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Tachyon potentials from a supersymmetric FRW model
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Considering that the effective theory of closed string tachyons can have world sheet supersymmetry, as
shown by Vafa, we study a worldline supersymmetric action in a Friedmann—Robertson—Walker background,
for which the superpotential originates a tachyon scalar potential. There are such potentials with
spontaneously broken supersymmetry at the instability and supersymmetry after tachyon condensation.
Furthermore, given a tachyonic potential, the superpotential can be computed by a power series ansatz and has
a free parameter that can be chosen such that complex solutions become real.
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I. INTRODUCTION

Many phenomena in physics are related to the transition
or decay from an unstable state to another stable one. The
corresponding evolution is described frequently by a
tachyonic potential, with a “negative” mass term, like in
the case of the Higgs potential or in the Landau— Ginzburg
theory. String theory has in its lowest mode tachyons.
However, the inclusion of supersymmetry is consistent
because tachyons can be eliminated by the Gliozzi-Scherk-
Olive truncation. Nevertheless, a better knowledge of string
theory requires the understanding of the unstable configura-
tions, for which the evolution can be described by the
condensation of the tachyonic modes. The complexity of
string theory has made this study rather difficult, and it was
first performed in the somewhat simpler instance of open
strings, resumed by the well-known Sen conjectures [1]. For
closed strings the situation is more complicated, in particular
because it involves the structure of spacetime, see e.g., [2]. An
interesting fact in this case is that closed string tachyons,
which are nonsupersymmetric in target space, can have
worldsheet supersymmetry [3]. In this sense we address the
question of supersymmetric tachyons in the simplified frame-
work of a Friedmann—Robertson—Walker (FRW) background,
with “worldline” local supersymmetry, i.e., the time variable is
extended to the superspace of supersymmetry.

Supersymmetric quantum cosmology has been studied in
various formulations. As usual for uniform spaces, it
can be obtained as the “minisuperspace” reduction [4] of
four-dimensional supergravity [5]; see also Ref. [6]. The
Wheeler—deWitt equation is traced back to the “square
root" of the Hamiltonian constraint, i.e., the supersymmet-
ric charge constraints. Additionally to these constraints,
there are also the Lorentz transformations of the fermionic
fields [5], which strongly restrict the solutions for the
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wave function of the Universe [7]. An alternative
supersymmetrization of these models has been given in
Ref. [8], by a worldline one-dimensional superfield
approach, where the time variable is extended to a
(supersymmetry) superspace. It has been worked out for
the Bianchi models [9] and matter has been included as
well [8]; see also Ref. [10]. This formulation has the
advantage that its one-dimensional supersymmetric struc-
ture is much simpler and does not require four- or higher-
dimensional supergravity as a starting point. We follow an
approach of this type, by means of the covariant formu-
lation of one-dimensional supergravity, given by the so-
called “new” ® variables [13,14], which allows us in a
systematic and straightforward way to write local super-
symmetric invariant actions. One of the interesting features
of the worldline superfield approach is that its fermionic
sector has fewer degrees of freedom than the fermionic
sector of the minisuperspace of four-dimensional super-
gravity. On the other side, the Lorentz constraints, which do
not occur in the superfield approach, restrict the wave
function of the Universe in such a way that it appears to
have only two independent components [7], as in the case
of the superfield approach [11].

The action we are considering contains two real scalars:
one of them is the dilaton, and the other one has a tachyonic
potential V(T) [16], coupled to FRW supergravity. We
formulate one-dimensional N = 2 superspace supergravity
following Ref. [14], and the superfield form of the action is
taken from Ref. [8]. The final action is obtained after a
rescaling and the elimination of the auxiliary fields. For
completeness we give also the Hamiltonian formulation,
which closes consistently without further complications. As
usual in supergravity, the superpotential is related to the scalar
potential by a differential equation thatis not positive definite.
To solve this equation, we consider the case k = 0 and make
an ansatz of separation of variables. We look for super-
potentials corresponding to tachyonic potentials V(7T'), in
particular such that both supersymmetries are spontaneously
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broken at the maximum, and after condensation they are
restored. We look also for a general solution of this differ-
ential equation by a power series ansatz. With this ansatz,
depending on the potential, the superpotential can be com-
plex, with complex values for quantities like the mass.
However, there is a parameter that can be chosen in such a
way that the solutions are real. In the second section of this
work, we give our starting point bosonic action; in the third
section, we give the one-dimensional superspace supergrav-
ity formulation; in the fourth section, we give the super-
symmetric tachyon action; in the fifth section, the
Hamiltonian is formulated; in the sixth section, we study
the solutions for the superpotential; and in the last section, we
sketch conclusions. There are three appendices, the first one
on the new ®-variables formulation; in the second one, there
are details of the power series solutions; and in the third one,
some computations on one of the solutions are given.

