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Redshift-space distortions (RSDs) offer an attractive method to measure the growth of cosmic structure
on large scales, and combining with the measurement of the cosmic expansion history, they can be used as
cosmological tests of gravity. With the advent of future galaxy redshift surveys aiming at precisely
measuring the RSD, an accurate modeling of RSD going beyond linear theory is a critical issue in order to
detect or disprove small deviations from general relativity (GR). While several improved models of RSD
have been recently proposed based on the perturbation theory (PT), the framework of these models heavily
relies on GR. Here, we put forward a new PT prescription for RSD in general modified gravity models. As a
specific application, we present theoretical predictions of the redshift-space power spectra in the fðRÞ
gravity model, and compare them with N-body simulations. Using the PT template that takes into account
the effects of both modifications of gravity and RSD properly, we successfully recover the fiducial model
parameter in N-body simulations in an unbiased way. On the other hand, we found it difficult to detect the
scale dependence of the growth rate in a model-independent way based on GR templates.
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I. INTRODUCTION

Redshift-space distortions (RSDs) of galaxy clustering,
which appear as systematic effects in determining the
redshift of each galaxy via spectroscopic measurements
and manifestly break statistical isotropy [1,2], are now
recognized as a sensitive probe of the growth of structure.
Combining the distance measurement of galaxies using the
baryon acoustic oscillations as standard ruler (e.g., [3–6]),
RSD offers a unique opportunity to test the theory of
gravity on cosmological scales (e.g., [7–14]) and help us
obtain a deeper understanding of the current accelerating
expansion of the Universe. This is indeed one of the main
goals of ongoing and upcoming galaxy surveys such as the
Baryon Oscillation Spectroscopic Survey of Sloan Digital
Sky Survey III,1 the WiggleZ survey,2 the Subaru Meas-
urement of Imaging and Redshifts,3 the Dark Energy
Survey,4 the BigBOSS project,5 and the ESA/Euclid
survey,6 which will provide precision measurements of
the power spectrum (or correlation function). The late-time

cosmic acceleration, first discovered by the observations of
distant type Ia supernovae [15,16], may be the result of a
dark energy which can be realized in the presence of
dynamical scalar field, or it may indicate the breakdown of
general relativity (GR) on cosmological scales. The latter
case requires a consistent model of gravity that explains the
accelerating expansion on large scales with the modifica-
tion of gravity, while neatly evading the stringent con-
straints on the deviation from GR at solar system scales
(e.g., [17–20]). In this respect, the large-scale structure
offers the best opportunity to distinguish between modified
gravity and dark energy models in GR, and the measure-
ment of RSD is a powerful tool to probe gravity.
Given the high-precision measurements of RSD in the

near future, accurate theoretical templates of the redshift-
space power spectrum or correlation function are highly
demanded in order to detect a small deviation of gravity
from GR. This is indeed now an active research subject, and
there are many studies to accurately model RSD. The RSD
measurement is basically made at the scales close to the
linear regime of gravitational evolution, but the nonlinear-
ity arising both from the gravity and the RSD is known to
play a crucial role. Moreover, due to the non-Gaussian
nature of RSD [21], the applicable range of linear theory
prediction is fairly narrower than that in real space. Thus,
beyond the linear scales, a sophisticated treatment is

1http://www.sdss3.org
2wigglez.swin.edu.au
3http://sumire.ipmu.jp/en/
4www.darkenergysurvey.org
5bigboss.lbl.gov/index.html
6www.euclid‑ec.org
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required for reliable theoretical predictions with a wider
applicable range. Recently, based on the perturbation
theory of large-scale structure, several improved models
of RSD have been proposed [22–30]. These models
properly account for the non-Gaussian nature of RSD,
and are tested against N-body simulations, successfully
describing a redshift-space power spectrum and/or corre-
lation function at a weakly nonlinear regime. Applying
these models to real observations, constraints on the growth
of structure have been also obtained (e.g., [31,32]).
However, it should be noted that the proposed models of

RSD have been tested so far only in the case of GR. Further,
beyond linear theory, the template of RSD is computed
with the perturbation theory under the assumption that
gravity is described by GR. Thus, the observational
constraints derived from the perturbation theory–based
template can only be used as a consistency test with
GR, and care must be taken in addressing the constraint
with a specific model of modified gravity.
The aim of the present paper is to examine these issues

based on an improved model of RSD developed by
Ref. [22]. The power spectrum expression of this model
is similar to the one proposed by Ref. [21] and the so-called
streaming model frequently used in the literature (e.g.,
[2,21,33–35]), but it includes two important perturbation
theory (PT) corrections as a result of the low-k expansion.
Although the model also includes a phenomenological term
to account for the finger-of-god damping arising from the
small-scale physics, combining the recently developed
resummed PT, it successfully describes not only the matter
but also the halo power spectra in N-body simulations
[23,36,37]. It is shown that the model can be used as a
theoretical template to simultaneously constrain the param-
eters associated with the cosmic expansion and the struc-
ture growth in an unbiased manner, and by applying it to the
luminous red galaxy sample of Sloan Digital Sky Survey
Data Release 7, a robust constraint is obtained [38].
Here, extending these previous works in GR, we put

forward a prescription to compute the redshift-space power
spectrum in modified gravity models. As a specific exam-
ple, we explicitly compute the redshift-space power spec-
trum in the fðRÞ gravity model, as one of the representative
modified theories of gravity [19,20]. The theoretical
prediction based on the standard PT calculation is com-
pared with the results of N-body simulations, and a good
agreement is found. Then, we will discuss the potential
impact of the precision modeling of RSD on the model-
independent test of GR and/or constraint on modified
gravity models. We will show that a tight and unbiased
constraint on modified gravity models is achieved only
with an improved PT model of RSD in which the effect of
modified gravity is properly taken into account in the PT
calculation. With the improved PT template, testing GR
will be made possible in a model-independent way, but we
argue that a quantitative characterization of the small

deviation from GR generally requires a prior knowledge
of modified gravity models.
The paper is organized as follows. In Sec. II, we begin by

briefly reviewing the model of RSD proposed by Ref. [22].
Employing the standard PT calculation, we then give a
prescription on how to compute the redshift-space power
spectrum in modified gravity models. In the Appendix, we
summarize the basic formalism of the standard PT in a
general context of modified gravity models and explicitly
give expressions for the second-order PT kernels used to
compute the higher-order corrections of RSD. In Sec. III, as
one of the representative models of modified gravity, we
consider the fðRÞ gravity model and quantitatively com-
pare the PT predictions in redshift space with N-body
simulations. Based on this, in Sec. IV, a potential impact of
the precision PT model of RSD is discussed, particularly
focusing on a precision constraint on the model parameter
of modified gravity and model-independent analysis of
detecting or characterizing a small deviation from GR.
Finally, Sec. V is devoted to the summary and conclusion.

II. MODELING THE REDSHIFT-SPACE POWER
SPECTRUM FROM PERTURBATION THEORY

A. An improved model of RSD

We begin by writing the exact expression for the redshift-
space power spectrum. Let us denote the density and
velocity fields by δ and v. Owing to the distant-observer
approximation, which is usually valid for the observation of
distant galaxies of our interest, one can write (e.g.,
[21,22,39])

PðSÞðkÞ ¼
Z

d3xeik·xheikμΔuz

× fδðrÞ − ∇zuzðrÞgfδðr0Þ − ∇zuzðr0Þgi; (1)

where x ¼ r − r0 denotes the separation in real space and
h� � �i indicates an ensemble average. In the above expres-
sion, the z-axis is taken as an observer’s line-of-sight
direction, and we define the directional cosine μ by
μ ¼ kz=k. Further, we defined uzðrÞ ¼ vzðrÞ=ðaHÞ, and
Δuz ¼ uzðrÞ − uzðr0Þ for the line-of-sight component of the
velocity field. Note that the above expression has been
derived without invoking the dynamical information for
velocity and density fields, i.e., the Euler equation and/or
continuity equations. Thus, Eq. (1) does hold even in
modified gravity models.
Equation (1) can be reexpressed in terms of the cumu-

lants. Then, the term in the bracket is factorized into two
terms, each of which includes the exponential factor [e.g.,
see Eq. (6) of Ref. [22] for explicit expression]. Among
these, the overall factor, expressed as expfheikμΔuzicg with
h� � �ic being the cumulant, is responsible for the suppres-
sion of the power spectrum arising mostly from the
virialized random and coherent motion on small scales.
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The effect of this is known to be partly nonperturbative, and
seems difficult to treat perturbatively. Since it has been
shown to mainly change the broadband shape of the power
spectrum, we may phenomenologically characterize it with
a general functional form DFoGðkμσvÞ with σv being a
scale-independent constant. On the other hand, the remain-
ing factor includes the term leading to the Kaiser effect in
the linear regime [40,41] and is likely to affect the structure
of the power spectrum on large scales. Although the
exponential factor eikμΔuz also appears in each term of this
factor, these contributions should be small as long as we
consider the large scales, and the perturbative treatment
may be applied.
With the proposition given above, Ref. [22] applied the

low-k expansion, keeping the overall prefactor as general
functional form DFoG. The resultant power spectrum
expression at one-loop order becomes

