Slatec
[32] and GSL [33] libraries, and the coefficients Cll0 by
running CAMB [34]. The summation over the multipole
number l in Eq. (32) is performed up to lmax ¼ 400. The
second term in Eq. (32) is calculated by averaging over the
large number of MC maps. We evaluate the Fisher matrix
using the analytical expression (38). The WMAP9 kq85
temperature analysis mask is applied to both data and MC
maps leaving fsky ¼ 75% of the sky unmasked.
In Fig. 1, we present the coefficients Cq

L reconstructed
from the V andW bands of the WMAP9maps. As is clearly
seen, WMAP9 data favor statistically isotropic primordial
perturbations. This is to be compared with the analogous
results from the 5- and 7-year releases revealing the
anomalously large quadrupole [20–22]. Now, given the
absence of the anomaly, we expect a substantial tightening
of constraints on the early Universe models.

A. Constraints on anisotropic inflation

We start with constraining the amplitude g� of the
quadrupole of the special type. This is interesting from
the viewpoint of scenarios where g� is uniquely defined by
the model parameters, as in case I of anisotropic inflation.
First, we apply the estimator (40) in order to constrain
the amplitude for some particular preferred directions. The
results of the estimation are presented in Fig. 2. The
constraining procedure is as follows:
(i) We calculate the set fq2Mg ¼ q2;−2; q2;−1;…; q2;2

starting from some fixed value of g� and preferred
direction d.

(ii) For the set fq2Mg, we generate a number of aniso-
tropic maps and estimate the amplitude g� from the
latter. We make use of Eq. (40).

(iii) We compare the values of g� derived from anisotropic
maps with the WMAP9 estimate. We request that not
more than 95% of them exceed (are smaller than) the
real estimate in the case of positive (negative) g� fixed
in the beginning.
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The generation of anisotropic maps is perhaps the most
nontrivial step in this procedure. We do this in line with
Appendix A of Ref. [20] (see also our previous paper [19]).
The idea is to consider the temperature anisotropy of the
form

Θa ¼ ðIþ δS½Si�−1�Þ1=2Θi; (48)

where δS≡ S − Si. Here S and Si are the anisotropic and
isotropic theoretical covariances given by Eqs. (37) and
(34), respectively. It is straightforward to check that the
temperature anisotropy (48) corresponds to the anisotropic
covariance S. Assuming a small statistical anisotropy, we
expand it to the linear order in δS,

Θa ¼ Θi þ 1

2
δS½Si�Θi:

We multiply the latter by the symmetric beam, convert into
the pixel space, add the noise, and apply the mask. The
anisotropic maps constructed are then analyzed in the same
way as the data maps. We followed the above procedure for
the three fixed directions in the sky. The directions form an
orthogonal basis with the first one aligned with the poles of
the ecliptic plane. Constraints on the amplitude g� are

presented in Table I. We also establish 68% C.L. limits in
the case of the direction aligned with the ecliptic poles,

−0.018 < g� < 0.021: (49)

These limits are obtained from the V band of the WMAP9
data. They are to be compared with the analogous con-
straints derived from the nonobservation of quadrupolar
statistical anisotropy in the data by the Sloan Digital Sky
Survey which found g� ¼ 0.006� 0.036 at 68% C.L. [23].
As is clearly seen, our bounds are consistent with previous
ones but demonstrate an improvement by a factor of 2.
Aiming to limit the amplitude g� without knowledge of

the preferred direction, we repeat the above procedure with
minor changes. That is, we choose about 100 random
directions in the sky and calculate sets fq2Mg using Eq. (5).
For each set fq2Mg, we generate an anisotropic map. Now,
we employ Eq. (41) to estimate the strength of statistical
anisotropy in real data as well as in simulated anisotropic
maps. In fact, we construct MC maps for concrete direc-
tions, but the procedure requires that the data and MCmaps
are treated on an equal footing. The results are presented in
Table II. They demonstrate a substantial improvement as
compared to the WMAP5 constraints, which are also
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FIG. 1 (color online). The coefficients Cq
L reconstructed from the V (left) and W (right) bands of deconvolved WMAP9 maps in the

case of aðkÞ ¼ 1 in Eq. (1). The 1σ (dark grey) and 2σ (light grey) confidence levels are overlaid by making use of MC-generated
statistically isotropic maps. The analysis is done with the WMAP9 temperature analysis mask and lmax ¼ 400.