II. CLOSED STRING TACHYON
EFFECTIVE ACTION

The closed string tachyon effective action in the bosonic
sector is given according to Ref. [16] as

1

S——
2x3,
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where T is the closed string tachyon field, V(T) is the
tachyon potential, and ¢ is the dilaton field. This action
can be written in the Einstein frame by means of
g = e?ghinsein which is more suitable for our cosmo-
logical approach. For a four-dimensional FRW metric and

in the Einstein frame, the Lagrangian takes the form
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where N is the lapse function and a is the scale factor. This
Lagrangian is invariant (up to a total derivative) under time
reparametrizations of the form ¢ — f(¢). This invariance
under time reparametrization is extended to supersymmetry
by the introduction of a Grassmann superspace associated to
the bosonic time coordinate ¢ (see Tkach et al. in Ref. [8]).

As usual, the Hamiltonian of the bosonic theory has the
form H = NH,,, where N is the lapse function. Then, the
associated equation of motion 9H/ON = 0 implies the first
class constraint
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where z; are the canonical momenta of the coordinates
i=a,T, ¢.

II1. SUPERSPACE SUPERGRAVITY

Superspace is the natural framework for a geometrical
formulation of supersymmetry and supergravity [12]. It
extends spacetime by anticommuting Grassmann variables,
x™ — (x™, 0"). The field content of the superfields is given by
the Grassmann power expansion in the anticommuting vari-
ables ¢p(z) = >, 1/n'0"1 --- ¢, .., (x). Supergravity is
invariant under local supersymmetry transformations
M — EM(x),E4 — & (x), where ™ are spacetime translations
and ¢&* supersymmetry transformation parameters. It
can be generalized to superspace diffeomorphisms [13],
M= (x" o) - M =M M(z). This generalization
actually amounts to introducing additional ‘“‘superspace”
gauge degrees of freedom corresponding to the @ components
of the Grassmann expansion of &Y (x, 6). To formulate such a
theory, the vierbein and spin connection are generalized to
superspace tensors, the vielbein Ey(z), and the supercon-
nection ¢y, %, where A = (a, a) arelocal Lorentz indices and
M = (m, u) are superspace world indices [13]. If V, is a
Lorentz supervector, its covariant derivatives are D,V =
EM(0y Va4 —du€Ve) and satisfy the graded (anti)-
commutators [Dy, Dg|, Ve = —Tag’DpVe — RapcP Vi,
where E4M(z) is the inverse vielbein and the torsion and
curvature tensors satisfy the graded Bianchi identitites. For the
construction of the Lagrangian, in Ref. [8] a somewhat ad hoc
superspace formulation was proposed. Here we will use the
“new" superspace formulation, see Apendix A, that follows
from general superspace covariance, by a consistent elimina-
tion of the superspace gauge degrees of freedom [13-15],
without requiring a gauge fixing. This parametrization corre-
sponds to a field redefinition of the superfield components
Guyopy(X) = Dig, = Dy 1b(2)|,_,» and the superfields are
givenby ®(x, ©) = ¢®Pegy(z)|,_(, where © are anticommut-
ing Lorentz spinor variables. Full manifest covariance can be
mantained by keeping the full old-6 dependence, ®(z,0) =
¢9"Pagh(z) and setting @ = 0 at the end of the computations. In
this formulation the supergravity multiplet contains the vier-
bein, the spin conection, and certain components of the
curvature and torsion tensors, constrained by the Bianchi
identities. In Appendix A this formulation is reviewed follow-
ing Ref. [14]. Superfields transform by field dependent
transformations (A10), and covariant derivatives can be
defined consistently (A 14) in such a way that thereis a vielbein
for which the superdeterminant is an invariant density (A19)
and allows us to construct invariant supergravity actions. We
use these results for a superspace formulation of one-
dimensional supergravity. To set conventions, we first
observe that simple one-dimensional supersymmetry has
the Grassmannian variables @ and 6 = @'. The integration
properties for these variables are [df =0, [6d0 = 1.
Generic  superfields are real and are given by

043501-2



TACHYON POTENTIALS FROM A SUPERSYMMETRIC FRW...

¢(1,0,0) = A(t) + Oy (t) — Oy (t) + 00B(t), where A(t)
and B(t) are real and ' = . The representation of super-

symmetric charges is Q =% —if4 and Q = —£ + 04
which satisfy {Q, O} = 2i4; the covariant derivatives are
D=%+i0% and D = -4 — 04 There are also chiral

superfields that are complex and satisfy D¢p = 0 and thatin the
chiral base have the expansion ¢(z,0) = A(t) + Oy (1).

