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There has been renewed interest in the possibility that dark matter exists in the form of atoms, analogous
to those of the visible world. An important input for understanding the cosmological consequences of dark
atoms is their self-scattering. Making use of results from atomic physics for the potentials between
hydrogen atoms, we compute the low-energy elastic scattering cross sections for dark atoms. We find an
intricate dependence upon the ratio of the dark proton to the dark electron mass, allowing for the possibility
to “design” low-energy features in the cross section. Dependences upon other parameters, namely the
gauge coupling and reduced mass, scale out of the problem by using atomic units. We derive constraints on
the parameter space of dark atoms by demanding that their scattering cross section not exceed bounds
from dark matter halo shapes. We discuss the formation of molecular dark hydrogen in the Universe
and determine the analogous constraints on the model when the dark matter is predominantly in
molecular form.
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I. INTRODUCTION

Dark atoms are one of the oldest models of particle dark
matter [1,2], originally suggested by the venerable idea of
mirror symmetry [3–7]. More recently, the idea of dark
sectors with gauge interactions not necessarily identical to
those of the standard model has gained attention [8,9],
motivating authors to take a fresh look at the implications
of dark atoms [10–16]. Unlike dark matter consisting
of elementary particles, dark atoms can have large self-
interaction cross sections, which may impact the structure
of galactic halo profiles, or those of clusters of galaxies, on
which there are observational constraints.
A previous study [15] explored the impact of these

constraints on the parameter space of a simple atomic dark
matter (DM) model, making simplifying assumptions about
the nature of the self-interaction cross section. In this paper
we aim to avoid such assumptions and to thereby obtain
more accurate predictions, while illustrating a rich range of
possibilities for the energy dependence of the cross
sections. If tentative evidence for significant dark matter
self-interactions improves (for a recent review, see
Ref. [17]), these features could prove useful for model
building, as they allow one to construct scattering cross
sections with intricate features appearing at energies
much lower than would be possible in other theories of
self-interacting dark matter.
We define the atomic DM model in Sec. II and review

results from the atomic literature in the interaction potential
between atoms in Sec. III. The methodology for computing
scattering cross sections is presented in Sec. IV, and the
resulting predictions for scattering lengths in the singlet and

triplet channels are given in Sec. V. We present the energy
dependence of the atomic cross sections in Sec. VI.
Constraints on the model from DM halo structure are
derived in Sec. VII. In Sec. VIII we present analytic fits to
the momentum-transfer cross section to facilitate the use of
our results by the reader. The formation of dark molecules
is discussed in Sec. IX, and the structure formation bounds
analogous to those of atoms are given in Sec. X. We
summarize and conclude in Sec. XI.

II. THE MODEL

We assume that dark atoms (H) are analogous to visible
hydrogen, consisting of bound states of a fermionic dark
electron e and proton p with masses me and mp, respec-
tively, and with equal and opposite charges under a dark
electromagnetism with a massless dark photon and fine-
structure constant α. (We do not refer to the usual fine-
structure constant in this paper, so there will be no
confusion between the two.) Otherwise, the physics need
not be the same as in the visible sector, and in particular we
do not assume that there are dark neutrons or nuclei. By
definition, we take the dark electron to be the lighter of the
two constituents. The dark hydrogen binding energy is
given by α2μH=2, where μH ¼ memp=ðme þmpÞ is the
reduced mass. The atomic unit (a.u.) of energy is defined to
be ϵ0 ¼ α2μH, while that of length is the Bohr radius,
a0 ¼ ðαμHÞ−1. Sometimes we will omit the explicit writing
of ϵ0 and a0 in the specification of energies or distances; in
such cases the use of atomic units should be understood.
The model thus depends upon only three parameters,

which can be taken as ϵ0, a0, and the ratio R ¼ mp=me. We
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will see that the dependence of physical quantities on ϵ0
and a0 is trivial, if we ignore the contribution of the binding
energy to the mass of the dark atom, mH ≅ me þmp. In
this case they scale out of physical quantities by choosing
atomic units, leaving only R as the relevant one to vary.

III. INTERATOMIC POTENTIALS

The electrons in the scatteringH atoms can be in the spin
triplet or singlet states (which must be averaged over for
unpolarized scattering). The interaction potential depends
on the spin because the overall wave function must be
antisymmetric. The singlet state has a symmetric spatial
wave function, leading to a much deeper potential well,
allowing two H to bind into molecular H2 with binding
energy 0.16ϵ0 and bond length 1.4a0. (We are using the
Born-Oppenheimer approximation, in which the electronic
state is solved for at each value of the p-p separation, or
equivalently, the e’s respond adiabatically to the p motion.
This approximation is valid in a large-R expansion, and we
will make it throughout.) The triplet state must have a
spatially antisymmetric electronic wave function, leading
to a potential with a very shallow minimum with energy
−2 × 10−5ϵ0 at r ¼ 7.9a0. We plot them in Fig. 1 and
explain their origin in the following.
The triplet potential Vt has been computed in Ref. [18],

and an analytic fit to these results has been given [19] as

Vt

ϵ0
¼ expðc0 − c1r − c2r2Þ −DðrÞ

�
c6
r6

þ c8
r8

þ c10
r10

�
; (1)