FIG. 2 (color online). The amplitude of the special quadrupole g� estimated from the V (left) and W (right) bands of deconvolved
WMAP9 maps as a function of the direction in the sky. The plot is in galactic coordinates with l ¼ 180° on the left.
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presented in Table II. As a particular application of new
constraints, we set limits on the constant c, a free parameter
in case I of anisotropic inflation. In light of the comparison
with the Planck constraints [see Eq. (53)], we also establish
68% C.L. limits,

−0.046 < g� < 0.048; (50)

obtained from the V band of the WMAP9 data.
The amplitude g� is random in a number of realistic

models and the constraints above are not applicable there.
For example, this is the case of anisotropic inflation for the
amplitude g� sourced by the quantum excitations of the
electric field, EIR. To set limits on this class of models we
slightly modify our constraining scheme. That is, we fix
some value of the e-fold number N ¼ Ntot − NCMB in the
beginning. Using Eq. (12) with Pζ ≈ 2.46 × 10−9 we
generate the collection of vectors a. Each vector a uniquely
defines the amplitude g� and the set of coefficients fq2Mg.
We generate anisotropic maps for each set. Finally, we
compare the value of the e-fold number N estimated from
the anisotropic maps with the WMAP9 estimate. We make
use of the estimator (45). Limits on the relative e-fold
number N ≡ Ntot − NCMB are given in Table II at the
95% C.L. The 68% C.L. limit is the strongest one for the V
band,

N < 14 ·

�
60

NCMB

�
2

: (51)

A similar constraint was obtained in Ref. [35] from the
nonobservation of the trispectrum non-Gaussianity in the
Planck data [36]; see the discussion in Sec. VI.

B. Constraints on the (pseudo)conformal universe

Now, let us turn to the models of the (pseudo)conformal
universe. We start with sub-scenario A. As discussed in
Sec. III C, it predicts the quadrupolar statistical anisotropy
of both the general and special types. The latter appears in
the nonlinear order (NLO) in the constant h, while the
former is nonzero in the linear order (LO). Still, the general
quadrupole makes a weaker imprint on the CMB sky than
the special quadrupole. Indeed, the former is characterized
by the decreasing amplitude aðkÞ ¼ H0k−1, which trans-
lates into the additional suppression by the CMB multipole
number l ∼ k=H0. Consequently, we have effectively low
statistics for the multipoles that are useful in the analysis
and, hence, a very weak constraint on the parameter h2. As
a proof, the formal constraint h2 < 190 was obtained from
the V band of the WMAP7 data at the 95% C.L. Of course,
we cannot trust so large an upper limit, since it violates
the assumption of small statistical anisotropy made in the
beginning. Rather the number “190” demonstrates the low
sensitivity of the WMAP7 data towards the signal
predicted.
Qualitatively, the same story repeats at the level of

WMAP9 maps. To show this explicitly, we estimate the
coefficients qLM and Cq

L, but now with the decreasing
amplitude aðkÞ ¼ H0k−1 in Eqs. (1) and (36). The corre-
sponding results are shown in Fig. 3. For the value of h2 we
use the estimator (44). Next, we generate 100 sets of the
coefficients q2M using Eq. (24) out of some fixed value of
the parameter h2, and construct anisotropic maps for each
set. We compare values of the estimator for the parameter
h2 obtained from the real data and MC-simulated aniso-
tropic maps. The final results are presented in Table II.
Much tighter bounds are expected from the nonobser-

vation of statistical anisotropy of the special type.

TABLE I. WMAP9 V band 95% C.L. constraints on the
amplitude of the special quadrupole g� for particular preferred
directions in the sky.

Preferred direction Constraint on the amplitude g�
ðl; bÞ ¼ ð96:4; 29:8Þ −0.039 < g� < 0.043
ðl; bÞ ¼ ð96:4; 60:2Þ −0.076 < g� < 0.008
ðl; bÞ ¼ ð186:4; 0.0Þ −0.022 < g� < 0.078

TABLE II. WMAP 95% C.L. constraints on parameters of anisotropic models from the nonobservation of
statistical anisotropy in the CMB sky. These include anisotropic inflation, and sub-scenarios A and B of the (pseudo)
conformal universe. Constraints in the second column are nominal in the sense that they have been obtained by a
direct comparison with the anomalous quadrupole as observed in Ref. [22].

