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We show how to lift a generic non-scale-invariant action in Einstein frame into a locally
conformally invariant (or Weyl-invariant) theory and present a new general form for Lagrangians
consistent with Weyl symmetry. Advantages of such a conformally invariant formulation of particle
physics and gravity include the possibility of constructing geodesically complete cosmologies. We
present a conformal-invariant version of the standard model coupled to gravity, and show how Weyl
symmetry may be used to obtain unprecedented analytic control over its cosmological solutions.
Within this new framework, generic Friedmann-Robertson-Walker cosmologies are geodesically
complete through a series of big crunch–big bang transitions. We discuss a new scenario of cosmic
evolution driven by the Higgs field in a “minimal” conformal standard model, in which there is no
new physics beyond the standard model at low energies, and the current Higgs vacuum is metastable
as indicated by the latest LHC data.
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I. WHY CONFORMAL SYMMETRY?

Scale invariance is a well-known symmetry [1] that
has been studied in many physical contexts. A strong
physical motivation for incorporating scale symmetry in
fundamental physics [2–4] comes from low-energy
particle physics. Namely, the classical action of the
standard model is already consistent with scale sym-
metry if the Higgs mass term is dropped. This invites
the idea, which many have considered, that the mass
term may emerge from the vacuum expectation value of
an additional scalar field ϕðxÞ in a fully scale-invariant
theory. Another striking hint of scale symmetry occurs
on cosmic scales: the (nearly) scale-invariant spectrum
of primordial fluctuations, as measured by WMAP and
the Planck satellite [5,6]. This amazing simplicity seems
to cry out for an explanation in terms of a fundamental
symmetry in nature, rather than as just the outcome of a
scalar field evolving along some particular potential
given some particular initial condition.
In this paper, we consider the incorporation into funda-

mental physics of local conformal symmetry (or Weyl-
symmetry): that is, classical local scaling symmetry in an
action that includes the standard model coupled to gravity. A
new result of our approach [7–12] is that using conformal
symmetry we are able to solve the classical FRW equations
across big crunch–big bang transitions, thus obtaining the
full set of geodesically complete cosmological solutions of

our conformal standard model given in Eq. (5). This follows
from the new properties of the standard theory whose
couplings to gravity includes all patches of field space that
are required for geodesic completeness of all cosmological
solutions for all times and any set of initial conditions1.
The models we describe contain no mass scales—no

gravitational constant, no mass for the Higgs field, no
cosmological constant and no mass parameters for the
quarks, leptons or gauge bosons. All of these are prevented
by the local conformal symmetry combined with the
SUð3Þ × SUð2Þ × Uð1Þ gauge symmetry of the standard
model. There is only one source of mass which follows
from gauge fixing (in some sense spontaneously breaking)
the Weyl symmetry through a scalar field which is a singlet
under SUð3Þ × SUð2Þ × Uð1Þ or a combination of both
SUð3Þ × SUð2Þ × Uð1Þ singlet and nonsinglet fields,
depending on the choice of gauge. This source, which is
associated with the emergence of the Planck scale, drives
the spontaneous breakdown of the electroweak symmetry,

1In this paper, we use the term “geodesic completeness” to
refer to two notions: (a) geodesic continuation through all
singularities separating patches of spacetime and (b) avoidance
of unnatural initial conditions by requiring infinite action for
geodesics that reach arbitrarily far in the past. The two notions are
inequivalent since one is local in time and the other is a global
condition. Both properties are satisfied in our conformal standard
model in the form given in Eq. (5) as described in Sec. IV.
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which in turn generates the other known masses of
elementary constituents, with ratios of masses related to
dimensionless constants.
Our approach to conformal symmetry has new features

with significant physical consequences that were not
considered before. While we shall work in 3þ 1 dimen-
sions throughout, there is a close connection with field
theories and gravity or supergravity in 4þ 2 dimensions in
the context of 2 T physics [13–18] as will be pointed out
occasionally throughout this paper. Stated directly in 3þ 1
dimensions, some of the novel features and their conse-
quences are as follows:
(i) In Sec. III we provide the most general form of

coupling gravity or supergravity with any number
of scalar fields, fermions and gauge bosons, while
maintaining local conformal symmetry. Only a spe-
cialized form of our general formalism in Sec. III
coincides with previously known methods for local
conformal symmetry. We find that in a gauge sym-
metric theory, if there is only one physical scalar field
(for example, the Higgs field) after all gauge choices
are exhausted, then there is a unique gauge-invariant
and Weyl-invariant form for the Lagrangian represent-
ing the geodesically complete coupling to gravity.

(ii) The minimal, realistic and locally conformal stan-
dard model coupled to gravity includes the Higgs
doublet HðxÞ and an additional SUð3Þ × SUð2Þ ×
Uð1Þ singlet ϕðxÞ. Taking into account all of the
local symmetry, there is a single physical scalar field
identifiable with the observed Higgs field. Therefore,
according to the statement above, this is a geodesi-
cally complete conformal standad model provided it
utilizes our unique coupling to gravity as shown in
Eq. (5) and as proven in Sec. III A. The relative
minus sign between ϕ and H that appears in this
action is obligatory and is related to geodesic
completeness as will be explained later. The unique
structure of local scale symmetry has led to full
analytic control of cosmological solutions and, in
certain limits, enabled us to obtain the complete set
of homogeneous cosmological solutions for all
possible initial conditions of the relevant fields. This
is discussed in Sec. IV.

(iii) In a particular gauge of the spontaneously broken local
scale symmetry (called c gauge) we recover the usual
renormalizable field theory of the standard model in
the flat space limit, including a mass scale for the
Higgs. In this gauge, low-energy physics of our model
coincides with the familiar form of the standard model
unless more fields are included beyond those already
observed, such as right-handed neutrinos and dark
matter which can be accommodated consistently with
conformal symmetry following our methods. Thus,
low-energy physics at LHC scales is not sensitive to
the conformal structures suggested in our approach.

(iv) On the other hand, physics at cosmological scales can
be quite sensitive to the conformal structures discussed
in this paper as becomes apparent in certain gauges. In
Sec. IV we outline some of the phenomena that follow
from our unique conformal coupling. In the minimal
conformal standard model of Eq. (5), guided by our
analytic solutions (supplemented, where necessary,
with numerical methods), we propose a cyclic con-
formal cosmology driven only by the Higgs field with
no recourse to other scalar fields such as an inflaton.
The Higgs-driven cosmological scenario we propose is
strongly motivated by the metastability of the Higgs
vacuum as implied by the renormalization-group flow
of the minimal standard model to large Higgs vev, with
its parameters fixed by the LHC measurements [19].

The main discussion in this paper is at the classical field
theory level, but it is worth commenting briefly on the
important question of quantum corrections. There are two
enormous hierarchies in the standard model coupled to
gravity: the weak scale is around 10−16 and the dark energy
scale is around 10−30 of the Planck scale. It is hard to
understand how such tiny numbers enter fundamental
physics, and why quantum corrections would not spoil
these fine tunings.
In both cases, conformal symmetry has been suggested as

a solution. We will not explore this here in any detail, except
to note that the stability of such hierarchies in the perturba-
tive standard model, which is what attracted attention in the
past for the Higgs field, should not be in jeopardy from
quantum corrections since dimensionless constants in a
conformal theory are logarithmically divergent as opposed
to the quadratic divergence of a bare Higgs mass term. To
fully grasp how this can work at the quantum level for
fundamental scalars and in particular the Higgs, requires a
better understanding of how to perform regularization and
renormalization consistent with local conformal symmetry in
3þ 1 dimensions. Elaborating on earlier suggestions
[4,20,21], there has been recent progress [22] in developing
a renormalization theory consistent with Weyl symmetry.
According to this new work, local conformal symmetry
remains as a valid symmetry at the quantum level as
anticipated in [4]. The local scale invariance survives
quantization even though there is a trace anomaly in the
stress tensor of the matter sector of the theory; this point that
caused confusion in the past is clarified by noting that the
trace of the matter stress tensor is distinct from the generator
of local scale transformations that includes the additional
fields, such as ϕ, that implement and establish the local
conformal symmetry. In passing, we note that if 3þ 1

dimensional conformal symmetry is treated consistently
within 2 T physics in 4þ 2 dimensions, then scale (dilation)
symmetry is a part of a linearly realized SO(4,2) in the
flat limit which is presumably not anomalous just as its
Lorentz subgroup SO(3,1) in 3þ 1 dimensions cannot be

ITZHAK BARS, PAUL STEINHARDT, AND NEIL TUROK PHYSICAL REVIEW D 89, 043515 (2014)