PðSÞðk; μÞ ¼ DFoG½kμσv�
× fPKaiserðk; μÞ þ Aðk; μÞ þ Bðk; μÞg; (2)

which we hereafter call the TNS model. Owing to the
single-stream approximation in which the dynamics of
large-scale structure is described by the density δ and
velocity divergence θ ¼ ∇ · v=ðaHÞ, the quantities PKaiser,
A, and B are explicitly written as

PKaiserðk; μÞ ¼ PδδðkÞ − 2μ2PδθðkÞ þ μ4PθθðkÞ; (3)

Aðk; μÞ ¼ −kμ
Z

d3p
ð2πÞ3

pz

p2

× fBσðp; k − p;−kÞ − Bσðp; k;−k − pÞg; (4)

Bðk; μÞ ¼ ðkμÞ2
Z

d3p
ð2πÞ3 FðpÞFðk − pÞ;

FðpÞ ¼ pz

p2

�
PδθðpÞ − p2

z

p2
PθθðpÞ

�
; (5)

where Pδδ, Pθθ, and Pδθ, respectively, denote autopower
spectra of density and velocity divergence and their cross
power spectrum. The function Bσ is cross bispectrum
defined by

�
θðk1Þ

�
δðk2Þ − k22z

k22
θðk2Þ

��
δðk3Þ − k23z

k23
θðk3Þ

��

¼ ð2πÞ3δDðk1 þ k2 þ k3ÞBσðk1; k2; k3Þ: (6)

Note that in deriving Eq. (2), we do not assume any gravity
model. Although the expression (2) has been originally

derived based on the consideration in GR, as long as the
deviation from GR is small, Eq. (2) can apply to any model
of modified gravity.
As we mentioned in Sec. I, the main characteristic of the

model given in Eq. (2) is the two additional terms A and B,
which represent the higher-order coupling between velocity
and density fields. It has been shown in previous studies in
GR that these two terms enhance the power spectrum
amplitude over the scales of baryon acoustic oscillations
and moderately but notably change the acoustic structure
imprinted in the power spectrum [22]. As a result, the
model (2) successfully describes both the matter and halo
power spectra of N-body simulations at weakly nonlinear
scales [22,23,36]. These features are expected to hold
qualitatively even in the modified theory of gravity, but
the quantitative aspect of the RSD would generally differ
from that of GR, which we will study in detail.

B. Perturbation theory treatment

To compute the redshift-space power spectrum beyond
linear theory, we apply the PT treatment of gravitational
evolution, and calculate each term in Eq. (2) in the
quasilinear regime. While the power spectrum calculation
in the case of GR has been made possible with a resummed
PT scheme up to the two-loop order (e.g., [36] in redshift
space, and [42–46] in real space) and the applicable range
of the PT prediction has become wider, we here work with
the standard PT calculation at one-loop order for the
predictions in modified theory of gravity. Although the
standard PT treatment in GR is known to produce an ill-
behaved PT expansion that lacks good convergence proper-
ties (e.g., [42,47–49]), using the standard PTas a theoretical
template, we can still get a fruitful cosmological constraint
at the quasilinear scales (e.g., [50,51]). In the present paper,
we use the standard PT formalism developed by Ref. [52],
which is suited to deal with a wide class of modified gravity
models. In what follows, we separately give a prescription
on how to compute the power spectrum corrections
in Eq. (2).

1. Nonlinear Kaiser term

The term PKaiser in Eq. (2) is the leading-order contri-
bution to the redshift-space power spectrum. In the large-
scale limit where the linear theory prediction is safely
applied, we have θ ¼ −fδ, and Eq. (3) is reduced to the
Kaiser formula, PKaiser ¼ ð1þ fμ2Þ2PδδðkÞ [40], where f
is the linear growth rate defined by d ln Dþ=d ln awithDþ
being the linear growth factor. Beyond the linear theory, a
simple relation between density and velocity divergence
fields no longer holds, and we need to separately evaluate
the three power spectra, Pδδ, Pδθ, and Pθθ, especially in the
modified gravity models [21].
In contrast to the GR, one crucial point in the modified

gravity models is that a new scalar degree of freedom,
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sometimes referred to as the scalaron, arises and modifies
the force law. In the presence of an extra scalar field, even
though the conservation law of energy momentum tensor
remains unchanged, the Poisson equation is inevitably
modified and is coupled to the field equation for the
scalaron. In particular, in successful modified gravity
models that have a mechanism to recover GR on small
scales, the scalaron generally acquires nonlinear interaction
terms, and they play an important role in recovering GR on
small scales. Thus, we need to properly take into account
such a nonlinear interaction of the scalaron and consistently
solve the evolution equations of density and velocity
divergence.
In Ref. [52], we have developed a formalism to calculate

the nonlinear power spectrum in a wide class of modified
gravity models, including fðRÞ gravity and Dvali-
Gabadadze-Porratti (DGP) braneworld [53] models. The
formalism perturbatively treats the effect of nonlinear
scalarons, and employing the standard PT technique, we
have explicitly computed the power spectrum of density
field, Pδδ, at one-loop order, which reproduces the N-body
results at quasilinear scales. In what follows, we adopt this
formalism to perturbatively compute auto- and cross-power
spectra of density and velocity divergence. The basic
equations for perturbations are briefly summarized in the
Appendix.
To compute the one-loop power spectra, specifically in

the fðRÞ gravity model presented below (Sec. III), the
analytic calculations starting naively with the basic equa-
tions in the Appendix are technically difficult in practice,
because the perturbation equations cannot be separately
treated in time and scales. Instead of solving the equations
for δ and θ in the Appendix, we will numerically solve the
evolution equations for the power spectra Pab called the
closure equation in Ref. [52] [Eqs. (4.3)–(4.5)], which has
been derived by truncating an infinite chain of the moment
equations at one-loop order. Implementation and technical
details of the numerical scheme to solve the closure
equations are presented in Ref. [54] (see also Appendix
A of Ref. [52]).

2. A term

Next consider the A term. The expression given in
Eq. (4) can be rewritten with a more convenient form
suited for numerical integration. Introducing the doublet,7

Φa ≡ ðδ; θÞ, we define the bispectrum Babc:

hΦaðk1ÞΦbðk2ÞΦcðk3Þi
¼ ð2πÞ3δDðk1 þ k2 þ k3ÞBabcðk1; k2; k3Þ: (7)

In terms of this, the three-dimensional integral is reduced to
the sum of the two-dimensional integrals, and the final form
of the A term becomes [36]

Aðk; μÞ ¼
X3
n¼1

X2
a;b

μ2nð−1Þaþb−1 k3

ð2πÞ2

×
Z

∞

0

dr
Z

1

−1
dxfAn

abðr; xÞB2abðp; k − p;−kÞ
þ ~An

abðr; xÞB2abðk − p; p;−kÞg; (8)

with r ¼ p=k and x ¼ k · p=ðkpÞ. The nonvanishing com-
ponents of Aa

bc and ~Aa
bc are exactly the same as those

presented in Ref. [36] (see Sec. III B 2).
Since the A term appears as a next-to-leading order

correction, the tree-level calculation of the bispectrum is
sufficient for a consistent calculation of redshift-space
power spectrum at one-loop order. Expanding the doublet
Φa as Φa ¼ Φð1Þ

a þ Φð2Þ
a þ � � �, and assuming the Gaussian

initial condition, the bispectrum at the tree-level order
becomes

Babcðk1; k2; k3; tÞ ¼ 2fFð2Þ
a ðk2; k3; tÞFð1Þ

b ðk2; tÞFð1Þ
c ðk3; tÞ

× P0ðk2ÞP0ðk3Þ þ ðcyc:perm:Þ g;
(9)

where the functions FðnÞ
a are the symmetrized standard PT

kernel of the nth order perturbative solutions8:

ΦðnÞ
a ðk; tÞ ¼

Z
d3k1…d3kn
ð2πÞ3ðn−1Þ δDðk − k1…nÞ

× FðnÞ
a ðk1;…; kn; tÞδ0ðk1Þ…δ0ðknÞ; (10)

with k1…n ¼ k1 þ � � � þ kn. The function δ0 is the initial
density field, for which we assume Gaussian statistics. The
statistical property of δ0 is characterized by the power
spectrum:

hδ0ðkÞδ0ðk0Þi ¼ ð2πÞ3δDðk1 þ k0ÞP0ðkÞ: (11)

The remaining task in computing the A term is to
evaluate the PT kernels up to the second order, which
can be done analytically. This is also the case with the fðRÞ
gravity model given below, although some numerical work
is involved. In the Appendix, based on the basic equations,

we derive the explicit functional form of the PT kernels Fð1Þ
a

and Fð2Þ
a , and summarize the procedure to compute these

7This is somewhat different from the frequently used definition
in GR, Φa ¼ ðδ;−θ=fÞ; with f being the linear growth rate, f≡
d ln Dþ=d ln a (e.g., [42,55]).