Supergravity in one dimension, as well as gravity, is
trivial, and there is no curvature tensor, and in a minimal
version, the torsion tensoris the same asin flat superspace;i.e.
its only nonvanishing component is 75" = 2i, consistent
with the Bianchi identities, as can be easily verified by
dimensional reduction from minimal supergravity in four
dimensions [13] or by direct computation in one dimension.
For the one-dimensional new superspace formulation, unlike
Appendix A, we will denote z¥ = (1,0, @), and for sim-
plicity we will omit the tildes. Thus, superfields ®(z) =
A(1) + Oy (1) — © (1) + OOB(t) transform as

5:8(2) = 1" (2)9y D (2)

= 200 [0 52 + ) T
+i1iy(2) ag—g)] : “

Thus, from Eq. (A12) it turns out that

_ _ 1 -
;75’ =—¢— je”! (O +07) + 5672(9@(&// —&w), 5

i o L
nd = ¢+ 56_1(95 + 00y — Ze_z@@@/% (6)
where the supersymmetry parameters are &M(x) =

(&,&0,8%) = (&,¢,8) and 7. = (1:°)". The resulting com-
ponent transformations are

8:A =—EA -y + 7, ()

Sy = —&r —ie"\ZA +%e‘15(w —@x)+CB, (8)

— 5y —77) + (B )

Ser = —&7 +ie"'CA
68 = —&B — ie” (G + T7) + 3¢ Cp(A + iB)
R N S VR S

5¢ {yw(A—iB) 3¢ Sy —Cx)ww (10

as well as one of the y, obtained from Eq. (8) by complex
conjugation. Further, the vielbein corresponding to
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transformations (4), which transforms as §:V =
OVt + 1 OyVy”, can be obtained from (A17)

e+ i(@@_—i— Oy) Iy i
Vit = —i® 0 -1/, arn
1

i® 0

and from its transformation law, we get

d _
Oce = —E(ﬁe) +i(Cy + Cw), (12)

d 1
by =2 (g + 2@/), (13)

which can be verified to be consistent with the usual vielbein
transformations [13]. The invariant density is obtained
as usual from the superdeterminant £ = Sdet(Vy,*) and
transforms as 5:€ = (—1)"0y (EYE),

i, =

£=—e—5 (O +6y). (14)

Theinverse vielbein can be computed from Eq. (11), and from
it we get the covariant derivatives that will be needed for the
Lagrangian of the next section:

_ - 1
Vy® =x+iel®{A—2(w)(—li/)?) —ieB]

— o1 -1 [
+e'06 (—i;( — Ee*'J/A —Zefly/lil)( + %y"/B>,
(15)

-1
Vi =j— ie‘lG)[A ——(wy—wjy) + ieB}

[\

+ e_1®®(i)_( —Ee_lu/A ——e‘lwu’/)’(—il//B)

4 2
(16)

IV. SUPERSYMMETRY CLOSED
TACHYON MODEL

The supersymmetric cosmological model is obtained
upon an extension of the time coordinate into a super-
multiplet 7 — (¢,©,®). Thus, the fields of the model are
generalized as superfields, and we write their expansions as

A(1,0,0) = a(t) + i®A(t) + iOA(t) + B(1)©0,
T(1,0,0) = T(t) + iOij(t) + iOn(t) + G(1)006,
d(1,0,0) = ¢(t) + iO(t) + i®y(t) + F(1)©0, (17)
where, A, 7, and ® are the superfields of a, T, and ¢.

The supersymmetric generalization of the action is
given by
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S = Spasy + Sirsuses 18 *qﬁ ¢ ia> .
Rsusy Msusy ( ) Lz;[)susy 2 + (l//)( W)() ? (Z)( _)00
where Sgqqy is the cosmological supersymmetric generali- . 5 5
. sus 3 - F? 3a’ F -
zation of the free FRW model, 2 0 (A + Ay) + a :2 +22e (A — &)
3vk 3a’Beyy | @iy 6ael/_1)0?
SRsus = AVGAVQA——EAz d@d@dt (19) - B + 2 P )
Y K 2ek K
and the supersymmetric matter term is while for the tachyonic sector, we find
Syrausy = i/ LAV gDV D — - EAV TV T AT &T i@
susy = 2 c 2 ® Lrwsy =5 3%5.2 (w1 —ym) + 22 (ni—ni)
3SW(D, T) | d0dBd:, 20 3ia*T .. - aeG? 3d2eG
reAWE, ﬂ 0 2 G ) + S 2 i = )
2k 2 2
where W(®,7) is the superpotential. The super- _ 3a’Beni + a>nivpy _ 3aeldni
potential expansion can be written as W(®,7) = 2 dex? K
W T) +55(@ ) + 51 (T =D b3 (T TP .
and the superpotential term
é%{g (® — qﬁ) aTaqs W(T — T)(® — ¢). This expansion is petp
finite becaqse the terms (T - T) and (® — ¢) are purely 6aeWil 3ia®W - 32 BeW
Grassmannian. Upon integration over the Grassmann Ly=———F———5Wi+tyl) ————
parameters, we find the supersymmetric cosmological K 2k X K
Lagrangian in the gravity sector, 3a’eW iaWy  _
grang sty g (= A) == (i)
3aa> 3ia,: .- 6eVkil BeGWo  3aleW
_ — R — T ¢
LFRWsusy - €K2 + KZ ()’j' )’;{) + K2 - K'z + K2 ) (l)( l)()
3aa -, Biavk _ = ia*W, a*eFW, a‘exyW,,
+ oz WA= )+ ==+ i) — et W) ==
3aB*e 6aBevk 3Bell 3a aleWr aleniiWrr
R + 2 K2 2er? M’//l//, T 2 ¢()_ﬂ7—)ﬂ_7) K
the dilaton sector of the matter Lagrangian is given by Thus, the total Lagrangian is
|
3aa*>  3aa - dT &T 3ia*T - a3¢2 ap
L=-— — WA +——— — i A+ A — -y
o2 T WA A) o = s (= i)+ (i + )+ — 5 =5 (wr — v 7)
3 2¢ 3ia, = ~.. id®, . _ . id®, . _ . 6eVkil 3iavk _ - 6aeWil
(A +H0) + 7 QA+ A0) =25 (i +70) =~ G+ 20) +—5— + =5~ Wi+ §d) ——
2K K K K K
3ia®W _ - idW _ 3a2eW ia®W . 3d W
— S WA ) == (v + ) + = = an) == 5" (v + 9 7) + Ly = 47)
aeWyrr a3eWT¢ _ _ a3eW¢¢ _ Baywil Ay Syippp 3ae/1/_1m"7 6aerlyy 3aB’e
e + K? Gn =71) = 2 T 02 + dex? + 2e> K & &
6aBevk 3Bell 3a?Benii 3a*Beyy 3a’BeW aPeG* 3a’eG . _ - a*eGW;  a’eF?
P 22 2k? (i = 2n) = K2 - K
3a’eF - a’eF W,