043515-2



anomalous. This quantum aspect of 2 T physics is under
investigation directly in 4þ 2 dimensions and this is
expected to shed additional light on these issues.
A plan of this paper is as follows. In Sec. II, we will

review and expand on the motivation for global and local
symmetry and show how to recast (or “lift”) the standard
model plus gravity into a locally gauge invariant, Weyl-
symmetric theory by adding new fields and, at the same
time, introducing compensating gauge symmetries, in such
a way that the theory is both Weyl invariant and geodesi-
cally complete. The gauge fixed version of this theory
reverts back to the familiar minimal form of the standard
model at low energies wherever gravity is negligible.
However, in regions of spacetime where strong gravity
effects are important, such as in cosmology, especially
close to the singularity, the geodesically complete Weyl
lifted version plays a crucial role, as described in Sec. IV.
In Sec. III, following [18] we present a general form for a

Lagrangian consistent with Weyl symmetry for any number
of scalar fields. We argue that, if the Weyl-invariant theory
is equivalent to having only a single physical scalar field
after gauge fixing (like the physical Higgs), then by field
redefinitions it is always possible to recast the theory into
our version given in Eq. (5), which includes all patches in
field space so as to insure geodesic completeness.
As another example of our general formalism, we lift the

Bezrukov-Shaposhnikov Higgs inflation model [23] to a
fully scale-invariant model, making it logically and physi-
cally consistent. Based on our formalism for constructing
general Weyl-invariant actions, we show that the model is
not unique. In fact, there are many single-field cosmologi-
cal Higgs models with the same properties, all consistent
with conformal symmetry and producing the same infla-
tionary outcome. However, this inflationary scenario is not
geodesically complete, furthermore, in view of our com-
plete set of solutions, it is extremely unlikely.
In Sec. IV, we turn more generally to cosmology. We

explain that a Weyl-lifted theory can resolve the singularity
and enable the geodesic completion of cosmological
spacetimes, while also indicating the presence of new
phenomena. Our previous work in [7–12] elaborated in
some detail on the properties of geodesically complete
cosmological analytic solutions in the context of solvable
examples of what was supposed to be toy models. However
the same models now reappear in our conformal standard
model and hence our previous solutions are now the full set
of cosmological solutions for all initial conditions of the
familiar standard model. In particular, we point out a model
independent attractor mechanism discovered in [10] that
may help to determine the likely initial conditions of our
universe just after the big bang. The Weyl-invariant
formulation also provides a natural framework for incor-
porating cyclic cosmology [24,25] driven only by the Higgs
field as introduced. In the case that the Higgs field is
metastable, the Higgs inflation model is inoperable, but the

minimal single-Higgs model is naturally compatible with
the cyclic picture [26]. In general, the Weyl-invariant
approach also hints at the intriguing possibility that the
minimal, electroweak Higgs may have played a central role
in cosmic evolution as explained in detail in [27].
There is a deep connection between the ideas presented in

this paper and theories in four-space and two-time dimen-
sions. Many of the ideas discussed here for a global or local
conformally symmetric theory emerged progressively from
developing the 4þ 2 dimensional formalism since 1996 (for
a recent overview see [13]), and then for the standard model
as given in [14], for gravity in [16], for SUSY in [17] and
supergravity in [18]. The formulation given in [18], with
many scalars coupled to gravity and supergravity in 4þ 2
and 3þ 1 dimensions was the precursor of the general
formalism presented in Sec. III, while the simplest specific
models were analyzed cosmologically in some detail in
[7–12]. There are some recent similar examples [28] that
overlap with our conformal symmetry vision in 3þ 1
dimensions; these seem to be oblivious to our previous
publications that introduced at an earlier stage the crucial
conformal structures with restrictions on scalars in 3þ 1
dimensions as predictions from 2 T physics [18]. The 4þ 2
theory has more predictions of hidden symmetries and
dualities in 3þ 1 dimensions which are mainly understood
in classical and quantum mechanical contexts [13] and are
also partially developed in field theory [29]; these go well
beyond conformal symmetry in their implications for uni-
fication and the meaning of spacetime and are bound to play
an interesting role in future progress.
We emphasize that, despite the name, the physics content

in the 2 T-physics formalism in ðdþ 2Þ dimensions is same
as the physics content in the standard 1 T-physics formal-
ism in ðd − 1Þ þ 1 dimensions except that 2 T physics
provides a holographic perspective and, due to a much
larger set of gauge symmetries, naturally makes predictions
that are not anticipated in 1 T physics. These additional
gauge symmetries are in phase space rather than position
space, and can be realized only if the formalism is
developed with two times. Nevertheless, the gauge invari-
ant sector of 2 T physics is equivalent to a causal one-time
spacetime without any ghosts.
In this paper, we will stick to 3þ 1 dimensions,

advocating a coherent overall picture of a conformally
invariant formulation of fundamental physics and cosmol-
ogy. However, we will occasionally remind the reader that
these outcomes naturally follow from 4þ 2 dimensions
with appropriate (but unusual) gauge symmetries.

II. WHY LOCAL CONFORMAL SYMMETRY?

In this section, we will describe the motivation for and
construction of simple theories with global and local scale
invariance. An important application is the lift of the
standard model plus gravity into a Weyl-invariant theory
that is also geodesically complete.
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A. Global scale invariance

We begin by examining a scale-invariant extension of the
standard model of particles and forces. For example
consider the usual standard model with all the usual fields,
including the doublet Higgs field HðxÞ coupled to gauge
bosons and fermions, but add also an SUð2Þ × Uð1Þ singlet
ϕðxÞ (plus right-handed neutrinos and dark matter candi-
dates), and take the following purely quartic renormalizable
potential involving only the minimal set of scalar fields,

VðH;ϕÞ ¼ λ

4
ðH†H − α2ϕ2Þ2 þ λ0

4
ϕ4: (1)

This model, discussed at some length in Sec. VI of [14], is
the minimal extension of the standard model that is fully
scale invariant at the classical level, globally. See also
[30–36], which use a similar field, and the different approach
that also adds a Weyl vector field [37] leading to different
physical consequences. The field ϕðxÞ, which we call the
“dilaton,” absorbs the scale transformations and is analogous
to the dilaton in string theory. In the current context, it has a
number of interesting features: Due to SUð3Þ × SUð2Þ ×
Uð1Þ gauge symmetry, the singlet ϕ is prevented from
coupling to all other fields of the standard model—except for
the additional right-handed singlet neutrinos or dark matter
candidates. These features of ϕ, that prevent it from
interacting substantially with standard visible matter except
via the Higgs in Eq. (1), suggest naturally that ϕ itself could
be a candidate for dark matter [14].
The only parameters associated with ϕ that are relevant

for our discussion, are α and λ0. For positive λ0 the
minimum of this potential occurs at H†H ¼ α2ϕ2:
Accordingly, the vacuum expectation value of the Higgs
may fluctuate throughout spacetime, depending on the
dynamics of ϕðxÞ, without breaking the scale symmetry.
However, if for some reason (e.g., driven by quantum
fluctuations or gravitational interactions), ϕ develops a
vacuum expectation value ϕ0 which is constant in some
region of spacetime, then the Higgs is dominated by a
constant vacuum expectation value,

H†
0H0 ¼ α2ϕ2

0 ≡ v2

2
; (2)

with v fixed by observation to be approximately 246 GeV.
The Higgs vacuum H0 provides the source of mass for all
known elementary forms of matter, quarks, leptons, and
gauge bosons (while ϕ0 may be the source of Majorana
mass for neutrinos). The observation at the LHC of the
Higgs particle, which is just the small fluctuation on top of
the vacuum value v, has by now solidified the view that this
is how nature works in our region of the Universe, at least
up to the energy scales of the LHC.
Figure 1 illustrates how the Higgs field slowly relaxes to

the spontaneously broken symmetry vacuum described by
Eq. (2) beginning from large oscillations shortly after the

big bang. Here, as is the case throughout the paper, the
solutions are in the limit of negligible gauge and top quark
mass coupling so that the Higgs evolution is described by
classical equations of motion. This time-dependent behav-
ior of the Higgs is driven by the evolution of the field ϕ, as
anticipated in [15] for this simple model. In fact, it is
realized as the generic solution for all homogeneous
cosmological solutions if the Higgs vacuum is stable.
There are other interesting theoretical structures worth

noting about this scale-invariant setup. Instead of super-
symmetry, conformal symmetry may explain the stability
of the hierarchy between the low mass scale of 246 GeV
versus the Planck scale of 1019 GeV, as suggested in [15].
The conformal protection of the hierarchy is not as clear cut
as SUSY’s protection and requires better understanding of
regularization and renormalization techniques consistent
with conformal symmetry as outlined in the introduction.
What about the dilaton (fluctuations in ϕ) that emerges in

the broken scale invariance scenario above? At least from
the perspective of only the standard model, the dilaton is a
massless Goldstone boson due to the spontaneous breaking
of the global scale invariance. As discussed in some detail
in Sec. VI of [14], the original doublet field H is the only
field coupled to known matter, while ϕ is decoupled.
However, after the spontaneous breaking, H must be
rewritten as a mixture of the mass eigenstates of the model,
which include the observed massive Higgs particle and the
massless dilaton (or maybe low-mass dilaton if the scale
symmetry is broken by some source). The mixing strength
is controlled by the dimensionless parameter

