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In this work we present a nonparametric approach, which works on minimal assumptions,
to reconstruct the cosmic expansion of the Universe. We propose to combine a locally weighted
scatterplot smoothing method and a simulation-extrapolation method. The first one (LOESS) is a
nonparametric approach that allows us to obtain smoothed curves with no prior knowledge of the
functional relationship between variables or of the cosmological quantities. The second one (SIMEX)
takes into account the effect of measurement errors on a variable via a simulation process. For the
reconstructions we use as raw data the Union2.1 type Ia supernovae compilation, as well as recent
Hubble parameter measurements. This work aims to illustrate the approach, which turns out to be
a self-sufficient technique in the sense that we do not have to choose anything by hand. We examine
the details of the method, among them the amount of observational data needed to perform the
locally weighted fit which will define the robustness of our reconstruction. In view of our results, we
believe that our proposal offers a promising alternative for reconstructing global trends of
cosmological data when there is little intuition on the relationship between the variables and we
also think it even presents good prospects to generate reliable mock data points where the original
sample is poor.
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I. INTRODUCTION

The cosmic acceleration of the Universe has been
confirmed by several independent observations including
type Ia supernovae (SNe Ia), the cosmic microwave
background (CMB), and the large-scale structure of
the Universe [1–8]. Typically, this accelerated expansion
has been attributed to the existence of a new entity called
dark energy (DE) which makes up nearly 68.6% of the
cosmic substratum but still with unknown properties [9].
Therefore, elucidating what drives the accelerated expan-
sion of the Universe or establishing the properties of dark
energy are real challenges in cosmology.
The community has proposed a huge amount of

theoretical scenarios that attempt to explain this recent
acceleration of the Universe: ΛCDM [10–12], quintes-
sence [13,14], Chaplygin gas [15,16], modified gravity
[17], holographic dark energy [18], braneworld models
[19], fðRÞ theories [20], theories with extra dimensions
[21], and quite a few others. However, despite their great
compliance with observational data, none of them has
provided a conclusive answer about the nature of the DE.
This situation has motivated the study of other methods

that can make the most of the observational data and give as
much information as possible about the properties of the
dark energy. In general, these approaches attempt to
reconstruct the properties of the DE or the history of the

expansion rate as directly as possible from observations,
not establishing an association with a fundamental physical
model. They can be broadly classified into parametric and
nonparametric methods. Parametric methods are viable
approaches when the relationship between the variables
of the phenomena under study is known, and their goal
is to constrain the parameters of the chosen model.
References [22–30] can be checked for details of data
analysis and methods of parametric reconstruction of the
properties of dark energy. However, when there is no clue
about the explicit form of the relationship between the
variables or the functional form for the quantity of interest,
one has to propose it, which can lead to misleading results.
At this point is where nonparametric methods make their
way into the scene. They try to provide the general trend of
the variable of interest when the relationship between the
variables is unknown or there is little intuition about it
because the data do not have a clear interpretation. Indeed,
they have become popular given their usefulness for
enhancing scatter plots and other diagnostic plots with
the goal of displaying the underlying structure in the
data [31,32].
In the literature one can find several approaches covering

nonparametric and model-independent reconstructions
[33–59,62], although, most of them must deal with the
scarceness of data or some other limitation intrinsic to the
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method. Such approaches include the principal components
analysis (PCA) [33], the nonlinear inverse approach (NIA)
[42], the dipole of the luminosity distance method (DLD)
[44], the smoothing method (SM) [45], Gaussian processes
(GP) [53], nodal reconstruction (NR) [62], genetic algo-
rithms (GA) [49], and three representative approaches of
model-independent reconstructions of the expansion his-
tory, MIR-I, MIR-II, and MIR-III, corresponding to the
schemes presented in [38], [43], and [58], respectively.
Even though each one of the above methods is well

established, none of them provide a totally compelling
procedure within which the accelerated expansion or the
nature of the DE can be understood. In this context, we can
point out some features and shortcomings that they present
in common:
(i) The assumption of a prior, a fiducial cosmological

model or an initial guess model, which leads to
biased results, as happens in GP, SM, NIA, PCA,
NR, MIR-II, and MIR-III.

(ii) A binned approach in which the bins share data
points. It causes fluctuations when the individual data
points enter and leave a fitting window, as happens in
MIR-I.

(iii) Low efficiency at high redshifts or in regions
with few data points, as happens in MIR-I, NIA,
DLD, PCA, and NR. In most cases, this can be
solved adding more data points, however this can
result in computational issues or in numerical
instability.

(iv) Underestimation of the error or the absence of tools to
estimate and propagate errors are suffered from GP,
SM, GA, and PCA.

(v) GP, SM, NIA seem to suffer from a high computa-
tional cost given by the method itself or by the number
of data. In the case of PCA, its efficiency depends on
the approach considered.

