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In this paper, a unified dark fluid with constant adiabatic sound speed is decomposed into cold dark
matter interacting with vacuum energy. Based on a Markov-chain Monte Carlo method, we constrain this
model by jointing the geometry and dynamical measurement. The geometry test includes cosmic
microwave background radiation from Planck, baryon acoustic oscillation, and type-Ia supernovae; the
dynamic measurement is fog(z) data points, which is obtained from the growth rate via redshift space
distortion, and 6(z) is the root-mean-square amplitude of the density contrast § at the comoving 82~! Mpc
scale. The jointed constraint shows that a = 0.000662 ") 000es and ag = 0.8247 00128 The CMB and matter
power spectra are both similar for the case of @ = mean value and that of o = 0. However, the evolutionary
curves of fog(z) are different. This means that, to some extent, the data points of the growth rate could

break the degeneracy of the dark energy models.
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I. INTRODUCTION

Accelerating expansion of the Universe has been shown
from type-Ia supernova (SNIa) observations [1,2], cosmic
microwave background (CMB) anisotropy measurements
from the Wilkinson Microwave Anisotropy Probe
(WMAP) [3], and large-scale structure from the Sloan
Digital Sky Survey [4]. In order to explain this mechanism,
theorists introduce an exotic energy component with
negative pressure, which is called dark energy. Based on
this opinion, a lot of dark energy models have been
proposed. One kind of popular model is unified dark fluid;
these models have been put forward and further studied in
Refs. [5-17]. In principle, the equation of state (EOS) can
be determined up to an integration constant by the adiabatic
sound speed. The model of zero adiabatic sound speed c2
has been studied in Ref. [15]; the case of time variable ¢?
was discussed in Ref. [16]; and the model of constant
adiabatic sound speed (CASS)—that is, ¢? = a—has been
studied in Refs. [18,19]. In Ref. [19], Xu et al. took the
CASS model as a whole dark fluid and found that small
values of o are favored by using the Markov-chain
Monte Carlo (MCMC) method with SNIa Union 2 [20],
baryon acoustic oscillation (BAO) [21], and the full CMB
information from seven-year WMAP data sets [22].

Recently, it has been shown that any unified dark fluid
model can be decomposed into pressureless dark matter
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interacting with a vacuum energy [23-25]. Following these
papers, we want to study the decomposed CASS model
described by cold dark matter interacting with a vacuum
energy. Thus, we call the model IDCASS (interacting
decomposed dark fluid model with constant adiabatic
sound speed). The interacting dark energy model can
introduce some new features to the structure formation,
as one can see in Refs. [26-30]. In order to explore the
possibility of interacting dark energy, it is necessary to
consider the effect of the interaction on the structure
formation.

As for the observational aspect, to break the possible
degeneracy of cosmological models, the geometry infor-
mation (SNIa, BAO, CMB) is not enough, because the
different models may undergo similar background evolu-
tion behavior, but the dynamical growth history could be
different. Therefore, the large-scale structure information is
a powerful tool to discriminate the dark energy models. Via
the redshift space distortion (RSD), the measurement of the
growth rate f is closely related to the evolutionary speed of
matter density contrast 5, where f =dIns/dIna. Tt is
worth noting that the growth rate f has been used to
constrain the dark energy model and to test the growth
index in Refs. [31-35]. However, considering the cosmo-
logical constant and cold dark matter (ACDM) model, the
observational values of the growth rate f,, = b are
derived from the redshift space distortion parameter j
and the linear bias ». This means that the current f

© 2014 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.89.043511
http://dx.doi.org/10.1103/PhysRevD.89.043511
http://dx.doi.org/10.1103/PhysRevD.89.043511
http://dx.doi.org/10.1103/PhysRevD.89.043511

WEIQIANG YANG, et al.

data is model dependent and not suitable to constrain the
other models. To avoid this issue, fog(z) will provide a
good test of dark energy models [og(z) is the root-mean-
square mass fluctuation in spheres with radius 84~' Mpc].
The model-independent measurement fog(z) was first
proposed to constrain the dark energy models in
Ref. [36]. Then, in Ref. [37], Xu combined the geometry
test with fog(z) data to constrain the holographic dark
energy model and obtained a tight constraint of holographic
parameter c. Furthermore, after Planck, Xu parameterized
the growth function as f = QJ} and compared the deviation
of the growth index y; in Einstein’s gravity theory and
modified gravity theory in Ref. [38].