with c0 ¼ 0.09678, c1 ¼ 1.10173, c2 ¼ 0.03945, c6 ¼ 6.5,
c8 ¼ 124, c10 ¼ 3285, and DðrÞ ¼ expð−ðr1=r − 1Þ2Þ if
r < r1 [DðrÞ ¼ 1 otherwise], with r1 ¼ 10.04 in atomic
units. The first term represents the repulsive exchange
contribution, while the second models the attractive van der
Waals part. We find that Eq. (1) gives a good fit to the

original data of Ref. [18] for r > 1.176, and we extrapolate
to lower r using Vt ¼ −0.3652þ 0.7653=r for r ≤ 1.176.
(The r−1 behavior provides a smooth fit to the tabulated
potential at small r.)
The singlet potential Vs has been computed more

recently in Ref. [20], where results are tabulated in the
range 0.2 < r < 12. We interpolate between the tabulated
values for 0.3 < r < 12, and extrapolate to small r using
Vs ¼ −1.5379þ 0.94714=r for r ≤ 0.3. To extrapolate to
r > 12, following Ref. [19], we have made a fit to lnðVt −
VsÞ versus r, which turns out to be nearly linear in r in this
region, thus obtaining Vs ¼ Vt − expð2.3048 − 1.6238rÞ.
We have found that the predictions for scattering from

these potentials are much more sensitive to small changes
in Vs than to Vt, due to the deeper minimum in the former.
It is therefore appropriate that more computational effort
has been made in the atomic physics community to provide
accurate recent determinations of Vs, while the existing
form of Vt seems to be adequate. For example, Ref. [21]
obtains a scattering length from the approximation in
Eq. (1) that is consistent with other studies.

IV. SCATTERING FORMALISM

To compute the elastic scattering properties of dark
atoms, we solve the Schrödinger equations for the partial
wave radial functions us;tl ¼ rψ s;t

l :

�
∂2
r − lðlþ 1Þ

r2
þ fðR; αÞðE − Vs;tÞ

�
us;tl ðrÞ ¼ 0; (2)

where l is the relative orbital angular momentum of the
atoms; r, E, and Vs;t are in atomic units; and

fðR; αÞ ¼ mHϵ0a20 ¼ Rþ 2þ R−1 − 1

2
α2 (3)

is the ratio of the mH to μH. Here E is the total c.m. energy
of the colliding H atoms, and in the following we will
ignore the binding energy (α2) contribution to f to
approximate it as a function only of R. It will be useful
to note that the wave number in atomic units is given
by k ¼ ffiffiffiffiffiffi

fE
p

.
At distances large compared to the range of the potential,

us;tl takes the asymptotic form proportional to
sinðkr − lπ=2þ δs;tl ðkÞÞ, where δs;tl is the phase shift.
The usual relation between the partial wave contribution
to the cross section and the phase shift is
σl ¼ ð4π=k2Þð2lþ 1Þsin2ðδlÞ, but in the present case
we must take into account the multiplicity of the total
nuclear spin, which is correlated to that of the electrons,
since the total wave function must be symmetric under
simultaneous interchange of both the electrons and the
protons. Naively, this would give extra relative weights of
ð1=16; 3=16Þ to the even- and odd-l waves, respectively, of
the singlet state (since the nuclei must have total spin 0 or 1,
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FIG. 1 (color online). Interaction potentials for hydrogen atoms
with electrons in spin singlet or triplet states. Here and through-
out, “a.u.” stands for “atomic units,” namely ϵ0 for energy and a0
for distance, as discussed in the text.
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respectively), while these weights would be ð9=16; 3=16Þ
for the triplet. However, it has been shown [22] that
indistinguishability of the two H atoms gives rise to an
additional factor of 2. Then the expression for the total
unpolarized cross section is

σ ¼ π

2k2
X
l

ð2lþ 1Þ
�
sin2δsl þ 9sin2δtl; l even
3sin2δsl þ 3sin2δtl; l odd

: (4)

To extract the phase shifts, one integrates the
Schrödinger equation from r ¼ ϵ with ϵ ≪ 1 and ulðϵÞ ¼
0 out to some sufficiently large r where the ul is well
approximated by the general V ¼ 0 solution, ulðrÞ ¼
C1jlðkrÞ þ C2nlðkrÞ. These are Ricatti-Bessel functions,
related to the corresponding spherical Bessel functions by a
factor of r, so that their asymptotic behavior is
jl ∼ sinðkr − πl=2Þ, nl ∼ − cosðkr − πl=2Þ. At suffi-
ciently large r, the coefficients are given by

C1 ¼ −n0lðkrÞulðrÞ þ nlðkrÞu0lðrÞ=k;
C2 ¼ j0lðkrÞulðrÞ − jlðkrÞu0lðrÞ=k; (5)

where k comes from the Wronskian, j0l ¼ djl=dðkrÞ, and
the phase shift is then given by δl ¼ tan−1ðC2=C1Þ. One
can test for convergence by verifying that δl is independent
of r. We find that r ¼ 100 is sufficient for energies up to
E ¼ 0.1 and R < 104.