Convinced as we are that this line of investigation can
give some guidance to elucidate the nature of the DE or
of the entity that drives the accelerated expansion, and
additionally, motivated by the fact that the approaches
proposed have not succeeded in their attempt to recon-
struct the cosmic expansion, we propose to perform such
reconstruction using a locally weighted scatterplot smooth-
ing method (LOESS), which overcomes these difficulties.
Since LOESS is a nonparametric method, we do not have to
assume any functional form of the statistical relationship
between the variables, and the functional form is estimated
from the raw data. Besides, it is a completely cosmological-
model-independent method because it does not require the
input of any cosmological model or any information
concerning cosmological parameters. Although LOESS
relies on bins, it does not have a similar problem to the
one suffered by MIR-I, because it is a locally weighted fit.
However, LOESS on its own does not take into account the
measurement error of the observations to perform the

reconstruction; that is why we propose to combine it with
a simulation-extrapolation method (SIMEX), which
addresses the effects of the measurement errors on param-
eter estimates. Thus, LOESS þ SIMEX turns out to be a
very simple approach that provides successfully the global
trend of the data with a very low computational cost;
besides it is applicable with the same efficiency in the
whole redshift range and can estimate and propagate the
error thanks to the analogy with some properties of para-
metric approaches. Moreover, the reconstruction can
be used to infer mock data points (through the local
polynomial) where the original sample is poor, and yet
again this is done cosmological model independently, just
inheriting the global trend.
In this paper we present the most important features of

the method, which appears as a promising alternative to
reconstruct the cosmic expansion. The work is structured
as follows: In Sec. II A, we introduce the basics of
LOESS and in Sec. II B the logic behind SIMEX; next,
in Sec. II C, we present the steps that need to be followed
to apply their combination to astronomical observational
data to obtain the cosmic expansion; in Sec. III, we
detail the observational data samples chosen for our
analysis; in Sec. III B we present and discuss the principal
results and finally, in Sec. IV, we discuss our concluding
remarks.

II. BASICS OF SIMULATION-EXTRAPOLATION
AND NONPARAMETRIC REGRESSION

METHOD

A. Locally weighted scatterplot smoothing (LOESS)

Locally weighted scatterplot smoothing (also known as
local polynomial regression), originally introduced in
([63]) and further developed in ([64]), is a generalization
of standard least-squares methods for data analysis. It has
become the most commonly used method for nonparamet-
ric simple regression in some disciplines. LOESS is a
nonparametric method in the sense that the fitting is
performed without having to specify in advance the
relationship between the dependent and independent
variables.
The procedure tries to depict the global trend of a data set

formed by n observational measurements of a certain
response yi ≡ yðxiÞ, where i ¼ 1;…; n, corresponding to
certain values of the predictor or independent variable. One
has to focus initially on the ith measurement given by the
pair ðxi; yiÞ. A low degree polynomial is chosen as the
regression function that will give us an approximation to
the response called ŷi ≡ ŷðxi;0Þ, in a range of predictor
values or points around the focus points xi ≡ xi;0:

1 The

1The suffix 0 is used here to stress the role that each xi data
point has in the fitting and windowing procedure. In particular,
xi;0 will symbolize the xi point chosen in turn to be the center of
the fitting window.
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process is repeated so the whole range of i is covered. Note
that in this work, when we refer to y, ŷ, and x, we indeed
refer to original HðzÞ or μðzÞ data, simulated HðzÞ or μðzÞ
data, and the redshift z, respectively.
The subset of data centered at xi;0 of length m < n (see

below) will be chosen by the nearest neighbors rule with the
help of weights according to a kernel (see further below).
The fit is performed using weighted least squares; specifi-
cally, more weight is given to points near the point whose
response is being estimated, and less weight to points
further away. Typically, local polynomials to fit each subset
of data are of first or second order. Higher orders are
possible, but do not really improve the final result and
rather slow down the process computationally. Eventually,
this whole process offers the possibility to get the full view
of the global trend of the data, which was the original
objective of the procedure. To do so we simply have to join
the reconstructed points with a line, thus obtaining a
graphical account of the relationship between dependent
and independent variables.
In the following we will explain briefly the important

features of the method: the selection of the number of data
used in each fit, the degree of the polynomial, and the
form of the weight function. Additionally, we will address
how to construct confidence intervals around a LOESS
curve.

1. Smoothing parameter and window width

The first step is to determine how many data points
should be used in each weighted least-squares fit. This
is done through the smoothing parameter, s, also
called span, which ranges between 0 and 1 and controls
the flexibility of the LOESS regression function. When
large values of s are chosen, a large number of data
points are used to fit and smoother functions are
produced with a lower response to fluctuations in the
data. On the other hand, using small values of the
smoothing parameter s means to fit a low number of data
points, thus producing more irregular reconstructed
curves, because the intrinsic noise and dispersion of data
are fully captured.
The election of the span can be done roughly by trial

and visual inspection of the effects of different values of s
on the global trend. Here instead, the election of the
optimal value of the span s will be done by using cross-
validation [32], a more formal method to estimate and
select the best smoothing parameter s. The basic idea
behind this algorithm is to estimate the mean-squared
error of the fit [32,65]. The hope is then that the smoothing
parameter minimizing this estimate is also a good estimate
for the mean-squared error itself [65]. Basically, cross-
validation consists of omitting the ith observation from the
local regression at the focal value xi;0; the resulting
estimate will be denoted by ŷ−i. The cross-validation
function is

CVðsÞ ¼ 1

n

Xn
i¼1

ðŷ−iðsÞ − yiÞ2; (1)

where ŷ−iðsÞ is ŷ−i for span s. Note that omitting the ith
observation, the fitted value ŷ−i is independent of the
observed value yi.
In practice, it is necessary to compute CVðsÞ for

a range of values of s. The value of s that minimizes
this function is considered to be the optimal amount
of smoothing to apply to the local regression fit. Once
the value of s has been determined, m ¼ n · s (rounded
to the next largest integer) will give the number of
data points that will have to be used in each weighted
least-squares fit.