5 yr=W 7 yr=V 9 yr=V 9 yr=W

Special quadr. g� < 0.3 � � � jg�j < 0.072 jg�j < 0.085
Anis. infl. I c − 1 < 3.5 × 10−6 � � � c − 1 < 8.3 × 10−7 c − 1 < 9.8 × 10−7
Anis. infl. II � � � � � � N < 82ð 60

NCMB
Þ2 N < 128ð 60

NCMB
Þ2

Sub-sc. A (LO) � � � h2 < 190 h2 < 11 h2 < 16

Gal. gen. (LO) � � � Λ3
G

f3 < 290
Λ3
G

f3 < 17
Λ3
G

f3 < 24

Sub-sc. A (NLO) � � � h2 ln H0

Λ < 7 h2 ln H0

Λ < 1.2 h2 ln H0

Λ < 2.0

Gal. gen. (NLO) � � � Λ3
G

f3 ln
H0

Λ < 11
Λ3
G

f3 ln
H0

Λ < 1.8 Λ3
G

f3 ln
H0

Λ < 3.0

Sub-sc. B � � � h2 < 0.045 h2 < 0.006 h2 < 0.013
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Remarkably, one can derive them immediately from the
upper limits on the relative e-fold number N established in
the previous subsection. This is due to the correspondence
between the predictions of two different setups, i.e., sub-
scenario A of the (pseudo)conformal universe and case II of
anisotropic inflation. The duality holds modulo the pres-
ence of the general quadrupole, which anyway produces a
negligible effect for h2 ≲ 1. By exploiting Eq. (27), we
obtain 95% C.L. limits on the parameter of interest, i.e.,
h2 ln H0

Λ ; see Table II. From Eq. (51), we also derive the
68% C.L. limit,

h2 ln
H0

Λ
< 0.2:

Finally, using the duality (16) between the conformal
rolling scenario and Galilean genesis, we convert the
derived constraints into the bounds on the parameter space
of the latter model; see Table II.
We conclude with constraining sub-scenario B of the

(pseudo)conformal universe. We recall that statistically
anisotropic effects in this case are nonzero already in the
first order in the constant h. Given also the constant

amplitude aðkÞ ¼ 1, we anticipate rather strong constraints
from the nonobservation of the signal predicted. We use
Eq. (43) to estimate the parameter h2. The results plotted in
Fig. 4 are in excellent agreement with expectations from the
isotropic hypothesis. Particular values of the parameter h2

estimated at L ¼ 14 read h2 ¼ −0.0006 (V band) and h2 ¼
0.0007 (W band). To construct anisotropic maps, we
generate a large number of sets of the coefficients qLM
out of some fixed value of the parameter h2. We make use
of Eq. (28). The constraints given in Table II demonstrate a
roughly one-order-of-magnitude improvement as compared
to our WMAP7 result.

VI. DISCUSSION

Let us discuss our constraints in light of the Planck data.
The latter have the obvious advantage due to the larger
number of multipoles useful in the analysis, namely lPlmax ∼
2000 as compared to lWmax ∼ 400 for the WMAP9 data.
Qualitatively, this implies

lPlmax=lWmax ∼
2000

400
¼ 5; (52)
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FIG. 3 (color online). The coefficients Cq
L reconstructed from the V and W bands of deconvolved WMAP9 maps in the case of

aðkÞ ¼ H0k−1 in Eq. (1). The 1σ (dark grey) and 2σ (light grey) confidence levels are overlaid by making use of MC-generated
statistically isotropic maps. The analysis is done with the WMAP9 temperature analysis mask and lmax ¼ 400.