V. ATOMIC SCATTERING LENGTHS

In the limit E → 0, the s-wave contributions to the cross
section approach constant values characterized by the
scattering lengths

as;t ¼ −lim
k→0

k−1 tan δs;t0 ðkÞ: (6)

It can be calculated directly at E ¼ 0 by a simpler method
than that described for the phase shifts, since at E ¼ 0 the

solution in the region outside the potential is linear,
u0 ¼ C2 − C1r. The scattering length is the value of r
where this line intercepts the r axis: a ¼ C2=C1 ¼
limr→∞½−u0ðrÞ=u00ðrÞ þ r�. Again we find r ∼ 100
adequate for our purposes.
We first consider the proton-electron mass ratio R ¼

1836.15 that corresponds to the visible world. We find
scattering lengths as ¼ 0.28 and at ¼ 1.37. These are in
reasonable agreement with values found by other authors;
for example, determinations of at in the atomic physics
literature range from 1.2 to 2 [23]. Our values agree with
those of Ref. [24]. By changing R from 1836 to 1835, we
can also reproduce the incorrect value as ≅ 0.45 obtained
by several authors who neglected the electron mass con-
tribution to mH in Eq. (3), as has been discussed
in Ref. [25].
We next explore the dependence of the scattering lengths

on the proton-to-electron mass ratio R. The results are
shown in Fig. 2. The triplet scattering length at varies
relatively slowly with R, while the singlet one displays a
large number of poles and zeroes in the interval
R ∈ ½1; 5000�. This number is directly related to the number
of bound states supported by the corresponding potential.
The dependence on R can be understood qualitatively from
Eq. (2), which shows that the potential effectively becomes
deeper as fðRÞ increases. A semiclassical analysis indicates
that the number of bound states should be of order
n ∼ π−1

R
∞
r1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
fðRÞVp

dr, where r1 is the E ¼ 0 turning
point; thus, we expect that the nth pole of as should occur at
Rn ∼ n2. A numerical fit to the positions of the poles
confirms this, giving Rn ≅ −3.45þ 9.49nþ 7.74n2. The
extreme shallowness of the triplet potential is such that the
first bound state (first pole) only appears for R > 2000.
Figure 2 shows a close-up of the region around R ∼ 1836

corresponding to normal atoms. It is a coincidence of nature
that we fall so close to a zero of as, so that the triplet
channel dominates even more than the 9∶1 ratio of
coefficients in Eq. (4) would imply. We will see below
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FIG. 2 (color online). Singlet and triplet scattering lengths as a function of R≡mp=me. The rightmost figure zooms in on the region
around R ¼ 1836.15, denoted by the vertical line.
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that as a result of this accident, R ∼ 1836 is close to a
local minimum in the total cross section at low energy,
considered as a function of R.

VI. ATOMIC CROSS SECTIONS

We now turn to the energy-dependent cross sections,
exploring how they change with R. Our focus will be on
low energies E≲ 10−2ϵ0, for which the cross sections
converge with the addition of a relatively small number of
partial waves. At higher energies, convergence can require
including terms with l in the hundreds. For illustration and
for comparison with previous results in the literature, we
start with the real-world value of R ¼ 1836.15. The result is
shown in Fig. 3 for several different choices of the
maximum partial wave number lmax. For energies up to
E ¼ 10−3, lmax ¼ 10 is sufficient. For accurate predictions
at E ¼ 10−2, up to 40 partial waves are required at
R ¼ 1836. (At smaller R, we observe that lmax ¼ 10 is
sufficient for all energies below E ¼ 10−2.)
Figure 3 also plots previous results for atomic H

scattering from Refs. [26–28]. The results are in reasonable
agreement; in particular, the intricate structures we obtain at
energies E > 2 × 10−4 match those of Ref. [28] (dotted
curve) very well. The features can be understood on general
physical grounds. Unlike molecular bond lengths and
binding energies, which are expected to be determined
by the atomic units rather than R, the scattering cross
section is sensitive to the relation between energy and the
de Broglie wavelength of the atom, which involves the
atomic, rather than electronic, mass, and hence introduces
R dependence.
Therefore, besides the energy scale ϵ0 that defines the

atomic unit of energy, there is a scale, ϵ1 ¼ ϵ0R−1, where
the incoming atom’s de Broglie wavelength is of order a0
and scattering becomes sensitive to the internal structure of
the atom, and another, ϵ2 ¼ ϵ0R−3=2, where the Van der
Waals potential at a separation of one de Broglie

wavelength is of the order of the kinetic energy. It is the
energy scale ϵ2 where scattering starts to change from being
purely s wave to containing important contributions from
higher partial waves. In Fig. 3, the cross section makes a
transition from flat to rising behavior at E ∼ 10−5 ∼ ϵ2, and
it starts falling again, while displaying numerous bumps
and peaks, around E ∼ 10−3 ∼ ϵ1.
For general values of R, we find significant variations in

the functional forms of σðEÞ. Figure 4 gives a series of
examples covering the ranges R ∈ ½15.5; 47� and [1646,
1876] that span neighboring poles of as for representative
cases of lower and higher R. Although generically the cross
section approaches a constant as E → 0, determined by the
scattering lengths, σ → ðπ=2Þða2s þ 9a2t Þ, if as diverges,
then σ ∼ 1=k2. For values of as close to a pole, the
transition between σ ∼ constant and 1=E behavior occurs
at smaller energies than in the generic case. This can be
seen in the graphs of Fig. 4 corresponding to R ¼ 15.5, 47,
1646, and 1876.
A more generic behavior is illustrated by the plots

corresponding to R ¼ 18, 36, 43, 1670, 1750, 1802;
namely, σ remains close to its asymptotic E ¼ 0 value
until the scale ϵ2 and then starts rising or falling, before
entering the regime at ϵ1 where rapid oscillations predomi-
nate with a slowly falling envelope. Whether σ falls or rises
at E ¼ ϵ2 depends on whether R is closer to being at a pole
or a zero of as.
Various resonances appear as R is varied, but a particular