The observational data points of fog(z) were provided
by 2dFGRS [39], WiggleZ [40], SDSS LRG [41], BOSS
[42], 6dFGRS [43], and VIPERS [45]. The former nine
data points were summarized in Table 1 of Ref. [44]. The
data point at z = 0.8 was recently released by VIPERS in
Ref. [45]. A lower growth rate from RSD than expected
from Planck was also pointed out in Ref. [46]. In this paper,
the ten data points are shown in Table I.

The paper is organized as follows: In Sec. II, we revisit
the unified dark fluid with constant adiabatic sound speed
and decompose it into pressureless dark matter interacting
with a vacuum energy. In Sec. III, we give the first-order
and second-order perturbation equations of the cold dark
matter and baryon, respectively, and obtain the evolution
equations of growth rate for these two components. In
Sec. IV, by adopting the MCMC method with the cosmic
observational data sets, we show the model parameter
space. Section V is the summary.

II. A DECOMPOSED UNIFIED DARK FLUID WITH
CONSTANT ADIABATIC SOUND SPEED

Following Refs. [18] and [19], we consider a unified
dark fluid with constant adiabatic sound speed

c?=a. (1)

TABLE 1. The data points of fog(z) measured from RSD with
the survey references.

z fog(z) Survey and reference
0.067 0.42 £0.06 6dFGRS (2012) [43]
0.17 0.51 £0.06 2dFGRS (2004) [39]
0.22 0.42 £0.07 WiggleZ (2011) [40]
0.25 0.39 £0.05 SDSS LRG (2011) [41]
0.37 0.43 +£0.04 SDSS LRG (2011) [41]
0.41 0.45£0.04 WiggleZ (2011) [40]
0.57 0.43 £0.03 BOSS CMASS (2012) [42]
0.60 0.43 £0.04 WiggleZ (2011) [40]
0.78 0.38 £0.04 WiggleZ (2011) [40]
0.80 0.47 +£0.08 VIPERS (2013) [45]
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The definition of the CASS model tells us that a > 0
because the adiabatic sound speed is positive. After an
integration, the EOS of the unified dark fluid can be
determined:

Wy =a— ", @)

Pu

where A is an integration constant. When a = 0 happens,
Eq. (2) shows w, =—A/p,, which looks like the
Chaplygin gas model; meanwhile, the sound speed is zero,
so this is not a reasonable model. If A = 0 is assumed,
Eq. (2) becomes w, = a, and the total EOS of dark fluid is
a constant, which looks like a quintessence model.
However, if the CASS model is taken as a unified dark
sector, this would not happen, because it would look like a
combination of cold dark matter and a simple cosmological
constant.

The energy conservation equation for the dark fluid is

pu+3H(p, +P,) =0. ©)

Combining Egs. (2) and (3), the energy density of unified
dark fluid can be written as

Pu :,0”0[(1 _Bs) +Bsa73(l+a)]’ (4)

where p,, is the present value of energy density,
and B, =1—A/(p,o(1 +a)).

In a spatially flat universe, the Friedmann-Robertson-
Walker metric reads

ds? = —d* + a*(t)[dr* + r*(dO* + sin’dg?)], (5)
and one can obtain the Friedmann equation [19]

H? = HY{Qua3 + Q,a™*
+(1—-Q, —Q,)[(1 - B,) + Ba*9]}, (6)

where Q,(i = b, r) are dimensionless energy parameters of
the baryon and radiation, respectively.

In Refs. [23-25], a unified dark fluid can be decomposed
into pressureless dark matter interacting with a vacuum
energy, of course. For the CASS model, we decompose it as

Pu=pct+V, (7

where p. and V are, respectively, the energy density of cold
dark matter and vacuum energy. For the decomposed
model, the Friedmann equation can be written as

+ —3(1+a)
H? = H%{Qba‘3 +Qa* + Qy+Q, % . (8)

where Q;(i = ¢, V) are dimensionless energy parameters of
cold dark matter and vacuum energy, respectively. So the
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IDCASS model only has one degree of freedom «, whereas
the original CASS model is characterised by two model
parameters, @ and A (or By).