2. Weight function

One key element of LOESS is the kernel estimation,
such that in each fitting window containing m data
points, the fit gives more weight to observations that
are closer to the focal point xi;0. The use of weights is
supported by the guess that points near each other are,
probably, more correlated to each other than points that
are farther apart. So that, following this logic, nearer
points are likely to follow the same local model and may
exert more influence on the estimation of the local
parameters ŷi, while farther points are less likely to
share the local model and may have less influence on the
same estimates.
The weight or kernel function depends on the variable

x̄≡ ðxj − xi;0Þ=h, the scaled distance between the predictor
values for the jth observation falling in the window with
xi;0 as the chosen focal point, with j ¼ 1;…; m, and h
being the maximum distance between the point of interest
and the j elements of its window. By construction, after
scaling the distance, the maximum absolute distance
between the point of estimation and the farthest point in
the window is ≲1.
In this work, following standard practice, the weight

function will be the tricube kernel:

Kðx̄Þ ¼
� ð1 − jx̄j3Þ3 for jx̄j < 1

0 for jx̄j ≥ 1
; (2)

and the weights used for the regression are wij ¼
K½ðxj − xi;0Þ=h�. Of course, in each fitting window one
has 0 < wij < 1 for them neighbors of xi;0, and wij ¼ 0 for
all the other n −m points.
Once the weights wij have been calculated, we proceed

to compute the fitted value at xi;0 for the observed quantity
yi, i.e. we obtain the set of values ŷi.
The local polynomials that fit each subset of data are

usually of first or second degree. Higher-degree polyno-
mials are possible, and would work in theory, but would
result in models that are not really compliant with the spirit
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of LOESS, which looks for a low-order polynomial and a
simple model that can fit data easily. In this work, we shall
consider that a linear polynomial is the most appropriate
one to fit each subset of data.

3. Confidence bands around LOESS curve

In a parametric regression, the central objects of
estimation are the regression coefficients. However, in a
nonparametric regression, like the one we are using
here, there are no regression coefficients, and the central
objective is the estimation of the regression function itself
and its visualization, such that statistical inference focuses
on the regression function directly.
To construct the confidence regions of the nonparametric

regression we follow Ref. [66]. We start from the local
polynomial estimate ŷi that results from the locally
weighted least-squares regression of y on the x values in
each chosen window.
By assumption, the yi’s are independently distributed,

with common conditional variance VðyiÞ ¼ σ2; then, the
sampling variance of the fitted value ŷi is

V̂ðŷiÞ ¼ σ2
Xn
j¼1

w2
ij: (3)

However, to apply this result we require an estimate of σ2.
In linear least-squares simple regression the error variance
is estimated by

S2 ¼ 1

n − 2

Xn
i

r2i ; (4)

where ri ¼ yi − ŷi corresponds to the residual for obser-
vation i, and n − 2 to the degrees of freedom associated
with the residual sum of squares. In a nonparametric
regression, the residuals can be computed in the same
way, ri ¼ yi − ŷi, however, the degrees of freedom or
number of parameters must be replaced by the effective
degrees of freedom, dfmod.
Once again we make the analogy with least-squares

regression. In this simple case, the way to determine the
degrees of freedom is immediate, because the number of
parameters is known, although a more precise and correct
way would be to compute the trace of the hat matrix H,
which maps ŷ into y [66–68]. Despite the fact that in a
nonparametric regression there are no parameters to sum,
approximate degrees of freedom are obtained from the trace
of the smoother matrix S, which plays the same role asH in
that it transforms ŷ into y [66,67]. For kernel smoothers,
which is indeed our case, S can be directly calculated from
the kernel [68,69], as the matrix of wij elements.
There are two other popular definitions for the effective

degrees of freedom: dfmod ¼ TrðSSTÞ, which we have
adopted here by convenience without loss of generality, and
dfmod ¼ Trð2S − SSTÞ [66]. For a least-squares fit, the
two definitions involving H are equivalent: a projection

operator, which is symmetric and idempotent satisfies
TrðHÞ ¼ TrðHHTÞ. However, for linear smoothers they
can give two different results, even if they are often of
similar magnitude [66,70].
It is worth mentioning that, unlike for linear parametric

regression, the degrees of freedom for the nonparametric
one are not necessarily whole numbers [66], and also that
even though a nonparametric regression uses the equivalent
of dfmod parameters, this does not mean that if a global fit
to data is performed using a dfmod-degree polynomial, it
will produce the same regression curve [32].
Once the dfmod has been estimated, the residual degrees

of freedom can be computed through dfres ¼ n − dfmod,
and the estimated error variance is finally given by

S2 ¼ 1

dfres

Xn
i

r2i ; (5)

whereas the estimated variance of the fitted value ŷi is

V̂ðŷiÞ ¼ S2
Xn
j¼1

w2
ij: (6)

Thus, assuming normally distributed errors, the 68%
confidence interval and the 95% confidence interval of the

regression function are approximately ŷi �
ffiffiffiffiffiffiffiffiffiffiffi
V̂ðŷiÞ

q
and

ŷi � 2

ffiffiffiffiffiffiffiffiffiffiffi
V̂ðŷiÞ

q
, respectively.