one in the l ¼ 1 singlet channel stands out, as is evident
near R ¼ 25 and 1685. It becomes more prominent and
narrow as R is increased up to some critical value, at which
point it abruptly disappears. This can be understood as the
energy of the resonance passing through zero at the critical
value, after which it would only be seen for imaginary
values of the wave number, that of course we do not
consider. We expect the resonance energies to decrease
with R, since increasing R makes the potential deeper [see
Eq. (2)], causing all the energy levels to go down. This is
also true for the positive-energy virtual states, which
become negative-energy bound states as R increases.
The global behavior of σðEÞ as a function of R can also

be visualized by plotting σ versus R at a few fixed energies.
We show this for energies E ¼ 10−3, 10−4, 10−6, and
10−8ϵ0 in Fig. 5. Generally, we observe a minimum cross
section of order σ ∼ 100a20, except in the region R ∼
2000–3000 near the first zero of the triplet scattering
length. Curiously, the natural value R ¼ 1836 is at a local
minimum of the total cross section, as can be seen in the
inset of the figure. Only three other zeroes of as correspond
to such a low value of σ.

VII. DARK ATOM CONSTRAINTS FROM
GALACTIC STRUCTURE

Self-interactions of dark matter have been studied in
connection with their effects on structure formation within
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FIG. 3 (color online). Solid lines: Our results for the cross
section with R ¼ 1836.15 including partial waves up to l ¼ 5,
10, 20, 40. Other curves: Previous results from Refs. [26–28].
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galaxies and galactic clusters, leading to upper bounds on
the cross section. The constraints come about because dark
matter tends to be slower in the periphery of a bound
structure, and the interactions between particles with large-
and small-radius orbits can heat up the interior particles,
causing them to escape to wider regions and leading to
cored profiles for galaxies. On larger scales, the observed
ellipticity of halos in clusters will be erased by strong self-
scattering, leading to spherical halos.
Formerly, halo ellipticity was believed to give the

strongest bound, σ=m < 0.02 cm2=g [29] for DM with
velocities of order 1000 km=s, characteristic of galactic
clusters. But recent studies based upon N-body simulations
[30] have concluded that the true bound is much weaker, at
least as large as 0.1 cm2=g, but smaller than 1 cm2=g [30].
The latter is consistent with similar bounds obtained from
the Bullet Cluster [31,32] and from accretion of dark matter
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by supermassive black holes in galactic centers [33].
(Reference [34] obtains a stronger constraint, which,
however, depends upon assuming a cuspy profile for the
DM halo, which might be erased by the self-interactions
themselves.) Reference [35] constrains σ=m < 0.4 cm2=g
by requiring that elliptical galaxy halos within clusters not
evaporate within 1010 yr at DM velocities of
v ∼ 100–1000 km=s, while Ref. [36] obtains σ=m <
0.2 cm2=g from the inferred DM profile of a particular
low-surface-brightness galaxy with v ∼ 150 km=s, with
input from then-current cosmological simulations. More
recently, it has been argued [37] that a value of σ ∼
0.6 cm2=g would be consistent with observed central
densities of the Milky Way dwarf spheroidals at
v ∼ 10 km=s. Taking into account the probable though
unspecified astrophysical uncertainties in these bounds, a
reasonable and simple compromise would seem to be
σ=m < 0.5 cm2=g [38], which we adopt in the following.
We will apply this bound over the range of velocity scales
v ∈ ½10; 1000� km=s that are relevant for dwarf spheroidals
up to galactic clusters in the following.
Scatterings in the forward direction are not effective

for exchanging energy between dark matter particles,
which is the basis for the constraints on σ. Therefore,
the bound should be applied not to the elastic cross
section σel, but rather to the transport cross section σt,
which gives a better representation of scatterings that
involve significant exchange of momentum. A commonly
used expression for the transport cross section is
σt ¼ 2π

R
dðcos θÞð1 − cos θÞdσ=dΩ. But this expression

is not appropriate for scattering between identical particles,
since backward scattering is indistinguishable from for-
ward scattering and is also not effective at modifying the
momentum distribution. Therefore, it is more appropriate to
use σ0t ¼ 2π

R
dðcos θÞð1 − cos2θÞdσ=dΩ, which treats for-

ward and backward scattering as equivalent.1 In terms of
partial waves, it is given by [39]

σ0t ¼
6π

k2
X
l

ðlþ 1Þðlþ 2Þ
ð2lþ 3Þ sin2ðδl − δlþ2Þ (7)

for a generic scattering problem. For the current applica-
tion, Eq. (4) is adapted by replacing (2lþ 1) with
ð3=2Þðlþ 1Þðlþ 2Þ=ð2lþ 3Þ and δl by δl − δlþ2. The
normalization is such that at low energies where only the s
wave contributes, σ0t ¼ σel.
To illustrate the difference between the elastic and

transport cross sections, we plot σel and σ0t for a few

representative values of R in Fig. 6. As expected, at low
energy, where s-wave scattering dominates, the two are
equal, but they differ at energies E≳ 0.1ϵ0, where higher
partial waves become important. We find that σ0t ∝ 1=E for
0.1ϵ0 < E < ϵ0 and σ0t ∝ 1=E2 at higher energies. (See the
next section for a more detailed quantification of this
dependence.) We use this scaling in what follows in order
to speed up computations of σ0t above 0.1ϵ0, since the
addition of many partial waves is time consuming. The
asymptotic behavior σ0t ∝ 1=E2 is expected, since at high
energies the scattering is dominated by screened Coulomb
scattering of the dark protons, which shows exactly this
energy dependence (up to logs). We therefore expect this
scaling to be valid also for inelastic contributions to the
cross sections (such as from electronic transitions) that are
energetically allowed for E > ϵ0. We disagree with the
assumption in Ref. [15] that the cross sections drop
exponentially with E for E > ϵ0, which contradicts our
expectations based on Coulomb scattering.
To constrain the parameter space of atomic DM, we