α ¼ ð246 GeVÞ=ð
ffiffiffi
2

p
ϕ0Þ; (3)

which appears in Eq. (2). Therefore, through this mixing,
the (pseudo-) Goldstone dilaton must couple to all matter,

Plot of Higgs[ ] as a function of time
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FIG. 1 (color online). After the big bang, the Higgs field
oscillates initially around zero with a large amplitude of the order
of the Planck scale. It slowly loses energy to the gravitational
field, causing its amplitude to diminish. As it approaches the time
or energies of the electroweak scale, it undergoes the phase
transition seen in the figure, and then slowly settles to a constant
vacuum value v at a stable minimum of the potential.
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just like the Higgs does, namely with a coupling given by
the mixing angle ðsinðθÞ ¼ α=ð1þ α2Þ1=2Þ times the mass
of the particle divided by v. The largest coupling is to the
top quark. If ϕ0 is much larger than 246 GeV, it is possible
for the dilaton to hide from accelerator experiments due to
the weak coupling of α in Eq. (3).
Such a (pseudo-) Goldstone boson has many other

observable consequences, including a long range force
that competes with gravity and contributions to quantum
effects as a virtual particle in Feynman loop diagrams. If
such an additional massless (or low mass scalar) is
observed in experiments, it would be strong evidence in
favor of the scale-invariant scenario. However, if it is not
observed, this could be interpreted merely as setting a lower
limit on the scale ϕ0.
Eventually it must be understood what sets the scale ϕ0.

The model as presented above has no mechanism at the
classical level to set the scale ϕ0; its equations
of motion are self consistent at the minimum of the
potential, H†

0H0 ¼ α2ϕ2
0; only if λ0 ¼ 0 [14]; then ϕ0

remains undetermined due to a flat direction in
the remaining term in the potential (1). The value for ϕ0

would then be obtained phenomenologically from experi-
ment, without a theoretical explanation. Quantum correc-
tions, such as those discussed in [38], may alleviate this
problem by removing the flat direction. However, if the
quantum corrections are small, there is the danger that ϕ0

would be so low that it is not possible to obtain the small
value of α in Eq. (3) required to protect the dilaton from
current experimental limits.

B. Local scale invariance

Since at present there is no sign of the dilaton in low-
energy physics, suppose it does not exist at all as a degree
of freedom. Is this incompatible with the idea that con-
formal symmetry underlies fundamental physics? Not at
all, because any possible phenomenological problems
associated with a Goldstone boson fluctuation of ϕ can
be overcome if the scaling symmetry is a local gauge
symmetry, known as the Weyl symmetry. Then the mass-
less fluctuations of the dilaton can be eliminated by fixing a
unitary gauge.2

The standard model decoupled from gravity has no local
scale symmetry that could remove a Goldstone dilaton. But
such a gauge symmetry can in fact be successfully
incorporated as part of the standard model provided it is
coupled to gravity in the right way. Coupling the standard

model to Einstein gravity in the conventional way makes no
sense because the dimensionful Newton constant explicitly
breaks scale invariance. If scale invariance is already
broken in one sector of the theory, then there is no rationale
for requiring that it be a good symmetry in another part of
the theory. At best, it would occur as an accidental
symmetry of low-energy physics and only when gravity
is negligible. This is not the scenario we have in mind; we
argue for a fully scale-invariant approach to all physics, a
natural outcome of the larger gauge symmetries in 4þ 2
dimensions, as formulated in 2 T physics. Happily, the idea
of an underlying 4þ 2 dimensions with appropriate extra
gauge symmetry fits all known physics in 3þ 1
dimensions, from dynamics of particles and field theory
[13–17] all the way to supergravity [18]. So, consistency
with this larger underlying structure is well motivated.
In fact, there is a locally scale-invariant field theory in

3þ 1 dimensions, compatible with 2 T physics in 4þ 2
dimensions, that couples the standard model and gravity
with no dimensionful constants. We do not mean conformal
gravity which has ghost problems, but rather the non-
minimal conformal coupling of the curvature RðgÞ to scalar
fields [3] which is invariant under Weyl transformations as
a gauge symmetry. In the next section we will discuss a
generalized Weyl-invariant coupling with many scalar
fields also predicted by 2 T physics, but in this section
we begin with the well-known method of conformally
coupled scalars, as follows [3,4],

1

12
ϕ2RðgÞ þ 1

2
gμν∂μϕ∂νϕ: (4)

These two terms form an invariant unit (up to a
total derivative) under local scale transformations,
gμν → Ω−2gμν, ϕ → Ωϕ, with a local parameter ΩðxÞ.
When there are more scalar fields, the most general way
of achieving local conformal symmetry is discussed in
Sec. III. However, when there is only one additional scalar
field beyond ϕ, which is in a single representation of a
Yang-Mills gauge group, there is a unique way to also
achieve geodesic completeness as explained in more detail
in Secs. III A and IV. Hence, for geodesic completeness we
require that not only the field ϕ, but also the doublet Higgs
field be a set of conformally coupled scalars consistent with
SUð2Þ × Uð1Þ. Namely using the unit 1

6
ðH†HÞRðgÞ þ

gμνDμH†DνH which is also locally invariant (up to a total
derivative), we can lift the globally scale-invariant standard
model of the last section into a locally invariant one, while
also being coupled to gravity in a geodesically complete
theory. All other terms present in the usual standard model,
namely all fermion, gauge boson and Yukawa terms, when
minimally coupled to gravity are already automatically
invariant under the local Weyl symmetry.
Hence a Weyl-invariant action S ¼ R d4xLðxÞ that

describes the coupling of gravity and the standard model
is given by

2The interesting features of the dilaton of the previous section,
including massive fluctuations, could emerge from one more
SUð2Þ × Uð1Þ scalar field as part of the general theory that we
will discuss in Sec. III A. But for simplicity in this section we will
first concentrate on the minimal model that contains only the
confirmed observed degrees of freedom up to now, thus allowing
the fluctuations of a single ϕ to be eliminated by a gauge
symmetry in this minimal model.
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LðxÞ ¼ ffiffiffiffiffiffi−gp

2
66666666664

1
12
ðϕ2 − 2H†HÞRðgÞ

þgμν
�

1
2
∂μϕ∂νϕ −DμH†DνH

�

−
�

λ
4
ðH†H − α2ϕ2Þ2 þ λ0

4
ϕ4

�

þLSM

�
quarks; leptons; gauge bosons;

Yukawa couplings toH&ϕ; dark matter:

�

3
77777777775
: (5)

The only Yukawa couplings of ϕ allowed by SUð3Þ ×
SUð2Þ × Uð1Þ are to the right-handed neutrinos for which it
becomes a source of mass. Note the relative minus sign
between ϕ and H terms, which is required, as explained
below. Here LSM is the well-known standard model
Lagrangian minimally coupled to gravity, except for the
Higgs kinetic and potential terms, which are now modified
and explicitly written out in the first three lines. This action
is invariant under Weyl rescaling with an arbitrary local
parameter ΩðxÞ as follows,

gμν → Ω−2gμν; ϕ → Ωϕ; H → ΩH;

ψq;l → Ω3=2ψq;l; Aγ;W;Z;g
μ → Ω0Aγ;W;Z;g

μ ; (6)

where ψq;l are the fermionic fields for quarks or leptons,

and Aγ;W;Z;g
μ are the gauge fields for the photon, gluons,W�

and Z. Note that the gauge bosons do not change under the
Weyl rescaling.
We note that the Lagrangian (5) is the one obtained in the

second reference in [16] from the 4þ 2 version of the
standard model [14,15] coupled to 2 T-gravity [16], by a
method of gauge fixing and solving some kinematical
equations associated with constraints related to the under-
lying gauge symmetries. In that approach we learned that
the Weyl symmetry is not an option in 3þ 1 dimensions, it
is a prediction of 2 T physics: the 4þ 2 dimensional theory
is not Weyl invariant, but yet the local Weyl symmetry in
3þ 1 dimensions emerges as a remnant gauge symmetry
associated with the general coordinate transformations as
they act in the extra 1þ 1 dimensions. So the Weyl
symmetry is a required symmetry in 3þ 1 dimensions
as predicted in the 4þ 2 dimensional approach; this
symmetry carries information and imposes properties
related to the extra 1þ 1 space and time dimensions [13].
The Weyl gauge symmetry of the action in (5) does not

allow any dimensionful constants: no mass term in the
Higgs potential, no Einstein-Hilbert term with its dimen-
sionful Newton constant, or any other mass terms. This is a
very appealing starting point because it leads to the
emergence of all dimensionful parameters from a single
source. That source is the field ϕðxÞ that motivated this
discussion in the previous section, and the only scale is then
generated by gauge fixing ϕ to a constant for all spacetime,

ϕðxÞ → ϕ0: (7)

In the gauge fixed version of the Lagrangian where
ϕðxÞ → ϕ0, we can express the physically important
dimensionful parameters, namely, the Newton constant
G, the cosmological constant Λ associated with dark
energy, and the electroweak scale v, in terms of ϕ0,