8Since we are interested in the late-time evolution of cosmic
structure, we only consider the fastest growing term.
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kernels. The explicit expression for the PT kernels in fðRÞ
gravity and DGP models is also presented.

3. B term

Similar to the A term, the B term given in Eq. (5) is
reduced to the sum of two-dimensional integrals. From
Refs. [22,36], the resultant expression becomes

Bðk; μÞ ¼
X4
n¼1

X2
a;b¼1

μ2n
k3

ð2πÞ2
Z

∞

0

dr
Z

1

−1
dx

× Bn
abðr; xÞ

Pa2ðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 − 2rxÞ

p
Pb2ðkrÞ

ð1þ r2 − 2rxÞa :

(12)

Here, the coefficients Bn
ab are the same as presented in

Appendix B of Ref. [22].9 For the one-loop order of the
redshift-space power spectrum, the linear-order power
spectra are sufficient to evaluate Eq. (12), and we have

Pabðk; tÞ ¼ Fð1Þ
a ðk; tÞFð1Þ

b ðk; tÞP0ðkÞ; (13)

with the linear PT kernel Fð1Þ
a .

III. REDSHIFT-SPACE DISTORTIONS
IN f ðRÞ GRAVITY MODEL

In this section, as an illustrative example showing the
RSD beyond linear scales in the modified gravity model,
we compute the redshift-space power spectrum in the fðRÞ
gravity model, and compare the PT prediction with results
of N-body simulations.

A. f ðRÞ gravity
The fðRÞ gravity is one of the representative gravity

models, and it has a mechanism to recover GR on small
scales. Generalizing the Einstein-Hilbert action to include
an arbitrary function of the scalar curvature R, the model is
given by

S ¼
Z

d4x
ffiffiffiffiffiffi−gp �

Rþ fðRÞ
2κ2

þ Lm

�
; (14)

where κ2 ¼ 8πG and Lm is the Lagrangian of the ordinary
matter. This theory is equivalent to the Brans-Dicke (BD)
theory with parameter ωBD ¼ 0, but there is a nontrivial
potential. This can be seen from the trace of modified
Einstein equations:

3□fR − Rþ fRR − 2f ¼ −κ2ρ; (15)

where fR ¼ df=dR and □ is a Laplacian operator and we
assumed the matter dominated universe. We can identify fR
as the scalaron, i.e., extra scalar field, and its perturbations
are defined as

φ ¼ δfR ≡ fR − f̄R; (16)

where the bar indicates that the quantity is evaluated on the
background universe. Here, we consider the cases with
jf̄Rj ≪ 1 and jf̄=R̄j ≪ 1. These conditions are necessary to
have the background close to cold dark matter (ΛCDM)
cosmology. Then the perturbations for scalarons satisfy

3
1

a2
∇2φ ¼ −κ2ρmδþ δR; δR≡ RðfRÞ − Rðf̄RÞ:

(17)

Note that this is nothing but the equation for the BD scalar
perturbations with ωBD ¼ 0.
In what follows, we consider the specific function fðRÞ

of the form

fðRÞ ∝ R
ARþ 1

; (18)

where A is a constant with dimensions of length squared
[19]. If we take the limit R → 0, we obtain fðRÞ → 0 and
the cosmological constant does not appear. For high
curvature AR ≫ 1, on the other hand, fðRÞ can be
expanded as

fðRÞ≃−2κ2ρΛ þ jfR0j
R̄2
0

R
; (19)

where ρΛ is determined by A. The quantity R̄0 is the
background curvature today, and we defined fR0 ¼ f̄RðR0Þ
(see, e.g., [56–60] for recent cosmological constraints
on jfR0j).
In the setup of N-body simulations and PT calculation

below, we will take jfR0j ≪ 1, and assume that the back-
ground expansion just follows the ΛCDM history with the
same ρΛ.

B. N-body simulations

We use the subset of cosmological N-body simulations
presented in Refs. [61,62]. The data set of N-body
simulations was created by the N-body code for modified
gravity models, ECOSMOG [63], which is a modification
of the mesh-based N-body code, RAMSES [64]. With
cubic boxes of side length 1.5 h−1Gpc and 1024 particles,
the initial conditions were generated at redshift
zinit ¼ 49 using MPgrafic,10 according to the linear matter
power spectrum determined by the cosmological9In the case of GR, Eq. (12) exactly coincides with Eq. (A4) of

Ref. [22], but the definition of power spectra Pab is somewhat
different. 10http://www2.iap.fr/users/pichon/mpgrafic.html
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parameters: Ωm ¼ 0.24, ΩΛ ¼ 0.76, Ωb ¼ 0.0481,
h ¼ 0.73, ns ¼ 0.961, σ8 ¼ 0.801:11

In the analysis presented below, we mainly consider GR
and fðRÞ gravity with jfR0j ¼ 10−4 (labeled as Λ CDM and
F4 in Ref. [62]) and focus on the output results at z ¼ 1. In
Ref. [62], with six independent realizations, the matter
power spectra are measured in redshift space, applying the
distant-observer approximation. Adopting the line-of-sight
direction perpendicular to each side of the simulation box,
the density field is assigned on 10243 grids with cloud-in-
cell interpolation, and the power spectra are measured for
three different line-of-sight directions. Here, in comparison
with the PT model, we use the power spectra averaged over
all line-of-sight directions and realizations. With this treat-
ment, the measured power spectra tend to be smooth and
the outliers disappear, while the estimation of the error
covariance is rather complex because of the duplicated
power spectrummeasurement with the same realizations. In
what follows, for the analysis of the fitting and parameter
estimation, we assume a hypothetical galaxy survey of the
volume V ¼ 10 h3 Gpc3, and consider the statistical error
limited by the cosmic variance. Unless otherwise stated, the
error bars of the N-body results indicate the 1σ error of this
hypothetical survey computed with the linear power spec-
trum (see Appendix C of Ref. [22]).12

Finally, in addition to the redshift-space power spectra,
we also compare the real-space power spectra of the density
and velocity fields in Ref. [62], which are used to estimate
the valid range of PT predictions.

C. Comparison with N-body simulations

Before presenting the redshift-space power spectrum, we
first separately compute the contribution of each term in the
power spectrum expression (2), and compare it with
N-body simulation. Figure 1 shows the results of standard
PT calculation at one-loop order at z ¼ 1 in the GR (dotted)
and F4 [fðRÞ gravity with jfR;0j ¼ 10−4, solid] cases, with
the same cosmological parameters as adopted in N-body
simulations. The A (left) and B (right) terms are plotted
together with the auto- and cross-power spectra of density
and velocity divergence fields, multiplied by k3=2.
According to Eqs. (8) and (12), the A and B terms
are expanded as Aðk; μÞ ¼ P

3
n A2nðkÞμ2n and

Bðk; μÞ ¼ P
4
n B2nðkÞμ2n, and we here plot the scale-de-

pendent coefficients A2n and B2n (A2; B2: magenta;
A4; B4: cyan; A6; B6: green; B8: yellow). Overall, the
resultant amplitude of power spectrum corrections in F4 is
rather larger than that in GR. The acoustic signature is
clearly seen in both GR and F4 cases not only for the real-
space quantities but also the RSD correction (i.e., A term).