Although this procedure for constructing a confidence
region has the virtue of simplicity, it is not completely
rigorous, due to the bias in ŷi as an estimate of the
regression function. Such a bias in ŷi can produce an
overestimation of the error variance thus making the
confidence interval too wide. However, notice that as we
have employed the cross-validation procedure to choose the
optimal value of s, the bias that comes from the value of the
span should be small.
Because ŷi can be biased, strictly one should refer to the

envelopes ŷi �
ffiffiffiffiffiffiffiffiffiffiffi
V̂ðŷiÞ

q
and ŷi � 2

ffiffiffiffiffiffiffiffiffiffiffi
V̂ðŷiÞ

q
around the

sample regression as variability regions rather than con-
fidence regions. However, in this work we will regard them
as confidence regions but having in mind this specification.
Up to this point, we have addressed briefly the features

and free parameters of the LOESS method, however many
more details of it can be found in Refs. [66–69,71] and
references therein.

B. The simulation and extrapolation method (SIMEX)

So far we have not used the observational errors σi on
real data yi, because they are not contemplated by LOESS
literature. To take them into account, we join the LOESS
method with the SIMEX one.
SIMEX is a simple simulation algorithm that allows us to

display the effect of measurement errors on parameter
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estimates. It was originally introduced in [72,73] and has
been applied in various fields but, to our knowledge, not in
cosmology [74–77]. We believe that it could be imple-
mented with LOESS for fitting smooth curves to cosmo-
logical empirical data including measurement errors. In this
way we could reconstruct the expansion history of the
Universe with a high precision and without considering any
prior on the cosmological quantities.
Here we provide a brief description, following Ref. [78],

of an adapted version of the SIMEX algorithm, but further
details of the method are available in Refs. [72,73,79].
SIMEX starts by taking each observation yi in the data set,
with i ¼ 1;…n and n the number of data points, to which a
known amount of measurement error is added as follows:

ηiðλÞ ¼ yi þ
ffiffiffi
λ

p
σi; λ > 0; (7)

where σi is the measurement error variance associated to
the observed data yi. A standard normal distribution of the
errors is implicitly assumed. After introducing the variable
λ, the final measurement error variance associated with the
simulated data points ηiðλÞ is ð1þ λÞσ2i so that extrapo-
lating its value to λ → −1, we return back to the original
data without uncertainties. We will refer to this scenario as
the error-free situation.
The parameter λ is actually a vector of length N , a

common choice [72,78] being λ ¼ f0; 0.5; 1.0; 1.5; 2.0g.
However, we have chosen to work, without loss of general-
ity, with λ ¼ f0.5; 0.6; 0.7;…; 2.0g in order to have more
simulated data sets. Then, Eq. (7) is repeated for each data
point yi and for each chosen λj value, with j ¼ 1;…;N .
Thus finally we have that at each predictor xi a set of

values ηiðλjÞ is attributed, which are obviously functions of
the chosen λj values. The λ → −1 extrapolation required by
SIMEX theory will be then obtained after a standard
regression of ηiðλjÞ is performed. A linear or quadratic
polynomial are some possible choices [78]. In this work,
we have found that the quadratic polynomial is the optimal
choice

ηðλÞ ¼ β1 þ β2λþ β3λ
2: (8)

The reconstructed ηi;SIMEX ≡ η̂ and the related confidence
regions can be obtained by taking ηðλ → −1Þ, thus taking
back each data point to the error-free situation.

C. Joining LOESS and SIMEX

The main novelty of this work is to reconstruct the
expansion history of the Universe using a combination of
LOESS and SIMEX. Both methods have been widely
studied, and even utilized in various disciplines, although,
to our knowledge, always been done independently. So
what we look for through the implementation of both
methods is in essence the global trend of the data, which
in turn, could provide a clue of the most appropriate
parametrization that must be between the variables.

Here we show schematically how we implement these
methods:

Explicitly the steps followed are
(1) Start SIMEX:

(a) Take as input the data points yi.
(b) Select an i value.
(c) Assign to each data point yi a certain λj follow-

ing Eq. (7), thus obtaining the corresponding
ηiðλjÞ, with yi standing forHðziÞ or μðziÞ and σyi
for the corresponding measurement errors σHðziÞ
or σμðziÞ.

(d) Go back to step 1(a) until all i values are
covered. The vector of yi elements has become
the matrix of ηiðλjÞ elements.

(2) Do LOESS:
(a) Select a j value.
(b) Assume the ηiðλjÞ values as our workable data

instead of yi. This means we work with the
elements of a row of the matrix with ηiðλjÞ
elements.

(c) Choose windows with span s centered at each
point of estimation, that is, at each xi or
specifically at each redshift, and for each win-
dow, compute the distance to each point of the
(local) subset, see further below how to choose s.

(d) Find the maximum distance among the points in
the subset and normalize all of them so that the
maximum distance becomes 1.
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(e) Assign a weight to each point through the tricube
kernel, Eq. (2).

(f) Using a linear polynomial, do a weighted least-
squares fit with each subset of data.

(g) Evaluate the regression functions obtained at the
corresponding xi.

(h) Connect the resulting (fitted) values with a line.
This gives a local polynomial nonparametric
regression curve which at the same time provides
a picture of the general trend.

