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A new Hamiltonian formulation of the minisuperspace cosmology following from the geodetic brane
gravity model introduced by Regge and Teitelboim is presented. The model is considered in the framework
of higher derivative theories which facilitates Hamiltonian formulation. The analysis is done using the
equivalent first-order approach. The gauge generator containing the exact number of gauge parameters is
constructed. Equivalence between the gauge and reparametrization symmetries has been demonstrated.
Complete gauge fixed computations have been provided and formal quantization is done indicating the
Wheeler DeWitt equation. Compatibility with existing results is shown.
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I. INTRODUCTION

Higher derivative(HD) theories were once introduced
as a possible mechanism of renormalization. By higher
derivative theory we mean those theories with a Lagrangian
depending on a higher-order time derivative of the fields
than the first. Recently, interest in this field is rekindled due
to the advent of higher-order theories of gravitation. An
interesting occurrence of higher derivative terms in the
action appears in general relativity. There, usually, such
terms are isolated as surface terms and dropped. However,
in the case of gravity, the surface term is never ignorable,
e.g., the requirement of the Gibbons-Hawking term in the
action. This is more so in the brane world scenario where
the universe is viewed as a hypersurface immersed in a
bulk. A classic model is due to Regge and Teitelboim (RT)
[1], where gravitation is described as the world volume
swept out by the motion of a three-dimensional brane in a
higher dimensional Minkowski spacetime. Hamiltonian
analysis of the model and its quantization was further
explored in [2–4]. Unlike the Einstein gravity, in the RT
model the independent fields are the embedding functions
rather than the metric. In the RT model second derivatives
of the fields appear in the action, and like general relativity
these higher derivative terms may be clubbed in a surface
term. In the usual formulation this surface term is dropped
[3], thereby reducing the original model to a first-order
theory. However, this makes the Hamiltonian formulation
of the model problematic [3]. These problems are bypassed
by introducing an auxiliary field [3]. On the other hand,
recently it has been pointed out that no such auxiliary field
is needed if one includes the surface term in the RT model
containing higher derivative terms [4]. Obviously, there-
fore, the Hamiltonian formulation of this model is far

from closed. The present paper addresses this and related
issues.
Higher derivative theories were studied and used in

different contexts over a long period of time [4–23].
Though the classical Hamiltonian formulation of higher
derivative theories was worked out by Ostrogradsky long
ago [24] and has been refined over the years, specifically in
the context of gauge theories certain aspects of the
Hamiltonian formulation were not adequately emphasised.
One such issue is the mismatch between the number of
primary first class constraints and the number of indepen-
dent gauge degrees of freedom in a higher derivative
relativistic particle model [9]. Recently it has been dem-
onstrated [11] that under an equivalent first-order formal-
ism [10] which is a variant of the Ostrogradsky approach,
the well known algorithmic method of construction of the
gauge generator for first-order systems [25,26] can be
invoked to settle the issue. The Hamiltonian method
developed in BMP of abstracting the independent gauge
degrees of freedom of higher derivative systems has been
applied to a number of particle and field theoretic models
[11,27,28] successfully. Note in this context that the
anasysis of the RT model in the ambit of higher derivative
theory [4] was done from the Ostrogradsky approach and
this work is based on the minisuperspace model following
from the RT theory. The minisuperspace model carries the
reparametrization invariance of the original RT gravity
which appears as gauge invariance in the Hamiltonian
analysis. It will naturally be interesting to apply the
equivalent first-order formalism of [11] to the RT model
with the surface term. This will be the subject of the present
paper. Like [4] the analysis will be based on the minisuper-
space model.
Before finishing the introductory comments it will be

appropriate to say a few words about the equivalent first-
order formalism. This method of treating higher derivative
systems can be distinguished easily from the usual
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Ostrogradsky approach. In both the approaches successive
time derivatives of the coordinates are considered as phase
space variables right up to one order less than the highest
derivative appearing in the Lagrangian. Corresponding
momenta are introduced to complete the phase space.
The relations between the “coordinates” of the enlarged
phase space is reflected in the Ostrogradsky method in the
choice of momenta which have to be defined in a particular
way to account for the higher derivative nature. In contrast,
in the equivalent first-order formalism, such relations are
accommodated as Lagrangian constraints so that momenta
are defined in the usual way as is done for the first-order
theories. This introduces new restrictions on the variations
in phase space which is not apparent in the Ostrogradsky
method. This difference was instrumental in the construc-
tion of the Hamiltonian gauge generator [11] that could
explain the apparent mismatch in the number of indepen-
dent gauge degrees of freedom with the number of
independent primary first class constraints reported in
nesterenko. Note that in nesterenko, the Ostogradsky
approach of the Hamiltonian formulation was adopted.
The equivalent first-order formalism also provides a
straightforward Hamiltonian procedure a la Dirac [29] to
treat the singular systems endowed with gauge symmetry.
The analysis of the RT model with the higher derivative
terms from the point of view of the equivalent first-order
formalism is thus interesting in its own right.
The structure of the paper is as follows. In Sec. II a

