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Recently, a novel kind of scalar wigs around Schwarzschild black holes—scalar dynamical resonance
states—was introduced in [Phys. Rev. D 84, 083008 (2011)] and [Phys. Rev. Lett. 109, 081102 (2012)]. In
this paper, we investigate the existence and evolution of Dirac dynamical resonance states. First, we look
for stationary resonance states of a Dirac field around a Schwarzchild black hole by using the Schrödinger-
like equations reduced from the Dirac equation in Schwarzschild spacetime. Then Dirac pseudostationary
configurations are constructed from the stationary resonance states. We use these configurations as initial
data and investigate their numerical evolutions and energy decay. These dynamical solutions are the so-
called “Dirac dynamical resonance states.” It is found that the energy of the Dirac dynamical resonance
states shows an exponential decay. The decay rate of energy is affected by the resonant frequency, the mass
of the Dirac field, the total angular momentum, and the spin-orbit interaction. In particular, for an ultralight
Dirac field, the corresponding particles can stay around a Schwarzschild black hole for a very long time,
even for cosmological time scales.
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I. INTRODUCTION

The “no-hair” theorem postulates that all stationary black
holes in general relativity can be completely characterized
by only three externally observable classical parameters:
the mass of the black holeM, angular momentum J, and the
electric chargeQ [1]. But it is difficult to find isolated black
holes in the real world; many people have faith that we can
get more details about black holes. Even though the no-hair
conjecture forbids any invariable, stationary field configu-
rations around the black holes, it says nothing about the
lifetime of these fields’ evolutions. One of the most famous
investigations of the properties of various fields around
black holes is the study of “quasinormal modes,” which is
derived by considering appropriate boundary conditions
[2,3]. It was argued that one can find the direct evidence of
the existence of a black hole by comparing the observa-
tional data of a gravitational wave with the quasinormal
modes from theoretical arithmetic. Furthermore, the loop
quantum gravity also supports the existence of quasinormal
modes [4,5]. But quasinormal modes are not the only kind
of field configurations that can stay around black holes for a
long time.
Recently, a new method was proposed to get long-lasting

scalar field configurations which are related to the effective
potential well in the equation of motion [6,7]. These kinds
of configurations are called “dynamical resonance states”
[7] or “quasibound states” [8], and they have complex

frequencies with the real part representing the oscillation
and the imaginary part representing the rate of decay. The
dynamical resonance states are associated with “quasinor-
mal modes” but satisfy different boundary conditions. In
Ref. [7], the authors discussed the differences among the
stationary resonances, the quasiresonances (which come
from the quasinormal modes) and the dynamical resonance
states. It was shown that both the stationary resonances and
quasiresonances are in fact nonphysical solutions because
their energy densities both diverge at the horizon. But in the
case of dynamical resonance states, the energy densities do
not diverge. Furthermore, the frequencies of oscillation of
the dynamical resonance states coincide with that of the
stationary resonances, while the decay rates coincide with
the imaginary part of the frequencies of quasiresonant
modes. To make it more perspicuous, their differences and
relations are shown in Table I. This new kind of solution
has been investigated in different types of black hole
spacetimes [8–11].
On the other hand, most investigations of fields around

a black hole mainly focus on the scalar field because of its
extensive applications in modern cosmology [12–29]. In
contrast, studies of the Dirac field around a black hole are
relatively few. The early investigations of Dirac quasinor-
mal modes were done with the Wentzel-Kramers-Brillouin
(WKB) analysis [30,31]. Then the Pöshl-Teller potential
approximation was introduced [32–34]. Although the
Dirac quasinormal modes in different black hole space-
times and the late-time evolution of the charged massive
Dirac fields have been considered [35–47], there is not any
discussion about Dirac dynamical resonance states at
present. Noting that the Dirac field has a more complex
structure and more freedoms than the scalar field, it
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motivates us to consider these questions: Do there exist
Dirac dynamical resonance states in the Schwarzschild
black hole spacetime? If they do exist, how long will they
stay around the Schwarzschild black hole? Will the spin
and charge affect the Dirac dynamical resonance states and
their lifetimes of evolution? Therefore, we pay our
attention to the Dirac dynamical resonance states in the
Schwarzschild black hole spacetime and discuss these
questions in this paper.
The arrangement for this paper is as follows. In Sec. II,

we briefly review the Dirac equation in Schwarzschild
spacetime and reduce it to a set of Schrödinger-like
equations. Then, in Sec. III, we discuss the stationary
resonance states of the Dirac field using these Schrödinger-
like equations. In Sec. IV, we construct pseudostationary
configurations from the stationary solutions and use them
as initial data to perform the numerical evolutions. Finally,
the conclusions and discussions are given in Sec. V.