1

16πG
¼ ϕ2

0

12
;

Λ
16πG

¼ λ0ϕ4
0; H†

0H0 ¼ α2ϕ2
0 ≡ v2

2
:

(8)

Since the field ϕðxÞ in this gauge ceases to be a degree of
freedom altogether, the massless dilaton is absent and the
potential problem with global scaling symmetry is avoided.
Nevertheless, there still is an underlying hidden conformal
symmetry for the full theory.
We can explain now why it is necessary to have the

opposite signs for ϕ andH in the first two lines of the action
in Eq. (5). The positive sign for ϕ is necessary in order to
obtain a positive gravitational constant in (8). However,
conformal symmetry then forces the kinetic term for ϕ to
have the wrong sign, so ϕ is a ghost. This can be seen to be
a gauge artifact, though, since in a unitary gauge the ghost
ϕ is fixed to a constant or expressed in terms of other
degrees of freedom. This also explains why H must have
the opposite sign, since otherwise H would be a real ghost.
This relative sign has important consequences in cosmol-
ogy as follows.
In flat space RðgÞ → 0, where experiments such as those

at the LHC are conducted, the Lagrangian above becomes
precisely the usual standard model, including the familiar
tachyonic mass term for the Higgs. Furthermore, in
weak gravitational fields, at low energies, the gravitational
effect of the Higgs field coupling to the curvature,
1
12
ðϕ2

0 − 2H†HÞRðgÞ, is ignorable since H (order of
v ≈ 246 GeV) is tiny compared to the Planck scale
(ϕ0 ≈ 1019 GeV). Actually, the gravitational constant mea-
sured at low energies is corrected by the electroweak scale,
namely ð16πGÞ−1 ¼ ðϕ2

0 − v2Þ=12 instead of (8), but in
practice this is a negligible correction since v2 ≪ ϕ2

0. So,
at low energies there is no discernible difference between
our Weyl-lifted theory and the usual standard model. The
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practically isolated standard model appears as a renorma-
lizable theory decoupled from gravity.
However, in the cosmological context, the conformally

coupled H can and will be large at some stages in the
evolution of the universe. Working out the dynamics of
cosmological evolution, it turns out that, for generic initial
conditions, H†H typically grows to large scales over
cosmological times, hitting ðϕ2

0 − 2H†HÞ → 0 in the vicin-
ity of a big bang or big crunch singularity. This behavior
plays an essential role in cosmological evolution, as well as
in the resolution of the singularity via geodesic complete-
ness. In our conformal theory, the standard model is not
isolated from gravity, and we posit that the Higgs field can
play a bigger role in nature than originally anticipated.
We may take the Higgs doublet in the unitary gauge of

the SUð2Þ × Uð1Þ gauge symmetry,

HðxÞ ¼
�

0
1ffiffi
2

p sðxÞ
�
: (9)

The field sðxÞ ¼ vþ δhðxÞ, where δhðxÞ is the Higgs field
fluctuation on top of the electroweak vacuum, is then
identified with the generic field sðxÞ that appeared in our
cosmological papers [7–12]. The action for sðxÞ has the
exact same form in those papers as here.
Thus, our previous analytical cosmological solutions can

now be applied to investigate the cosmological properties
of the Higgs field. When the parameter α vanishes, our
previous work provides the full set of geodesically com-
plete analytic cosmological solutions for all initial con-
ditions of the relevant fields in the standard model coupled
to gravity. The nonzero α is then easily taken into account
with numerical methods. This much analytic control over
cosmological properties of a realistic theory is unprec-
edented. This became a very valuable tool that led us into a
new cosmological scenario driven only by the Higgs field,
as outlined in Sec. IV and completed in [27].

III. GENERAL WEYL SYMMETRIC THEORY

The gauge symmetries derived from 2 T gravity and 2 T
supergravity in 4þ 2 dimensions lead to the general Weyl-
invariant coupling described below for any number of
scalar fields in 3þ 1 dimensions [18]. This generalizes the
possible forms of conformally coupled scalar theories
beyond those encompassed by Eq. (4) and allows for
richer possibilities for model building consistent with local
scale invariance. We ignore the spinors and gauge bosons
whose minimal couplings to gravity are already automati-
cally Weyl symmetric.

A. Gravity

We begin with gravity without supersymmetry. In the
next subsection we will indicate the additional constraints
that emerge in supergravity. We assume any number of real

scalar fields ϕiðxÞ labeled by the index i. If there are
complex fields, we can extract their real and imaginary
parts and treat those as part of the ϕi. We introduce a Weyl
factor UðϕiÞ, a sigma-model-type metric in field space
GijðϕiÞ and a potential VðϕiÞ. The general Lagrangian
takes the form

L¼ ffiffiffiffiffiffi−gp �
1

12
UðϕiÞRðgÞ−1

2
GijðϕiÞgμν∂μϕ

i∂νϕ
j−VðϕiÞ

�
:

(10)

The results given in [18] are the following constraints on
these functions:
(i)UðϕiÞmust be homogeneous of degree two, UðtϕiÞ ¼

t2UðϕiÞ; and VðϕiÞ must be homogeneous of degree
four, VðtϕiÞ ¼ t4VðϕiÞ; and GijðϕiÞ must be homo-
geneous of degree zero, GijðtϕiÞ ¼ GijðϕiÞ.

(ii) The following differential constraints must also be
satisfied. These may be interpreted as homothety
conditions on the geometry in field space,

∂iU¼−2Gijϕ
j; ϕi∂iU¼2U; Gijϕ

iϕj¼−U:

(11)

The second and third equations follow from the first
one and the homogeneity requirements.

(iii) Physics requirements also include thatGij cannot have
more than one negative eigenvalue because the local
scale symmetry is just enough to remove only one
negative norm ghost. However, if more gauge sym-
metry that can remove more ghosts is incorporated,
then the number of negative eigenvalues can increase
accordingly. The gauged R-symmetry in supergravity
(which is automatic in the 4þ 2 approach) is such an
example.

In [18] these rules emerged from gauge symmetries in
2 T gravity. Since Weyl symmetry is an automatic outcome
from 4þ 2 dimensions, we can check that these same
requirements follow directly in 3þ 1 dimensions by
imposing Weyl symmetry on the general form in Eq. (10).
As an example, it is easy to check that all these

conditions are automatically satisfied by the action given
in Eq. (5), with one ϕ and four real fields in the doublet H.
Using the symbol s, as s2 ≡ 2H†H, we write it in the form

U ¼ ϕ2 − s2; V ¼ ϕ4fðs=ϕÞ; Gij ¼ ηij; (12)

where ηij is a flat Minkowski metric in the five-dimensional
field space with a single negative eigenvalue—this reduces
to a two-dimensional ηij in the unitary gauge of Eq. (9)
since indeed there is only a single physical field s. In our
work [7–12] generally we let the potential fðzÞ to be an
arbitrary function of its argument z ¼ s=ϕ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2H†H

p
=ϕ,

as allowed by the Weyl symmetry conditions above. In
Eq. (1) we have a purely quartic renormalizable potential,
V ¼ λ

4
ðs2 − α2ϕ2Þ2 þ λ0

4
ϕ4. When quantum corrections are
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included, fðzÞ contains logarithmic corrections, but by
reexamining the underlying symmetry, the effective quan-
tum potential can again be rewritten in the form ϕ4fðs=ϕÞ,
consistent with the local conformal symmetry. We use the
quantum corrected potential in our discussion of Higgs
cosmology.
Next we give the general solution of the requirements

above in a convenient parametrization for nþ 1 fields
labeled with i ¼ 0; 1; 2;…; n; namely, ϕi ¼ ðϕ; sIÞ, where
ϕ0 ≡ ϕ is distinguished, while sI with I ¼ 1; 2;…; n are all
the other scalar fields. Then the general solution to the
conditions above for Weyl gauge symmetry takes the
following form,

Uðϕ; sIÞ ¼ ϕ2uðzÞ; with anyuðzIÞ; (13)

Vðϕ; sIÞ ¼ ϕ4fðzÞ; with any fðzIÞ; (14)

GIJðzIÞ ¼ any nonsingular n × nmetric; (15)

G0IðzÞ ¼ GI0ðzÞ ¼ − 1

2

�∂u
∂zI þ 2GIKzK

�
; (16)

G00ðzÞ ¼ −uþ zI
∂u
∂zI þ zIzJGIJ; (17)

where the ratio zI ≡ sI=ϕ is gauge invariant. Thus, after
using the chain rule, ∂=∂zI ¼ ϕ∂=∂sI, the general Weyl-
invariant action becomes

