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Axionlike scalar fields and the Lane-Emden truncation of their periodic potential are analyzed as a model
of dark matter halos. The apparent enhancement of infall velocities in merging clusters is intriguing: here it
is tentatively explained via an intrinsic inelastic effect during relativistic soliton collisions.
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I. INTRODUCTION

Head-on collisions of massive galaxy clusters, like
those occurring in the so-called bullet cluster [1] as well
as the gigantic merger Abell 520 possibly containing a
dark matter (DM) core [2], are a challenge for the cold dark
matter (CDM) paradigm, because both the individual
galaxies and the hot x-ray emitting interstellar gas are only
partially anchored to the DM lumps.
Instead of SUSY-type WIMPs, we are probing axionlike

particles [3–5] as dark matter candidates. Observations
of astrophysical collisions such as merging clusters provide
a valuable test of alternatives to CDM. In particular, we
continue our investigation [6] whether or not two dark
matter halos, pulling towards one another, can be modeled
via soliton-type collisions without invoking [7] a dark
energy (DE) mediating “fifth force.” The (phase) displace-
ment of two colliding solitons, to some extent, resembles
the effects of such a hypothetical force not observed in the
laboratory [8]. In cosmology, however, there are arguments
[9] to ponder about a quintessencelike scalar field playing
the role of DE.
Since solitons are rather stable entities, they behave

effectively like colliding particles; i.e., after leaving the
interaction region where they may deform due to a tempo-
rally inelastic mechanism studied here in a relativistic setting,
they ultimately return to their original shapes and velocities.
Since the DM distributions in the bullet cluster appear not to
be affected during merging, we postulate an axionlike scalar
component of galaxies and clusters and analyze its solitary
wave behavior, or as in our previous two-dimensional toy
model [6], its Lane-Emden (LE) truncation [10],

VLEðϕÞ ¼
m2

2
ϕ2ð1 − χϕ4Þ: (1)

Recall that in quantum chromodynamics (QCD) axions
of inertial mass m are self-interacting via the effective
[11,12] periodic potential,

VðϕÞ ¼ m4

λ

�
1 − cos

� ffiffiffi
λ

p

m
ϕ

��

≃ VLEðϕÞ − λ

4!
ϕ4 − � � � : (2)

Although globally unbounded due to χ ¼ −λ2=ð360m4Þ,
the LE truncation (1) has the advantage that, in three
dimensions, it admits exact spherically symmetric solutions
[10] which model quite well [13] DM halos of individual
galaxies. More specifically, the LE equation provides us, in
three dimensions, with the exact nonsingular [14] radial
solution,

jϕðrÞj ¼ χ−1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A
1þ A2r2

r
: (3)

This is referred to as a metastable lump, cf. Fig. 12 of
Ref. [6], which cannot easily be confounded with domain
walls. More than a century ago, it was considered as a crude
model for the density of the sun and a bit later for the
distribution of stars in globular clusters.
Our previous proposal [15,16] that DMmay be composed

of a gas of “axion mini clusters” or mini axion stars has been
recently adopted [17]. However, numerical simulations of
pointlike objects would again run into a “cusp” in the density
of the central core, which is in conflict with observations of
low-surface brightness galaxies. Moreover, for such Bose-
Einstein type condensates, one needs some self-interaction
and, in view of the self-similarity of solitons, one would end
up with much larger configurations resembling the lump-
type halos we will consider here.

II. RELATIVISTIC KINEMATICS OF
INELASTIC COLLISIONS

As is well known, the wave operator □≔∇ •∇−
∂2=c2∂t2 is invariant under the standard Lorentz trans-
formations [18], where c is the velocity of light in vacuum.
Thus one can resolve the relativistically invariant semi-
classical Klein-Gordon (KG) equation,
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□ϕ ¼ ∂VðϕÞ
∂ϕ ; (4)

for a single scalar field ϕ ¼ ϕðt; x⃗Þ first in some rest frame.
Then, we apply a Lorentz boost

x⃗ → γðx⃗ − u⃗tÞ; (5)

in order to get traveling wave solutions or “moving
solitons” needed for studying their collisons. Here,

γ≔1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β⃗ • β⃗

q
¼ DþD−1

2
(6)

is the Lorentz factor, u⃗ the (phase) velocity of the solitary
wave, β⃗ ¼ u⃗=c the dimensionless relative velocity, and

D≔
ffiffiffiffiffiffiffiffiffiffiffi
cþ u
c − u

r
; u ¼ c

D2 − 1

D2 þ 1
; (7)

the relativistic Doppler shift. [19]
An inverse Lorentz boost is later denoted by

ζ≔γð~xþ u~tÞ

¼ D−1 þD
2

�
~x − 1 −D2

1þD2
c~t

�

¼ ξDþ ηD−1: (8)

In the last equation we have made use of the fact that, in
two dimensions, solutions of the KG equation can con-
veniently be written in terms of light-cone coordinates