II. DIRAC EQUATION IN
SCHWARZSCHILD SPACETIME

We consider a test spinor field around a Schwarzschild
black hole, which means that backreaction will not be
considered. The Dirac equation in a general spacetime is
given by

ðΓμDμ þmÞΨ ¼ 0; (1)

where m is the mass of the Dirac field and Dμ ¼ ∂μ þΩμ

represents the covariant derivative. The spin connectionΩμ is
defined by

Ωμ ¼
1

8
½γa; γb�eaνebν;μ; (2)

ebν;μ ¼ ∂μebν − Γα
μνebα: (3)

eaμ is the vierbein and satisfies ηab ¼ gμνeaμebν. In this
whole paper, we shall use the positive signature,
ηab ¼ diagð−;þ;þ;þÞ. γa are gamma matrices in flat
spacetime and satisfy fγa; γbg ¼ 2ηab. Specifically, we
choose the Dirac representation

γ0 ¼
�−iI O

O iI

�
; γi ¼

�
O −iσi
iσi O

�
. (4)

Then Γμ ¼ γaeaμ are the gamma matrices in a general
spacetime and satisfy fΓμ;Γνg ¼ 2gμν.
For the Schwarzschild spacetime, the metric can be

written as

ds2 ¼ −NðrÞdt2 þ dr2

NðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ: (5)

Here NðrÞ ¼ 1 − 2M
r with M the mass of the black hole.

This coordinate system is suitable in the exterior region
r ∈ ð2M;∞Þ. In addition, we choose the following vierbein
for convenience [30,48]:

eaμ ¼

0
BBBBB@

1ffiffiffi
N

p 0 0 0

0
ffiffiffiffi
N

p
sin θ cos ϕ cos θ cos ϕ

r − csc θ sin ϕ
r

0
ffiffiffiffi
N

p
sin θ sin ϕ cos θ sin ϕ

r
csc θ cos ϕ

r

0
ffiffiffiffi
N

p
cos θ − sin θ

r 0

1
CCCCCA.

(6)

Then, the Dirac equation (1) can be written as [31,48,49]

γ0∂tΨffiffiffiffi
N

p þ ~γ

r
N

1
4∂rðrN1

4ΨÞ − ~γ

r
ðΣ⃗ · L⃗þ 1ÞΨþmΨ ¼ 0; (7)

where Σ⃗ is defined as

Σ⃗ ¼
�

σ⃗ O

O σ⃗

�
; (8)

L⃗ is the standard angular momentum operator, and
~γ ¼ γ1 sin θ cos ϕþ γ2 sin θ sin ϕþ γ3 cos θ. Defining

Ψðt; r; θ;ϕÞ ¼ 1

rN
1
4

e−iωtΦðr; θ;ϕÞ (9)

with ω a real frequency, Eq. (7) can be simplified as

TABLE I. Differences and relations among stationary resonances, quasiresonances, and dynamical resonances.
Here ψ is the radial part of the matter field, ω is the frequency, andm is the mass of the matter field. rh is the horizon
radius and r� is the radial coordinate in the “tortoise” coordinate system. Note that for quasiresonances, the
frequency ω is complex.

r� → −∞ðr → rhÞ r� → þ∞ðr → þ∞Þ Energy

Stationary resonances ψ ∼ e−ikr� þ eikr
� ψ ∼ e−kr� divergent

(k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p
) (nonphysical)

Quasiresonances ψ ∼ e−iσr� ψ ∼ eiσr
�

divergent

(σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
) (nonphysical)

Dynamical resonances ψðr < rh þ εÞ ¼ 0 ψ ∼ e−kr� finite
(ϵ is a small positive constant) (physical)
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− iωγ0ffiffiffiffi
N

p Φþ ~γ
ffiffiffiffi
N

p ∂rΦ − ~γ

r
ðΣ⃗ · L⃗þ 1ÞΦþmΦ ¼ 0. (10)

Then Φðr; θ;ϕÞ can be separated into radial and angular
parts by defining [31,50]

Φð�Þðr; θ;ϕÞ ¼
 
iGð�ÞðrÞφð�Þ

jm ðθ;ϕÞ
Fð�ÞðrÞφð∓Þ

jm ðθ;ϕÞ

!
: (11)