(i) Go back to step 2(a) until all j values are
covered, that is, until all λ values are addressed.
The output of this process is a set of η̂iðλjÞ
elements.

(3) Finish SIMEX:
(a) Select an i value.
(b) Perform a standard quadratic polynomial regres-

sion with all the η̂iðλjÞ elements in the selected
column, see Eq. (8). This will give η̂i as a
function of arbitrary λ.

(c) Take the λ → −1 limit.
(d) Go back to step 3(a) until all i values are

covered. The result is a vector ŷi which gives
us the global trend of the data in light of
observational errors.

Now, even though it is true that in LOESS the degree of
the polynomial and the weight function can all affect the
trade-off between the bias and variance of the fitted curve,
the size of the window span has the most important effect.
In this work we have faced this issue by using the cross-
validation method to determine the optimal value of the
span. In practice, one should first repeat the procedure at
step 4 for different values of s and choose the one which
gives us the lowest value of the cross-validation function
CVðsÞ, Eq. (1).

III. OBSERVATIONAL DATA,
RESULTS AND DISCUSSION

A. Hubble parameter data and distance
modulus data

In order to reconstruct the cosmic expansion, we use (as
raw data) two popular data sets. In the spirit of the method
proposed we do not assume any cosmological model, i.e.
just let the method smooth out the data without using the
fact they are astronomical data which should accommodate
some known physical behavior. Therefore, in the next
subsection we strictly follow the recipe outlined before and
perform local polynomial reconstructions of the global
trend and apply the necessary steps to infer the optimal
values of the constants of the polynomials. Later in this
section we perform a usual Markov Chain Monte Carlo
(MCMC) cosmological fit by considering a specific global
form of the dark energy equation of state (EoS) parameter
wðzÞ ¼ p=ρ and obtain the confidence intervals by the
usual error propagation technique. We then identify some

significant redshift values and compare the results (see
Tables II and III) obtained from our cosmological-model-
independent (nonparametric) technique and from the usual
parametric approach [based in this case on the Chevallier-
Polarski-Linder (CPL) scenario].
But let us first provide for completeness some details

about the data themselves. The first data set we consider is
the compilation of Hubble parameter measurements esti-
mated with the differential evolution of passively evolving
early-type galaxies in the redshift range 0 < z < 1.75
recently updated in [80] but first reported in [81]. The
main idea supporting this approach is the measurement of
the differential age evolution of these chronometers as a
function of redshift, which provides a direct estimate
of the Hubble parameter HðzÞ ¼ −1=ð1þ zÞdz=dt≃
−1=ð1þ zÞΔz=Δt. The main strength of this approach is
the confidence on the measurement of a differential
quantity, Δz=Δt, which provides many advantages in
minimizing many common issues and systematic effects;
besides this approach furnishes a direct measurement of the
Hubble parameter, and not of its integral, in contrast to SNe
Ia or angular/angle-averaged Baryon Acoustic Oscillations
(BAO). So, we can use the direct measurements of the
Hubble parameter to reconstruct the cosmic expansion.
On the other hand, the Hubble diagram, which is a plot of

apparent fluxes (usually expressed as magnitudes) of some
types of objects at cosmological distances, against their
redshifts, was initially introduced as a way to demonstrate
the expansion of the Universe [1,2], and subsequently to
determine the expansion rate (that is to say, the Hubble
constant H0) so to reconstruct the trend of the Hubble
diagram from observational data turns out to be vital. Here
we construct the Hubble diagram using the updated com-
pilation released by the Supernova Cosmology Project: the
Union2.1 compilation [82]. The Union2.1 compilation
made up of 580 data points is the largest published and
spectroscopically confirmed SNe Ia sample to date.
Because the data points of Union2.1 are given in terms of

the distance modulus μobsðziÞ, we can use them in principle
to reconstruct the Hubble diagram in a quite direct way.
Nevertheless due to the fact that their covariance matrix is
not diagonal one could not use our method without
betraying one of its basic assumptions (decorrelation).
Thus, in order to perform the SIMEX method, we have
to decorrelate the data so as to work with new quantities
with diagonal covariance matrix. As suggested in [83], by
solving the eigenvalue problem, the “decorrelated” diago-
nal covariance matrix (which we stress to be different from
the “observational” diagonal covariance matrix given in the
Union2.1 website) can be found. Besides, with the trans-
pose of the matrix that diagonalizes the covariance matrix,
the μobsðziÞ vector can be also transformed into a new
quantity [decorrelated μobsðziÞ] which becomes the input
for our method (i.e., the first step of SIMEX). Finally, after
having added the errors taken from our decorrelated
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diagonal covariance matrix to this new decorrelated
μobsðziÞ, we transform back our results into their original
form, i.e. we go back to μobsðziÞ and go on with other steps.
In what follows, when we refer to the results from type Ia
supernovae data, remember that we have worked with
decorrelated data.