impose the bound σ0t < 0.5 cm2=g at several different
DM velocities, v ¼ 10; 30; 100; 300; 1000 km=s, using
E ¼ fðRÞðv=cαÞ2ϵ0. We scan the R-mH plane for a range
of α to find upper limits on mH as a function of R. The
results are shown in Fig. 7(a). The constraints show
nonmonotonic dependence on α, which we can understand
as follows: For very small α, the binding energy is small, so
the kinetic energy is large compared to the binding energy.
In this regime the scatterings are essentially Coulomb
scatterings between the dark protons, and smaller α leads
to less scattering. But as α is increased, the binding energy
becomes larger than the kinetic energy, and the scatterings
really involve the whole atoms. Now, larger α means more
tightly bound and therefore smaller atoms, hence a decreas-
ing cross section with increasing α. Alternatively, one could
say that for small α, the formation of atoms fails to screen
the Coulomb interaction, so scattering rates scale as
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FIG. 6 (color online). Elastic (solid lines) and transport
(dashed) dark atom cross sections versus energy for R ¼ 1,
44, and 1836.15.

1Here we disagree with Refs. [15] and [28], which use σt and
therefore find that the elastic and transport cross sections are
equal for identical particles. Their approach is based on treating
forward scattering as irrelevant [1 − cosðθÞ ¼ 0] but backwards
scattering as of maximal relevance [1 − cosðθÞ ¼ 2], which is
inconsistent, since for identical particles these processes are
equivalent.
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expected with coupling strength. But as the coupling
increases, the charges are ever more effectively screened
within atoms, and the residual interactions get weaker with
increasing α.
In terms of dependence upon R, we expect these results

to be accurate for R ≫ 1 where the Born-Oppenheimer
approximation holds. Then the scattering potentials are
essentially independent of R when expressed in atomic
units, as we have assumed. This need no longer be the case
when R ∼ 1.
However, we have unrealistically assumed up until now

that there is no significant fraction of dark ions. In
Ref. [10], the ionization fraction fi was numerically
determined over a range of parameters. We find that a
good fit to their results is given by the simple estimate

fi ≅ min ½10−10ξα−4R−1ðmH=GeVÞ2; 1�; (8)

where ξ ¼ Td=Tγ , the present ratio of the dark to the visible
photon temperatures, which was taken to be 1 in Ref. [10].
This agrees with the result derived by Ref. [15], which
takes ξ ¼ 0.4, while noting that the uncertainty in the
estimate [Eq. (8)] is greater than the difference made by
including the factor of ξ, which we take to be 1 in the
following.2 It is then straightforward to show that the region
of the R-mH plane covered by Fig. 7 corresponds to fi ∼ 0
for α > 0.05, while for α < 10−3, fi ∼ 1 over the entire
region. The boundaries above which fi becomes ∼1 are
shown as diagonal lines for the transition values α ¼ 0.01,
0.02, 0.03 in Fig. 7(b). Hence, we can ignore the effect of
ionization on our constraints for α ≳ 0.03, but it becomes
important at slightly lower values. The transition is rather
sudden due to the high power of 1=α in Eq. (8).
Reference [40] has considered the constraints from halo

ellipticity and from the Bullet Cluster on fully ionized
atomic dark matter, numerically finding the former to give a
much stronger constraint, which we fit to the form

mH

GeV
> ð106.7αÞ2=3: (9)

Rather than computing a cross section and comparing it to a
limiting value, which is valid in the approximation that the
scattering potential can be modeled as a hard sphere (the
assumption used in deriving the limiting cross sections),
Ref. [40] compares the time needed to have several hard
scatterings to the dynamical time scale for the cluster as the

criterion for erasure of ellipticity. The Coulomb cross
section is infrared divergent due to soft scatterings, and
even the momentum-transfer cross section has a logarith-
mic remnant of this divergence that gets cut off by the
Debye screening length of the DM plasma; hence the need
for a specialized treatment.
The bounds we obtained for α < 0.1 in Fig. 7(a) are thus

superseded by Eq. (9), indicated by the horizontal lines in
the amended Fig. 7(b), which also shows the elastic
scattering bound for the additional values of α ¼ 0.3,
0.03. These bounds are quite sensitive to the assumed
value of the lowest velocity at which the constraints are
applicable, since they are determined by the region of
energies where σ0t ∝ 1=E2. They should thus be considered
as approximate, requiring a more detailed study of the
effect of such a strongly velocity-dependent cross section
on dwarf galaxies, where v ∼ 10 km=s applies.
We also plot our constraints in the mH-α plane for a few

fixed values of the dark atom binding energy in Fig. 8, for
comparison with Ref. [15] which presents its results in this
way. The parts of the constraints coming from the fully
ionized versus the fully atomic forms are marked on the
figure. We have computed the ionization fraction using

FIG. 7 (color online). (a) Uppermost: Lower limit on the dark
atom mass as a function of R, from halo constraints on dark
matter self-interactions, assuming no ionization. The curves are
labeled by the value of α ¼ 1; 0.1;…10−5, which is held fixed.
(b) Lower: Modified limits, taking into account the ionized
fraction of dark atoms. Thin diagonal lines indicate the boundary
above for which the ionization fraction is ∼1 for α ¼ 0.01, 0.02
and 0.03, according to Eq. (8) with ξ ¼ 1.