review of the cosmological model based on RT gravity is
provided. This will also help us in fixing notations. In
Sec. III the Hamiltonian formulation of the RT cosmology
is discussed. This is a new Hamiltonian formulation of the
model which like [4] retains the higher derivative term but,
contrary to [3], is based on the equivalent first- order
formalism of treating a higher derivative system rather than
the usual Ostrogradsky approach. Analysis of independent
gauge symmetries is given, which is demonstrated to be
consistent with the Lagrangian (reparametrization) invari-
ance of the model. An exact mapping between the gauge
and reparametrization parameter has been worked out.
Gauge fixing has been done and an appropriate symplectic
algebra in the form of the Dirac brackets between the phase
space variables has been given. Using the strongly imple-
mented (second-class) constraints, the phase space is
reduced and the number of independent phase space
variables is found to be two. Finally formal quantization
is indicated in the usual way hanson. The Wheeler DeWitt
(WDW) equation is constructed in the fully reduced phase
space. Its compatibility with the results existing in the
literature [2] is demonstrated. Our conclusions are given
in Sec. IV.

II. REGGE-TEITELBOIM COSMOGICAL MODEL

The RT model considers a d-dimensional brane Σ which
evolves in an N-dimensional bulk spacetime with fixed

Minkowski metric ημν. The world volume swept out by the
brane is a dþ 1-dimensional manifold m defined by the
embedding xμ ¼ XμðξaÞ; where xμ are the local coordinates
of the background spacetime and ξa are local coordinates
for m. The theory is given by the action functional

S½X� ¼
Z
m
ddþ1ξ

ffiffiffiffiffiffi−gp �
β

2
R − Λ

�
; (1)

where β has the dimension ½L�1−d and g is the determinant
of the induced metric gab. Λ denotes the cosmological
constant and R is the Ricci scalar. As has been already
stated above, we will be confined to the minisuperspace
cosmological model following from the RT model.
The standard procedure in cosmology is to assume that on

the large scale the universe is homogeneous and isotropic.
These special symmetries enable the four-dimensional world
volume representing the evolving universe to be embedded
in a five-dimensional Minkowski spacetime,

ds2 ¼ −dt2 þ da2 þ a2dΩ2
3; (2)

where dΩ2
3 is the metric for unit 3 sphere. To ensure the

FRW case, we take the following parametric representation
for the brane,

xμ ¼ XμðξaÞ ¼ ðtðτÞ; aðτÞ; χ; θ;ϕÞ; (3)

where aðτÞ is known as the scale factor.
After ADM decomposition [30,31] with spacelike unit

normals (N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t
:2 − a

: 2
p

is the lapse function),

nμ ¼
1

N
ð−a: ; t:; 0; 0; 0Þ; (4)

the induced metric on the world volume is given by

ds2 ¼ −N2dτ2 þ a2dΩ2
3: (5)

Now, one can compute the Ricci scalar which is given by

R ¼ 6t
:

a2N4
ðaa:: t: −aa: t::þN2t

:Þ: (6)

With these functions we can easily construct the
Lagrangian density as

L ¼ ffiffiffiffiffiffi−gp �
β

2
R − Λ

�
: (7)

The Lagrangian in terms of arbitrary parameter τ can be
written as[4]1

1Here H2 ¼ Λ
3β, a constant quantity.
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Lða; a: ; a:: ; t:; t::Þ ¼ at
:

N3
ðaa:: t: −aa: t::þN2t

:Þ − Na3H2: (8)

Varying the action with respect to the field aðτÞ, we get the
corresponding Euler-Lagrange equation as

d
dτ

�
a
:

t
:

�
¼ −N2

at
:
ðt:2 − 3N2a2H2Þ
ð3t:2 − N2a2H2Þ : (9)

Note that the Lagrangian (8) contains higher derivative
terms of the field a. However, we can write it as [4]

L ¼ − aa
: 2

N
þ aNð1 − a2H2Þ þ d

dτ

�
a2a

:

N

�
: (10)

If we neglect the boundary term, the resulting Lagrangian
becomes the usual first-order one. As is well known, the
equation of motion is still given by (9). However the
Hamiltonian analysis is facilitated if we retain the higher
derivative term. Thus our Hamiltonian analysis will proceed
from (8). Note that the higher-order model was also con-
sidered in [4], where the Hamiltonian analysis was per-
formed following the Ostrogradsky approach. We, on the
contrary, follow the equivalent first-order approach of [11].