-0.003
-0.002
-0.001

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007

 2  4  6  8  10  12  14

h2

Lmax

V-band

data
isotropic 1-σ
isotropic 2-σ

-0.003
-0.002
-0.001

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007

 2  4  6  8  10  12  14

h2

Lmax

W-band

data
isotropic 1-σ
isotropic 2-σ

FIG. 4 (color online). Values of the estimator (43) for the parameter h2 of the (pseudo)conformal universe, sub-scenario B,
reconstructed from the V (left) and W (right) bands of deconvolved WMAP9 maps. The 1σ and 2σ confidence levels are overlaid by
making use of MC-generated anisotropic maps.
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i.e., a growth of the sensitivity to statistical anisotropy of
the special quadrupole type. Indeed, the Fisher matrix
scales as l2max with the maximal multipole number lmax. On
the other hand, the error bars for the amplitude g� are
roughly measured by

ffiffiffiffiffiffi
F2

p
. This explains the estimate (52)

for the growth of sensitivity. Looking at Eq. (50), we would
thus expect constraints on the amplitude g� at the 1% level
in case the signal is not observed. Recently, 68% C.L. limits
appeared [37] based on the Planck 143 GHz data at the
level

−0.014 < g� < 0.018; (53)

independently of the preferred direction in the sky. These
Planck constraints are stronger than the limits (50) derived
from the WMAP9 data by a factor of 2–3. The first Planck
limits were obtained, however, using only one frequency
band and a suboptimal estimator.
Based on the above, we anticipate somewhat stronger

constraints with the future analysis of Planck data.
Interesting consequences are expected for the duration of
inflation in models with the nonminimal Maxwellian term;
in particular, we expect an extremely tuned number of
e-folds in those models, i.e., Ntot − NCMB ≃Oð1Þ. Planck
data are also promising for constraining sub-scenario B
of the (pseudo)conformal universe. Indeed, the sensitivity
of the data to the parameter h2 grows as l2max. Qualitatively,
this implies a bound on h2 that is stronger by a factor of
ðlPlmax=lWmaxÞ2 ∼ 25 in the case where the signal of interest is
not observed. A much weaker improvement, i.e., by a factor
lPlmax=lWmax ∼ 5, is expected for the parameter h2 ln H0

Λ of sub-
scenario A.
We end with a few remarks. The types of statistical

anisotropy studied in this paper cover most predictions that
exist in the literature, but not all. For example, the model of
Ref. [38] predicts a special quadrupole characterized by an
increasing amplitude, i.e., g� ∼ k4. This originates from the
axial coupling between the inflaton and vector fields. The
peculiar form of statistical anisotropy with a vanishing
quadrupole term follows from inflation involving scalars
with nonminimal kinetic terms [39]. In both cases, a
separate data analysis is required. On the other hand, the
constraints presented in Table II are easily converted into
limits on the parameters of scenarios with more conven-
tional predictions, e.g., statistical anisotropy of the ACW
type. These include scenarios based on noncommutative
geometry [40], p-forms [41], etc.
Although we focused on the particular prediction of

statistical anisotropy, the scenarios discussed in this paper
may have other interesting signatures. Indeed, anisotropic

inflation gives rise to some amount of non-Gaussianities at
both the bispectrum [11] and trispectrum [35] levels. These
are sourced by infrared fluctuations of the electric field, and
thus are highly sensitive to the duration of the inflationary
phase. In Ref. [35], this simple observation was used to
establish the upper limit

N ≲ 17 ×

�
NCMB

50

�
4

·

�
τNL
2800

�
: (54)

Also, given that the Planck constraint for the trispectrum
parameter τNL < 2800 at 95% C.L., one concludes that the
constraint (54) is fairly similar to our 68% C.L. limit (51).
Note, however, that the random nature of the field EIR was
not accounted for in the derivation of Eq. (54). Thus,
the latter is less conservative by its definition and may
become weaker if the randomness is included. Other
predictions of inflation with the nonminimal Maxwellian
term include the anisotropy in the tensor power
spectrum and the cross correlation between curvature
and tensor perturbations [8,9].
Models of the (pseudo)conformal universe may also lead

to potentially large non-Gaussianities [18,30,42]. In par-
ticular, the trispectrum [18,30] governed by the parameter
h2 can be used to constrain the latter from nonobservation
in the Planck data. This approach appears to be especially
promising in view of the fact that sub-scenario A predicts a
rather weak signal of statistical anisotropy.
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