L ¼ ffiffiffiffiffiffi−gp

0
BBBBB@

1
12
Uðϕ; sÞRðgÞ − Vðϕ; sÞ

þ 1
2

�
U − sI ∂U∂sI − sKsLGKL

�
ð∂μ lnϕÞð∂μ lnϕÞ

− 1
2
GIJð∂μsI∂μsJÞ þ

�
2GIJsJ þ ∂U

∂sI
�
∂μsI∂μ lnϕ

1
CCCA; (18)

with theU;V;GIJ in Eqs. (13)–(15). It should be noted that
GIJðzIÞ; uðzIÞ; fðzIÞ are not determined by Weyl symmetry
alone. Various other symmetries in a given model could
restrict them. Any choice consistent with additional sym-
metries is permitted in the construction of physical models.
For example, the model in Eq. (5) has the SUð3Þ × SUð2Þ ×
Uð1Þ symmetry. In particular, local superconformal sym-
metry gives more severe restrictions by relating Gij and U
from the beginning, as discussed below.
As the number of scalar fields increases, the restrictions

imposed by Weyl symmetry become less severe. For
example, an additional SUð3Þ × SUð2Þ × Uð1Þ gauge sin-
glet field beyond ϕ that would be needed to reproduce the

phenomenology of the dilaton-like singlet discussed in
Sec. II A can be included with slightly more freedom on its
coupling parameters. Keeping such possibilities in mind for
more general phenomenological considerations, we the
define the minimal model to include only the standard
Higgs doublet and the singlet ϕ as in the previous section.
Hence, for clarity we will write out the general Weyl-

invariant Lagrangian for the case of only the Higgs doublet
fieldH plus ϕ. This generalizes Eq. (5), but we suppress the
other fields in our discussion. Furthermore, we will work
directly with the gauge fixed version of the Higgs field in
Eq. (9), so the Higgs doublet is reduced to a single field
sðxÞ as in (9). In that case, from Eqs. (13)–(17) we obtain

LðxÞ ¼ ffiffiffiffiffiffi−gp

2
66664

1
12
ϕ2uðs=ϕÞRðgÞ − ϕ4fðs=ϕÞ

þgμν
 1

2

�
u − s

ϕu
0 − s2

ϕ2 Ḡ
�
∂μϕ∂νϕ

− 1
2
Ḡ∂μs∂νsþ

�
u0 þ 2 s

ϕ Ḡ
�
∂μϕ∂νs

!
3
77775; (19)

where GIJ reduces to G11ðsÞ≡ ḠðsÞ for the single field.
Generally, Ḡðs=ϕÞ; uðs=ϕÞ; fðs=ϕÞ in Eq. (19) are three arbitrary functions of the Higgs field, z ¼ s=ϕ ¼ ffiffiffiffiffiffiffiffiffiffiffi

2HH
p

=ϕ,
which may be used for model building. As an example, if we take Uðϕ; sÞ ¼ ϕ2 þ ξs2, and Ḡ ¼ 1, we obtain a relatively
simple kinetic term with an arbitrary potential,
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LðxÞ ¼ ffiffiffiffiffiffi−gp

2
6664

1
12
ðϕ2 þ ξs2ÞRðgÞ − ϕ4fðs=ϕÞ

þ
 

1
2

�
1 − s2

ϕ2 ð1þ ξÞ
�
∂μϕ∂μϕ

− 1
2
∂μs∂νsþ 2 s

ϕ ð1þ ξÞ∂μϕ∂μs

!
3
7775:
(20)

This Lagrangian is Weyl invariant for any value of the
constant parameter ξ, but we see now a simple generali-
zation of the special simplifying role played by ξ ¼ −1
that corresponds to the conformally coupled scalars
of Eq. (1).
In the general single-s Lagrangian (19), field redefi-

nitions of the gauge invariant variable z → FðzÞ (or
s → ϕFðs=ϕÞ) may be used to map one of these three
functions, Ḡðs=ϕÞ; uðs=ϕÞ; fðs=ϕÞ, to any desired func-
tion of z without changing the form of the Lagrangian in
(19). For example it may be convenient to take Ḡ ¼ 1,
and still obtain all single-s Weyl-symmetric models by
using all possible uðzÞ, fðzÞ. Another option is to take all
possible ḠðzÞ; fðzÞ with a fixed uðzÞ ¼ 1 − z2 as in
Eq. (5), which has certain advantages for understanding
geodesic completeness [10] of all the fields ϕ; s; gμν, in
cosmological spacetimes, as discussed in Sec. IV. If we
choose uðzÞ ¼ 1 − z2 and demand renormalizability of
the action in the limit of ϕ2 ≫ s2 (where gravity
effectively decouples, as seen in the gauge ϕ ¼ ϕ0 with
ϕ0 ≫ s, we are forced to Ḡ ¼ 1 and fðzÞ being a quartic
polynomial.
The last form is actually quite unique. We now give a

proof that the general model of Eq. (19) with a single s
(which corresponds to our minimal realistic model) can
always be written in the geodesically complete form that we
advocated in our previous work [8,9] and implemented in
proposing the action in Eq. (5). We begin in the notation
of Eq. (10) with only two fields ϕi ¼ ðϕ; sÞ labeled by
i ¼ 0, 1. Using well-known results of geometry in two
dimensions, the metric in field space GijðϕÞ can always be
diagonalized by general field reparametrizations (as in
general relativity) and put into the conformally flat form
Gij ¼ gðϕÞηij where ηij is the flat metric in two dimen-
sions. Using further field reparametrizations with an overall
rescaling consistent with Weyl transformations, the factor
gðϕÞ can also be set equal to the constant gðϕÞ ¼ 1. Having
arrived at Gij ¼ ηij as still the most general metric in field
space, the only possible form of UðϕiÞ that is consistent
with the local Weyl symmetry is UðϕiÞ ¼ ðϕ2 − s2Þ=12.
This completes the general proof that the action in Eq. (5) is
the most general Weyl-invariant theory without losing
generality. Then the complete analysis of homogeneous
cosmological solutions provided in our previous work [8,9]
shows that this form is the general geodesically complete
version of the theory. Certain other forms for UðϕiÞ arrived
at by field reparametrizations, in particular purely positive
forms of UðϕiÞ, always end up putting restrictions in field

space inadvertently, and such specialized restrictions on
fields is what leads to geodesic incompleteness.
Hence, the a class of well motivated models that we

used in many of our studies amounts to Ḡðs=ϕÞ ¼ 1,
uðs=ϕÞ ¼ 1 − s2=ϕ2, and the low-energy renorm-
alizable quartic potential Vðϕ; sÞ ¼ ϕ4 fðs=ϕÞ, with
fðs=ϕÞ ¼ λ

4
ðs2=ϕ2 − α2Þ2 þ λ0

4
. This is the model that

now is identical to the conformally symmetric standard
model we proposed. Its homogeneous cosmological equa-
tions have been solved analytically exactly in [11] for all
possible initial conditions of the fields, including radiation
and curvature, and all possible values of the parameters
λ; λ0, but with α ¼ 0. After this much analytic control, a
small α is easily handled with numerical methods and still
have a full understanding of all the cosmological solutions
of the standard model. This forms the basis of our further
work in cosmology that is discussed in the following
sections.
For further discussion, a useful gauge choice is ϕðxÞ ¼

ϕ0 for all spacetime as in Eq. (7). This is the gauge called
the c-gauge in our previous work. Because we use also
other gauges, we attach the letter c to each field in this
gauge, thus ϕc; sc; g

μν
c will remind us that we are in the

c-gauge, where ϕcðxÞ ¼ ϕ0. In c-gauge we rename scðxÞ ¼
hðxÞ to recall that in this gauge we obtain the simplest
connection to the Higgs field hðxÞ at low energy, in nearly
flat spacetime, gμνc ¼ ημν þ � � �, as discussed in the para-
graphs before Eq. (9). The Lagrangian in Eq. (19) with
general u; Ḡ; f, takes the following greatly simplified form
in the c gauge,

LðxÞ ¼ ffiffiffiffiffiffiffiffi−gcp �
1

12
ϕ2
0uðh=ϕ0ÞRðgcÞ

− 1

2
Ḡðh=ϕ0Þgμνc ∂μh∂νh − ϕ4

0fðh=ϕ0Þ
�
: (21)

If we apply a Weyl transformation to go to the Einstein
frame3, gEμν ¼ uðh=ϕ0Þgcμν, then we obtain

LðxÞ ¼ ffiffiffiffiffiffiffiffiffi−gEp �
1

12
ϕ2
0RðgEÞ − 1

2

ð∂h=ϕ0

ffiffiffi
u

p Þ2 þ Ḡðh=ϕ0Þ
uðh=ϕ0Þ

× gμνE ∂μh∂νh − ϕ4
0

fðh=ϕ0Þ
ðuðh=ϕ0ÞÞ2

�
: (22)

Without loss of generality, a particularly simplifying choice
for Ḡðh=ϕ0Þ, namely

Ḡðh=ϕ0Þ ¼ uðh=ϕ0Þ − ð∂h=ϕ0

ffiffiffi
u

p Þ2; (23)