The reason for a larger amplitude in fðRÞ gravity is mainly
attributed to the scale-dependent enhancement of the linear
growth factor on small scales in fðRÞ gravity, and with a
large value of jfR;0j ¼ 10−4, the mechanism to recover GR
is still inefficient at quasilinear scales. This implies that the
redshift-space power spectrum can be quite different
between GR and F4, and the RSD corrections (i.e., A
and B terms) would play an important role.
To see the domain of applicability of the standard PT

calculation, we next plot in Fig. 2 the real-space power
spectra Pδδ, Pδθ, and Pθθ from N-body simulations and
compare those with the PT results. According to a phe-
nomenological rule calibrated with N-body simulations
[42,65], the standard PT power spectrum at one-loop order
is expected to agree with N-body simulations at k≲
0.12ð0.15Þ hMpc−1 with an accuracy of 1% ð3%Þ level.
Although the simulation results show somewhat noisy
behavior, the PT predictions seem to work well at least
at the scales indicated by the empirical rule, where the
deviation from linear theory is around 10% in both GR and
F4. The result suggests that even in the presence of a
substantial difference in the linear growth, the nonlinear
gravitational growth itself does not change so much
between GR and modified gravity models. This would
probably be true as long as the mechanism to recover GR is
still inefficient at quasilinear scales.

FIG. 1 (color online). Power spectrum corrections from A term
(left) and B term (right). The plotted results are at z ¼ 1, and they
are multiplied by k3=2 just for illustrative purposes. The A and B
terms are, respectively, expanded as Aðk; μÞ ¼ P

3
n A2nðkÞμ2n and

Bðk; μÞ ¼ P
4
n B2nðkÞμ2n, and we here plot the scale-dependent

coefficients A2n and B2n. The dotted lines are the results in GR,
while the solid lines are those in fðRÞ gravity model with
jfR0

j ¼ 10−4. Those results are computed with the same linear
power spectrum (see text). For reference, the power spectra Pδδ,
Pδθ, and Pθθ are also shown in black, blue, and red lines for the
GR case.

11The value of σ8 indicated in Ref. [62] is a typo.
12Equation (C4) of Ref. [22] includes typos. In the parenthesis

of the third line, it should be correctly replaced with
5þ ð110=21Þβ þ ð15=7Þβ2.
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Keeping in mind the applicability of PT calculation, we
now focus on the redshift-space power spectrum, and
compare the PT calculations with N-body simulations.
In Fig. 3, the top panels show the monopole (l ¼ 0) and
quadrupole (l ¼ 2) moments of power spectrum multiplied
by k3=2, while the bottom panels present the ratio of
monopole and quadrupole spectra to the linear theory
prediction, taking account of the Kaiser effect only. The
multipole power spectrum PðSÞ

l is defined by

PðSÞ
l ðkÞ ¼ 2lþ 1

2

Z
1

−1
dμPðSÞðk; μÞPlðμÞ; (20)

with Pl being the Legendre polynomials. The PT results
based on an improved model of RSD [i.e., TNS model,
Eq. (2)] are depicted as solid lines, while the results without
correction terms are also shown in dashed lines. In both
cases, we adopt the Gaussian damping function in comput-
ing PT predictions:

DFoGðkμσvÞ ¼ exp ½−ðkμσvÞ2�: (21)

Here, the velocity dispersion σv is a free parameter and is
determined by fitting the model predictions to the N-body
results of monopole and quadrupole spectra up to
kmax ¼ 0.15 hMpc−1 (indicated by vertical arrows), corre-
sponding to the valid range of PT. Note that we also
examined the Lorentzian form, but the choice of the

damping function did not change the results as long as
we consider the applicable range of standard PT one-loop.
Figure 3 shows that the model (2) successfully describes

the N-body results of RSD in both the GR and fðRÞ
models. Although the applicable range of standard PT one-
loop is limited, the A and B terms still play an important
role. In the presence of these terms, the acoustic signature
of the redshift-space power spectrum tends to be smeared
compared to the real-space power spectrum, and this indeed
improves the agreement with N-body simulations. In
the panels of Fig. 3, we show the reduced chi-squared
statistic defined by13

χ2red ¼
1

ν

X
l¼0;2

X
i

½PðSÞ
l;N−bodyðkiÞ − PðSÞ

l;PTðkiÞ�2

½ΔPðSÞ
l ðkiÞ�2

; (22)

with the quantity ν being the number of degrees of freedom.
Here, the statistical error ΔPðSÞ

l is estimated from the

FIG. 2 (color online). Auto- and cross-power spectra of density
and velocity fields in real space at z ¼ 1 for GR (left) and fðRÞ
gravity with jfR;0j ¼ 10−4. Top panels show the power spectra
multiplied by the cube of the wave number, i.e., k3=2PabðkÞ, while
the bottom panels present the ratio of the power spectra to the
linear theory predictions, PabðkÞ=Pab;linðkÞ.

FIG. 3 (color online). Monopole (blue) and quadrupole (red)
moments of redshift-space power spectra at z ¼ 1 for GR (left)
and fðRÞ with jfR;0j ¼ 10−4 (right). Top panels show the
monopole and quadrupole power spectra multiplied by k3=2,
while the bottom panels present the ratio of power spectra to
linear theory predictions, PðSÞ

l ðkÞ=PðSÞ
l;linðkÞ. Solid and dashed

lines, respectively, show the PT results based on the TNS model
[Eq. (2)] with and without A and B terms. In each panel, vertical
arrow indicates the maximum wave number used to estimate σv.

13Strictly speaking, the nonvanishing monopole and quadru-
pole moments of redshift-space power spectra yield a nonzero
covariance between them. This is true even in the Gaussian
statistics. However, the magnitude of covariance is shown to be
fairly small at large scales [22,66], and the impact of covariance is
ignorable in our analysis.
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cosmic variance error assuming the survey volume
10h−3Gpc3. The number of Fourier bins in the above
summation can be inferred from the maximum wave
number shown in Fig. 3, depicted as vertical arrows.

The resultant χ2red’s taking account of the A and B terms
(i.e., TNS model) are clearly lower than those ignoring the
corrections.
To show the quantitative difference of RSD between GR

and fðRÞ gravity, Fig. 5 shows the ratio of quadrupole-to-
monopole ratio in F4 to that in GR, i.e.,
ðPðSÞ

2 =PðSÞ
0 ÞfðRÞ=ðPðSÞ

2 =PðSÞ
0 ÞGR. Note that the error bars of

the N-body simulation shown in the panel are not the
cosmic variance error but are estimated from the N-body
data of the six realizations for a particular line-of-sight
direction. The linear theory predicts a slight enhancement
of the ratio, while the actual N-body result rather shows a
noticeable reduction at small scales. This basically comes
from a stronger suppression of the power spectra in fðRÞ
gravity, as shown in Fig. 3 (see bottom panel). Figure 4
summarizes the fitting results of the parameter σv together
with the resultant reduced chi-squared. At z ¼ 1, the fitted
value of the velocity dispersion is relatively large in F4 by
∼20%. Neglecting the correction terms, the relative differ-
ence of σv between the fðRÞ model and GR is more
prominent (∼50%), although the values themselves are
even smaller than those taking account of the A and B
terms. As a result, the PT prediction ignoring the correc-
tions exhibits a strong damping behavior in Fig. 5 and tends
to deviate from N-body simulations at small scales. By
contrast, the prediction with A and B terms (i.e., TNS
model) faithfully traces the N-body trend beyond the
applicable range of the standard PT.
Finally, while we mainly presented the results at z ¼ 1,

we briefly comment on other cases at z ¼ 0, where we also
examined the F5 case [fðRÞ gravity with jfR;0j ¼ 10−5].
All the results are summarized in Fig. 4. At z ¼ 0, the
nonlinear clustering is strongly developed, and the appli-
cable range of standard PT one-loop is quite limited.
Nevertheless, with a limited fitting range of
k ≤ kmax ¼ 0.1 hMpc−1, the PT results show an excellent
performance with χ2red ∼ 1, and the prediction including the
A and B terms gives a better agreement with N-body
simulations. Figure 4 shows that the fitted value of velocity
dispersion in fðRÞ gravity is generally larger than that in
GR, roughly consistent with the one estimated with linear
theory (solid lines). This suggests that a stronger damping
of the power spectrum amplitude may be a good indicator
for modified gravity, as pointed out by Ref. [62] (see also
Refs. [67,68]). Note, however, that the actual value of σv
depends on the underlying model of RSD. Further, our
observable is not dark matter but galaxy distribution, which
does not faithfully trace the dark matter distribution. A
careful study is needed, and we leave this issue to
future work.

IV. IMPLICATIONS

Having confirmed that the PT model of RSD works well
at quasilinear scales, in this section, we discuss the

FIG. 4. Ratio of quadrupole-to-monopole ratio of fðRÞ gravity
to that of GR, ðPðSÞ

2 =PðSÞ
0 ÞfðRÞ=ðPðSÞ

2 =PðSÞ
0 ÞGR. The results at z ¼ 1

are shown. Solid and dashed lines are the PT predictions based on
the TNS model with and without A and B terms, while dotted
lines are the linear theory predictions. The vertical arrow indicates
the maximum wave number used to estimate σv.