III. HAMILTONIAN ANALYSIS

This section contains themain results of the present paper.
As stated above, our aim is to develop a new Hamiltonian
analysis following from the Lagrangian (8) which is a
second-order theory. A Hamiltonian analysis of the same
model has been discussed in [4] from the Ostrogradsky
approach. We on the other hand adopt the equivalent first-
order formalism which has been demonstrated to be useful,
specifically in treating the gauge invariances from the
Hamiltonian point of view [11,27,28]. The point of depar-
ture is to convert (8) to a first-order theory by defining the
first derivative of a and t as additional fields and including
the following constraints into the Lagrangian with the help
of undetermined multipliers. These multipliers are then
treated as new fields and the phase space is constructed
by the entire set of fields alongwith their conjugatemomenta
defined in the usual way as is done for first-order theories.
Automatically, primary constraints arise. The constraint
analysis is then presented in detail. In addition to first-class
constraints, the model also has second class constraints. The
second class constraints are then strongly implemented by
substituting the Poisson brackets by the correspondingDirac
brackets. Effectively the theory becomes a first class system
with the symplectic algebra given by these Dirac brackets of
which a complete list has been given.
The results derived so far are then used in two ways. First

an analysis of the gauge invariances of the model has been
done and its connection with the reparametrization invari-
ance of the action has been discussed. Secondly, the gauge

redundancy of the model has been eliminated by choosing
an appropriate gauge. The final Dirac brackets have been
used to reduce the phase space and indicate a formal
quantization of the model.
In the equivalent first-order formalism, we define the

new fields as

a
: ¼ A

t
: ¼ T; (11)

which also introduce new constraints in the system
given by

A − a
: ≈ 0 T − t

:
≈ 0: (12)

Now the HD Lagrangian (8) is transformed to the first-
order Lagrangian, where the constraints (12) are enforced
through the Lagrange multipliers λa, and λt as

L0 ¼ aT

ðT2 − A2Þ32 ðaTA
: − aAT

: þ ðT2 − A2ÞTÞ

− ðT2 − A2Þ12a3H2 þ λaðA − a
: Þ þ λtðT − t

:Þ: (13)

The Euler-Lagrange equation of motion, obtained from the
first-order Lagrangian (13), by varying with respect to a, A,
t, T, λa and λt, are, respectively, given by

2aðA: T2 − ATT
: Þ

ðT2 − A2Þ32 þ T2

ðT2 − A2Þ12
− 3a2H2ðT2 − A2Þ12 þ λ

:

a ¼ 0 (14)

3a2AðA: T2 − ATT
: Þ

ðT2 − A2Þ52 − d
dτ

�
a2T2

ðT2 − A2Þ32
�
− a2TT

:

ðT2 − A2Þ32

þ aAT2

ðT2 − A2Þ32 þ
a3AH2

ðT2 − A2Þ12 þ λa ¼ 0 (15)

λ
:

t ¼ 0 (16)

3a2TðA: T2 − ATT
: Þ

ðT2 − A2Þ52 þ 2a2A
:
T

ðT2 − A2Þ32 −
d
dτ

�
a2AT

ðT2 − A2Þ32
�

− a2AT
:

ðT2 − A2Þ32 þ
2aT

ðT2 − A2Þ12 −
aT3

ðT2 − A2Þ12 þ λt ¼ 0 (17)

A − a
: ¼ 0 (18)

T − t
: ¼ 0: (19)
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Eliminating the multipliers λa, and λt from the above
equations, we get back Eq. (9)
In the Hamiltonian formulation adopted in the present

paper the Lagrange multipliers are considered formally as
independent fields and the momenta corresponding to them
are introduced in the usual way. Here we denote the phase
space coordinates by qμ ¼ a; t; A; T; λa; λt and their corre-
sponding momenta as Πqμ ¼ Πa;Πt;ΠA;ΠT;Πλa ;Πλt with
μ ¼ 0; 1; 2; 3; 4; 5. We adopt the usual definition,

Πqμ ¼
∂L0

∂q: μ ; (20)

since the Lagrangian (13) is in the first-order form. This is
the point of departure of our Hamiltonian formulation from
the Ostrogradsky formulation of [4].
From the definition of the phase space variables, we get

the following primary constraints:

Φ1 ¼ Πt þ λt ≈ 0 Φ2 ¼ Πa þ λa ≈ 0

Φ3 ¼ ΠT þ a2TA

ðT2 − A2Þ32 ≈ 0 Φ4 ¼ ΠA − a2T2

ðT2 − A2Þ32 ≈ 0

Φ5 ¼ Πλt ≈ 0 Φ6 ¼ Πλa ≈ 0: (21)

The nonzero Poisson brackets between the primary
constraints are computed as

fΦ1;Φ5g ¼ 1 fΦ2;Φ3g ¼ −
2aTA

ðT2 − A2Þ32

fΦ2;Φ4g ¼ 2aT2

ðT2 − A2Þ32 fΦ2;Φ6g ¼ 1: (22)

Taking the constraint combination

Φ0
3 ¼ TΦ3 þ AΦ4;≈ 0; (23)

we find that Φ0
3 commutes with all the constraints. The

nonzero Poisson brackets between the newly defined
primary set of constraints Φ1;Φ2;Φ0