ξ≔
1

2
ð~xþ c~tÞ; η≔

1

2
ð~x − c~tÞ: (9)

After dividing by the Compton wave length λCompton ¼
h=mc of a particle, i.e., ~x≔x=λCompton and ~t≔t=λCompton,
these coordinates become dimensionless.
Let us now consider inelastic collisions of two particles

of mass m1 and m2, respectively, moving with velocities u⃗1
and u⃗2, as measured from a positive oriented frame. From
the conservation of the relativistic energy E ¼ γmc2 and
relativistic momenta p⃗ ¼ γmu⃗ in two dimensions, there
results [20] the collinear velocity

U ¼ m1γ1u1 þm2γ2u2
m1γ1 þm2γ2

(10)

of the (newly generated) composite particle of mass

M ¼ m1γ1 þm2γ2
γðUÞ : (11)

Here the Lorentz factor (6) applies for different velocities
u1, u2, and U.

For particles of initially equal masses m1 ¼ m2, Eq. (10)
degenerates to

B≔
U
c
¼ γ1β1 þ γ2β2

γ1 þ γ2
≡ 1þ β1β2 − γ−11 γ−12

β1 þ β2
: (12)

This dimensionless common velocity, coinciding with
Eq. (3.11) of Ref. [21], also arises in the multisoliton
solutions. At times, u1 ¼ −ju⃗1j is adopted in the center of
the collision frame. Thus, we can surmise that in some
soliton collisions an intermediate state [22] occurs which is
temporarily inelastic. Indirectly, this may affect all non-
linear waves [23] due to Doppler broadening of the shape
of interacting solitons.
Quite generally, not only inelastic collisions of point

masses but also the peaks of multisolitons are suffering
from some “sticky” or inelastic interaction during merging.
A long way after the collision, however, the only remnant
from this intermediate state is a (phase-) shift,

δi≔γ−1i ln jBj; (13)

of the centers of the asymptotic solitons. This leads to an
“overtaking process” as has been noted before [21,24,25],
without revealing, to our knowledge, its elementary rela-
tivistic origin.
For light pulses, there occurs a repulsion phenomenon

by which the intensity in the central collision region is
decreased during the overlap of the two solitons: this leads
to a decrease of the effective refractive index and, hence,
an ejection of the peaks from the central region. Again,
a related phase shift is observed after the collision,
cf., Ref. [26].
Here we will analyze this intriguing effect in the case

of the Lane-Emden truncation.

III. SOLITON COLLISIONS

When several solitons collide, one expects that they
recuperate their initial shapes and velocities after some time
has passed. Remnants from crossing the scattering region
may be the concomitant phase shifts or displacements of
the centers of the individual solitary waves due the non-
linear, partially inelastic interaction.
For constructing multisolitons, the well-established

Bäcklund transformation (BT), cf., Refs. [25,27,28], is
employed, which may also bridge between different types
of nonlinear equations.
Let us depart from the sine-Gordon (sG) equation [29]

which in dimensionless light-cone coordinates (9) acquires
the form

θξη ¼ sin θ. (14)

In a moving frame, it has the exact kink solution,
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θ ¼ 4C arctan ½exp γð~x − u~tÞ�; (15)

for C ¼ 1 and antikink for C ¼ −1. Since its spatial
derivative,

θ ~x ¼ 2γCsech½γð~x − u~tÞ�; (16)

becomes localized and square integrable, its absolute value
will facilitate a subsequent comparison with the scattering
behavior of solitons or lumps regarded as Bose-Einstein
condensates [30,31] of DM.
Due to Bianchi’s permutability theorem of BTs, there

results the “nonlinear superposition” principle

tan ½ðθ3 − θ0Þ=4� ¼ B tan ½ðθ1 − θ2Þ=4�; (17)

which allows us to construct algebraically multikink sol-
utions of the sG equation a la Perring and Skyrme [32,33].
Our relativistic KG equation is not only Lorentz but also

CPT invariant, where C∶θ → −θ is the topological charge
conjugation for a real scalar and P∶x⃗ → −x⃗ and T∶t → −t
are space and time reflections, respectively. This will allow
us to distinguish solitons from antisolitons.
Here we focus on the collision of two kinks (instead of a

collision of a kink and its CP-odd antikink, as in Ref. [6])
and obtain from the trivial seed solution θ0 ¼ 0 the exact
solution,

θkk ¼ 4 arctan ½Kðζ1; ζ2Þ�; (18)

where the kinetic factor

Kðζ1; ζ2Þ∶ ¼ B
expðζ1Þ þ C expðζ2Þ
expðζ1 þ ζ2Þ − C

¼ expðζ1 þ γ1δ1Þ þ C expðζ2 þ γ2δ2Þ
expðζ1 þ ζ2Þ − C

≃ expðζ1 þ γ1δ1Þ þ C expðζ2 þ γ2δ2Þ (19)

depends on the initial velocities. This is also known as
Hirota’s formula [34].
At large separations from the interaction region,

cf. Fig. 1, the solution (18) clearly decouples asymptoti-
cally into a (noninteracting) kink-kink or kink-antikink pair
[24] distinguished by the sign C ¼ �1 of the topological
charge.