FIG. 5 (color online). Fitting results in GR (left) and fðRÞ
gravity with jfR;0j ¼ 10−4 (middle) and 10−5 (right). The best-fit
parameter σv and the resultant values of reduced chi-squared are,
respectively, shown in top and bottom panels. For comparison,
linear theory prediction of the velocity dispersion,
σ2v;lin ≡

R
dqPθθ;linðqÞ=ð6π2Þ, is also depicted as solid lines in

top panels. In each panel, filled and open triangles indicate the PT
results based on the TNS model with and without A and B terms,
respectively. Note that the maximum wave number in the fitting,
kmax, is set to 0.10 and 0.15 hMpc−1 at z ¼ 0 and 1.
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potential impact of the PT template on the RSD measure-
ment at quasilinear scales.
In testing gravity with RSD, a primary goal would be to

clarify whether GR really holds on cosmological scales or
not. In this respect, the measurement of the linear growth
rate, f ¼ d ln Dþ=d ln a, provides an important clue, and
with the GR-based PT template, we may look for a possible
deviation of f from GR prediction. One important property
in a large class of modified gravity models, including fðRÞ
gravity, is the scale dependence of f. Thus, a detection of
scale-dependent f immediately implies the deviation of
gravity from GR. The crucial question is how well one can
detect or characterize such scale dependence in a model-
independent manner.
Alternatively, we may consider some specific gravity

models and try to directly constrain the models themselves.
In this case, the linear growth rate f might not be an
appropriate indicator to characterize a possible deviation
from GR. Rather, one tries to directly constrain the model
parameter of modified gravity [e.g., jfR;0j in the case of
fðRÞ gravity]. Then, with the prior assumption of the
specific gravity models, the question is how well we can
accurately constrain the model parameter based on the PT
template of RSD in an unbiased way.
Below, we will separately consider these two issues, and

examine the parameter estimation analysis. Note that we
will adopt below χ2 of Eq. (22) to estimate the goodness of
fit. Strictly speaking, this is not entirely correct, because the
nonlinear gravitational evolution induces the non-Gaussian
contribution, which produces nonvanishing power spec-
trum covariances between different Fourier modes.
However, it is shown in the GR case that as long as we
consider the quasilinear scales at moderately high redshift,
the off-diagonal components are small enough, and the
diagonal components can be approximately described by
the simple Gaussian contribution, leading to a negligible
influence on the parameter estimation (e.g., [69,70]). We
thus expect that the same would be true in our case of the
fðRÞ gravity model that is close to GR, and our simple
treatment with Gaussian error contribution would be
validated at quasilinear scales.

A. Constraining model parameters of modified gravity

Let us first consider the model-dependent analysis to
constrain the model parameter of modified gravity, assum-
ing the fðRÞ gravity with jfR;0j ¼ 10−4 as our fiducial
gravity model. For specific functional form with Eq. (19)
[or Eq. (18)], the parameter jfR;0j is the only parameter
characterizing a deviation of gravity from GR. Thus, the
test of gravity is made possible with constraining the model
parameter jfR;0j by fitting the theoretical template to the
data set of redshift-space power spectrum. Here, as a simple
demonstration, we ignore the effect of galaxy bias, and
allowing jfR;0j to flow, we fit the PT template to theN-body
data at z ¼ 1.

Figure 6 shows the results of parameter estimation based
on the Markov chain Monte Carlo (MCMC) technique.
Assuming the hypothetical survey limited by the cosmic
variance error with the survey volume V ¼ 10 h−3Gpc3,
the best-fit value of jfR;0j and the 1σ statistical error are
derived and are plotted (top) as function of maximum wave
number, kmax, together with the reduced chi-squared
statistic χ2red (bottom), where kmax represents the range of
the wave number used for parameter estimation. Note here
that the number of free parameters is two, i.e., jfR;0j and σv.
Accordingly, the derived constraint is rather tight, and a
slight discrepancy between the template and data can lead
to a biased estimation of the jfR;0j. Figure 6 shows that only
the improved model of RSD computed in fðRÞ gravity
(filled circles) recovers the fiducial jfR;0j out to
kmax ¼ 0.15 h Mpc−1, corresponding to the applicable
range of standard PT one-loop. A slight change of the
PT template, depicted as open circles and filled triangles,
leads to a biased estimation of the model parameter.
Ignoring the damping function DFoG (crosses) further
adds a large systematic error. This is even true
at kmax ≲ 0.1 h Mpc−1.

FIG. 6 (color online). Top: Best-fit values of jfR;0j as function
of the maximum wave number kmax used for MCMC analysis.
Assuming the cosmic variance limited survey of the volume
V ¼ 10 h−3 Gpc3, we fit the PT template to the N-body simu-
lation of the F4 run at z ¼ 1, and derive the best-fit values and 1σ
statistical error of jfR;0j, allowing the parameter σv to be free.
Filled circles are the results based on the TNS model [Eq. (2)] in
fðRÞ gravity, while filled triangles are the cases ignoring the A
and B terms. Open circles represent the results similar to filled
circles, but the corrections A and B are calculated in GR. For
comparison, crosses are the results ignoring not only the A and B
terms but also the damping function DFoG.
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The left panel of Fig. 7 shows the representative result of
the two-dimensional constraints on jfR;0j and σv taken from
Fig. 6, where we fix the maximum wave number to
kmax ¼ 0.15 h Mpc−1. The meanings of color types are
the same as in Fig. 6, and in each error contour, inner and
outer contours, respectively, represent the 1σ (68% C.L.)
and 2σ (96% C.L.) constraints. Overall, the degeneracy
between jfR;0j and σv is weak, and the result suggests that
at the scales accessible by the PT template, the model
parameter jfR;0j can be constrained down to Oð10−5Þ from
future RSD measurements.
Note, however, that this is only true when we properly

take account of the effect of modified gravity in computing
the PT template. Most of the analysis in the literature
considered the effect of modified gravity only in the linear
growth rate f and incorporated it into the GR-based
template to constrain the model parameter jfR;0j using
the measurements of RSD (e.g., [58,59] for recent works).
The right panel of Fig. 7 indeed demonstrates such a case.
That is, we adopt the GR-based PT template in which the
effect of modified gravity is only incorporated in the linear
growth rate f. In GR, the velocity-divergence field θ is
known to be factorized as θðk; tÞ ¼ f ~θðk; tÞ, where ~θ is
perturbatively expanded as ~θðk; tÞ ¼ P

n½DþðtÞ�n ~θnðkÞ. As
a result, at a given redshift, the PT template of the redshift-
space power spectrum is described as the function of k, μ;
and f, i.e., PðSÞðk; μ; fÞ. Since the growth rate f controls
the strength of RSD, we naively expect that simply
incorporating the scale-dependent f in modified gravity

into the PT template allows us to faithfully constrain the
model parameter jfR;0j.
However, this actually leads to a biased estimation of the

model parameter jfR;0j, as shown in the contour with
orange color of Fig. 7. The reason for the large systematic
bias is ascribed to the fact that the modification of gravity
not only alters the linear growth rate but also affects the
shape of the real-space power spectra because of the scale-
dependent growth, as clearly shown in Fig. 2. Thus, for an
unbiased estimation of jfR;0j, we need to additionally
incorporate the effect of gravity bias, that accounts for
the relative difference of the clustering amplitude between
GR and fðRÞ gravity, into the PT template. The contour
with magenta color is the results after taking account of this
gravity bias, simply by assuming the following relation:

δn−body;F4ðkÞ ¼ bðkÞδPT;GRðkÞ; bðkÞ ¼ 1þA2k2

1þA1k
; (23)

where δn−body;F4 is the density field in N-body simulation,
while δGR is the density field for the PT calculation. The
function bðkÞ characterizes the scale-dependent growth
relative to the GR prediction, and we adopt here the
functional form similar to those frequently used to model
the galaxy bias (e.g., [71,72]). Allowing the parameters A1

and A2 to float, the result marginally reproduces the fiducial
value of jfR;0j, and the goodness of fit quantified by χ2red is
improved. With the increased number of free parameters,
however, constraining power is significantly reduced, and

FIG. 7 (color online). Two-dimensional error contours derived from MCMC analysis, fixing the maximum wave number to
kmax ¼ 0.15 h Mpc−1. Left panel shows the results derived from the PT template calculated in fðRÞ gravity. The three different contours
represent the cases with the PT template based on the TNS model [Eq. (2)] with and without A and B terms (magenta, green), and with A
and B calculated in GR (blue), which are also shown in Fig. 6. On the other hand, in the right panel, the results are shown for the PT
template calculated in GR. In GR, the power spectrum template can be written as functions of k, μ, and the linear growth rate f, i.e.,
PðSÞðk; μ; fÞ. Here, incorporating the linear growth rate of the fðRÞ gravity into the GR-based template, we derive the constraints on
jfR;0j and σv, depicted as the contour with orange color. The contour with magenta color is the result after taking account of the scale-
dependent relative growth by introducing gravity bias, δn−body;F4ðkÞ ¼ bðkÞδPT;GRðkÞ with bðkÞ ¼ ð1þ A2k2Þ=ð1þ A1kÞ and
marginalizing over the nuisance parameters A1 and A2 [see Eq. (23)].
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the size of error contour indeed becomes large (cf. left panel
of Fig. 7). This proves that the heterogeneous PT template
is insufficient to tightly constrain the model parameter of
modified gravity, and a full PT modeling taking proper
account of the modified gravity is required for unlocking
the full power of precision RSD measurement.