The angular parts φð�Þ
jm ðθ;ϕÞ are eigenfunctions of the

operator k¼ σ⃗ ·L⃗þ1: kφð�Þ
jm ðθ;ϕÞ¼�ðjþ1=2Þφð�Þ

jm ðθ;ϕÞ.
Their explicit forms are given by

φðþÞ
jm ¼

0
BB@

ffiffiffiffiffiffiffi
jþm
2j

q
Ym−1=2
j−1=2

ffiffiffiffiffiffiffi
j−m
2j

q
Ymþ1=2
j−1=2

1
CCA; (12)

φð−Þ
jm ¼

0
BB@

ffiffiffiffiffiffiffiffiffiffiffi
jþ1−m
2jþ2

q
Ym−1=2
jþ1=2

−
ffiffiffiffiffiffiffiffiffiffiffi
jþ1þm
2jþ2

q
Ymþ1=2
jþ1=2

1
CCA. (13)

Here j is the total angular momentum quantum number and
j ∈ f1

2
; 3
2
; 5
2
; � � �g. m is the magnetic quantum number and

m ¼ −j;−jþ 1; � � � ; j. Ym�1=2
j�1=2 are the spheric harmonics

functions satisfying
R
2π
ϕ¼0

R
π
θ¼0 Y

n
l Y

n0�
l0 sin θdθdφ ¼ δll0δnn0 .

Φð�Þ are eigenfunctions of the spin-orbit operator K ¼
βðσ⃗ · L⃗þ 1Þ: KΦð�Þ ¼ κð�ÞΦð�Þ (κð�Þ ¼ �ðjþ 1=2Þ) [51].
For the (þ) case, it will be convenient to make a trans-
formation of variables [31]

�
F̂ðþÞ

ĜðþÞ

�
¼

0
B@ sin

θðþÞ
2

cos
θðþÞ
2

cos
θðþÞ
2

− sin
θðþÞ
2

1
CA�FðþÞ

GðþÞ

�
; (14)

where θðþÞ ¼ tan−1ðmr=κðþÞÞ. Similarly, for the (−) case,
we can make a transformation

�
F̂ð−Þ

Ĝð−Þ

�
¼
 
cos

θð−Þ
2

− sin
θð−Þ
2

sin
θð−Þ
2

cos
θð−Þ
2

!�
Fð−Þ

Gð−Þ

�
(15)

with θð−Þ ¼ tan−1ðmr=κð−ÞÞ. Substituting Eqs. (11), (14),
and (15) into Eq. (10) and making a transformation of
variable r,

r̂� ¼ rþ 2M ln

�
r
2M

− 1

�
þ 1

2ω
tan−1

�
mr
κ

�
; (16)

we can get the following radial equations of F̂ and Ĝ:

�
− d2

dr̂2�
þ V1

�
F̂ ¼ ω2F̂; (17)

�
− d2

dr̂2�
þ V2

�
Ĝ ¼ ω2Ĝ: (18)

The effective potentials V1 and V2 are given by

V1;2 ¼ � dW
dr̂�

þW2; (19)

where

W ¼
ffiffiffiffi
N

p ðκ2 þm2r2Þ3=2
rðκ2 þm2r2 þmκN=2ωÞ : (20)

Here the cases of (þ) and (−) have been combined, so κ
covers all positive and negative integers. As in the scalar
field case, we can get resonance states of the Dirac field by
solving these Schrödinger-like equations (17) and (18).
There are two different potentials V1 and V2, but in fact,
they are both derived from a same superpotential W
according to Eq. (19). The two potentials are called
supersymmetric partners, which will result in the same
spectra of quasinormal modes. The quasinormal modes and
stationary resonant states are related as shown in Ref. [7].
Hence, Eqs. (17) and (18) should also give the same spectra
of stationary resonance states.

III. STATIONARY RESONANCE
STATES OF DIRAC FIELD

In this section, we will look for the stationary resonant
states of the Dirac field using the Schrödinger-like equa-
tion (17). Substituting Eq. (20) into Eq. (19), the effective
potential V1 can be written as [31]

V1ðr;κ;m;ωÞ¼ ½rN1=2ðrÞðκ2þm2r2Þ3=2
þðr−1Þðκ2þm2r2Þþ3m2r3NðrÞ�

×
N1=2ðrÞðκ2þm2r2Þ3=2

r3ðκ2þm2r2þmκNðrÞ=2ωÞ2

− N3=2ðrÞðκ2þm2r2Þ5=2
r3ðκ2þm2r2þmκNðrÞ=2ωÞ3

× ½2rðκ2þm2r2Þþ2m2r3þmκðr−1Þ=ω�:
(21)

Obviously, the potential depends not only on the mass
of field m, but also on the parameter κ related to the spin-
orbit interaction and the frequency ω. The behavior of the
effective potential has been analyzed in detail in Refs. [30]
and [31]. As analyzed, for small values of m, the potential
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behaves as a barrier and its asymptotic value when r
approaches infinity is

V1ðr → ∞Þ ¼ m2: (22)

On the other hand, for fixed m and ω, the peak of the
potential will increase with jκj. Taking the limit jκj → ∞,
we can get