A. Approximate Bäcklund transformation via mapping

For the Lane-Emden equation of interest here, an exact
auto-Bäcklund transformation has not yet been found.
Instead a generalized transformation will serve as a guide
in constructing a multilump solution. Consider the Lane-
Emden potential (1) as a truncation of (2), then the
corresponding nonlinear KG equation in light-cone coor-
dinates simplifies to

ϕξη ¼
∂V
∂ϕ ¼ ϕð1 − 3χϕ4Þ: (20)

Integration leads us to the explicit exact solution

ϕ ¼ 1ffiffiffi
χ4

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sechð2ζÞ

p
; (21)

where an integration constant has been suppressed.
Due to the identity sinð2 arctan yÞ ¼ sechðln yÞ for

(hyperbolic) trigonometric functions, the Lane-Emden
solution (21) is related to the kink (15) of the sG equation
via the nonlinear mapping,

φ ¼ φðθÞ ¼ 1ffiffiffi
χ4

p ½sin ðθ=2Þ�1=2 ¼ 1ffiffiffi
χ4

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sechð2ζÞ

p
: (22)

This suggests that we generate a two-soliton solution,

ϕðθkkÞ
ffiffiffi
χ4

p ¼ ðsin f2 arctan ½Kðζ1; ζ2Þ�gÞ1=2
¼ ðsechfln ½Kðζ1; ζ2Þ�gÞ1=2; (23)

of the LE equation via the same mapping, using again
identities for trigonometric (hyperbolic) functions. Thus
far, a more precise approximation is not yet available.
In the resulting spacetime diagram, the scattering of two

solitons behaves as expected: after crossing the collision
region, the individual solitons regain their original velocities,
their trajectories are asymptotically the same as the initial
ones, and the phase shift or displacement of the centers of the
lumps is completely determined by Eq. (13). For solitons,
some temporary “bouncing” of the center of a lump in the
collision region occurs, cf. Fig. 2, whereas an antisoliton
may “tunnel” through a solition during merging, cf. Ref. [6].
Thus interacting solitons behave more like “extended

particles,” where due to the inelastic effects discussed above,
a continuous interchange of inertia (invariant mass) and
interaction energy occurs. In Ref. [24], this non-Newtonian
behavior is referred to as a local version of Mach’s principle,
inasmuch as the total inertia of a lump depends also on the
relative motion of other solitons in its vicinity.

FIG. 1. (color online). Kink-kink collision monitored via the
absolute value of its spatial derivative.
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Although Eq. (23) is not an exact solution to the
nonlinear KG equation (20), the same relativistic factor
occurs in the LE truncation.

IV. DISCUSSION

In astrophysical scenarios, the Compton wave length of
DM particles is of the order of the size of a galaxy, i.e.,
λCompton ¼ h=mc ∼ 10 kpc, but above the Hubble scale of
10−31 eV. This naive estimate would lead to an ultralight
mass of m≃ 10−26 eV, which is 20 orders of magnitude
below the usual mass range ma ≃ μeV of invisible axions.
Another possibility is that, in a first stage, μeV axions
collapse to mini-machos [16], which then form the halo via
large DM clouds.
A mysterious central “dark core” [2] in the merging

cluster Abell 520 presents another challenge to standard
CDM (cf., however, Ref. [35]). In our tentative soliton-type
model of DM, however, such a “sticky” behavior of DM
can be associated with the temporarily inelastic scattering
of two or more LE lumps close to the origin of Fig. 2. On
the contrary, in the case of the bullet cluster, the DM lumps
appear already well separated due to their higher mutual
“infall” velocities, cf. Ref. [36].
Theestimatedcollisionvelocities for theBullet cluster and

Abell 520 are 4700 km=s and 1066 km=s, respectively. The
Musket ball clusters appear much older [37] and slower.

Cluster Velocity U=c Shift 2δ

Bullet 0.016 −8.3
Abell 520 0.0033 −11.4

Thus, the intrinsic mechanism [6,25] of temporarily
“sticky” solitons during the non-Newtonian scattering
process could, to some extent, explain the enhanced infall
velocity of the bullet cluster, taking into consideration that
the dimensionless displacement 2δ has to be multiplied by
the Compton wave length λCompton of axionlike particles.
In the case of the galaxy cluster CL0024þ 17, one

suspects that it collided with another cluster about a billion
years ago, leaving a well-separated DM ring [38] resem-
bling the angular momentum toruses [31,39] found in the
three-dimensional LE equation.
As is well known [40], the LE truncation provides only

metastable lumps, whose decay time τ≃ λCompton=c is

proportional to the Compton wave length. Since this is
shorter than the collision time as well as the age of the
Universe, such lumps need to be stabilized via their self-
generated gravity [41–43], similarly as in the case of
(colliding) boson stars.
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