B. Model-independent detection of a
small deviation from GR

Consider next the model-independent test of GR, and
discuss how well we can characterize or detect the scale
dependence of the linear growth rate, f. Here, for illus-
trative purposes, we examine the two simple cases. One is
to divide the power spectrum data into several wave number
bins, and in each bin, we try to estimate f to see a possible
deviation from spatially homogeneous f. The other case is
to assume a specific functional form of f, and to constrain
its parameters. In both cases, similar to the analysis shown
in the right panel of Fig. 7, we adopt the GR-based PT
template with an improved model of RSD (i.e., TNS
model), and take account of the gravity bias in Eq. (23).
We then fit the template to the monopole and quadrupole
power spectra at z ¼ 1 measured from N-body simulations
of fðRÞ gravity with jfR;0j ¼ 10−4.
Figure 8 shows the result of MCMC analysis

for the binned linear growth rate, where we set
kmax ¼ 0.15 hMpc−1 and divide the power spectrum data
into three equal bins. Dotted and solid lines represent the
linear growth rate of the fðRÞ gravity with and without
binning, while the vertical error bars of the binned results
indicate the 1σ statistical uncertainty derived from the
MCMC analysis, marginalized over other nuisance param-
eters. Note that the number of free parameters is 6. The
best-fit value of f in each bin is close to the fiducial value,
but slightly away from linear theory prediction except for
the central bin. As a result, the error bars share almost the
same value of f, and no notable trend of the scale-
dependent growth is found from the binned estimate of f.
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FIG. 8 (color online). MCMC results of the constraint on scale-
dependent linear growth rate. Using the GR-based PT template
with the improved model of RSD, we allow the linear growth rate
f to spatially vary in three wave number bins. Adopting the
gravity bias prescription given in Eq. (23) and fixing the
maximum wave number to kmax ¼ 0.15 hMpc−1, we derive
the constraint on f in each wave number bin. The vertical error
bars indicate the 1σ error assuming the cosmic-variance limited
survey of V ¼ 10 h−3 Gpc3, and the dotted and solid lines,
respectively, represent the linear theory prediction and its binned
average in the underlying fðRÞ gravity model.
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FIG. 9 (color online). MCMC results of the constraint on the scale-dependent linear growth rate, assuming a specific functional form,
fapproxðkÞ ¼ f0½1þ ϵ tanhðk=kcÞ� [Eq. (24)]. Using the GR-based PT template with the improved model of RSD, and adopting the
gravity bias in Eq. (23), we derive the constraints on f0 and ϵ, and kc. Left panel shows the two-dimensional projected constraints, and
the crosses indicate the best-fit values. The inner and outer contours, respectively, represent the 1 and 2σ statistical errors, assuming the
cosmic-variance limited survey of V ¼ 10 h−3 Gpc3. In the right panel, the best-fit curve of the scale-dependent linear growth is plotted
in a red solid line, and its 1σ statistical uncertainty is shown in a red shaded region. For reference, the linear growth rate in the underlying
fðRÞ gravity model is also plotted in a black dashed line.
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Figure 9 examines the other case, in which we assume a
specific functional form of f given below:

fapproxðkÞ ¼ f0½1þ ϵ tanhðk=kcÞ�: (24)

Allowing the parameters f0, ϵ, and kc to float, we perform
the MCMC analysis. Again, the number of free parameters
is 6, and we set kmax ¼ 0.15hMpc−1. Note that for the
scales of our interest, Eq. (24) is shown to accurately
describe the scale-dependent linear growth rate of fðRÞ
gravity, and fitting directly Eq. (24) to the linear theory
prediction at z ¼ 1, we obtain f0 ¼ 0.83, ϵ ¼ 0.17,
and kc ¼ 0.11 hMpc−1.
The left panel of Fig. 9 shows the two-dimensional

projected errors on the parameters, f0, ϵ, and kc. The
MCMC analysis of the RSD measurement favors nonzero
values of these parameters, strongly indicating a deviation
from spatially constant f. However, a closer look at two-
dimensional contours reveals a substantial difference in ϵ
between the best-fit result and the directly fitted value, 0.17.
As a result, the MCMC result is unable to reproduce the
underlying scale-dependent linear growth rate. The right
panel of Fig. 9 shows the constraint on the scale depend-
ence of f. Based on the best-fit values and the associated 1σ
errors shown in the left panel of Fig. 9, the best-fit curve is
plotted as a red solid line, and its 1σ statistical uncertainty is
shown in the red shaded region. The scale dependence
inferred from the MCMC result is rather stronger than that
of the linear theory prediction (black dashed).
These two examples imply that the model-independent

detection and characterization of the scale-dependent f are
generally difficult, and the results are rather sensitive to the
choice of parametrized form of the linear growth rate. This
is presumably because each of the parameters characteriz-
ing the scale-dependent f cannot be determined locally, but
rather it must be estimated with a wide range of wave
numbers. Then the parameters tend to be highly correlated
with each other, leading to a biased estimation. In this
respect, a sophisticated treatment with principal component
analysis may provide a way to robustly detect a scale-
dependent f.

V. CONCLUSION

In this paper, we studied how well we can clarify the
nature of gravity at large scales with redshift-space dis-
tortions, especially focusing on the quasilinear regime of
the gravitational evolution. While most of previous works
have been done with the theoretical template assuming GR
as underlying gravity theory, we here developed a new
perturbation theory prescription for RSD in the general
context of the modified gravity models. Extending our
previous works on the improved model of RSD proposed
by Ref. [22], we applied the standard PT framework from
Ref. [52], which has been formulated to deal with a wide
class of modified gravity models, to the computation of the

redshift-space power spectrum. As a specific application, in
this paper, we considered the fðRÞ gravity model and
compared the PT prediction of RSD with results of N-body
simulations. Despite the limited applicable range of the
standard PT, the PT results successfully describe the N-
body simulations, and the predicted monopole and quadru-
pole spectra quantitatively agree with N-body results.
Then, we next considered how well we can characterize

and/or constrain the deviation of gravity from GR. One
obvious approach is to first assume a specific modified
theory of gravity as an underlying gravity model and
constrain their model parameters. Using the PT as a
theoretical template, we performed the parameter estima-
tion analysis, and checked if the theoretical template
correctly recovers the fiducial value of the model parameter
in the N-body simulations. Adopting the improved model
of RSD [TNS model, Eq. (2)], a full PT template calculated
in the modified gravity model was found to reproduce the
correct model parameter, while a slight deficit in the PT
template led to a biased parameter estimation. As another
approach, we have also examined the model-independent
analysis, and based on the PT template calculated in GR,
we tried to characterize the scale-dependent linear growth
rate from monopole and quadrupole power spectra.
Without assuming any modified gravity model, the para-
metrization of the scale-dependent linear growth rate f is
necessary, and the parameters characterizing f are highly
correlated in general. Our simple two examples suggest that
the results are highly sensitive to the choice of para-
metrization, and it is generally difficult to characterize
the scale dependence of f in an unbiased manner unless
employing some sophisticated methods such as principal
component analysis.
Throughout the paper, we have worked with the standard