A —Jdy) ———"9
t—a (A — ) i

where the subscripts in W denote partial differentiation with respect to ¢ and 7', respectively. When we perform the variation
of the Lagrangian with respect to the fields B, F and G, as usual the following algebraic constraints are obtained:
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aW 1 - 1 1
B — 0 — Zanii— — ayy
\/§ 5 ZaM 4a1711 Za)()(,
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that is B, F, and G play the role of auxiliary fields, and
they can be solved and eliminated from the Lagrangian.
When we solve for the auxiliary fields and make the

G:WT__a(/lﬁ_/I’/D» rescalings A — ka"'/2), A-xaV?A, n—Kxa Iy,
W, 3 i — ka2, y— ka3 %y, 7 —ka>?y, we find the
) _2_(/1)(_/1)()7 e2y) Lagrangian
|
3aa* 3+/aa — 3eka T V&T 3iT - ¢2a3 Valp
L=— A— gl - — W)+ (i + A - — 07
o T e WA WA oo = (wn = i)+ (i An) = = (v~ 7)
R [P i . . 3eVkil  3eVinii 3evkyy  3ivak -
+3ip(A + Ax) + 31+ A2) =5 (i +7n) = iQr +70) +— — == = =t — — Wi+ 4)
3eW2a®  3evka®W eWidd eWiad 9 3 3 3ia®?W .
- - - 2 WAL+ 2 eWnii + 2 e Wy — A4l
42 K 2 ame WM W+ S eWry = = WAt d)
ivaw L BeWp - VW, S BeW, - i o
— e ) = = i) = = ) + 5 (= Ap) = eWrpni + e Wy (n = 1)

2

— 3€K' _ 3 = 1 o 1 o

2e 2e de

Substituting the equations of motion of the auxiliary
fields (21) into the supersymetry transformation of the
fermions A, n, and y from Eq. (8), we get
54 =C(Wk—aW/2)+---,  Sn=CWr+--, and
oy = Wy + - -. Therefore, if any of the fields on the
rhs of these equations has a nonvanishing vacuum
expectation value, the corresponding fermion is a
Goldstino, and supersymmetry is broken. In the case of
A, the breaking can be due to the cosmological constant
or to a nonvanishing W. In fact, if the superpotential
has the form W ~ ¢?f(T), as in the examples in the next
section, then W, = W; i.e., y contributes to the Goldstino
it W#0.

V. HAMILTONIAN ANALYSIS

The canonical momenta are

6aa  3\/ay ] N 3y/ayl
ex

Fa= "0 ex
aT n Vadii Vadtyn n 3a3/%iAi . 3a3/%idn
r=— — ,
T e 2ex 2ex a3 a3
o 2a3¢ n Vatyy _ Vadyy 3a’?iry n 3a3%ily
P ek? ex ex vV N
7, = —3il, m; = —3il,
i_ I
Ty = Envﬂﬁ = E’/Iv
T, =iy, =0y

As usual, we can see the appearance of the fermionic
constraints

Q, =, +3ik, Q; =m; +3il,

i_ i
1 =m 5 ;

Q= — 51,

(22)