V1ðjκj → ∞Þ ≈ NðrÞκ2
r2

; (23)

which has the maximum value κ2

27M2 at r ¼ 3M. Particularly,
if we fixm, ω, and the value of jκj, the peak of the potential
will be higher in the case with negative κ. This behavior
leads to interesting results which we will show in the
following sections. Finally, we consider the dependence of
the potential on the frequency ω. We will see later that all
the values of frequency ω we concern are within a small
region near the mass m. Thus, the frequency ω does not
change the general behavior of the potential within our
consideration in this paper.
As in the scalar case [6], it is also possible to have

resonance states when ω lies in the “resonance band,” i.e.,
Vmin
1 < ω2 < fVmax

1 ; m2g (The states with ω lying outside
the “resonance band” are not within our consideration
because initial data constructed from them typically have
much shorter lifetime). To find the resonance band, we need
to get the extremities of the potential. But it is difficult to
solve the equation ∂rV1ðrÞ ¼ 0 analytically. And noting
that, the effective potential also depends on ω. Thus, we
perform a numerical analysis and show the resonance band
for some values of κ in Fig. 1. Note that κ goes over all the
positive and negative integers, and the frequency ω covers
all real numbers. As discussed in the previous section, there
are two solutions for Eq. (10), labeled as (þ) and (−),
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FIG. 1 (color online). Resonance band for positive ω and
different values of κ.
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FIG. 2. Resonant frequencies for Mm ¼ 0.15. κ is taken to be
þ1 (upper plot) and −1 (lower plot). Aout and Ain are the
maximum values of the amplitude of F̂ for r̂�=M < 0 and
r̂�=M > 10, respectively.
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respectively, which are related to spin-orbit interaction. On
the other hand, the negative ω will lead to negative energy
related to antiparticle states. However, it is easy to find from
Eq. (19) that if we change both the signs of κ and ω, the
potential V1 will remain unchanged. Thus, we just need to
discuss two cases: Mωκ > 0 and Mωκ < 0.
Figure 1 shows the resonance band for κ ¼ �1, κ ¼ �2,

and κ ¼ �3, where we have chosen ω > 0. It is shown that
the cutoff of Mm increases with the growth of jκj. For the
same value of jκj, the cutoff of Mm is larger for the case
with negative κ. And the resonance region of ω becomes
narrower and narrower when Mm approaches 0.
Now, we can solve Eq. (17) [or Eq. (18)] numerically to

find the resonance spectra. Following the analysis in
Ref. [6], we choose appropriate boundary conditions to
ensure that F̂ is real and decays exponentially at large r. As
in the scalar case, for some discrete frequencies ω, the
amplitude for r̂�=M < 0 is much smaller than the ampli-
tude in the potential well. These discrete frequencies are
called resonant frequencies. Figure 2 shows the ratio
Aout=Ain, where Aout and Ain are the maximum values of
the amplitude of F̂ for r̂�=M < 0 and r̂�=M > 10, respec-
tively. It is easy to find that the resonant frequencies
become closer and closer to each other when ω approaches
m. We find an interesting result that the resonant spectra of
the cases with the same m and jκj are almost the same,
except for the first resonant frequency of the one with
positive κ (see Table II).

IV. NUMERICAL EVOLUTION OF THE DIRAC
RESONANCE CONFIGURATIONS

A. Initial data

As discussed in Refs. [6,7], the stationary solutions are
indeed nonphysical, because they have divergent energy
due to their oscillatory behavior close to the horizon. And
the ingoing and outgoing modes of these solutions have the
same amplitude close to the horizon, which implies that any

Dirac particles falling into the black hole are compensated
by the Dirac particles escaping from the horizon. This is
also nonphysical. However, we can construct physical
configurations, the so-called “pseudostationary configura-
tions,” which are very close to the stationary solutions. It is
done by truncating the rapid oscillatory parts near the
horizon of the stationary solutions and set them to zero by
hand. Then the configurations we obtain have regular
behavior close to the horizon. They can be seen as a
combination of the stationary solutions and perturbations
around the horizon (for more specific discussions,
see Ref. [6]).
Substituting Eqs. (11) and (12) into Eq. (10), we obtain

two coupled first-order equations [the (þ) and (−) cases
have been combined and κ covers all positive and negative
integers as mentioned before]

ðm − ωN−1
2ðrÞÞG ¼

�
N

1
2ðrÞ∂r þ

κ

r

�
F; (24)

ðmþ ωN−1
2ðrÞÞF ¼

�
N

1
2ðrÞ∂r − κ

r

�
G: (25)

Note that when r → þ∞, the above equations will become

ðm − ωÞG ¼ ∂rF; ðmþ ωÞF ¼ ∂rG; (26)

which can be rewritten as

∂2
rG ¼ ðm2 − ω2ÞG; F ¼ 1

mþ ω
∂rG: (27)

Obviously, when r → þ∞, G → e−kωr, and F →

− ffiffiffiffiffiffiffiffim−ω
mþω

p
e−kωr with kω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p
. In order to get the

initial data we need, i.e., the pseudostationary initial data,
we first solve Eqs. (24) and (25) in the region ½Rin ¼
2M þ ϵ; Rout� with ε≲ 0.05M. Then we rescale the sol-
ution so that jGðRinÞj ¼ 1. Finally, we set G and F to 0 for
r < Rin. Note that if we change both the signs of ω and κ in
Eqs. (24) and (25) and exchange F andG, the solutions will
remain unchanged. So we just need to consider two cases as
mentioned before: Mωκ > 0 and Mωκ < 0.