3The Weyl transformation is
ffiffiffiffiffiffiffiffi−gcp

uRðgcÞ ¼ ffiffiffiffiffiffiffiffiffi−gEp
RðgEμνÞþ6

ffiffiffi
u

p ∂μð ffiffiffiffiffiffiffiffiffi−gEp
gμνE ∂ν

ffiffiffi
u

p Þ. After an integration by parts of the
last term (or by dropping a total derivative) we obtain the given
result.
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is the one that yields a canonically normalized Higgs field.
In this form, the theory can be interpreted directly as an
Einstein frame formulation of the standard model with a
canonically normalized Higgs field4 and an effective Higgs
potential VeffðhÞ given by

VeffðhÞ ¼ ϕ4
0

fðh=ϕ0Þ
ðuðh=ϕ0ÞÞ2

: (24)

This potential can be crafted by various choices of fðzÞ and
uðzÞ to fit cosmological observations, while still being
consistent with an underlying local conformal symmetry.
However, since this gauge led to an overall positive
coefficient in front of the Ricci scalar, it could not recover
all field configurations that are demanded in the geodesi-
cally complete theory; inevitably the generic solutions in
this gauge are geodesically incomplete as we have learned
in our previous work.
For example, the best fit inflaton potentials based on

recent Planck satellite data [5] are “plateau models” [39].
Using the geodesically incomplete form of the theory in
(22) it is possible to construct examples with plateaus at
large h=ϕ0, by choosing f and u such that the potential
VeffðhÞ is very slowly varying and approaches a constant at
large h and by requiring VeffðhÞ becomes approximately
the familiar Higgs potential needed to fit low-energy
physics for h ≪ ϕ0.
The Bezrukov-Shaposhnikov (BS) model for Higgs

inflation [23] is a special case of our more general form
in Eq. (21), namely their proposal

LBSðxÞ ¼ ffiffiffiffiffiffiffiffi−gcp �
1

12
ðϕ2

0 þ ξh2ÞRðgcÞ − 1

2
gμνc ∂μh∂νh

− λ

4
ðh2 − α2ϕ2

0Þ2 − λ0

4
ϕ4
0

�
; (25)

follows from Eq. (21) by taking U → ðϕ2
0 þ ξh2Þ; Ḡ → 1,

and V → ðλ
4
ðs2 − α2ϕ2

0Þ2 þ λ0
4
ϕ4
0Þ. This leads to an effective

potential Veff of the type above in Eq. (24),

VeffðσÞ ¼
λ
4
ðh2 − α2ϕ2

0Þ2 þ λ0
4
ϕ4
0

ð1þ ξh2=ϕ2
0Þ2

; with h → hðσÞ: (26)

In the BS model, because G is chosen as G ¼ 1, the field h
is not canonically normalized, so h must be replaced
through a field redefinition [23] to obtain a canonically

normalized Higgs, σ, as described more generally in
footnote (4).
Hence, the BS model has a fully Weyl symmetric

formulation which was not noticed before. Its presentation
in the literature has included various ambiguities and
inconsistencies, with clashing ideas on scaling symmetries
at the classical level and quantum corrections. For example,
in some cases, the coupling to gravity has a dimensionful
Newton constant that is inconsistent with the scaling
symmetry of the rest of the theory; a massless dilaton is
said to exist in cases where global scaling symmetry is
explicitly broken at low energies; unimodular gravity has
been introduced but this is inconsistent with scale sym-
metry; and there is ambiguity about which renormalization
scheme is appropriate for computing quantum corrections.
These issues are fully resolved with the underlying Weyl
symmetric formulation discussed here. Also, now that we
have recast the BS model into a fully conformally invariant
form, we can see in the gauge fixed Einstein frame
(22)–(24) that it is not unique. Rather, it is just a special
case of a larger set of conformally invariant models
including a range that have similar plateau properties.
Furthermore, since U ¼ ϕ2 þ ξh2 is purely positive, it
means the fields in the BS model form a basis that is
geodesically incomplete, and hence its generic solutions
can describe only a subsector of the available field space.
We make further comments in Sec. IV including the effects
of geodesic incompleteness.

B. Supergravity

We do not know if supersymmetry (SUSY) is a property
of nature, but theoretically it is an attractive possibility.
Therefore, it is of interest to investigate whether it is
compatible with an underlying local conformal symmetry.
As a superconformal local symmetry, the generalization of
the Weyl-invariant formalism of the previous section
produces stronger constraints on scalar fields. This was
derived in [18] from the gauge symmetry formalism in
4þ 2 dimensions. It is possible to arrive at the results given
below directly in 3þ 1 dimensions by requiring super-
gravity with a local superconformal symmetry, but pro-
vided the usual Einstein-Hilbert term is dropped (which is
unusual in the supergravity literature), and instead a Weyl
symmetric formulation like the previous sections is imple-
mented. In the 4þ 2 dimensional approach of 2 T physics,
there is no option: it is a prediction that the emergent 3þ 1
dimensional theory is automatically invariant under a local
symmetry SUð2; 2j1Þ, where SUð2; 2Þ ¼ SOð4; 2Þ is the
connection to 4þ 2 dimensions, the subgroup SOð1; 1Þ ⊂
SOð3; 1Þ × SOð1; 1Þ ⊂ SOð4; 2Þ is the Weyl subgroup that
acts on the extra 1þ 1 dimensions, and the supersymmet-
rization in 4þ 2 dimensions promotes SU(2,2) to
SUð2; 2jN Þ for N supersymmetries [17], with N ¼ 1 in
the present case [18].
The scalar-field sector of the emergent 3þ 1 dimen-

sional locally superconformal theory is presented here

4Alternatively, without fixing Ḡ, it is possible to do a field
redefinition such that h is written in terms of a canonically
normalized field σ, where the relation between σ and hðσÞ is
given by the first order differential equation
ðdhdσÞ2½ð∂h=ϕ0

ffiffiffi
u

p Þ2 þ Ḡðh=ϕ0Þ� ¼ uðh=ϕ0Þ. Then the Lagrangian
rewritten in terms of the canonically normalized σ is again of
standard form with the same potential VeffðhðσÞÞ as Eq. (24),
except for expressing h in terms of σ. This complicated procedure
is avoided by the simple choice of G in Eq. (23).
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briefly in a streamlined fashion, including some simplifi-
cations and extensions. First note that a scalar field in a
chiral supermultiplet must be complex. Thus SUSY
requires the singlet ϕ to be complexified so that it is a
member of a supermultiplet. Then to describe all the scalar
fields we use a complex basis ϕm and denote their complex
conjugates as ϕ̄m̄ with the barred index m̄. The notation is
reminiscent of standard supergravity as reviewed in [40].
However now there is no Einstein-Hilbert term; instead
there is a Weyl plus an additional Uð1Þ gauge symmetry
that can gauge fix a complex scalar ϕ into a dimensionful
real constant ϕ0 that plays the role of the Planck scale.
Recalling the discussion about removing the (real) ghost

scalar field ϕ in Sec. II B, it should be noticed that the
complex ϕ amounts to two real ghosts, and therefore two
gauge symmetries are needed to remove them. This role is
played by the Weyl symmetry SO(1,1) that acts on the extra
1þ 1 dimensions and the local R-symmetry U(1), both of
which are included in the local SUð2; 2j1Þ outlined above.
The local U(1) is a crucial ingredient as a partner of the
Weyl symmetry to remove the additional ghost from a
complexified dilaton field ϕ that is demanded by SUSY.
Like before, we have Uðϕ; ϕ̄Þ, but SUSY requires that

the metric Gmn̄ be derived from the derivatives of Uðϕ; ϕ̄Þ
like a Kähler metric,

Gmn̄ ¼
∂2Uðϕ; ϕ̄Þ
∂ϕm∂ϕn̄ : (27)

The metric must be nonsingular and ð−Gmn̄Þ cannot
contain any more than one negative eigenvalue (because
no more than one complex ghost can be removed). We
denote its inverse formally as Gn̄m ¼ ð∂ϕ̄⊗∂ϕ

∂2U Þn̄m. A simple
quadratic example similar to Eq. (5) is

Uðϕ; ϕ̄Þ ¼ ϕmϕ̄n̄ηmn̄; Gmn̄ ¼ ηmn̄;

where ηmn̄ ¼ diagð1;−1;…;−1Þ: (28)

In this example, all scalars in the theory are conformally
coupled, and U and G are automatically invariant under a
global SU(1,N) symmetry. This global symmetry, which
will continue to be a hidden symmetry in some gauges, may
be broken explicitly by some terms in the potential V,
depending on the model considered. Nevertheless, keeping
track of this (broken) symmetry in physical applications
can be useful.
The scalar field sector of the supergravity theory with

local Weyl symmetry is given as follows,

Lbose ¼
ffiffiffiffiffiffi−gp �

1

6
Uðϕ; ϕ̄ÞRðgÞ þ ∂2U

∂ϕm∂ϕ̄n g
μνDμϕ

mDνϕ̄
n

− VFþDðϕ; ϕ̄Þ
�
: (29)