According to the Dirac formalism, the previous
constraints are second class, and the dynamics of the
system is obtained when we impose the set of
constraints (22) and introduce the Dirac brackets, and
we obtain

{a.7a}p =1 {g.m}p =1, (T, 72r}p = 1,

i} 1 ;
{4.4}p T it :_%» {n.nyp=—i. (23)

Using the standard definition for the Hamiltonian and
imposing the constraints (22), we can write the
Hamiltonian of the theory as

1
H:NHO +*WS—

5 (24)

S,

| —

where
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Knt  k*mr 3iktnp

12a 283 243
3iK27T(/,
2a3
3

9 3 3
2 2 = == =
+22W 42W +2WM 1 Wi =5 Wx

3 -3 - )
+—WT(/177—/177)+§W¢(/1)(—ﬂx)+an7
3k 3xf

2
+ Wy (eit — ) + W ppxd — —M +

2a
3Vk 92 - K2 3k?

Y — — My — — it — —= iy,
A 3 — A — i

(25)

2.2

- KTy
HOZ— (/17’]4—)17)—'—?

o 3\/Ea 3ka
(ﬂ)(—hl)()—FWz W_7

Ky, K Ky 61\/a/</1 N 3ivVa® Wi
f \/_ \/_ K K

1\/— iva® 3ik 3ix

W¢)(+2 3/2/1'7’1+ ';/2/1}0(’
(26)

S =

WT” +

- Kﬂ'a

3 KJ‘L'T_ K71’¢ 6i\/a i 3iva’

VAl e e T T
B iva l\/_

W2

3ik - _
T v5%4

27

3ik -
Wox — 2 5373 M —

Wi —

satisfy ~ the  Dirac {S,8}p = 2H,,

{Ho.S}p = {Ho.S}p =0.

algebra

VI. SUPERPOTENTIAL SOLUTIONS
From H,, Eq. (25), we identify the scalar potential

U(a,p,T) = — % +e*V(T), (28)

which is related to the superpotential W(¢,T) b

L (owy:
2\0T ) °

(29)

3IW? 3vVk 3k 1 /OW\?2
g 3" 3y Z(_)

4 a & Op

The form of the scalar potential (28) of a FRW geometry is
consistent with £k = 0; hence, we restrict ourselves to this
geometry, and we get the equation

PHYSICAL REVIEW D 89, 043501 (2014)
3W2 1 (OWN2 1 (OW)\?
-t == - 30
2 +4(a¢> 2<8T> G0
This suggests to us a separation of variables of the form
W(gp. ):—e‘f’ f(T). With this ansatz we obtain the

relation between the tachyon potential and the tachyonic
component of the superpotential,

(f)?=f

where the prime denotes differentiation with respect to 7.
To find solutions to this equation, we must fix the function
V(T). For example, if V(T) = 0, the solution is f(T) = e’.
Further, for

V(T =

=V(T), (31)

2
V(T) = ’% (—T2 + 411 T4>, (32)

which according to the analysis of Zwiebach et al. produces
a big crunch scenario as the final state of the Universe [16],
there is an imaginary solution f(T) = imT?/(2/2), for
which the superpotential is

;
W(T) = Zmef/’TZ, (33)
which generates complex fermion masses. However, as we
show in Appendix B, there is also a real solution given by
an infinite power series, which can be written as (B5)

1
m2T3 [1 —=T

W(7) .

1 1
= et —
_\/Ee {e 12

+210 <1 —|—;m >T2 +(’)(T3)] } (34)

Other proposals are potentials of the form V(T) =
exp(vT) [16]; they are known to prevent the tachyon
from reaching infinity in certain cases; with v > 2 there
is no initial (positive) tachyon velocity for which the
tachyon can reach T = oo. For this potential we find
f(T) = £2(* — 4)7'/% exp(vT/2), and the superpotential
is in this case

2 v
W(p, T) =+ exp <¢—|——T>, v#2. (35
@.7) =+ .
Another interesting proposal is, for instance,
ie?(T—7)(t+T)+2
Wip.7) = ebp(r) = T ZDIDE - )

As in the case of Eq. (33) this superpotential generates
complex fermion masses; however, it can be made to be real
in complete analogy with Eq. (34). The tachyon potential
corresponding to Eq. (36) is
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FIG. 1 (color online).
T=1/2.

Tachyon potential V(T) from Eq. (37) for

V() = 5@ =27+ T4 =277, 37)

This potential, shown in Fig. 1, has a maximum at 7 = 0,
with V(0) = 1/4 — 1/7*> + 1/7*, and minima at T = +,
with V(z) = V(—7) = —1/7> 4+ 1/7% it also holds that
V(0) — V(&) = 1/4. Thus, if we let 7 — oo, the potential
difference will remain the same, as in the case of
Sen’s conjectures. If we compute the superpotential cor-
responding to Eq. (37) following Appendix B, it can be
shown that Wy(¢,0) = e?\/4(1 —?) + * (A2 — 1)/7%,
where A = f(0). Further, at the minimum, i.e., at 7 =,
we make the power expansion around this point, and
we get Wr(p, 1) = e?/4(1 — 72) + 7*(B? — 2) /7%, where
B = f(z), which in the limit 77— oo gives
W1 (¢) = e’V B* — 2, which can be set to zero if in this
limit B = v/2.