B. Results and discussion

To obtain the best span for Hubble parameter measure-
ments via cross-validation, we chose subsets containing
30%; 35%; 40%;…; 100% of the data corresponding to

s ¼ 0.3; 0.35; 0.4;…; 1.0, respectively. We conclude that
s ¼ 0.9 is the optimal span.
In Fig. 1 the most illustrative results coming from our

LOESSþ SIMEX factory are displayed. Notice we are
showing the LOESSþ SIMEX curve with s ¼ 0.2 just to
highlight the effect of a too small span.
In this figure the respective 68% and 95% confidence

regions surrounding the reconstructed curves are also
shown.
The equivalent degrees of freedom, dfmod, which would

be the number of parameters of the fit if we were doing a
parametric regression, have been computed using
dfmod ¼ TrðSSTÞ. In Table I we present the values for
the equivalent degrees of freedom of the regression,
as well as the comparison with the ones obtained with
the alternative definition dfmod ¼ TrðSÞ. In the case of a too
small span (s ¼ 0.2), the regression curve is a kind of zigzag
curve and the equivalent degrees of freedom are around 8,
which makes sense due the high response to the fluctuations
in the data and because the regression curve is susceptible to
capture the random error in them. On the other hand, when
the span is large (s ¼ 1.0), the equivalent degrees of
freedom are approximately the same as for a linear para-
metric model, which can be understood because with wider
fitting windows the observations tend to cancel each other
having less influence on local regressions.
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FIG. 1 (color online). LOESS plots with different bandwidths. The gray points are the measurements of the Hubble parameter
including their uncertainties, the green points are the simulated data resulting from our LOESSþ SIMEX method. The central green
line is obtained just by connecting the dots and represents the best fit. The shaded contour represents the 1σ–2σ confidence level
for our best fit.

TABLE I. Equivalent number of parameters or equivalent
degrees of freedom dfmod for the regression curve obtained
from the LOESSþ SIMEX factory using the Hubble parameter
and supernovae measurements. Notice that despite the fact that
the values obtained from the two definitions are not equal, they
are of similar magnitude.

Hubble data Supernovae
dfmod dfmod

Span TrðSÞ TrðSSTÞ Span TrðSÞ TrðSSTÞ
0.2 9.46 8.22 0.05 35.40 29.20
0.4 4.09 3.44 0.075 23.34 19.24
0.9 1.79 1.51 0.2 9.03 7.33
1.0 1.62 1.37 0.3 5.85 4.80
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Moreover, as can be seen from Fig. 1, the choice of the
window width (span) has an important effect. In this case, a
span that is too small (means that insufficient data fall
within the window) results in a large variance, as we can see
for the cases with s ¼ 0.2 or s ¼ 0.4, although the latter in a
lesser degree. On the other hand, if the span is too large, the
data will be oversmoothed, resulting in a loss of important
information and, consequently, bias in the fitted curve and

large confidence regions, see the figure with s ¼ 1.0 (which
takes into account the cent percent of the data).
Figure 2 shows the CVðsÞ function versus s for Hubble

parameter measurements. s ¼ 0.9 turns out to be the value
of s that minimizes the cross-validation function providing
a compromise between the overfitting of the last panel in
Fig. 1, Note that s ¼ 0.9 leads to a slightly tighter
confidence region compared with the plot using s ¼ 1.0.
Although Fig. 2 provides little clarity to select directly from
it an appropriate value of the span, it suggests that s should
be larger than s ¼ 0.8.
In Fig. 3, we present the reconstruction of the Hubble

diagram (blue line) using the supernovae data, as well as the
respective confidence regions. The original data, as well as
their measurement errors are drawn in gray. As in the case
of Hubble parameter measurements, the results displayed
come from the LOESSþ SIMEX factory. The main differ-
ence between type Ia supernovae data and Hubble param-
eter measurements is the amount of data points available. It
is natural to expect that a large amount of data will need a
different value of the span as compared to the one chosen
for a sample such as the Hubble parameter measurements.
For supernovae we have explored s ¼ 0.025; 0.05;
0.075;…; 0.3, that is to say, we have used the
2.5%; 5%; 7.5%;…; 30% of the data to obtain the best
value of the span via cross-validation, and we have kept the
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Span s
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)

Span by Cross Validation

FIG. 2 (color online). Plot of CVðsÞ versus s for the Hubble
parameter. Good choices for s go from 0.8 until 1.0, although this
last case could produce an oversmoothed curve.
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FIG. 3 (color online). LOESS plots with different bandwidths. The gray points are the moduli distances, including uncertainties, of the
type Ia supernovae. For greater clarity of the general trend, here is not shown the blue points representing the simulated data obtained
from our LOESSþ SIMEX method; instead of that, we just show the central line that is obtained just by connecting the simulated data.
The shaded contour represents the 1σ–2σ confidence level.
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same values for λ as in the case of Hubble parameter
measurements. As we will discuss later, the best value of s
is s ¼ 0.075. In Fig. 3 we present some representative
results for which several span choices have been
considered.
From Fig. 3 we can immediately see that the trend of the

reconstructed Hubble diagram approaches the curve that
would result from a standard least-squares fit if a large

window width is used, see LOESS curves with s ¼ 0.3 and
s ¼ 0.2. However, what we would like is to have a curve as
smooth as possible that reproduces faithfully the behavior
of the data but without oversmoothing. Thus, to choose the
best value of the span turns out to be vital. From cross-
validation (see Fig. 4) we have found that as already
mentioned the best choice is s ¼ 0.075. In the plot of
CVðsÞ versus s, the region that corresponds to the best
value of s is quite broad and rather flat, thus from Fig. 4 we
can easily identify that the optimal values of s are between
s ¼ 0.075 and s ¼ 0.1. The value of s that minimizes the
cross-validation function is s ¼ 0.075. Additionally,
in Table I we present the values of the equivalent
degrees of freedom obtained from dfmod ¼ TrðSÞ and
dfmod ¼ TrðSSTÞ. In this case the sample is larger than
the one of the Hubble parameter measurements, thus the
equivalent number of parameters of the nonparametric
regression is much larger. The same reasoning as in the
case of the Hubble parameter measurements is followed for
type Ia supernovae data regarding the equivalent degrees of
freedom of the nonparametric regression: the dfmod is
larger when s is small, and dfmod is smaller when s is large.
Finally, to test the reliability and robustness of the