3;Φ4;Φ5;Φ6; become

fΦ1;Φ5g¼1 fΦ2;Φ4g¼
2aT2

ðT2−A2Þ32 fΦ2;Φ6g¼1: (24)

We can write down the canonical Hamiltonian as

Hcan ¼Πqμq
:
μ−L0

¼−
aT2

ðT2−A2Þ12þðT2−A2Þ12a3H2− λaA− λtT: (25)

The total Hamiltonian is given by

HT ¼ Hcan þ Λ1Φ1 þ Λ2Φ2 þ Λ3Φ0
3 þ Λ4Φ4

þ Λ5Φ5 þ Λ6Φ6: (26)

Here Λ1;Λ2;Λ3;Λ4;Λ5;Λ6 are undetermined Lagrange
multipliers. Preserving the primary constraints Φ1, Φ5, Φ6

in time (fΦi; HTg ≈ 0) the following Lagrange multipliers
get fixed

Λ5 ¼ 0 Λ1 ¼ T Λ2 ¼ A:

Whereas, conservation of Φ2 gives the following condition
between Λ4 and Λ6

T2

ðT2 − A2Þ12 − 3a2H2ðT2 − A2Þ12 þ Λ6

þ Λ4

2aT2

ðT2 − A2Þ32 ¼ 0: (27)

Time preservation of the constraint Φ0
3 gives rise to the

following secondary constraint

Ψ1 ¼
aT2

ðT2 − A2Þ12 − a3H2ðT2 − A2Þ12 þ λtT þ λaA ≈ 0:

(28)

Likewise, Φ4 yields the following secondary constraint

Ψ2 ¼
aAT2

ðT2 − A2Þ32 −
a3H2A

ðT2 − A2Þ12 − λa ≈ 0: (29)

Nonzero brackets for Ψ1 and Ψ2 with the other constraints
are given below,

fΦ2;Ψ1g ¼ −T2 − 3a2H2ðT2 − A2Þ
ðT2 − A2Þ12

fΦ4;Ψ1g ¼ −
aAT2

ðT2 − A2Þ32 −
a3H2A

ðT2 − A2Þ12 − λa

fΦ3;Ψ1g ¼ −
aTð2A2 − T2Þ
ðT2 − A2Þ32 þ a3H2T

ðT2 − A2Þ12 − λt

fΦ5;Ψ1g ¼ −T fΦ6;Ψ1g ¼ −A

fΦ2;Ψ2g ¼ −
AT2

ðT2 − A2Þ32 þ
3a2H2A

ðT2 − A2Þ12

fΦ4;Ψ2g ¼ −
aT2ðT2 þ 2A2Þ
ðT2 − A2Þ52 þ a3H2T2

ðT2 − A2Þ32
fΦ6;Ψ2g ¼ 1: (30)

Time preservation of Ψ1 trivially gives 0 ¼ 0. A similar
analysis involving Ψ2 yields, on exploiting (27),

Λ4 ¼ − ðT2 − 3a2H2ðT2 − A2ÞÞðT2 − A2Þ
að3T2 − a2H2ðT2 − A2ÞÞ

Λ6 ¼ −
ðT2 − 3a2H2ðT2 − A2ÞÞðT2 − a2H2ðT2 − A2Þ12Þ

ðT2 − A2Þ12ð3T2 − a2H2ðT2 − A2ÞÞ :

(31)
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The iterative procedure is thus closed and no more
secondary constraints or other relations are generated.
The above analysis reveals that of all the Lagrange

multipliers Λi, only Λ1 remains undetermined in (26)
signifying one independent gauge degree of freedom.
This fact will be reflected in the gauge generator that
has been constructed in Sec. III A. It is interesting to note
that this consistency is not always obvious in the
Ostrogradsky formulation, as we have already mentioned
in connection with the massive relativistic particle
model [9].
We have now altogether eight primary and secondary

constraints. Computation of the Poisson bracket between
these constraints shows that only Φ0

3 is the first-class
constraint, whereas other seven constraints are apparently
second class. The odd number of apparently second-class
constraints signals the existence of additional first-class
constraints. Indeed, the new constraint combination,

Ψ0
1 ¼Ψ1−Λ1Φ1−Λ2Φ2−Λ4Φ4−Λ5Φ5−Λ6Φ6; (32)

leads to a secondary first-class constraint. So now we have
two first-class constraints Φ0

3, Ψ0
1 and six second-class

constraints Φ1, Φ2, Φ4, Φ5, Φ6 and Ψ2. The total number of
phase space variables is 12. The number of independent
phase space variables is therefore 12 − ð2 × 2þ 6Þ; i.e., 2.
Later on we will explicitly identify these two variables.
There is no enhancement of degrees of freedom as is
customary for the higher derivative systems. This is
consistent with the fact that (8) is not a genuine higher
derivative system. Also, of the two first class constraints of
the system, Φ0

3 is the sole primary first class constraint. The
number of primary first class constraint matches with the
residual number of undetermined multiplier in the total
Hamiltonian. This fact will be important in the construction
of the gauge generator.