PT, but the standard PT is known to have a bad convergence
property. While we can still get a fruitful constraint on
modified gravity models, resummed PT schemes with a
wide applicable range are highly desirable to improve the
observational constraint. A development of improved PT
template in redshift space is an important future direction
(see [73,74] for recent attempt). Another important issue is
the application of the present prescription to the real
measurement of RSD. With full PT implementation of
the theoretical template, a tight cosmological constraint is
expected to be obtained in a robust and unbiased way. In
doing this, however, a proper account of the galaxy bias
would be crucial. Although the present paper mainly
focused on the matter power spectrum, the galaxy bias
would also be affected by the modification of gravity, and
this may produce a nontrivial scale-dependent shape of the
observed power spectrum. In fact, the N-body study of the
halo clustering properties has revealed that the halo bias in
fðRÞ gravity is systematically lower than that in GR (e.g.,
[75]). Since even the velocity dispersion and clustering
amplitude of the dark matter distribution in fðRÞ gravity
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differ from those in GR (see Figs. 2 and 3 in Sec. III),
coupled with the nonlinear gravity, this could impose a
nontrivial trend in the halo/galaxy bias (see, e.g., [76–79]
for a recent study on the abundance and clustering of halos
and galaxies). Hence, a careful study of the halo/galaxy
bias is necessary, together with extensive tests with N-body
mock catalogs, toward an unbiased test of gravity.
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APPENDIX: BASIC EQUATIONS
FOR PERTURBATIONS AND
SECOND-ORDER KERNELS

In this appendix, after briefly reviewing the formalism
developed in Ref. [52], we derive general expressions for
the second-order PT kernel Fð2Þ

a , as well as the linear
growth factor Fð1Þ

a in modified gravity models. In Sec. A 1,
we begin by reviewing the framework to treat the evolution
of matter fluctuations in modified gravity models. We then
develop the perturbation theory and derive the PT kernels
up to the second-order in Sec. A 2. The explicit expressions
for PT kernels are given in specific modified gravity
models, i.e., fðRÞ gravity and Dvali-Gabadadze-Porratti
models.

1. Evolution equations

Let us first consider the matter sector. Apart from
the force law of gravity, the basic equations governing
the evolution of matter sector are basically described by the
conservation of energy momentum tensor, which would
remain unchanged even in the modified gravity model.
Hence, under the single-stream approximation, the matter
fluctuations are treated as pressureless fluid flow, whose
evolution equations are the continuity and Euler equations:

∂δ
∂t þ

1

a
∇ · ½ð1þ δÞv� ¼ 0; (A1)

∂v
∂t þHvþ 1

a
ðv ·∇Þ · v ¼ − 1

a
∇ψ ; (A2)

where ψ is the Newton potential.

On the other hand, for the gravity sector, there may
appear a new scalar degree of freedom referred to as the
scalaron, which results in a large-distance modification to
the gravity. On large scales, the scalaron φ mediates the
scalar force, and behaves like the Brans-Dicke scalar field
without potential and self-interactions, while it should
acquire some interaction terms on small scales, which play
an important role to recover GR. Indeed, for several known
mechanisms such as chameleon and Vainshtein mecha-
nisms (e.g., [17,18]), the nonlinear interaction terms
naturally arise and eventually become dominant, leading
to a recovery of GR. As a result, even on subhorizon scales,
the Poisson equation is modified and is coupled to the field
equation for scalaron φ with a self-interaction term:

1

a
∇2ψ ¼ κ2

2
ρmδ − 1

2a2
∇2φ; (A3)

ð3þ 2ωBDÞ
1

a2
∇2ϕ ¼ −2κ2ρmδ − IðφÞ; (A4)

with κ2 ¼ 8πG and ωBD being the Brans-Dicke parameter.
Here, we have used the quasistatic approximation and
neglected the time derivatives of the perturbed quantities
compared with the spatial derivatives. This treatment is
always valid as long as we consider the evolution of matter
fluctuations inside the Hubble horizon. The function I
represents the nonlinear self-interaction, and it can be
expanded as

IðφÞ ¼ M1ðkÞ þ
1

2

Z
d3k1d3k2
ð2πÞ3 δDðk − k12Þ

×M2ðk1; k2Þφðk1Þφðk2Þ þ � � � (A5)

In Fourier space, Eqs. (A1)–(A4) can be reduced to a
more compact form. Assuming the irrotationality of fluid
quantities, the velocity field is expressed in terms of
velocity divergence, θ ¼ ∇ · v=ðaHÞ. Then, we have [52],

H−1 ∂δðkÞ
∂t þ θðkÞ ¼ −

Z
d3k1d3k2
ð2πÞ3 δDðk − k12Þ

× αðk1; k2Þθðk1Þδðk2Þ; (A6)

H−1 ∂θðkÞ
∂t þ

�
2þ H

:

H2

�
θðkÞ þ κ2ρm

2H2

�
1þ 1

3

ðk=aÞ2
ΠðkÞ

�
δðkÞ

¼ − 1

2

Z
d3k1d3k2
ð2πÞ3 δDðk − k12Þβðk1; k2Þθðk1Þθðk2Þ

−
1

2

�
k
a

	
2 SðkÞ
H2

; (A7)
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with the mode-coupling kernels, α and β; given by

αðk1; k2Þ ¼ 1þ k1 · k2
jk1j2

;

βðk1; k2Þ ¼
ðk1 · k2Þjk1 þ k2j2

jk1j2jk2j2
:

In the above, the function Π characterizes the deviation of
the Newton constant from GR, while the quantity S is
originated from the nonlinear interactions of the scalaron,
which is responsible for the recovery of GR at small scales.
The functional form of these are obtained from the Poisson
equation and field equation for the scalaron, and the
expressions relevant for the second-order perturbations
are, respectively, given, by [52]

ΠðkÞ ¼ 1

3

�
ð3þ 2ωBDÞ

k2

a2
þM1ðkÞ

�
;

SðkÞ ¼ − 1

6ΠðkÞ
�
κ2ρm
3

	
2
Z

d3k1d3k2
ð2πÞ3 δDðk − k12Þ

×M2ðk1; k2Þ
δðk1Þδðk2Þ
Πðk1ÞΠðk2Þ

þ � � � : (A8)

Here, in deriving the last expression, we perturbatively
solve the scalaron field φ in terms of δ using Eqs. (A4) and
(A5). The explicit functional form of Π or M1 and M2

depends on actual modified gravity models, which will be
specified later.

2. PT kernels

Let us now perturbatively solve the evolution
equations (A6) and (A7). Consider first the linear-order
solutions. Ignoring all the nonlinear terms in Eqs. (A6) and
(A7), we obtain

δ̈ð1ÞðkÞ þ 2H _δð1ÞðkÞ − κ2ρm
2

�
1þ 1

3

ðk=aÞ2
ΠðkÞ

�
δð1ÞðkÞ ¼ 0;

θð1ÞðkÞ ¼ − 1

H
_δð1ÞðkÞ: (A9)

The solutions δð1Þ and θð1Þ can be formally expressed as

δð1Þðk; tÞ ¼ Dðk; tÞδ0ðkÞ; θð1Þðk; tÞ ¼ − _Dðk; tÞ
H

δ0ðkÞ;
(A10)

where the function δ0ðkÞ is the initial density field [see
Eq. (11)]. The function D is the linear growth factor and
satisfies the following evolution equation:

D̈þ 2HD
: − κ2ρm

2

�
1þ 1

3

ðk=aÞ2
ΠðkÞ

�
D ¼ 0: (A11)

Accordingly, the first-order PT kernels are

Fð1Þ
1 ðk; tÞ ¼ Dðk; tÞ; Fð1Þ

2 ðk; tÞ ¼ − _Dðk; tÞ
H

: (A12)

Next consider the second-order solutions. Substituting the linear-order solutions into the right-hand side of Eqs. (A6) and
(A7), the equations for second-order perturbations are

δ̈ð2ÞðkÞ þ 2H _δð2ÞðkÞ − κ2ρm
2

�
1þ 1

3

ðk=aÞ2
ΠðkÞ

�
δð2ÞðkÞ ¼

Z
d3k1d3k2
ð2πÞ3 δDðk − k12Þ

×

�
fðD̈1 þ 2H _D1Þ D2 þ _D1

_D2gα1;2 þ
_D1

_D2

2
β1;2

− ðk12=aÞ2
12Πðk12Þ

�
κ2ρm
3

	
2M2ðk1; k2Þ

Π1Π2

D1D2

�
δ0ðk1Þδ0ðk2Þ; (A13)

θð2ÞðkÞ ¼ − 1

H
_δð2ÞðkÞ þ 1

H

Z
d3k1d3k2
ð2πÞ3 δDðk − k12Þαðk1; k2Þ _D1D2δ0ðk1Þδ0ðk2Þ; (A14)

where we introduced the short-hand notations, Di ¼ Dðki; tÞ, α1;2 ¼ αðk1; k2Þ, and Πi ¼ ΠðkiÞ. Then, the second-order
PT solutions are formally written as

δð2Þðk; tÞ ¼
Z

d3k1d32k2
ð2πÞ3 δDðk − k12Þ

�
1

2
ðDð2Þ

1;2α1;2 þDð2Þ
2;1α2;1Þ þ Eð2Þ

1;2β1;2 þ Fð2Þ
1;2

�
δ0ðk1Þδ0ðk2Þ; (A15)
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θð2Þðk; tÞ ¼ 1