The energy conservation equations of cold dark matter
and vacuum energy are

:dc + 3Hpc = _Q? (9)

V=0, (10)

where Q is the energy transfer between dark matter and
vacuum energy. Combining the above two equations with
Egs. (2) and (7), we obtain

O =3aHp.,. (1)

Here, it is necessary to say that the way of decomposing
the unified dark fluid is not unique, but Eq. (7) is a
convenient choice and does not introduce some other
degrees of freedom. In this decomposed case, the model
has only one degree of freedom a. Before the decom-
position, the model is taken as a whole dark fluid, and the
model parameter o not only represents the adiabatic sound
speed, but also influences the EOS together with the other
parameter A. After the decomposition, apart from describ-
ing the sound speed and affecting the total EOS of dark
matter and dark energy, a will reveal some possible
characters inside the dark sectors. Concretely, this param-
eter would show the interacting intensity between dark
matter and vacuum energy, and change the evolution of the
effective EOS for the two dark components. Besides this,
the interaction also affects the evolution of perturbation
equations of dark matter.

III. The PERTURBATION EQUATIONS
AND GROWTH RATE

We consider the scalar perturbations in a spatially flat
Universe, whose line element is [47-50]

ds* = —(1 + 2¢)dt* + 2a0;Bdtdx’

In the general case of interacting fluids, the covariant
conservation equation of fluid A reads

v, = 0. (13)

In Refs. [48-52], the perturbed energy-momentum
transfer can be split into

05 =[—0a(1+¢) =804, 0;(Fa + 040)]. (14)

The energy and momentum conservation equations for
fluid A become [48-52]
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Spa + 3H(Sps + 6P4) = 3(pa + Pa)yr
v2
+ (pa + PA)?(HA +0) =604 + Qa¢p.  (15)

(pa + PA)QA =3¢ H(pa + Pa)0a + (pa + Pa)g + 6P,

2V?
+§?HA:FA+QA9_(1 + ¢34) Qa0 (16)
In the synchronous gauge, the perturbation equations for
baryon density contrast and velocity are

R h

Sy ——=0, = —— 17

b a2 b 27 ( )
0, = 0. (18)

Using the relation expression i+ 2Hh = —8zG(Sp+
36P), we can obtain the second-order differential equations
for the baryon density contrast:

Sy + 2HS), = 472G (8p + 36P). (19)

In the synchronous gauge, considering the geodesic case
of the interacting vacuum energy and dark matter model in
Refs. [24,25], we introduce an energy flow that is parallel to
the four-velocity of the dark matter, Q% = —Quk. In this
case, F.—Q(0—6.) =0 in Eq. (14) [53,54], and the
velocity perturbation for dark matter is zero. So the first-
order and second-order differential equations for the dark
matter density contrast can be derived [25]:

Sf>l+g¢, (20)
2 pe
S + (—g+2H)5C — [2Hg+ (g)]éc
Pe Pe \Pe
= 472G (6p + 6P). 1)

According to Refs. [31,55], the growth factor g(a) is
proportional to the linear density perturbation 6 = ép/p
and normalized to gla=1) =1, so g(a) = D(a)/a =
[6(a)/8(1)]/a = &(a)/a, and one can obtain the growth
factor for the dark matter and baryon,

d*g, 5 3 dg,
c __3 = Q C
d In > + 2 * 2weff(a) v(a) dlna

+% (1=3a)[1 + werr(a)Qy (a)]ge

[Q‘c (d)gc + Qb(a)gb]’ (22)

N W
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FIG. 1 (color online). The effects on CMB temperature power
spectra for the different values of model parameter a. The black
solid, red thick dashed, green dot-dashed, and blue dotted lines
are for a = 0, 0.000662, 0.03, and 0.06, respectively; the other
relevant parameters are fixed with the mean values as shown in
the fourth column of Table II.

ngb 5 3 dgb

2 2w
a3 T yrer@@vla@) o5

+§ [1+ werr(a)Qv (a)l g,

2
3
= E [Qc(a)gc + Qh (a)g;,], (23)
where
H? H?
Q.(a) = Fggcoa—%lw, Q,(a) = Fggboa—? (24)