The Kähler metric and Kähler potential structure is rem-
iniscent of general supergravity [40], however the absence
of the Einstein-Hilbert term, and the corresponding scale
invariance is the important difference. Here, Uðϕ; ϕ̄Þ is
homogeneous of degree two and satisfies homothety
constraints similar to Eq. (11),

Uðtϕ; tϕ̄Þ ¼ t2Uðϕ; ϕ̄Þ;
∂Uðϕ; ϕ̄Þ

∂ϕ̄m̄ ¼ ϕn ∂2Uðϕ; ϕ̄Þ
∂ϕn∂ϕm̄ ; and complex conjugate:

(30)

The potential energy has two parts VFþDðϕ; ϕ̄Þ ¼
VFðϕ; ϕ̄Þ þ VDðϕ; ϕ̄Þ. The potential VFðϕ; ϕ̄Þ must be
derived from an analytic superpotential fðϕÞ that depends
only on ϕm and not on ϕ̄m̄, and is homogeneous of degree
three so that VF is homogeneous of degree four,

fðtϕÞ ¼ t3fðϕÞ; VF ¼ −
�∂ϕ̄ ⊗ ∂ϕ

∂2U

�n̄m ∂f̄
∂ϕ̄n̄

∂f
∂ϕm :

(31)

The potential VDðϕ; ϕ̄Þ is derived from another
independent analytic function zabðϕÞ with adjoint group
indices a, b that appear in Yang-Mills terms as
− 1

4
Re ðzabðϕÞÞFa

μνFbμν. This zabðϕÞ should be homo-
geneous of degree zero zabðtϕÞ ¼ zabðϕÞ. Then VD takes
the form

VDðϕ;ϕ̄Þ¼
1

2
Reðz−1ab Þ

� ∂U
∂ϕmðtaϕÞm

��∂U
∂ϕ̄n̄ðtbϕ̄Þn̄

�
; (32)

where ta is the matrix representation of the Yang-Mills
group as it acts on the scalars ðϕm; ϕ̄m̄Þ: The fermionic
terms are added consistently with the usual rules of
supergravity [40].
This is the general setup for the Weyl-invariant matter

coupled to Weyl-invariant supergravity as derived from the
4þ 2 dimensional theory. The simplest example that
corresponds to the supersymmetric generalization of
Eq. (5) would be the minimal supersymmetric standard
model extended with an additional singlet supermultiplet,
whose scalar component is the complex field ϕ. Then U
takes the quadratic form suggested in [18]

U ¼ ϕ̄ϕ −H†
uHu −H†

dHd; (33)

where Hu, Hd are the two Higgs doublets needed in the
supersymmetric version of the standard model. The
superpotential fðϕ; Hd;HuÞ and the matrix zabðϕ; Hd;HuÞ
are chosen to fit the usual practice of supersymmetric
model building [40]. An example is zab ¼ δab,
and fðϕ; Hd;HuÞ ¼ gðHuHdÞϕþ g03, where ðHuHdÞ ¼
Hα

uH
β
dεαβ is the only SUð2Þ × Uð1Þ invariant which is
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analytic in both Hu and Hd. In an effective (rather than
renormalizable) low- energy theory, these can be modified
by replacing the dimensionless coupling constants g, g0 by
an arbitrary function of the ratio ðHuHdÞ=ϕ2, and similarly
for zab. When the complex ϕðxÞ is gauge fixed to the real
constant ϕ0, this approach generates all the dimensionful
parameters from the same source ϕ0 which is of order of the
Planck scale. Then we see that the modification of g, g0 and
zab by arbitrary functions of ðHuHdÞ=ϕ2 is negligible at
low energies.
More general scale-invariant models with more fields

(such as generalizations of the minimal SUSY model) are
easily constructed by using the rules on scalar fields given
in this section. With special forms of the superpotential
fðϕÞ, it is possible to construct so called “no-scale”models
[41–43] in which the cosmological constant is guaranteed
to be zero at the classical level even after spontaneous
breakdown of symmetries. Simple examples of no-scale
models, that are lifted to be fully Weyl invariant, are given
in [18].
In this paper we will not explore any further the general

superconformal structures discussed above although this
could be of interest in some future applications. Some of
our examples that are very similar to the Weyl-invariant
supersymmetric cases previously discovered in [18] were
later explored in a cosmological context in [28]. However
their discussion, which is focussed on very specialized
initial conditions that are so nongeneric, is difficult to be
convincing especially in the face of the complete set of
solutions that we now understand much better.

IV. CONFORMAL COSMOLOGY

In this paper we have emphasized the geodesically
complete nature of our conformal standard model. In this
section we first describe what we mean by geodesic
completeness and the related notion of completeness in
field space, and then discuss some applications of our
conformal standard model in cosmology.
There are two required properties for geodesic com-

pleteness: the first is smooth local geodesic continuation
through singularities across all space-time patches; the
second is infinite action for geodesics that reach arbitrarily
far into the past so that unnatural initial conditions are
avoided. Both properties are satisfied in our theory which
is insured to also be complete in field space. Geodesics
xμðλÞ are computed by extremizing the particle action

S ¼ − R dλm ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
: μx

: νgμνðxðλÞÞ
q

, where m is the mass and

gμν is a gravitational field. In our Weyl-invariant standard
model (5) all particle masses are generated by the Higgs
field, so m is proportional to the Higgs field h,
m ¼ ghðxðλÞÞ, where g is the dimensionless coupling
constant for the corresponding particle as prescribed by
the standard model. Then this particle action is locally
invariant under Weyl transformations hðxÞ → ΩðxÞhðxÞ

and gμνðxÞ → Ω−2ðxÞgμνðxÞ. For our cosmological discus-
sion, geodesics xμðλÞ in a spatially homogeneous space
are computed when both homogeneous fields that
appear in the particle action S, hðτÞ and gμνðτÞ ¼ a2ðτÞ
ðημν þ anisotropy & curvatureÞ, where τ≡ x0 is the
conformal time, correspond to consistent solutions of the
field equations of our conformal standard model in (5).
The full solution to the geodesic equation (neglecting
curvature and anisotropy for simplicity) is

x⃗ðτÞ ¼ q⃗þ p⃗
Z

τ

τ0

dτ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2ðτ0Þa2ðτ0Þ

p ; (34)

where p⃗ is the conserved spatial component of the
particle momentum vector, pμ ¼ ∂S=∂x: μ, while p0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2ðτÞa2ðτÞ

p
, and q⃗ ¼ x⃗ðτ0Þ is the initial position.

These expressions are invariant under reparametrizations of
the affine parameter λ, since they depend only on the
physical spacetime variables xμ. Then, the local continu-
ation property of a geodesic x⃗ðτÞ in a homogeneous space is
satisfied automatically when one insures that all the fields,
including mðτÞ ¼ ghðτÞ and aðτÞ, are given in all the
patches of homogeneous field space and that the fields are
smoothly continued through singularities. In [10,11] and
[11], we showed how local Weyl invariance, in the special
Weyl frame displayed in Eq. (5) that covers all the patches,
are essential ingredients to insure that all homogeneous
cosmological solutions of our conformal standard model
(5) have this continuation property.
The global action for a geodesic (34) is given by

jSfij ¼
Z

τf

τi

dτ
m2ðτÞa2ðτÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p⃗2 þm2ðτÞa2ðτÞ
p : (35)

The combination m2ðτÞa2ðτÞ ¼ g2h2ðτÞa2ðτÞ that appears
in jSfij is invariant under Weyl transformations, so it
can be computed in any convenient gauge [see e.g.
Eqs. (36)–(38)]. In particular in the γ gauge used in the
solutions in [10] and [11], where aγðτÞ ¼ 1, we have shown
that in all cyclic solutions in [11], h2ðτÞa2ðτÞ ¼ h2γðτÞa2γðτÞ
oscillates with a fixed maximum amplitude many times
within a cycle, and for an infinite number of times over an
infinite number of cycles, leading to an infinite action, since
jSfij receives the same positive finite contribution in each
cycle. For these solutions the average magnitude of jaEj in
the E-gauge (usual Einstein frame, see Eq. (36)) is the same
in each cycle. Recently, we have also constructed [27]
solutions with increasing entropy in each future cycle such
that the average jaEj in the E gauge increases in each future
cycle. For these solutions, jSfij diverges to the past [27]
even faster as compared to our solutions in [11]. Hence,
unlike inflation scenarios [44], we may expect that the
universe described by our conformal standard model has no
unnatural initial conditions.
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Next, we discuss various potential applications of
Weyl-invariant theories to cosmology. Early universe cos-
mology near the singularity is a natural place to look for uses
because the interactions imposed by Weyl invariance (more
profoundly 4þ 2 dimensional gauge symmetries) produce
their most significant changes relative to conventional
physics in the limit of strong gravity, as noted in some of
the examples above. Black hole phenomena is another
interesting arena for study, butwewill not discuss themhere.
The first important applicationwas to useWeyl invariance

to construct geodesically complete cosmological solutions.
Conventional cosmological analysis is usually confined to
theories coupled to Einstein gravity with a dimensionful
Newton’s constant. In this framework, all cosmological
solutions of interest are geodesically incomplete. However,
we have observed that aWeyl-invariant theory can be cast in
Einstein frame, as illustrated by Eq. (22), and in other
frames. The observation made in [8–12] is that, geodesic
incompleteness is an artifact of an unsuitable frame choice:
geodesically incomplete solutions in Einstein frame may be
completed in other frames, even though the theories are
entirely equivalent away from the singularity.
The Einstein frame can always be reached directly from a