2In principle, ξ is a free parameter that is only determined by
the relative efficiency of reheating in the dark and visible sectors
after inflation, unless there are significant interactions between
the two sectors that we do not consider in this work. Generically,
one would expect that ξ ∼ 1 unless there is some (model-
dependent) reason for reheating only to the visible sector.
Reference [15] shows that big bang nucleosynthesis bounds ξ <
0.83–0.9 at 3σ, depending upon the number of relativistic dark
species at the time.
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Eq. (8), assuming ξ ¼ 0.37 as in Ref. [15]. Because it is
numerically difficult for us to compute the cross section for
R > 104, we do not consider these regions (so labeled) in
the upper-right corners. The lower-left corners are physi-
cally inaccessible, since the binding energy is given by
BH ¼ 1

2
α2mH=fðRÞ, and fðRÞ≡ Rþ 2þ 1=R cannot be

less than 4. As in Fig. 7(b), we approximate the transition
between ionized and atomic DM as sudden, which explains
the sharpness of the curves in the vicinity of mH ¼ 103–3.5

in the lower two graphs of Fig. 8. (We expect the ion
constraints to disappear for fi ≲ 0.5, since in that case the
halo ellipticity within the large atomic fraction remains

relatively undisturbed.) In these regions the constraint is
coming from the fully ionized constituents. On the other
hand, the jaggedness of the constraint in the upper-left
corner of the BH ¼ 10 MeV graph is a direct reflection of
the strong R dependence of the atomic scattering cross
section, which was not taken into account in Ref. [15]. We
find that the allowed regions are generally larger than given
in that work.

VIII. ANALYTIC FITS TO TRANSPORT
CROSS SECTION

As is apparent from Fig. 4, it would be difficult to give
analytic formulas for the energy dependence of the atomic
scattering cross sections in the cases where there are strong
resonances or vanishing scattering lengths. On the other
hand, there are many examples, such as the cases R ¼ 1
and 44 shown in Fig. 6, where σ0t has a rather simple
dependence, which we find can be satisfactorily fit by the
Ansatz

σ0t ≅ ða0 þ a1Eþ a2E2Þ−1; (10)
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FIG. 8 (color online). The solid curves give the boundaries
between the allowed and excluded regions of atomic DM
parameter space for fixed values of the binding energy,
BH ¼ 500 eV, 100 keV, 10 MeV, for comparison with Fig. 20
of Ref. [15], whose constraints are given by the dashed curves.

TABLE I. Coefficients of the Ansatz [Eq. (10)] that give the best
fit to the transport cross section for the given value of R. The
quality of the fit is indicated by χ2.

R a0 a1 a2 χ2

1 0.011 0.221 0.063 0.084
5 0.011 0.178 0.060 1.696
10 0.012 0.197 0.053 0.056
20 0.006 0.251 0.045 0.288
30 0.007 0.241 0.044 0.208
40 0.008 0.233 0.044 0.194
50 0.003 0.331 0.038 2.599
60 0.005 0.277 0.041 1.026
70 0.006 0.259 0.043 0.567
80 0.006 0.251 0.043 0.412
90 0.006 0.258 0.043 0.631
100 0.003 0.325 0.039 2.726
200 0.005 0.280 0.045 0.942
300 0.005 0.281 0.047 0.972
400 0.005 0.290 0.049 1.000
500 0.005 0.306 0.051 1.157
600 0.004 0.333 0.051 2.065
700 0.005 0.333 0.053 2.120
800 0.006 0.320 0.056 0.876
900 0.004 0.364 0.055 2.208
1000 0.007 0.318 0.060 0.593
1500 0.006 0.398 0.062 1.351
2000 0.008 0.407 0.069 2.964
2500 0.008 0.472 0.070 2.272
3000 0.003 0.697 0.062 4.531
3500 0.005 0.647 0.070 3.677
4000 0.002 0.970 0.059 10.014
4500 0.002 1.045 0.060 15.530
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where all quantities are expressed in atomic units. We focus
here on the transfer cross section rather than the elastic one,
since it is the more physically relevant quantity for
applications such as those considered in the previous
section. In Table I, we give the best-fit values of the
coefficients ai for the transport cross section for a selection
of R values. The goodness of the fit is also given there as

χ2 ¼
X101
i¼1

log210ðσ0t=fitÞ; (11)

where the sum is over 101 uniformly spaced values of
log10ðEÞ ∈ ½−8; 2�. We plot the coefficients ai versus R in

Fig. 9 to underscore that they tend to vary rather slowly
with R, especially a1, which determines the behavior at
intermediate energies.
The fits are graphically compared to the accurate cross

sections in Fig. 10. On a log scale they all look rather good,
but the errors can be significant for examples with χ2 ≳ 1.
For example, at R ¼ 100 with χ2 ¼ 1, the maximum error
is a factor-of-2 discrepancy at E ¼ 10−2.5. As R increases,
the accuracy tends to get worse. At R ¼ 4000, the fit is 4
times greater than the actual cross section at E ¼ 10−4. For
R ¼ 1, on the other hand, the maximum error is only 20%.
Unless one happens to choose a value of R that gives a large
resonance or a zero of the singlet channel scattering length,
a reasonable approximation to the transfer cross section can
be obtained by interpolating the above results. For example,
at R ¼ 15.5, where there is such a zero (see Fig. 4), we find
χ2 ¼ 130, and the fit underestimates the actual σ0t by 2
orders of magnitude at low energies (although it still does
well for E≳ 10−4). In the case of a large resonance as in
R ¼ 25.405, we find χ2 ¼ 7.9, with the error coming from
energies at and below the resonance region, while the fit
remains good for E > 10−5.