Here, wgg(a) is the effective EOS of dark energy, which
is defined as weg(a) = - ["9d In a'wy(d’) in Ref. [56].
D(a) is the growth ratio of perturbation amplitude at
some scale factor relative to the normalized scale factor,
whose relationship with f(a) is f=dIn D/dIna=
d In §/d In a. The right-hand side of Egs. (22) and (23)
is the cross term between these two equations, so if we want
to know g, or g,, we need to solve the equation set.
Moreover, according to g, = p.gc/(Pe + Pp) + Pu9s/
(pe + pp), we can obtain the growth factor of the matter.

IV. COSMOLOGICAL IMPLICATIONS
AND CONSTRAINTS

A. Implications on CMB temperature and matter power
spectra for the model parameter «

Here, we illustrate how the CMB temperature and matter
power spectra are characterized by different values of the
model parameter a.

First, the effects on the CMB temperature power spectra
are shown in Fig. 1. At the same time, in order to clearly
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FIG. 2 (color online). The evolutionary curves for the ratio of
dark fluid and radiation Q,/Q, when the parameter « is varied.
The different lines correspond to the cases in Fig. 1; the
horizontal gray thick line corresponds to the case of Q, = Q,,
and the other relevant parameters are fixed with the mean values
as shown in the fourth column of Table II.

explain the change of CMB power spectra, we also plot the
evolutionary curves for the ratio of dark fluid and radiation
Q,/Q, in Fig. 2, for which Q, = Q. in the early epoch.
Following the discussion of Ref. [57], increasing the value
of a, which is equivalent to increasing the value of the
effective dimensionless energy density of cold dark matter
Q., will make the equality of matter and radiation occur
earlier. This raises /., (the horizon scale at matter-radiation
equality) and reduces the the driving effect that the decay of
the gravitational potential has on the acoustic oscillations
during the radiation era. As a result, the first peak of the
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FIG. 3 (color online). The effects on matter power spectra for
the different values of model parameter a. The black solid, red
thick dashed, green dot-dashed, and blue dotted lines are for
a =0, 0.000662, 0.03, and 0.06, respectively; the other relevant
parameters are fixed with the mean values as shown in the fourth
column of Table II.
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TABLE II.

PHYSICAL REVIEW D 89, 043511 (2014)

The constraint results of basic and derived model parameters with a 16 region from the cosmic observations. The mean and

best-fit values in the second and third columns are from the Planck information, BAO, and SNIa data sets; the mean and best-fit values in
the fourth and fifth columns are from the Planck information, BAO, SNIa, and fog(z) (RSD) data sets.

Model parameters Mean value without fog(z)

Best fit without foyg(z)

Mean value with fog(z)  Best fit with fog(z)

Q,n? 0.0218 3000300 0.0220 0.0221-:00028 0.0223
Q.hn? 0.11670:90163 0.117 0.11570%0133 0.116
1000),¢ 1.04147 0000208 1.0414 104177000025 1.0414
T 0.088470:0128 0.0830 0.0821700113 0.0850
ng 0.9627 000578 0.963 0.9671 000367 0.967
In(10'04;) 3.089550 0 3.0826 3.0670003% 3.0744
Qy 0.717 00110 0.712 0.71670 00003 0.710
Q, 0.28300110 0.288 0.2847 000083 0.290
oy 0.824100128 0.817
Zre 10.9781 15058 10.497 10.2851]-939 10.524
Hy 69.986" 0004 69.597 69.7691 05 69.216
Age/Gyr 13.67370033¢ 13.683 13.716 709393 13.746
a 0.001590 00020 0.00139 0.000662 900173 0.000263

CMB power spectra is depressed. Moreover, since the
parameter o has an effect on the expansion rate, the
angular diameter distance to recombination becomes larger
when « increases, which makes the positions of the peaks
shift towards the right side. As is shown in Eq. (24),
the values of a describe the possible deviation from the
standard evolution scaling law a~> of effective dark matter.
At large scales [ < 100, the varied parameter « affects the
CMB power spectra via the integrated Sachs-Wolfe
(ISW) effect due to the evolution of gravitational potential.
Via changing the expansion history of the Universe, the
ISW effect on CMB power spectra has been studied in
Ref. [58]. Moveover, in comparison with changing the
primordial power spectra [59], the ISW effect does
not affect the polarization power spectra, and hence
CMB polarization spectra at low multiples could in
principle be used to distinguish the effect from power-
deficit-originating features in the primordial power
spectra.