Weyl-invariant theory in (19) by making the Einstein-gauge
choice,

1

12
UðϕE; sEÞ ¼ ð16πGÞ−1 ¼ 1

2
: (36)

We label this the E gauge and mark the fields in this gauge
with the subscript E (as in ðϕE; sE; g

μν
E Þ) to distinguish them

from the c-gauge fields ðϕc; sc; g
μν
c Þ. Note that the E gauge

can be valid only in a patch in field space since restrictions
must be imposed on the fields to require that UðϕE; sEÞ is
positive.
The same theory can easily be transformed to other

gauges. For example, the relations between the E- and
c-gauge fields can be easily derived by considering the
Weyl gauge invariants such as s=ϕ and ðdet ð−gÞÞ1=8ϕ,
ðdet ð−gÞÞ1=8s, etc.; for example, we deduce

sE
ϕE

¼ h
ϕ0

; and ðdetð−gcÞÞ1=8ϕ0¼ðdetð−gEÞÞ1=8ϕE; etc:

(37)

From these, we can express ϕEðhÞ and sEðhÞ in terms of the
single field h, so that the gauge condition (36) is satisfied.
Inserting these expressions into the gauge invariant action
(19) we arrive at the same E-frame action as Eq. (22).
As argued in our work [8–12], classically geodesically

complete solutions can be obtained for all single-scalar
theories that can be cast in the form of Eq. (19). But, for all
patches of field space ðϕ; s; gμνÞ to be included, as demanded
by the geodesics derived from VeffðhÞ in the Einstein frame,
ðU;G; fÞ must be brought to an appropriate form by using
the field redefinitions discussed below Eq. (20). The patches

of field space ðϕ; s; gμνÞ that are missing in the Einstein
frame can then be added in order to obtain a geodesically
complete space. We have argued in [10], and provided a
proof in Sec. III A, that geodesic completeness is accom-
plished when we bring U to the form U ¼ ϕ2 − s2, where
s2 ¼P s2I , is the sum of all scalars other than ϕ.
Geodesics remain incomplete when they hit the singu-

larity in all frames in which U is always positive, or the
equivalent Einstein frame, such as the one in Eq. (25).When
we rewrite those, by field redefinitions, in terms of new fields
in which U ¼ ϕ2 − s2, then the patches of field space ϕ2 ≥
s2 are equivalent to the Einstein frame, or to the other frames
with positive U. Geodesic completion is achieved by
allowing all regions of field space in the parametrization
that has U ¼ ϕ2 − s2; for this form, U is allowed to
smoothly go negative. In these coordinates the gauge
invariant vanishing point of U ¼ 0, given by the gauge
invariant expression js=ϕj ¼ 1, has a special significance; it
corresponds to the singularity of the scale factor of the
universe in the Einstein gauge. This is seen by equating the
gauge invariant ðdetðgÞÞ1=4Uðϕ; sÞ in the Einstein gauge, in
which UðϕE; sEÞ ¼ 6, and the unimodular gauge (labeled
with γ), in which det ð−gγÞ ¼ 1, as follows

ðdet ð−gÞÞ1=4Uðϕ; sÞ ¼ ðdet ð−gEÞÞ1=4 × 6

¼ 1 ×Uðϕγ; sγÞ: (38)

At spacetime points or regions where Uðϕγ; sγÞ ¼
ϕ2
γ − s2γ ¼ 0, which is where the gauge invariant quantity

js=ϕj hits unity in all gauges, jsγ=ϕγj ¼ jsE=ϕEj
¼ jh=ϕ0j ¼ 1, the geometry in the Einstein gauge fails
completely since det ð−gEÞ ¼ 0, and this is how the cos-
mological singularity occurs at some point in time [10].
Then, as we can see in the c-gauge, the region h=ϕ0 ∼ 1
(Higgs of Planck size) is the region of the big crunch or big
bang singularity, where js=ϕj ¼ 1 in any gauge. The
behavior of the universe in this region is governed by a
universal attractor mechanism that is independent of the
scalar potential, therefore independent of the details of the
model [10].
Although in the classical theory, cosmological singular-

ities of FRW type are typically resolved in the Weyl-lifted
theory with U ¼ ϕ2 − s2 in suitable Weyl gauges, one
should still worry about quantum gravity corrections.
When U vanishes, the coefficient of the Ricci scalar in
the gravitational actionvanishes so there is no suppression of
metric fluctuations and quantum gravity corrections should
become large. However, it is notable that for certain types of
cosmic singularities, including realistic ones, the metric and
fields possess a unique continuation around the singularity
in the complex time plane. A complex time path can be
chosen to remain far from the singularity so thatU is always
large and gravity remains weak. Thus, we are able to find an
analytic continuation of our classical solutions connecting
big crunches to big bangs along which quantum gravity
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corrections are small. This issue is under active investigation
and we defer further discussion to future work.
A particularly interesting application of Weyl invariance

is to Higgs cosmology, where the geodesically complete
solutions show cosmology can be much more interesting
than conventionally assumed. In fact, there is the possibility
that the Higgs field alone may be sufficient to explain the
large-scale features of the universe, as suggested by the
Bezrukov-Shaposhnikov Higgs inflation model [23] and
our recent work on the Higgs in cyclic cosmology [26,27].
In considering Higgs cosmology or other models of the

early universe, we believe that the cosmological solutions
found for geodesically complete theories provide some
important new insights on the question of the likely initial
conditions just after the big bang. For example, the generic
behavior of the Higgs after the bang when h ∼ ϕ0 is
dramatically different than the contrived initial conditions
that are commonly assumed in Higgs inflation scenarios.
This is easily seen by examining the analytic work in
[10,11], where for the simple model in Eq. (5) with α ¼ 0,
all homogeneous solutions including curvature and radia-
tion are obtained and the effects of anisotropy are deter-
mined [10]. Emphasizing that this is not only the contrived
solutions, but all solutions, it serves as an example of the
richness of the phenomena that occur in a model even with
a simple potential. The results make clear a point that is
obvious, but often forgotten: for a given scalar potential,
there is an enormous range of cosmological solutions. By
comparison, it is clear that the slow-roll initial conditions
frequently assumed in the analysis of cosmic inflation are
very special and unlikely. For example, by transforming the
inflationary solution in the Bezrukov-Shaposhnikov Higgs
inflation model [23] to a field basis in which U ¼ ϕ2 − s2,
it may be possible to trace cosmic evolution right back to
the singularity and to judge whether the inflation is likely in
the space of geodesically complete cosmological solutions.
Figure 1 is an illustration of our solution for the generic

cosmological behavior of the Higgs field just after the big
bang if the Higgs potential has a stable nontrivial minimum,
as in Eq. (5), as usually assumed and as required for the
Bezrukov-Shaposhnikov Higgs inflation model [23]. This
figure describes the generic cosmological evolution of the
Higgs field, that must start with fluctuations of Planck size
and energy (due to the universal attractor near the singularity
[10]), and quickly reduce its amplitude by losing energy to
the gravitational field; then after a phase transition, settle
down to an almost constant value at the electroweak scale v
determined by the dimensionless parameter α in Eq. (3).

The solution of Fig. 1 changes drastically if the vacuum
is metastable after including quantum corrections, which is
a possibility suggested by the most recent LHC data for the
Higgs and the top quark masses [19], and assuming no new
physics up to the Planck scale. Metastability is incompat-
ible with Higgs inflation and generally causes problems for
inflation because the Higgs will typically escape from the
metastable phase right after the big bang and roll to a state
of negative energy density that can prevent inflation of any
sort from occurring.
The exact solutions of the Weyl-invariant theory suggest

an alternative cosmology in this case. The generic solution
at first behaves as in Fig. 1 after the big bang, all the way
through the electroweak phase transition. But after some
time (order of the lifetime of the universe) the Higgs
oscillations in the electroweak vacuum grow larger and
larger, like the mirror image of Fig. 1, taking away energy
from the gravitational field and eventually causing a
collapse of the universe to a big crunch, while the Higgs
does a quantum tunneling to a lower state of the potential.
At that stage our exact analysis near the singularity given in
[10] takes over to describe interesting new phenomena that
occur just after the crunch and before another rebirth of the
universe with a big bang. The result is a regularly repeating
sequence in which the Higgs field is trapped in its
metastable state after a big bang, remains there for a long
period of expansion followed by contraction, escapes as the
Universe approaches the big crunch, passes through to a big
bang and becomes trapped again. The evolution can be
considered a Higgs-driven cyclic theory of the universe.
The details are presented in a separate paper [27].
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