B. Numerical evolution

There are two kinds of initial data when ω lies in the
resonance band: pseudostationary configurations con-
structed from resonant stationary states and configurations
constructed from nonresonant stationary states. We will
concentrate on the first kind, because those configurations
can last longer in the potential well. As in the scalar
case, we perform the numerical evolution in the ingoing
Eddington-Finkelstein coordinates which can cover the
region in the event horizon, so that we do not need to
impose the left boundary conditions. In these coordinates,

TABLE II. Resonant frequencies Mω for different masses of
the Dirac field Mm. We can find that for the same Mm, the
second resonant frequency of the case κ ¼ 1 is very close to the
first resonant frequency of the case κ ¼ −1. Thence, the two
cases almost have the same resonant spectra.

Mm 0.10 0.15 0.20

n ¼ 1 κ ¼ þ1 0.0995079 0.1481772 0.1950961
κ ¼ −1 0.0998728 0.1495600 0.1989210

n ¼ 2 κ ¼ þ1 0.0998750 0.1495518 0.1988426
κ ¼ −1 0.0999437 0.1498060 0.1995276

n ¼ 3 κ ¼ þ1 0.0999443 0.1498038 0.1995059
κ ¼ −1 0.0999684 0.1498920 0.1997373

n ¼ 4 κ ¼ þ1 0.0999687 0.1498907 0.1997284
κ ¼ −1 0.0999798 0.1499310 0.1998333

n ¼ 5 κ ¼ þ1 0.0999800 0.1499305 0.1998287
κ ¼ −1 0.0999860 0.1499520 0.1998849

DIRAC DYNAMICAL RESONANCE STATES AROUND … PHYSICAL REVIEW D 89, 043006 (2014)

043006-5



ds2 ¼ −ð1 − ΔÞdt̄2 þ 2Δdt̄dr

þ ð1þ ΔÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; (28)

where Δ ¼ 2M
r and t̄ ≔ tþ 2M lnðr=2M − 1Þ. This

coordinate system can cover the region r ∈ ð0;∞Þ and
for a fixed radial coordinate r, the Schwarzschild
and Eddington-Finkelstein times can be considered equiv-
alent: Δt ¼ Δt̄. So we drop the bar on the Eddington-
Finkelstein time in the following discussion. To be
compatible with the Eddington-Finkelstein metric, we
introduce the vierbein

eaμ ¼

0
BBBBBBBBB@

ffiffiffiffiffiffiffiffiffiffiffi
1þΔ

p − Δffiffiffiffiffiffiffi
1þΔ

p 0 0

0 sin θ cos ϕffiffiffiffiffiffiffi
1þΔ

p cos θ cos ϕ
r − csc θ sin ϕ

r

0 sin θ sin ϕffiffiffiffiffiffiffi
1þΔ

p cos θ sin ϕ
r

csc θ cos ϕ
r

0 cos θffiffiffiffiffiffiffi
1þΔ

p − sin θ
r 0

1
CCCCCCCCCA
. (29)

Then Eq. (1) can be written as

γ0
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Δ

p ∂tΨþ ~γ − Δγ0

rð1þ ΔÞ14 ∂r

�
r

ð1þ ΔÞ14 Ψ
�

þ Δγ0

2r
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Δ

p Ψ − ~γ

r
ðΣ⃗ · L⃗þ 1ÞΨþmΨ ¼ 0: (30)

Introducing a new decomposition

Ψðt; r; θ;ϕÞ ¼ ð1þ ΔÞ14
r

~Φðt; r; θ;ϕÞ; (31)

~Φðt; r; θ;ϕÞ ¼
 
i ~Gð�Þðt; rÞφð�Þ

jm ðθ;ϕÞ
~Fð�Þðt; rÞφð∓Þ

jm ðθ;ϕÞ

!
; (32)

Eq. (30) reduces to the following two coupled first-order
equations:� ffiffiffiffiffiffiffiffiffiffiffiffi

1þ Δ
p ∂t − Δffiffiffiffiffiffiffiffiffiffiffiffi

1þ Δ
p ∂r þ

Δ
2r

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Δ

p þ im

�
~G

¼ i

�
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ Δ
p ∂r þ

κ

r

�
~F; (33)

� ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Δ

p ∂t − Δffiffiffiffiffiffiffiffiffiffiffiffi
1þ Δ

p ∂r þ
Δ

2r
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Δ

p − im

�
~F

¼ i

�
− 1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ Δ
p ∂r þ

κ

r

�
~G: (34)

Here we have combined the cases (þ) and (−) and
κ ¼ �1;�2;�3; � � �. Obviously, ~Gðt; rÞ and ~Fðt; rÞ should
be complex functions and can be decomposed into real
parts and imaginary parts: ~Gðt; rÞ ¼ GRðt; rÞ þ iGIðt; rÞ
and ~Fðt; rÞ ¼ FRðt; rÞ þ iFIðt; rÞ. Then we can obtain four
real equations:

ÂGR −mGI ¼ −B̂þFI; ÂGI þmGR ¼ B̂þFR; (35)

ÂFR þmFI ¼ B̂−GI; ÂFI −mFR ¼ −B̂−GR; (36)

where Â ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Δ

p ∂t − Δffiffiffiffiffiffiffi
1þΔ

p ∂r þ Δ
2r
ffiffiffiffiffiffiffi
1þΔ

p and B̂� ¼
1ffiffiffiffiffiffiffi
1þΔ

p ∂r � κ
r.

To solve Eqs. (35) and (36), we need initial data and right
boundary conditions forGR,GI , FR, and FI . We suppose ~G
and ~F are both real at t ¼ 0 (this can be done by choosing
a special phase without loss of generality), and their real
parts equal to the pseudostationary states as discussed
before. A typical example of initial configurations is shown
in Fig. 3. Then we impose the maximally dissipative
boundary conditions [52]: GRðRoutÞ − FIðRoutÞ ¼ 0 and
GIðRoutÞ þ FRðRoutÞ ¼ 0. Finally, with these initial data
and boundary conditions, we solve Eqs. (35) and (36)
numerically using fourth-order finite differences in space,
and evolving in time using an explicit embedded Runge-
Kutta Prince-Dormand (8, 9) method.
Similar to that in Ref. [6], we also define the energy of

the Dirac field

1 5 10 50 100 500 1000
r M0

2

4

6

GR

1 5 10 50 100 500 1000
r M

0.5

0.0

0.5

1.0

1.5

2.0

FR

FIG. 3. Initial configurations of the pseudoresonant state with
Mm ¼ 0.15, κ ¼ 1, and n ¼ 1.
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E ¼
Z
Σ
kμ0Tμνnν

ffiffiffi
γ

p
dΣ; (37)

where kμ0 ¼ ∂t is a Killing vector field, nν is the normal
vector of the three-dimensional spacelike hypersurface
Σ ¼ ft ¼ constantg, and

ffiffiffi
γ

p
dΣ is the volume element

on Σ. For more details, refer to Ref. [6]. Tμν is the
energy-momentum tensor of the Dirac field. Note that
the Lagrangian density of the Dirac field is

LDirac ¼ − 1

2
Ψ̄ΓμD

⟷

μΨ −mΨ̄Ψ: (38)

Here Ψ̄ ¼ iΨ†γ0 and Ψ̄ΓμD
⟷

μΨ ¼ Ψ̄ΓμDμΨ − Ψ̄D
⃮

μΓμΨ
with Ψ̄D

⃮

μ ¼ ∂μΨ̄ − Ψ̄Ωμ. Hence, the energy-momentum
tensor Tμν can be written as [53]

Tμν ¼
1

4
ðΨ̄ΓμD

⟷

νΨþ Ψ̄ΓνD
⟷

μΨÞ − gμνLDirac; (39)

and the energy of a state with a specific “spin-orbit
interaction quantum number” κ and magnetic quantum
number m (we should distinguish the “m” here with the
mass of the Dirac field) Eκm is given by

Eκm ¼
Z

∞

2M
ρEdr; (40)

where

ρE ¼ ð1þ ΔÞ
�
ð∂tGRGI −GR∂tGI þ ∂tFRFI − FR∂tFIÞ

þ Δ
2
ðFR∂tGR þ FI∂tGI −GR∂tFR −GI∂tFIÞ

�

− Δ
2
ð∂rGRGI −GR∂rGI þ ∂rFRFI − FR∂rFIÞ

− Δ2

2
ðFR∂rGR þ FI∂rGI −GR∂rFR −GI∂rFIÞ:

(41)