Then, in Fig. 3, we plot the matter power spectrum P(k)
when we use fog data. For a > 0 (the energy transfer is
from dark matter to vacuum energy), with the increasing of
a, P(k) is enhanced in the small scale due to the earlier
matter-radiation equality, which moves the turnover in the
matter power spectrum to smaller scales.

From the CMB and matter power spectra, it is easy to see
that the case of @ = mean value (@« = 0.000662) and that of
a =0 (corresponding to the ACDM model) are very
similar, so it is difficult to distinguish the IDCASS model
from the ACDM model. However, due to using the fog(z)
data set of large-scale structure information, we hope that
the different dynamical growth history could break the
degeneracy of the models.

B. The growth rate after Planck for the interacting
decomposed dark fluid with constant adiabatic
sound speed

In order to test the effects on evolutions of fog(z) for the
model parameter @, we fix the relevant cosmological
parameters according to the fourth column of Table II
but consider « to be varied in a range. The evolutionary
curves of fog(z) with respect to the redshift z are shown in
Fig. 4. With increasing values of a, the curves of fog(z) are
enhanced at both lower and higher redshifts.

0.65

— u=‘0

- - - 0=0.000662
0.6 - = 0=0.003
~ 0=0.006
055t x  data points
0.5
el
o
0451
041
0.35

0 0.1 02 03 04 05 06 07 08
z

FIG. 4 (color online). The fitting evolutionary curves of fog(z)
about the redshift z for the varied model parameter a. The black
solid, red dashed, green dot-dashed, and blue dotted lines are for
a =0, 0.000662, 0.003, and 0.006, respectively; the gray error
bars denote the observations of fog that are listed in Table I; and
the other relevant parameters are fixed with the mean values as
shown in the fourth column of Table II, when we use fog(z).
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The 1D marginalized distributions on individual parameters and 2D contours with 68% C. L. (confidence levels)

between each other, using the combination of the observational data points from the Planck information, BAO, SNIa, and RSD data sets.

Importantly, one can clearly see that the case of a =
mean value (@« = 0.000662) and that of @ = 0 (correspond
to the ACDM model) are distinguishable from the evolu-
tionary curves of fog, which is different from the evolu-
tionary curves of CMB temperature and matter power
spectra. It means that, to some extent, the growth rate (or
fog) data set could break the degeneracy between the
IDCASS model and the ACDM model.

C. Data sets and results

In March 2013, the European Space Agency (ESA) and
the Planck Collaboration publicly released the new CMB
data [60,61], which are expected to improve the cosmo-
logical constraint. Here, we adopt the cosmic observational
data sets, which include SNIa SNLS3 [62,63], BAO
(Sec. 5.2 of Ref. [64]), and Planck data [60,61]. The
Planck data sets which two main parts: one is the high-/ TT
likelihood (CAMSpec) up to a maximum multipole number

of [« = 2500 from [ = 50; the other is the low-/ TT
likelihood up to [ =49 and the low-/ TE, EE, BB like-
lihood up to / = 32 from WMAP nine-year data sets [65].
For more detailed descriptions about the cosmic observa-
tions, one can see Ref. [38].

The seven-dimensional parameter space for the IDCASS
model is

P ={Q,h* Q.h? Og 1,a,n,1og[100Ag]},  (25)
where Q7% and Q_h? stand for the density of the baryon
and cold dark matter, respectively, ®¢ refers to the ratio of
sound horizon and angular diameter distance, 7 indicates the
optical depth, a are the added parameters for the decom-
posed model, n, is the scalar spectral index, and Aj
represents the amplitude of the initial power spectrum.
The pivot scale of the initial scalar power spectrum kg, =
0.05 Mpc~! is used in this paper. The following priors to
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model parameters are adopted: ,h* € [0.005,0.1],
Q.h*€[0.01,0.99], ©®4€10.5,10], 7€[0.01,0.8], a € [0, 1],
n, € [0.5,1.5], and log[10'°A ] € [2.7,4]. In order to obtain
the model parameter space from the cosmic observations, we
use the MCMC method and modify the publicly available
COSMOMC package [66,67], in which a new module was
added to calculate the value of fog(z); one also can see
Refs. [37,38].