IX. DARK MOLECULAR H2 ABUNDANCE

So far, we have assumed that dark atoms do not
predominantly combine to form the analog of H2 mole-
cules. In the cosmos, the proportion of real H2 molecules is
small, because the molecular binding energy 4.5 eV is less
than the energy of Ly-α photons that were copiously
produced by young, massive, hot stars. H2 is thus easily
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dissociated by a readily available form of radiation. On the
other hand, it is slow to form because it has no electric
dipole moment, and the reaction Hþ H → H2 þ γ pro-
ceeds through an electric quadrupole transition, occurring
only once in every 105 scatterings. Much more efficient
means of producing H2 are the catalyzed reactions
(Hþ p → Hþ

2 , Hþ
2 þ H → H2 þ p) and (Hþ H− → H−

2 ,
H−

2 þ H → H2 þ H−) that rely upon a small ionized
population.
In the dark universe, assuming no analog of weak

interactions, there will be no dark stars in the conventional
sense that would produce ionizing dark radiation. Any stars
that form from dark matter will be powered only by
gravitational contraction as the protostellar cloud slowly
cools and pressure rises. There will generically still be some
ionized fraction fi of dark atoms, however, as given in
Eq. (8) This creates the potential for H2 to become the
prevalent form of dark matter in such a scenario.
If R is large, the predomination of H2 is undesirable,

because the rotational excitations of H2 have small ener-
gies, Er ¼ lðlþ 1Þ=2I, where I ∼mHa20 is the moment of
inertia. In atomic units, Er ∼ μH=mH ¼ 1=fðRÞ. Collisions
of H2 molecules with kinetic energies greater than this can
be inelastic, exciting the rotational states, which can decay
via quadrupole radiation. The ensuing dissipation of the
DM kinetic energy will allow its halo to collapse in the
same way as luminous matter. A complete study of this
issue is beyond the scope of this paper; for now we merely
note that large values of R might turn out to be untenable.
This leaves open the question of how large the value of R

must be to really be considered large in the context of
inelastic H2 scattering. Interestingly, we can make a
quantitative estimate using the machinery of the previous
sections. Because H2 has no dipole moment, rotational or
ro-vibrational transitions involve electric quadrupole radi-
ation, which requires a bound state with J ≥ 2. Therefore,
rotational and ro-vibrational emission is only possible if
there is at least one bound state in the l ¼ 2 channel. By
solving the Schrödinger equation (2) at E ¼ 0 and l ¼ 2,
we can identify the lowest value of R for which a d-wave
bound state (indicated by a node in its wave function) exists
between twoH atoms. It turns out to be at R ¼ 15.42, close
to the first pole of as. This value of R is large enough so that
the Born-Oppenheimer approximation is still reasonable;
hence, we can expect it to be a fairly good estimate of the
value of R below which no low-energy rotational transi-
tions are available, and the ground stateH2 molecule is safe
from making dangerous inelastic transitions, even if it does
dominate over dark atoms.

X. SCATTERING OF DARK H2 MOLECULES

Given a potential energy forH2 self-interactions, we can
use the same methodology as for atoms to estimate the
cross section for elasticH2 scattering. A number of ab initio
calculations of H2-H2 potentials have been given in the

literature, as well as some phenomenological Ansätze that
have been fit to physical properties, including the cross
section. At energies E≳ 1=R, the calculation is compli-
cated by the fact that the potential depends upon the relative
orientations of the two molecules. At low energies where
the rotational states are not excited, one can use the
spherically symmetric term in the potential. The
Schrödinger equation for molecular scattering differs from
Eq. (2) by the replacement f → 2f due to the mass of H2.
Similarly, the wave number is given by k ¼ ffiffiffiffiffiffiffiffiffi

2fE
p

in atomic units. The elastic cross section for para-H2

scattering is given by [41]

σ ¼ 8π

k2
X
evenl

ð2lþ 1Þsin2ðδlÞ; (12)

with the extra factor of 2 coming from the symmetry
of the scattering amplitude under θ → π − θ for identical
particles, as we also had for atomic scattering.
It is possible to obtain a good description of experi-