First we focus on the evolution of the pseudoresonant
initial data whose frequencies are given in Table II. Some of
our results are shown in Fig. 4 and Fig. 5. We can find that
for the same κ and Mm, the evolution lasts longer for the
case with a larger resonant frequency. At the same time, for
the same κ and the same ordinal number n of the resonant
frequencies, the evolution with a smaller mass Mm lasts
longer. Similar conclusions can be seen in the scalar case,
but when we consider the effect of the parameter κ, we get
some interesting results. For the same value of jκj and other
parameters, the evolution of the case with negative κ lasts
much longer than the one of the case with positive κ. This
can be explained by the analysis of the effective potential as
mentioned before. For the sameMm, n, and jκj, the peak of
potential is higher in the case with negative κ. Thus, it is

more difficult for particles in the potential well to tunnel
through the potential barrier and fall into the black hole. As
we know, the sign of κ is related to the spin-orbit
interaction. For positive κ, κ ¼ jþ 1

2
, and for negative κ,

κ ¼ −ðjþ 1
2
Þ. Obviously, the sign of κ could represent the

different ways of spin-orbit interaction for a same j. Thus,
the above discuss implies that the way of spin-orbit
interaction of Dirac particles affects their evolution around
a black hole, even if the black hole does not contain any
charge. The value of jκj also affects the duration of
evolution. Figure 6 shows the evolutions of the first
resonant mode with the same mass Mm ¼ 0.20 but differ-
ent jκj. We can find that for bigger jκj, the evolution lasts
much longer, which means that the Dirac particles with a
larger total angular momentum will be more likely to stay
around a Schwarzschild black hole.
Our results show that the energy decays exponentially as

expected: E ¼ E0 expð−st=MÞ. Performing a linear fit of
lnðE=E0Þ, we can obtain the parameter s. The results are
shown in Table III. Here we should note that if we change

0 1.0 104 2.0 104 3.0 104

1.00

0.50

0.30

0.70

t M

E
E

0

n 3
n 2
n 1

0 5.0 104 1.0 105 1.5 105 2.0 105

0.992

0.994

0.996

0.998

1.

t M

E
E

0

n 3
n 2
n 1

FIG. 4. Energy of the Dirac field for the evolution of pseudore-
sonant initial data with Mm ¼ 0.15, jκj ¼ 1, and different
resonance modes (n ¼ 1, 2, 3). The upper figure shows the case
with positive κ and the lower one shows the case with negative κ.
We can find that the evolution lasts longer for a bigger n, and for
the same resonant mode, the time of evolution lasts much longer
in the case with negative κ.
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both the signs of ω and κ for initial data, Eqs. (35) and (36)
will give different solutions, but we find that the parameter
s still remains unchanged. So we only consider two cases:
Mωκ > 0 and Mωκ < 0.
To understand more details of the process of evolution,

we perform a spectral analysis as in Ref. [6]. We calculate
the discrete Fourier transform in the time of the Dirac field
at a fixed point rj. The magnitude of the discrete Fourier
transform is

F½ ~GðtÞ�ðfÞ ≔
����AX

p

~Gðtp; rjÞ expð−2πiftpÞ
����; (42)

where A is a normalization constant and tp are the discrete
time values. Note that we can also perform the discrete
Fourier transform on ~F, which will give the same results.
The results for different initial data with κ ¼ 1 and Mm ¼
0.15 are shown in Fig. 7. We can find that there exist clear
peaks at different resonant frequencies. Similar conclusions
can be seen in the scalar case Ref. [6]. The upper figure in

Fig. 7 shows the case of pseudoresonant initial data with
Mω ¼ 0.1481772 corresponding to the first pseudoreso-
nant mode. We can see a clear peak near the first resonant
frequency. The lower figure in Fig. 7 shows the case of
nonresonant initial data with Mω ¼ 0.1486650, which is
between the first and second resonant frequencies. We can
see two comparable peaks near the first and second
resonant frequencies. Furthermore, in both cases there
exist small peaks near other resonant frequencies. These
analyses imply that the nonresonant states will evolve as a
combination of resonant states after a very shot time. This
can also be seen from the energy of the Dirac field for the
evolution of nonresonant initial data (see Fig. 8). It is
obvious that there are three stages through the evolution:
(a) the energy falls off quickly in a very short time, (b) then
it decays exponentially for a long time, and (c) finally, it
turns into a state of power-law damping. The last stage is
the so-called power-law tail behavior at very late time
[29,35]. This process is very similar to the one in the Dirac
quasinormal mode [35]. For the scalar case, the authors of
Ref. [7] investigated and showed the relations between the
scalar stationary resonances, quasinormal modes, and the
dynamical resonance states. One can see that the scalar
dynamical resonance states naturally yield a similar role to
the quasinormal modes. Similar conclusions may apply to

0 5.0 103 1.0 104 1.5 104 2.0 104

1.00

0.50

0.20

0.30

0.70

t M

E
E

0

M m 0.20
M m 0.15
M m 0.10

0 5.0 104 1.0 105 1.5 105 2.0 105
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0.94

0.96

0.98

1.

t M

E
E

0

M m 0.20
M m 0.15
M m 0.10

FIG. 5. Energy of the Dirac field for the evolution of pseudore-
sonant initial data with jκj ¼ 1, n ¼ 1, and different values of
Mm. The upper figure shows the case with positive κ and the
lower one shows the case with negative κ. We can find that the
evolution lasts longer for a smaller mass Mm. And for the same
mass Mm, the evolution lasts much longer in the case with
negative κ.