To study gauge symmetry of the system we need to get
rid of the second class constraints. This is done by the
introduction of the Dirac brackets which enable us to set
these constraints strongly zero. For simplicity of the
calculation we remove them pair by pair. The Dirac bracket
between the basic fields after removing Φ1;Φ2;Φ5;Φ6

remains same as their corresponding Poisson brackets.
Solving Φ1;Φ2;Φ5;Φ6 the new constraint structure
becomes

F1 ¼ Φ0
3 ¼ TΦ3 þ AΦ4 ≈ 0

F2 ¼ Ψ0
1 ¼ Ψ1 − Λ4Φ4 ≈ 0 S1 ¼ Φ4 ≈ 0

S2 ¼ Ψ2 ¼
aAT2

ðT2 − A2Þ32 −
a3AH2

ðT2 − A2Þ12 þ Πa ≈ 0: (33)

For simplicity we use new notations fF1; F2g and fS1; S2g,
where the first pair denotes the set of first class constraint
and second pair denotes the remaining set of second class
constraints. Some details of this reduction are given below.
To calculate Dirac brackets of the theory we first find out

the Poisson brackets between the second class constraints
which are written as

Δij ¼ fSi; Sjg ¼ −aT2ð3T2 − a2H2ðT2 − A2ÞÞ
ðT2 − A2Þ52 ϵij; (34)

with ϵ12 ¼ 1 and i; j ¼ 1; 2. Dirac brackets are defined by

ff; ggD ¼ ff; gg − ff; SigΔ−1
ij fSj; gg: (35)

We calculate the Dirac brackets between the basic fields
which are given below(only the nonzero brackets are listed)

fa; AgD ¼ − ðT2 − A2Þ52
aT2ð3T2 − a2H2ðT2 − A2ÞÞ fa;ΠagD ¼ T2 þ 2A2 − a2H2ðT2 − A2Þ

ð3T2 − a2H2ðT2 − A2ÞÞ

fa;ΠAgD ¼ −
3aA

3T2 − a2H2ðT2 − A2Þ fa;ΠTgD ¼ aðT2 þ 2A2Þ
Tð3T2 − a2H2ðT2 − A2ÞÞ ft;ΠtgD ¼ 1

fA;ΠagD ¼ −
AðT2 − A2ÞðT2 − 3a2H2ðT2 − A2ÞÞ

aT2ð3T2 − a2H2ðT2 − A2ÞÞ fA;ΠAgD ¼ 2ðT2 − A2Þ
3T2 − a2H2ðT2 − A2Þ

fA;ΠTgD ¼ AðT2 þ 2A2 − a2H2ðT2 − A2ÞÞ
Tð3T2 − a2H2ðT2 − A2ÞÞ fT;ΠTgD ¼ 1

fΠa;ΠAgD ¼ −
að2T4 þ A2T2 þ a2H2ðT2 − A2Þð9A2 − 2T2ÞÞ

ðT2 − A2Þ32ð3T2 − a2H2ðT2 − A2ÞÞ

fΠa;ΠTgD ¼ aAðT4 þ 2T2A2 þ a2H2ðT2 − A2ÞðT2 þ 6A2ÞÞ
TðT2 − A2Þ32ð3T2 − a2H2ðT2 − A2ÞÞ

fΠA;ΠTgD ¼ −
a2TðT2 þ 2A2 − a2H2ðT2 − A2ÞÞ
ðT2 − A2Þ32ð3T2 − a2H2ðT2 − A2ÞÞ : (36)
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The introduction of the above Dirac brackets allows the
second-class pair fS1; S2g to be strongly implemented.
Note that the secondary first-class constraint then becomes
equal to the canonical Hamiltonian,

F2 ¼ Ψ1 ¼ −Hc ¼ −TΠt − T2

A
Πa ≈ 0: (37)

The vanishing of the canonical Hamiltonian is a conse-
quence of the reparametrization invariance of the theory.

A. Construction of the gauge generator

The equivalent first-order formalism offers a structured
algorithm for the abstraction of the gauge generator of the
higher derivative system [11] which is based on the method
presented in [25,26] for the first-order systems. According
to the Dirac conjecture [29] the gauge generator is

G ¼
X
a

ϵaΦa: (38)

Here fΦag is the whole set of constraints and ϵa are the
gauge parameters. However not all the gauge parameters ϵa
are independent. The number of independent gauge param-
eters is equal to the number of independent primary first
class constraints [25,26] . Demanding the commutativity of
gauge variation and time translation we get the following
master equations

δΛa1 ¼
dϵa1
dt

− ϵaðVaa1 þ Λb1Cb1aa1Þ (39)

0 ¼ dϵa2
dt

− ϵaðVaa2 þ Λb1Cb1aa2Þ: (40)