LOESSþ SIMEX method, in Tables II and III we present
a comparison between predictions for the measurements of
the Hubble parameter and the moduli distance from
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FIG. 4 (color online). Plot of CVðsÞ versus s for type Ia
supernovae. In this case, a good choices for s could be 0.075 or
1.0. Notice that for this data sample, the range of values of s that
miminizes the CVðsÞ function is clearly determined.

TABLE II. The 1σ confidence levels for the Hubble data. LOESSþ SIMEX: only diagonal statistical errors and s ¼ 0.9. Data fit: full
covariance matrix. Planck: joining Planck and WMAP9 CMB data (for CPL the team does not give errors on parameters, but only 95%
confidence limit values). WMAP9: joining WMAP9 with SPTþ ACT CMB data, SNLS SN, lensing, and BAO, from the parameters
table on the official website.

Data fit Planck WMAP9
z LOESSþ SIMEX CPL ΛCDM ΛCDM w ¼ const

0.18 (65.05;79.20) (53.36;105.33) (72.14;75.44) (73.90;81.37) (71.99;78.96)
0.25 (68.52;81.98) (51.73;112.68) (74.87;78.57) (75.84;84.32) (73.59;82.28)
0.3 (71.26;83.94) (52.15;118.04) (76.96;80.94) (77.38;86.57) (74.96;84.85)
0.35 (73.99;85.89) (53.55;123.48) (79.15;83.43) (79.06;88.93) (76.51;87.56)
0.4 (76.82;88.68) (55.62;129.00) (81.44;86.03) (80.86;91.40) (78.24;90.41)
0.5 (82.47;94.34) (60.86;140.28) (86.32;91.55) (84.83;96.66) (82.18;96.47)
0.75 (94.47;108.19) (76.36;169.83) (100.13;107.07) (96.67;111.52) (94.50;113.43)

TABLE III. The 1σ confidence levels for Union2.1 SN data. LOESSþ SIMEX: diagonal covariance matrix and s ¼ 0.075. Data fit:
full covariance matrix. Planck: joining Planck and WMAP9 CMB data (for CPL the team does not give errors on parameters, but only
95% confidence limit values). WMAP9: joining WMAP9 with SPTþ ACT CMB data, SNLS SN, lensing, and BAO, from the
parameters table on the official website.

Data fit Planck WMAP9
z LOESSþ SIMEX CPL ΛCDM ΛCDM w ¼ const

0.05 (35.975;37.221) (36.706;36.765) (36.740;36.742) (36.743;36.754) (36.745;36.762)
0.1 (37.671;38.911) (38.254;38.383) (38.318;38.323) (38.325;38.347) (38.327;38.361)
0.25 (39.825;41.170) (40.360;40.704) (40.497;40.511) (40.515;40.565) (40.511;40.594)
0.5 (41.612;42.924) (42.025;42.575) (42.246;42.271) (42.281;42.364) (42.258;42.406)
0.75 (42.928;44.087) (43.033;43.645) (43.306;43.341) (43.357;43.462) (43.314;43.505)
1 (43.361;44.726) (43.761;44.389) (44.069;44.112) (44.132;44.253) (44.073;44.291)
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LOESSþ SIMEX and from conventional MCMC cosmo-
logical fits by considering a specific global form of the EoS
parameter wðzÞ.
The compilation of Hubble parameter measurements

reported in [80], which we have used throughout our
analysis, is composed by three subsamples: the first one
reported in [84], the second one reported in [85], and the
third one reported in [86]. Our guess is that, probably, the
latest compilation [86] is the most reliable. So, we perform
the reconstruction of cosmic expansion with this subsam-
ple. In Table II we present the results coming from our
LOESSþ SIMEX factory by using the Hubble parameter
measurements reported in [86]. In this case, as can be seen

in Table II, the results from our proposal are much better in
comparison with the ones obtained from a standard MCMC
cosmological fit for the CPL scenario and almost as good as
the results for the ΛCDM model by adopting the Planck
and WMAP9 CMB data. For this subsample the best span
is s ¼ 0.525 and the equivalent degrees of freedom are
dfmod ¼ 2.47; the respective reconstructed curve can be
seen in Fig. 5.
The previous result leads us to think that the LOESSþ

SIMEX method is quite sensitive to the quality of the data.
To confirm our suspicion, we use the Hubble parameter
measurements recently reported by the WiggleZ Dark
Energy Survey [87]. For this sample, the optimal span
and the equivalent degrees of freedom turn out to be s ¼
0.9 and dfmod ¼ 1.41, respectively. The nonparametric
reconstruction of the cosmic expansion by using this
compilation, which can be seen in Fig. 6, together with
the results coming from type Ia supernovae data (see
Table III), allow us to conclude that the LOESSþ
SIMEX factory is a very promising approach to reconstruct
global trends in a nonparametric way if one has observa-
tional data of high quality.