An interesting question regards potentials with suitable
supersymmetric properties, of the type of Sen conjectures.
For instance, the potential

V(T) = exp(—nT)[ag + o, T + axT* + a3 T* + a, T4].
(38)

In this case we have f(T)=(a+bT+cT?)exp (—nT/2),
from which we obtain

W(T,$) = (a+ bT + cT?*)exp (¢ —nT/2);  (39)

the explicit coefficients a; depend on the free parameters a,
n, and V. In fact we demand the presence of a maximum
for T = 0, and this provides us with two equations that can
be solved for b and ¢ in Eq. (39), and with the condition
V(0) <0, details of the calculations are given in
Appendix C; see Fig. 2. At the maximum of this potential,
W(0,¢) # 0 and W¢(0, @) # 0; hence, supersymmetry is
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V(T)

1 2 3 3 5T

FIG. 2 (color online). Tachyon potential V(T) produced by
f(T) in Eq. (C1) for a = 10, n = 3, and V, = 5.

broken. Further, after condensation supersymmetry is
restored because W; — 0 and W¢ — 0, when T — .

VII. CONCLUSIONS

We have studied a worldline supersymmetric theory in a
FRW background, with a closed string tachyon. We have
constructed the action in the formalism of the new ©
variables in one dimension, which allows us to systemati-
cally construct supergravity actions. For given tachyonic
potentials, we considered the solutions of the differential
equation of the superpotential. We show that there are
solutions with broken supersymmetry at the unstable,
tachyonic, configuration, and supersymmetric at the stable
minimum. Furthermore, the superpotentials can have sim-
ple forms but correspond to complex fermionic masses.
These superpotentials can be obtained as well by a power
series ansatz, for which the general solution depends on a
real parameter that can be chosen such that the complex
solutions can be mapped to real solutions. Potentials like
these have been considered in cosmological models, e.g. in
Ref. [16,19] where inflationary and big crunch scenarios
are given, and it would be interesting to consider super-
symmetric versions, in particular their quantization [20].
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APPENDIX A: SUPERSPACE SUPERGRAVITY

In this appendix we shortly review the new superspace
formulation of supergravity following Ref. [14].
Superfields are defined as

P(z) = (z) = e®Pagp(z)| g (A1)
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where © are anticommuting Lorentz [SL(2, C)] covariant
spinorial variables. To ensure full covariance for these new
superfields, the whole “old” superspace can be kept,
setting € =0 at the end of the computations,
ie., ®(z,0) = % Pegp(z).

The preceding redefinition of superfields is comple-
mented by the usual redefinition of local supersymmetry
transformations in such a way that Lorentz covariance is
kept. The way is to add a local Lorentz transformation to
the local superspace translations as follows [17]:

8:pa(z) = —EPEpM (Opba — bua"dp) = —EPDppa(2);
(A2)

hence, the new superfields, for which the components are
Lorentz covariant, transform as 55¢>(z,®) =—ED,d(z,0),
1.€.,

5:04(2,0) = —EBDppy — O/ EBDpDyghy

- %@ﬂl(aﬂngDBD,,IDMﬁA +--- (A3)

The computation of this expression is done taking into
account the fact that the multiple covariant derivatives
arising from the exponential in Eq. (A1) appear as fully
antisymmetrized products. Thus, when a further derivative
is applied on this product, the result must be antisymme-
trized, e.g.,

1 1
DaDﬂ¢A = 5 {Da’ Dﬂ}¢A + E [Dav Dﬁ]¢A

= _T(I[)'CDC¢A - R{z/iAB¢B + D[(lpﬂ]¢A’ (A4)

where the last term is precisely the second-order term of
®(z,0). Following these lines it can be shown that
Eq. (A3) can be cast into the form

0
5:P4(2.0) = 1:%(z.0) w@fx (z,0)

+1:%(2,0)D, P, (2, 0)

+ 14" (2. ©) P (2, ©), (AS)
where the coefficients 74 (z, ©) and 7:4%(z, ©) depend on
components of the curvature and torsion tensors and their
covariant derivatives.