Here the indices a1; b1… refer to the primary first class
constraints while the indices a2; b2… correspond to the
secondary first class constraints. Λa1 are the Lagrange
multipliers multiplying the primary first class constraints in
the expression of the total Hamiltonian and δ denotes gauge
variation. The coefficients Vaa1 and Cb1aa1 etc. are the
structure functions of the involutive algebra, defined as2

fHcan;ΦagD ¼ VabΦb fΦa;ΦbgD ¼ CabcΦc: (41)

Equations (39) give no new conditions as they can be
shown to follow from (40) [25]. The latter equations
actually impose restrictions on the gauge parameters.
Using these the independent gauge parameters can be
identified. A new feature appears in case of the HD theories
where in the equivalent first-order formalism we define the

time derivatives of the coordinates right up to one order less
than the highest order appearing in the Lagrangian as
independent fields. Thus the gauge variations here must be
consistent with this definition and we require conditions of
the form

δqn;α − d
dt

δqn;α−1 ¼ 0; ðα > 1Þ; (42)

where qn;α denotes the αth-order time derivative of q. The
conditions (42) sometimes impose some extra condition on
the gauge parameters and sometimes not [11,27,28].
Expressing the gauge parameters in terms of the indepen-
dent elements of the set in (38) the most general form of the
gauge generator is constructed. Now we can write gauge
variations of the basic fields as

δϵaqn;α ¼ fqn;α; GgD: (43)

where on the right hand side only the independent gauge
parameters appear.
After the short review of the basic methodology we come

back to the present model. The gauge generator is defined
as the linear combination of all the first class constraints
which is written as,

G ¼ ϵ1F1 þ ϵ2F2: (44)

Here ϵ1 and ϵ2 are the gauge parameters. From Eqs. (41) we
find that C122 ¼ −1 ¼ −C212 and V12 ¼ 1 are the only
nonzero structure functions. Now using Eq. (40) the
following relation between the gauge parameters is
obtained

ϵ1 ¼ −Λ3ϵ2 − ϵ
:
2: (45)

So here ϵ2 may be chosen as the independent gauge
parameter.
At this stage we observe that there is one independent

parameter in the gauge generator (44). The conditions (42)
following from the higher derivative nature is yet to be
implemented. As has been mentioned earlier this may or
may not impose additional restriction on the gauge param-
eters. The gauge transformations of the fields are given by

δa ¼ fa;GgD ¼ −ϵ2A (46)

δt ¼ −ϵ2T (47)

δA ¼ ϵ1A − ϵ2
ðT2 − 3a2H2ðT2 − A2ÞÞðT2 − A2Þ

að3T2 − a2H2ðT2 − A2ÞÞ (48)

δT ¼ ϵ1T (49)

After some calculation we find that

2from now on we have to use only Dirac brackets since we
removed all second class constraints. Poissson brackets are
denoted by f; g , whereas, f; gD refers to Dirac brackets.
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d
dτ

δa ¼ δA (50)

d
dτ

δt ¼ δT: (51)

So the constraints (42) hold identically for the present
model and impose no new condition on the gauge param-
eters. We find therefore that there is only one independent
gauge transformation which essentially is in conformation
with the fact that there is only one independent primary first
class constraint.
The gauge variations obtained from the Hamiltonian

analysis can be exactly mapped to the reparametrization
invariance of the model. Consider arbitrary infinitesimal
change in the parameter τ → τ0 ¼ τ þ σ. The action is
invariant under this reparametrization. Now the fields
transform as

δa ¼ −σa δt ¼ −σt: (52)

These are identical with the gauge variations (46) and (47)
of a and t if σ is identified with ϵ2. The equivalence of
gauge invariances with the reparametrization invariance of
the model is thus established.

B. Gauge fixing and formal quantization

After the reduction of phase space by the Dirac bracket
procedure we are left with only the two first class
constraints F1 and F2. These first class constraints reflect
the redundancy of the theory which are connected by gauge
transformations. In the above analysis our focus was on the
abstraction of the gauge degrees of freedom. We now
elucidate a formal quantization prescription. A gauge fixing
is done and the appropriate WDW equation is written.
The choice of gauge is arbitrary subject to the conditions

that they must reduce the first class constraints to second
class. Also the constraint algebra should be nonsingular. As
there are two first class constraints we need two gauge
conditions. We take one of these to be the cosmic gauge,

φ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 − A2

p
− 1 ≈ 0: (53)

The name derives from the fact that the resultant metric
becomes the usual FLRW metric. As the second gauge
condition, we take

φ2 ¼ T − αa ≈ 0; (54)

where the constant α is chosen so that α ≠ H. The
following calculations will show that these are appropriate
gauge conditions.
As usual the gauge conditions are treated as additional

constraints which make the first class constraints of the
theory second class. For convenience, renaming the two

first-class constraints, we write the complete set of
constraints as

Ω1 ¼ F1 (55)

Ω2 ¼ F2 (56)

Ω3 ¼ φ1 (57)

Ω4 ¼ φ2: (58)