IV. CONCLUSIONS

The goal of this work was to reconstruct the cosmic
expansion of the Universe in a cosmological model-
independent way through the implementation of a combi-
nation of the LOESS and SIMEX methods. The first one
allowed us to obtain smoothed curves of the general trend
via a nonparametric regression and the second one
addressed the fact that the effect of a measurement error
on a variable can be determined via simulation. In general,
we can say that our proposal, the LOESSþ SIMEX
factory, grasps successfully the global trend underlying
the data, the current HðzÞ measures, and the distance
moduli of type Ia supernovae data, taking into account not
only the observational measurements but also their error,
thus providing a faithful reconstruction of cosmic
expansion.
One of the most appealing features of our method is that

it can be a valuable technique for visualizing complex
relationships and validating models if needed. In cosmol-
ogy this feature turns out to be very convenient: since we
are interested in gaining as much information as possible
from observational data to dilucidate the nature of DE, the
LOESSþ SIMEX factory, which is a very simple method
that ignores any assumption about the relationships
between variables and cosmological quantities, could
become a very promising tool to establish trends and
clarify the functional relationship between them.
Furthermore, note that our proposal overcomes the issues
we list at the beginning of this work:
(i) it does not assume any prior or an initial guess

cosmological model and so one avoids possible biases
or not quite right assumptions;
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FIG. 5 (color online). LOESS plots with different bandwidths.
The gray points are the measurements of the Hubble parameter
including their uncertainties from [86], the green points are the
simulated data resulting from our LOESSþ SIMEXmethod. The
central green line is obtained just by connecting the dots and
represents the best fit. The shaded contour represents the 1σ–2σ
confidence level for our best fit.
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FIG. 6 (color online). LOESS plots with different bandwidths.
The gray points are the measurements of the Hubble parameter
including their uncertainties from [87], the orange points are the
simulated data resulting from our LOESSþ SIMEX method.
The central orange line is obtained just by connecting the dots and
represents the best fit. The shaded contour represents the 1σ–2σ
confidence level for our best fit.
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(ii) it allows us to have a first glance at the global trend of
data without having to resort to heavy calculations;

(iii) it presents the same efficiency along all redshift ranges
because it lets the window width vary throughout the
redshift range so that one has the same number of data
points in each fitting window, this number having been
chosen after an optimality test;

(iv) the estimation and propagation of the error can be done in
a quite direct way and the computational cost is very low.

On the other side, the exploration of this approach has also
suggested using the method as a very accurate technique for
predicting new data points through the local polynomial.
This local polynomial is obtained for each subset of data,
which is used to compute the final value of the regression
function in the corresponding estimation point, but it would
also allow us to generate new synthetic points of data where
the original sample is poor. Indeed, this feature is linked to
the value of the span s, such that to obtain mock data,
certainly choosing small values of the span s is the best
option, because in this way local trends are captured.
Even though our results are very reasonable, it can be

clearly noticed that the method is dependent on the choice
of the span (or equivalently, on the window width). In the
case of small samples, asHðzÞ data, the use of larger fitting
windows leads to more robust fits; in contrast, using
smaller fitting windows allows us to find local properties
of the trend with a larger redshift resolution. In the case of
type Ia supernovae, i.e. large samples, the contrary happens
and a lower value of the span is necessary to achieve good
results. Besides, and as expected, it can be seen that the
election of the span also introduces a bias in the results
when an appropriate value of it has not been chosen. This
issue can be faced successfully by implementing the cross-
validation method to select the optimal span and, even
though it may happen that the method provides little help
for selecting the span, it can in principle suggest an interval
of the best values of s to produce a smooth curve. Thus,
LOESSþ SIMEX along with the cross-validation method
turns out to be a self-sufficient approach in the sense that
we do not have to choose anything by hand to obtain
smooth global trends.
On the other hand, from the results presented in Tables II

and III, we have noticed that our approach is sensitive to the

quality of the data. Thus, if the data sample contains data
points of poor quality, the LOESSþ SIMEX factory will
produce smooth curves but with broad confidence regions.
Thus, one could expect that in the opposite case, that is to
say, with more data of high quality, such as the type Ia
supernovae data, our proposal could be a quite reliable tool
for reconstructing global trends of cosmological data.
Our results are meant primarily to illustrate the method

and to suggest that the LOESSþ SIMEX factory has good
prospects to reconstruct the expansion history of the
Universe. The strength of the approach relies in that it is
a model-independent and nonparametric method, and does
not assume any prior or energy contents of the Universe or
some other property related to a cosmological model.
Besides, our method allows us to draw the confidence
regions around the regression curve, and although they
seem to be broader than those one could obtain by using
other methods, we have made sure that we have not
underestimated them. Thus, we believe it offers an alter-
native way to study cosmological data in order to find
possible parametrizations that reliably describe the data
with no prior knowledge of a cosmological model.
Finally, since we are convinced that one can gain useful

information from approaches that can reconstruct the
properties of DE or the history of the expansion rate,
our next step, which we leave for future work, would be to
test the power of our method to reconstruct derived
quantities, as well as the ability of our method to discrimi-
nate between dark energy models that in principle represent
the underlying structure of the data.
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