H

Z
d3k1d32k2
ð2πÞ3 δDðk − k12Þ

�
1

2
fðD: 1D2 −D

: ð2Þ
1;2Þα1;2 þ ðD: 2D1 −D

: ð2Þ
2;1Þα2;1g − E

: ð2Þ
1;2β1;2 − F

: ð2Þ
1;2

�
δ0ðk1Þδ0ðk2Þ:

(A16)

Thus, the symmetrized second-order PT kernels Fð2Þ
a are,

respectively, given by

Fð2Þ
1 ðk1; k2; tÞ ¼

1

2
ðDð2Þ

1;2α1;2 þDð2Þ
2;1α2;1Þ

þ Eð2Þ
1;2β1;2 þ Fð2Þ

1;2; (A17)

Fð2Þ
2 ðk1; k2; tÞ ¼

1

H

�
1

2
fðD: 1D2 −D

: ð2Þ
1;2Þα1;2

þ ðD: 2D1 −D
: ð2Þ
2;1Þα2;1g − E

: ð2Þ
1;2β1;2 − F

: ð2Þ
1;2

�
:

(A18)

Here, the functions Dð2Þ
1;2 ¼ Dð2Þðk1; k2Þ, Eð2Þ

1;2 ¼
Eð2Þðk1; k2Þ, and Fð2Þ

1;2 ¼ Fð2Þðk1; k2Þ are the second-order
growth functions, whose governing equations are

L̂ Dð2Þðk1; k2Þ ¼ fD̈ðk1Þ þ 2HD
: ðk1ÞgDðk2Þ

þD
: ðk1ÞD

: ðk2Þ; (A19)

L̂ Eð2Þðk1; k2Þ ¼
1

2
D
: ðk1ÞD

: ðk2Þ; (A20)

L̂ Fð2Þðk1; k2Þ ¼ − ðk12=aÞ2
12Πðk12Þ

�
κ2ρm
3

	
2

×
M2ðk1; k2Þ
Πðk1ÞΠðk2Þ

Dðk1ÞDðk2Þ; (A21)

with the operator L̂ given by

L̂ðk12; tÞ≡ d2

dt2
þ 2H

d
dt

− κ2ρm
2

�
1þ 1

3

ðk12=aÞ2
Πðk12Þ

�
: (A22)

Below, we will present a more explicit expression for
evolution equations of the growth functions in fðRÞ gravity
and DGP models.

a. f ðRÞ gravity models

In fðRÞ gravity models described in Eq. (14)), the
scalaron φ is identified with φ ¼ fR − f̄R [Eq. (16)],
and it behaves like the Brans-Dicke scalar with ωBD ¼ 0

and the nonlinear interaction IðφÞ ¼ RðfRÞ − Rðf̄RÞ.
Then, the functions Π and M2 are generally given
by [52]

ΠðkÞ ¼
�
k
a

	
2

þ R̄;fðtÞ
3

;

M2ðk1; k2Þ ¼ R̄;ff;

where we define R̄;f ¼ dR̄ðfRÞ=dfR and R̄;ff ¼
d2R̄ðfRÞ=df2R. In fðRÞ gravity, all the second-order growth
functions Dð2Þ, Eð2Þ, and Fð2Þ, as well as the linear growth
factor D; are scale dependent, and no simplified expres-
sions are obtained without invoking any approximations.
We numerically solve evolution equations below:

L̂fðk; tÞDðkÞ ¼ 0; (A23)

L̂fðk12; tÞDð2Þðk1; k2Þ

¼ D
: ðk1ÞD

: ðk2Þ þ
κ2ρm
2

�
1þ 1

3

ðk1=aÞ2
R̄;f=3þ ðk1=aÞ2

�

×Dðk1ÞDðk2Þ; (A24)

L̂fðk12; tÞEð2Þðk1; k2Þ ¼
1

2
D
: ðk1ÞD

: ðk2Þ; (A25)

L̂fðk12; tÞFð2Þðk1; k2Þ ¼ − 1

12

�
κ2ρm
3

	
2 ðk12=aÞ2
R̄;f=3þ ðk12=aÞ2

×
R̄;ff

fR̄;f=3þ ðk1=aÞ2gfR̄;f=3þ ðk2=aÞ2g
Dðk1ÞDðk2Þ; (A26)
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with the linear operator being

L̂fðk; tÞ≡ d2

dt2
þ 2H

d
dt

− κ2ρm
2

�
1þ 1

3

ðk=aÞ2
R̄;f=3þ ðk=aÞ2

�

(A27)

Here, the function Dð2Þ is asymmetric with respect to the
change of the arguments, i.e., Dð2Þðk1; k2Þ ≠ Dð2Þðk2; k1Þ.
The second-order growth functions are generally given as
the function of k1, k2, and k12 ¼ jk21 þ k22 þ 2ðk1 · k2Þj1=2.
Note that in deriving the evolution equations above, we did
not specify the functional form of fðRÞ, and the functions,
R̄;f and R̄;ff, still remain unspecified. To solve the
equations, in this paper, we consider the specific function
given in Eq. (18), and then the functions R̄;f and R̄;ff are
expressed in terms of the background quantities.

b. DGP model

As another example of modified gravity model, we
consider the Dvali-Gabadadze-Porratti braneworld model
[53]. In DGP models, the Brans-Dicke parameter of the
scalaron becomes time dependent and is given by [52]

ωBD ¼ 3

2
ðβ − 1Þ;

β ¼ 1 − 2ϵHrc

�
1þ H

:

3H2

	
; (A28)

with ϵ ¼ �1, which represents two distinct branches of the
background solutions (ϵ ¼ þ1 is the self-accelerating
branch and ϵ ¼ −1 is the normal branch). The parameter
rc is the crossover scale which characterizes the ratio of 5D
Newton constant to 4D Newton constant. In this model, the
nonlinear interaction of the scalaron comes from the
Vainshtein mechanism. As a result, the functions Π and
M2 are, respectively, given by [52]

ΠðkÞ ¼ βðtÞ
�
k
a

	
2

;

M2ðk1; k2Þ ¼ 2
r2c
a4

fk21k22 − ðk1 · k2Þ2:g:

Then, the second-order growth functions Dð2Þ, Eð2Þ, and
Fð2Þ, as well as the linear growth factor D, all become
independent of scale.
To further get a simplified expression, we may employ

the Einstein–de Sitter approximation. In this approxima-
tion, the nonlinear growth functions in the higher-order PT

solutions are first obtained assuming the Einstein–de Sitter
background, and they are expressed in terms of the scale
factor. Then, simply replacing the scale factor with the
linear growth factor DðtÞ, we obtain an approximate
description of the nonlinear growth functions:

Dð2Þ →
5

7
D2ðtÞ; Eð2Þ →

1

7
D2ðtÞ: (A29)

Here, the evolution equation for the linear growth factor is
given by

D̈þ 2HD
: − κ2ρm

2

�
1þ 1

3β

	
D ¼ 0: (A30)

Substituting Eq. (A29) into Eqs. (A17) and (A18), we
obtain the approximate expressions for the symmetrized PT
kernels:

Fð2Þ
1 ðk1; k2; tÞ ¼ D2ðtÞ

�
5

14
ðα1;2 þ α2;1Þ þ

1

7
β1;2

�

þ ð1 − μ21;2Þ ~F2ðtÞ; (A31)

Fð2Þ
2 ðk1; k2; tÞ ¼ −DðtÞD: ðtÞ

H

×

�
3

14
ðα1;2 þ α2;1Þ þ

2

7
β1;2

�

− ð1 − μ21;2Þ
f
: ð2ÞðtÞ
H

; (A32)

with μ1;2 ¼ ðk1 · k2Þ=ðk1k2Þ. In the above, we rewrite the
second-order growth function Fð2Þ as Fð2Þðk1; k2Þ ¼
ð1 − μ21;2Þfð2Þ, with fð2Þ being the scale-independent func-
tion satisfying the following evolution equation:

f̈ð2Þ þ 2Hf
: ð2Þ − κ2ρm

2

�
1þ 1

3β

	
fð2Þ

¼ − r2c
6β3

�
κ2ρm
3

	
2

D2ðtÞ: (A33)

Equations (A31) and (A32) coincide with the results in
(B5) and (B6) of Ref. [52]. The first term of the right-hand
side in each kernel is exactly the same kernel as found in
GR, while the second term is originated from the nonlinear
interactions of the scalar degree of freedom.
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