Modifying the algebra by the Dirac brackets corresponding
to this second class system we will be able to put all the
second class constraints (Ωi; i ¼ 1; 2; 3; 4) to be strongly
equal to zero. These will correspond to operator relations in
the corresponding quantum theory.
Using the algebra (36) we can straightforwardly compute

the algebra of the constraintsΩi. The results are given in the
following Table I.
From the above table we can read off the matrix

Δij ¼ fΩi;Ωjg: (59)

Using the definition (35) we can calculate the final Dirac
brackets. Nonzero Dirac brackets between the phase space
variables are

ft; ag� ¼ 1

4αa3ðα2 −H2Þ ft; Ag� ¼ α

4a2Aðα2 −H2Þ

ft; Tg� ¼ 1

4a3ðα2 −H2Þ ft;Πag� ¼
−4a2α2 þ 3

4αaA

ft;ΠAg� ¼
α

ðα2 −H2Þ ft;Πtg� ¼ 1

ft;ΠTg� ¼
−4a2α2 þ 3

4aAðα2 −H2Þ : (60)

With the introduction of the final Dirac brackets, all the
constraints (including the gauge conditions) become sec-
ond class and strongly zero. We thus have the following
conditions on the phase space variables:

TABLE I. Constraint brackets.

Ω1 Ω2 Ω3 Ω4

Ω1 0 0 −1 −T
Ω2 0 0 Aðα2−3H2Þ

að3α2−H2Þ
−αA

Ω3 1 − Aðα2−3H2Þ
að3α2−H2Þ

0 A
αa5ð3α2−H2Þ

Ω4 T αA − A
αa5ð3α2−H2Þ 0
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ΠTþ
a2TA

ðT2−A2Þ32¼0 ΠA− a2T2

ðT2−A2Þ32¼0

−Πt−T
A
Πa¼0

aAT2

ðT2−A2Þ32−
a2AH2

ðT2−A2Þ12þΠa¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2−A2

p
¼1 T−αa¼0; (61)

where use has been made of Eqs. (33),(53),(54). From the
final Dirac brackets (60), it is clear that only the pair ðt;ΠtÞ
is canonical. We thus identify this pair as the two
independent phase space degrees of freedom found earlier
by a standard count using the constraints of the system
(see below(32)). To develop a quantum theory it is
necessary to write down the whole theory with respect
to the canonical variables in the reduced phase. All the
variables can be expressed in favor of ðt;ΠtÞ by appropri-
ately solving the constraints which are now strongly
implemented. The result is,

T ¼ αa A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2a2 − 1

p
ΠA ¼ α2a4

ΠT ¼ −αa3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2a2 − 1

p

Πa ¼ − a3ðα2 −H2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2a2 − 1

p
; (62)

where a is expressed as

a ¼
�

Πt

αðα2 −H2Þ
�1

4

: (63)

Thus we find that all the phase space variables except t are
given as a function of Πt.
The passage from the classical to quantum theory

proceeds in the usual way. The phase space variables are
lifted to operators in some Hilbert space and the conditions
(62),(63) are now treated as operator relations. The Dirac
brackets are promoted to commutators according to the
prescription,

fB;Cg� → 1

iℏ
½B;C�: (64)

The fundamental canonical algebra is thus (with ℏ ¼ 1)

½t; t� ¼ ½Πt;Πt� ¼ 0; ½t;Πt� ¼ i: (65)

We next proceed to formulate the WDWequation for the
Universe governed by the Lagrangian (10). Before that we
write down the first class constraint F2 which is the
canonical Hamiltonian as

F2 ¼ −Hcan ¼ −−A2Π2
t þ T2Π2

a

AΠa
¼ 0: (66)

Considering the sate vector jΨi in the appropriate Hilbert
space, the WDW equation may be written as,

HcanjΨi ¼ 0: (67)

Using the Schrodinger representation compatible with (65),
we obtain,

Πt ¼ −i ∂∂t : (68)

Exploiting (66)–(68) and the expression for A given in (62),
we obtain, after some algebra, the following WDW
equation,

− ∂2

∂t2 jΨi ¼ α2a8ðα2 −H2Þ2jΨi: (69)

Making a change of variables ξ ¼ α2

H2, the WDW equation
may be reexpressed as

− ∂2

∂t2 jΨi ¼ ξðξ − 1Þ2H6a8jΨi: (70)

The above equation exactly reproduces one piece of the
bifurcated WDW equation found in the first item of [2].3

Furthermore, introducing the conserved “energy” ω by

ξðξ − 1Þ2H6a8 ¼ ω2; (71)

we may reexpress (70) by the standard equation

− ∂2

∂t2 jΨi ¼ ω2jΨi: (72)

The expression for the conserved energy ω in (71) matches
with the form given in [2]. It is now possible to proceed
with the quantization as elaborated in [2].
Before concluding this section, it is worthwhile to

mention the efficacy of the gauge choice (54). While the
first gauge condition (53) is the standard cosmic gauge, the
second one (54) has not been considered earlier. We have
shown that this simple choice (54) is a valid choice that
yields the fully reduced space of the model. Also, at the
quantum level, the WDW equation subjected to this gauge
fixing reproduces the expression obtained earlier in [2].