To have a geometric formulation in the new superspace,
following the Wess—Zumino gauge [18], which eliminates
the gauge degrees of freedom introduced by the generali-
zation of local supersymmetry to superspace diffeomor-
phisms, a new vielbein is introduced. Let us consider a
vector field, V,, = E,“V,+ E,*V,; this relation can be
inverted to

PHYSICAL REVIEW D 89, 043501 (2014)

V,=ECV"(V, —E,V,) = E"v,,

(A6)
where the indices M = (m,a) contain a spacetime
world index and a spinorial local index, i.e.,
EM = (Er E%) = (ET')", —E"')"E,,%). With this defini-
tion and E{,‘f = oM, an inverse vielbein Eﬁ{’ can be defined.
The corresponding vielbein is then

~ EbY E/F
EMB:< 0 5:/;’)’

ie, ENE;® =68 and E; " EY = &% . Even if this vielbein
seems to correspond to the Wess—Zumino gauge, full
covariance can be kept by considering certain components
of the torsion and curvature as independent degrees of
freedom of the supergravity multiplet. If we define in this
basis covariant derivatives as usual by D,V =

(_1)(m+b)aEMBDAVB and DAVM = DAVBE%;I, then

[Dir» DyleVa = =Ty " PpVa = Rigya"Ve. (A7)
which supplemented by the corresponding Bianchi iden-
tities contains all the information of supergravity. As
Eq. (A7) does not contain derivatives of the old € variables,
the different levels in the 6 expansion decouple, and the
limit # =0 does not require gauge fixing. Actually,
supergravity  transformations can be written as

5:0(z,0) = —EMZSM(I)(Z, ©), and following the same lines
as for Eq. (A5), we get

5:®(z,0) = |7:"(z.0) +7:"(2,0)D,, | ®(z,0).

0%
(A8)
Further, the covariant derivative D,, on the rhs of this

expression acts on the components of the superfield
®(z,0) as in Eq. (A3), which can be written as

Dnzq)(z7®) = amd’ +®ﬂ(8m _a)}yln/j)Dyd’
2
_§@ﬁ| [} (O _C"Znﬂl )’Dy’Dﬁzqﬁ + ...

=0,,%(z,0) + &0 ,0,8(z,0). (A9)

Therefore, including a Lorentz index, Eq. (A8) can be
written as

8:®5(z,0) = 7:M(2,0)9; B4 (2, ©)

+ 71:4® (2, ©) Py (2, ©), (A10)

where 7% = 7§ —iip O ¢l A" = 7" and fg4® is Lie
algebra valued. Further, 7:" = M and 7,V =6,N,
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mp® =0 and ﬁﬁf’ = ﬁfy —5§’ can be obtained from the

recursion relation
~IN V3
< + @ﬂ a@ﬂ) @ Dﬂ']a

+ O (0% R gy, + T, L)
+ 0% (—0% R,V + Ty, LY

— i1 "7, (A11)
and a similar one for ﬁéAB. It turns out that
Y ~i 1~ VIR
’1§M(Z’ 9) = _‘fM +07 (z fﬂT}/ﬂM + 5 ¢nyM>
1@)/@5 2~ﬂR M IDT M T n M
5 —gf 5By +§ 5Ty +Tsp" Py
T T T
—§T5ﬂ T,, +6T5/; T, ) +--- (A12)

Consistently with these ideas, covariant derivatives can be
defined as

V,=e%PaD,e 9P, (A13)

Following a similar reasoning as that which lead to
Eq. (A10), it can be shown that

VA(I)B = VAMaM(I)B + VAch)C? (A14)

where V¥ is the inverse vielbein of the new superspace,

and if we write it as VAM =E W Vﬁg , it can be obtained

from the recursion relations

L L /N
(5 6," 4 6y @ﬁ%ﬂ)vL

_ _TMZVZN _ V/Myvlyﬂ/ _

(~1)"®n Yy, 7V,

Y
(A15)

and a similar one for V,z€. The vielbein V4, ie.,

Vi V,N =

52{1, transforms as

55V —8M77NV A N@ V VM 7’]53A (A16)

and to second order is given by

PHYSICAL REVIEW D 89, 043501 (2014)
va = EmB + Gy(TymB + ¢my3)

1
+3 ©'®°(—R,5,% + D;T,,,°

+Tm5ATAyB - ¢m5ﬂT}/ﬂB) +e

1 1
VrE=6L+-0'T,"+ 6@)7@5(—R5m,3 +2D5T 4

2

+T5aDTDyB) + (A17)
As in ordinary supergravity, the superdeterminant of the
vielbein is an invariant density

E= Sdet(VMA)

=det(V,, = V,/VED 1V 4)/ det(V,F), AlS

which transforms as

5:€ = (=1)" 0y (¥ E), (A19)
and the superspace integral of the product of the
invariant density with any Lorentz invariant superfield
will be by construction invariant under supergravity
transformations.

Therefore, local supersymmetry can be formulated in
the new superspace in a geometrical way, with the only
difference that now the transformation parameters are
field dependent, depending on components of the torsion
and curvature and their covariant derivatives, subject to
the Bianchi identities. This formulation is manifestly
covariant in the framework of the highly redundant
superspace (z,®). However, as in the transformations,
(A7), (A10), (A16) and (A19), there are no derivatives of
the old 6" variables, they can be set to zero without loss
of generality.