In our numerical calculations, the total likelihood y? can
be constructed as

X = xém + XBao T X58 T YRsp- (26)

We have run eight chains in parallel on the computer and
checked the convergence to stop sampling when the worst e
values (the variance/mean or mean/variance) of half-chains
R —1 is of the order 0.01. Whenfog(z) is adopted, the
constraint results are presented in the fourth column of
Table II and Fig. 5. In the fourth column of Table II, we list
the mean values of basic and derived model parameters
with 1o, 20, and 36 regions. Then, in Fig. 5, we show the
one-dimensional (1D) marginalized distributions of param-
eters and two-dimensional (2D) contours with the con-
fidence level. Moreover, in order to clearly see the effect on
the cosmological constraint for the fog(z) data, we also
constrain the decomposed model without the fog(z) data
set; these results are shown in the second column of
Table II.

The constraint results from Planck, BAO, SNIa, and
RSD data sets favor a small intensity of interaction, up to
the order of 10~%, and the results without the RSD data set
show a = 0.00159. Obviously, the constraint with the RSD
data set is tighter than that without RSD data set, which
means that the fog(z) data can improve the cosmological
constraint results. The result for the parameter « is very
similar to @ = 0.000487 for the mean value in Table 1 of
Ref. [19]. However, this work is different from Ref. [19] in
the following several aspects: First, due to the recently
released Planck data, the high-precision data sets make the
constraint results more reliable than WMAP seven-year
data. Second, in this paper, the CASS model is not taken as
a whole dark fluid, but considered as a decomposed fluid
which includes cold dark matter interacting with vacuum
energy, and the IDCASS model has just one degree of
freedom. Based on the decomposed model, it is natural to
deduce an interaction form which is relevant to the model
parameter a. This expression allows us to explore the
effects on the cosmic evolution from interacting dark
energy. The last but most important aspect is adopting
the large-scale structure information [fog(z) from RSD];
the dynamical evolution is a powerful tool to break the
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possible degeneracy of some cosmological models. It
means that the different dark energy models could have
the same background evolution history, but the dynamical
evolution would be different.

V. SUMMARY

The unified dark fluid with constant adiabatic sound
speed was decomposed into dark matter interacting with
vacuum energy. In the synchronous gauge, we introduced
an energy flow that was parallel to the four-velocity of the
dark matter and obtained the evolution equations of growth
rate for the dark matter and baryon. Then, we showed the
effects on the CMB temperature and matter power spectra
for the varied model parameter &. When o was a mean value
or zero, from the power spectra, it was difficult to
distinguish the IDCASS model from the ACDM model.
However, due to using the fog(z) data set of large scale
structure information, the evolutionary curves of fog(z)
could break the degeneracy of the models.

Then, based on the MCMC method, a global fitting was
performed on the decomposed model by adopting the CMB
information from Planck, BAO, SNIa, and RSD data sets.
We obtained a tight constraint for the cosmological
parameters. The results for three different cases were shown
in Table II. Obviously, the constraint with the RSD data set
is tighter than that without the RSD data set, which means
that the fog(z) data is very important to the cosmological
constraint. With the data set of fog(z), the cosmic obser-
vational data sets all favor a small interaction which is up to
the order of 10~*. This means that the IDCASS model and
ACDM model undergo similar background evolution
behavior. Fortunately, the large-scale structure information
is a powerful tool to discriminate the dark energy models,
because the dynamical evolution would be different even if
they had the same background evolution.

In future work, we will continue to study some other dark
fluid, such as the generalized Chaplygin gas and modified
Chaplygin gas model, by using the fog(z) data set.
Moreover, if the entropy perturbation is considered, a
negative adiabatic sound speed is favored, which is differ-
ent from that of the pure adiabatic case. For the cosmic
observations, we hope that some other data points of the
growth rate can be found and released, which could bring
larger improvement into cosmological constraints.
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