IV. CONCLUSIONS

The minisuperspace cosmology following from the
geodetic brane gravity model introduced by Regge and
Teitelboim [1] has been considered from the point of view

3Note that the other part of the bifurcated WDW involving the
a0 variable is nonexistent in the present analysis. This is because
here we have only one (configuration space) independent degree
of freedom (i.e. t) instead of two variables (t and a) as occurs in
[2]. This mismatch happens because, contrary to [2], the present
analysis is done in a fully reduced space where all constraints are
eliminated.
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of higher derivative theory following Cordero, Molgado and
Rojas [4]. We have presented a new Hamiltonian formu-
lation of the model based on the equivalent first-order
formalism [11,27,28]. This is different from the analysis
of [4], where the usual Ostrogradsky approach is adopted.
Not only does our equivalent first-order formalism differ
from the first-order Hamiltonian formalism for the model
obtained by dropping a boundary term from the action [3]
but also the latter is plagued with problems that can be
eradicated only by the introduction of an auxiliary field. Our
Hamiltonian formalism is free from such difficulties. Apart
from this the present equivalent first-order approach is
known to provide greater control in treating singular systems
as has recently been demonstrated in connection with the
massive relativistic model with curvature term [11].
Specifically, an analysis of the later model from the
Ostrogradsky approach [9] yields two primary first-class
constraints whereas the total Hamiltonian contains only one
arbitrary multiplier signifying only one gauge degree of
freedom. Thus the number of primary first-class constraints
does not match the number of gauge degrees of freedom as
happens in usual first-order systems. This paradox was
resolved in [11] using the equivalent first-order approach,
where a well-known algorithm for constructing the
Hamiltonian gauge generator [25,26] was used along with
conditions imposed due to the higher derivative nature. This
additional constraint may or may not lead to an independent
restriction on the gauge generator [11,27,28]. It did impose
an independent additional restriction on the gauge invari-
ances of the massive relativistic model with curvature which
explained the apparent mismatch between the number of
primary first class constraints and the number of independent
gauge degrees of freedom mentioned above [11].
We have provided a complete Hamiltonian analysis of the

minisuperspace Regge-Teitelboim cosmological model
using the equivalent first-order approach. The model was
treated as a second-order theory. The first derivatives of the
fields have been defined as new coordinates. This redefini-
tion led to Lagrangian constraints. The original Lagrangian
of the model was then converted to an equivalent first-order
Lagrangian by incorporating the constraints by theLagrange
multiplier technique. These multipliers were considered as
independent fields in the Hamiltonian analysis where their
conjugatemomenta havebeen introduced in the usualway as
is done for the first-order systems. The full constraint
structure has been worked out. The second-class constraints
of themodelwere then strongly implemented by substituting
the Poisson brackets by the corresponding Dirac brackets.
The results of the Hamiltonian analysis detailed above

have been used in two ways. First we construct the gauge

generator using the algorithm of [25,26]. For convenience a
short review of this algorithm is provided. The gauge
generator is first constructed as a linear combination of all
the first-class constraints of the theory. The structure
functions are worked out from the algebra of the first-class
constraints with respect to the Dirac brackets referred
above. These structure functions are plugged in the master
equation connecting the gauge parameters provided by the
chosen algorithm. One relation is found between the two
gauge parameters appearing in the gauge generator. The
additional constraints following from the higher derivative
nature were shown to hold identically. Thus only one gauge
parameter was found to be independent. There was only
one primary first class constraint. So in this case the number
of independent gauge parameters was found to be equal to
the number of primary first class constraints. Exact map-
ping of the Hamiltonian gauge invariances with the
Lagrangian (reparametrization) invariances of the model
has also been demonstrated.
The canonical quantization of the model is discussed

next. For this the redundancy of the phase space was
eliminated by choosing appropriate gauge fixing condi-
tions. The familiar cosmic gauge was chosen as one of the
gauge conditions. But the second gauge was a new one
different from the nonstandard gauge chosen in [4]. As
subsequent analysis revealed this new gauge condition is a
good choice. A detailed account of the complete gauge
fixed calculations for the model has been presented. Formal
quantization is obtained by promoting the phase space
variables to operators in an assumed Hilbert space. The
phase space is reduced so that only two phase space
variables remain independent; the number being equal to
the number of degrees of freedom in phase space. The
fundamental commutator is then obtained from the Dirac
bracket between the varibles according to well known
procedure [32]. The WDW equation which defines the
quantum states of the universe corresponding to the
Lagrangian is constructed. This equation and the energy
expression are shown to match with the existing literature
[2]. Finally, we would like to mention a recent paper [33],
where to some degree conclusions were obtained in the
model considered here (1) augmented by an extrinsic
curvature term.
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