APPENDIX B: POWER SERIES ANSATZ

Equation (31) can be solved by a power series ansatz.

Let us set V(T) =3 povT" and f(T) =3 0fiTh
then
1+2
V(T) = z lz m(l —m+ 2)fmfl—m+2Tl
>0 | m=0
I
_meflm‘| Tl; (Bl)
m=0

that is

I
v =201+ Dfifrer + Y m—=m+2)fufimi
m=2

1
- meflfmv
m=0

(B2)
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which can be solved as follows. If f; = ++/vy+ f3
does not vanish, then for / > 1, f,,| can be obtained in
terms of v; and f,

/2 I%(2f0f1 + 1),
/3 _#(f2+2f0f2—4f%+1)2)»
f4_%(2f1f2+2fof%—12f2f2+7f%>

(B3)

This solution depends on the free parameter f, and in
general is singular in f;. For example, in the case of
the exponential potential, V(7) = ¢*7, it can be verified
that Eq. (B3) coincides with f(T)=—~1—e", with

Vi?—1
f3=1/(x*—1). Further, in the singular case when
f1 =0, which corresponds to f,= =£,/—v,, we see

from the first equation of Eq. (B3) that there are
solutions only if »; = 0. In this case we get

f2:%<foi f%+4”2),

f3 = ~ag-em)
fa=37,= gfz( f2+9f3_174>
(B4)

The square roots in these solutions can lead to imagi-
nary terms, similarly to the “imaginary mass” of the

PHYSICAL REVIEW D 89, 043501 (2014)

tachyon. Such problems can be avoided if the integra-
tion constant f, is suitably chosen, as can be seen for
the potential V(T) = v,7% + v,T*. In this case f, = fo
and fo(2f,—f9)=0, and if we choose fy, =0, then
[1=0, fr=£3/02, f3=1503 fa=1a5([3—9f5+0a),
fs= ﬁfz(fzﬁ —24f5f4 + vs), etc. This is the situation
of Eq. (32), where v, <0 and vy, = —v,/4; hence, f,
becomes imaginary, and f; = 0 for / > 3, as in Eq. (33).
However, if we keep fy, #0, then f; = f,, and from

Eq. (B3) we get another solution that, setting

vy, = —m?/2, is given by an infinite series:

f(T)=f 1+T+1T2 Ly m T3
0 31 272
1 1 m*  3m
1 T4 l—— 75

Ta <+f2> “51( 2 4fo> +-]
(B5)

APPENDIX C: POTENTIAL (38)

We are interested in potentials fulfilling the type of
requirements of Sen’s conjectures. We start from a super-
potential of the form f(T)=exp [-nT/2(a+bT +cT?));
i.e., it rolls down to zero when T — co. By means of
Eq. (31), we compute the corresponding scalar potential,
which has the form V(T) = exp(—nT)[ay+ a;T+
aT? + 3T + a,T%]. TImposing the conditions that
V(0) = Vo> 0 and V'(0) = 0, we get

1 an*\/a* + Vo +4av/a* + Vo £ 4n(a* + V,
fo(T) = e3m) {a—i—— <ani2\/a2+ V0>x—|— 0 o & 4n( o) 2| (C1)
2 8 Clz + VO
If we choose f_(T') (it would be similar for /), we get for the parameters of V(7):
g VO’
oy =nVy,
Vg +gan\/a*+V 42 Vo 4 Sany /a2 FV
a*+V, 0 a’+Vv, 2 0
Q) =
anV, 7a*n?® 2 a*n? a*n 50V,
ey _Tant g - — ey,
Va+v, e Vatv, 4 0
v, V2 1 4 5 an*V, a*n’v,
—nVy+ 50— 5 —qean*y/a* + Vo + = —
2(a*+V,) 16 8v/a*+V a“+V,
a3 = 3an®V, a4 i 3,2
dan“Vy an 3a’n
av/a®> +Vy—2a*n — ,
Va+v, + + Yo 2(a* +V + 8v/a>+V, + 2\/a+V,
4Vé _n 22 __an’Vy a*n*V, a*n*V, anV g2n6
16(a+Vy)  4(@’+Vo)  32/a*+V, 8(a>+V,)  2(a®+Vo) 20+, | 256 ©
a4 = +a2n4 P az n e i PR o (€2
64— 16 ol V)~ Aa™1Vy) 32\/02+V0 2\/a2+V0 :
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Now we look for a potential of the form of Fig. 2, so we must have n > 0. We require also that V”(0) < 0, and in
addition, for convenience, we set ; > 0, resulting in the following constraints for the parameters a, n, and V:

a’n® — 12a’n* + 48a*n* — 644’

n>2 a>0,

a*n®* — 8a*n? + 164>

36n* 4+ 96n% + 64

<Vy<

1612

Within this rank are located the potentials with profiles like the one in Fig. 2.
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