mentally measured cross sections for H2-H2 scattering at
low energies with a potential of the same form as Eq. (1),
using for para-H2 the parameter values c0 ¼ 3.778,
c1 ¼ 1.947, c2 ¼ 3.763 × 10−3, C6 ¼ 12.0, C8 ¼ 239.9,
C10 ¼ 0 [41]. Reference [41] does not include theD factor,
needed to keep the long-distance part of the potential from
contributing as r → 0, but we find that using r1 ¼ 4 gives
satisfactory suppression without changing the behavior
near the shallow minimum of the potential, at rm ∼
6.5a0 with Vm ≅ −10−4ϵ0. We plot the resulting cross
section in Fig. 11, along with the result of Ref. [42] based
upon an ab initio determination of the orientationally
averaged potential. The results are in fair agreement, with
a 10% discrepancy at low E, which is due to the difference
between the large-r part of the Bauer et al. potential [41] we
have adopted and that assumed in Ref. [42].
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H2 from ab initio calculation of Ref. [42] (dotted curve) and our
own calculation based upon the potential of Ref. [41] (described
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section (present work).
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Having reproduced known results at R ¼ 1836, we
explore the dependence of σðEÞ on R for dark molecules.
A sample of cross sections for representative values of R is
given in Fig. 12. Like for atoms, the cross sections
generically approach a constant at low energies from the
s-wave contribution, and they start to exhibit structure from
the higher partial waves at energies ϵ2 ∼ R−3=2ϵ0. An
exceptional case is shown for R ¼ 288, close to the first
zero of the scattering length, in which the constant behavior
is delayed until smaller energies. A complementary view is
given in Fig. 13, which plots σ at E ¼ 10−8ϵ0 as a function
of R. Because the potential is quite shallow, there is only
one bound state (giving a divergence of the scattering
length when its energy vanishes) for R < 4000. The weakly
bound state enhances the cross section for R ∼ 1000,
making it an order of magnitude or more larger than the
typical value for dark atoms in this region of R.
Following the same procedure as for atomic dark matter,

we have estimated the constraints from structure formation
on the dark atom mass in the case where it is in molecular
form. The momentum-transfer cross section is given again
by replacing ð2lþ 1Þ → ð3=2Þðlþ 1Þðlþ 2Þ=ð2lþ 3Þ
and δl → δl − δlþ2 in Eq. (12), the effect of which is

indicated in Fig. 11. The resulting bounds, shown in
Fig. 14, are rather similar to those we found for dark
atoms in Fig. 7(a), except for the absence of sharp features,
thanks to the relative smoothness of the molecular scatter-
ing length as a function of R (see Fig. 13). The bounds for
molecular dark matter are stronger at R ∼ 1000 and α ∼ 1
than for atomic DM because of the larger cross section at
low energies. Like in the case of dark atoms, we expect the
constraints for α ≲ 10−2 to be stronger than shown here,
since the ionization fraction is estimated to be large and the
assumption of domination by the molecular state will not be
correct. Nevertheless, we show them for comparison with
Fig. 7(a). The constraints from the ionized fraction at small
α will be the same as in Fig. 7(b).
In deriving these constraints, we have neglected the

inelastic contributions from ro-vibrational transitions that
become energetically allowed for E≳ R−1. Reference [43]
shows that these are individually much smaller than the
elastic cross section. For example, excitations from the
ground state to the lowest rotational states have cross
sections of ∼9 a.u. at E ¼ 0.04ϵ0, while transitions to the
next lowest excitations have cross sections an order of
magnitude smaller. At this energy, the elastic cross section
is still 40 a.u. Thus, the elastic part may be a better estimate
of the total cross section than one might have guessed.

XI. SUMMARY AND CONCLUSIONS

We have computed the cross sections for elastic scatter-
ing of dark atoms and molecules, whose properties are
analogous to those of the visible world, and determined
by the coupling strength α, the atom mass mH, and the
ratio R of dark proton and electron masses. In a world with
R ¼ 1836.15, and assuming α ≪ 1, there would be
nothing to do, since the properties of dark atoms and
molecules would be identical to those of their visible
counterparts once expressed in the atomic units of length
a0 ¼ ðαμÞ−1 and energy ϵ0 ¼ α2μ. The nontrivial part of our
job was to investigate how scattering changes as a function
of R. Fortunately, for R ≫ 1, the Born-Oppenheimer
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approximation tells us that the interaction potentials
(in atomic units) do not depend upon R. All the R
dependence is kinematic and appears in the Schrödinger
equation. By solving the Schrödinger equation using accu-
rate determinations for the potentials, we are able to make
quantitative predictions for dark atom scattering at R ≫ 1.
We found that the cross sections for atom-atom scatter-

ing depend very strongly upon R, due to the number of
bound states of the singlet scattering channel changing
rapidly with R, with consequent divergences (and zeroes) in
the singlet channel scattering length. The triplet channel
has a shallower potential, and thus a less pronounced R
dependence. The same is true for scattering of dark
molecules, whose interaction potential is also shallow.
Our exploration of the cosmology of dark molecules,
though cursory, is the first one in the literature that we
are aware of, and may lay useful groundwork for further
study. One conclusion is that dark molecules may be
disfavored for R≳ 15, since in that case the inelastic
scattering into rotationally excited states could make the
DM too dissipative to remain in an extended halo.
As an application, we determined constraints from self-

interactions on the atomic dark matter parameter space
following from observations of halo ellipticity and central

densities of dwarf spheroidal galaxies. Moreover, we have
given simple analytic fits to the energy dependence of the
momentum-transfer cross sections that are accurate to 20%
in some cases (despite the general complexity of the
functions being modeled) and good enough for order-of-
magnitude estimates in many other cases. These results
improve upon previous ones in the literature by virtue of
our more accurate cross sections, with respect to energy and
R dependence, and by properly distinguishing between the
elastic and momentum-transfer cross sections. In addition
to constraints, there are suggestions that such self-inter-
actions could be useful for addressing discrepancies
between predictions of cold dark matter and some aspects
of observed structure formation on small scales. One could
thus anticipate that some of the borderline regions may
actually be favored. We will address this issue in more
detail in an upcoming paper.
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