0 1.0 103 2.0 103 3.0 103 4.0 104 5.0 103

0.05

0.10

0.20

0.50

1.00

t M

E
E

0

2
1

FIG. 6. Energy of the Dirac field for the evolution of pseudore-
sonant initial data with Mm ¼ 0.20, n ¼ 1, and different values
of jκj. It is obvious that the evolution with a bigger value of jκj
lasts much longer.

TABLE III. The slope s of a linear fit of lnðEðtÞ=E0Þ with
different Mm and n. Here we set jκj ¼ 1 and only consider two
cases: Mωκ > 0 and Mωκ < 0.

Mm 0.10 0.15 0.20

Mωκ > 0
n ¼ 1 5.6 × 10−6 1.4 × 10−4 1.6 × 10−3
n ¼ 2 7.8 × 10−7 1.9 × 10−5 2.1 × 10−4
n ¼ 3 2.0 × 10−7 5.9 × 10−6 6.0 × 10−5

Mωκ < 0
n ¼ 1 3.4 × 10−9 9.3 × 10−8 1.7 × 10−6
n ¼ 2 1.1 × 10−9 3.3 × 10−8 6.4 × 10−7
n ¼ 3 4.9 × 10−10 1.4 × 10−8 2.8 × 10−7
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the Dirac field, which needs to be discussed in detail in
future works.
At last, we consider the half-life time of the Dirac

dynamical resonance states. It is defined as
t1=2 ¼ lnð2ÞM=s. For a Schwarzschild black hole with
mass M ¼ 108M⨀, the Dirac dynamical resonance state
with s ¼ 4.9 × 10−10 (which corresponds to jκj ¼ 1,
Mm ¼ 0.1, n ¼ 3, and Mωκ < 0), t1=2 will reach 44000
years. Note that the half-life time will increase with
decreasing Mm. In Ref. [6], the authors argued that if
we consider an ultralight scalar field, the evolution could
last for cosmological time scales. In the Dirac case, the
parameter s also decreases with decreasing Mm. Thus for
the ultralight Dirac field, particles can stay in the potential
well for a long time, even for cosmological time scales. In
addition, we find the parameters κ and ω also affect the
lifetime of evolution, i.e., the parameter s decreases with
increasing jκj; and for the same values of jκj and jωj, the
parameter s in the case κω < 0 is much smaller.

V. CONCLUSION AND DISCUSSION

In this paper, we have investigated the Dirac dynamical
resonance states and their evolutions around a
Schwarzschild black hole by the numerical method.
First, we considered the Dirac equation in the
Schwarzschild black hole spacetime and obtained two
Schrödinger-like equations, which we used to investigate
the behavior of the Dirac field around the black hole. The
corresponding two effective potentials are supersymmetric
partners; hence, the spectra are of the same. Each effective
potential V depends on three parameters: the mass of the
Dirac field m, the parameter κ associated with spin-orbit
interaction, and the oscillating frequency ω. Here κ goes
over all positive and negative integers. We found that
there exists a “potential well” in the effective potential
for some special parameters, and resonant states appear
when the frequency ω lies in the resonance band, i.e.,
Vmin < ω2 < minfVmax; m2g. However, the specific form
of the effect potential V is so complex that it is difficult to
solve the equation ∂rVðrÞ ¼ 0 analytically to obtain the
extremum of the potential. At the same time, V depends on
ω. Thus, we looked for the resonance band by the
numerical method and showed our results in Fig. 1. We
found that the cutoff of Mm increases with jκj and is larger
when κ < 0. And the resonance region of ω becomes
narrower and narrower when Mm approaches 0.
Then we solved the Schrödinger-like equation (17)

numerically to obtain the resonant frequencies for different
parameters. The results were shown in Fig. 2 and Table II.
There seem to always exist infinite numbers of resonant
states because when Mω → Mm, the resonant frequencies
become closer and closer to each other. The resonant
spectra are almost the same for the same value of jκj,
except for the first resonant frequency of the case with
positive κ.
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FIG. 7. Discrete Fourier transform in time for the evolution of
different initial data: pseudoresonant initial data (upper plot) and
nonresonant initial data (lower plot). Here we have chosen κ ¼ 1
and Mm ¼ 0.15. For the upper figure, Mω is set to 0.1481772
corresponding to the first pseudoresonant mode. For the lower
figure, Mω is set to 0.1486650 as a comparison. The overlay
figures show more details of the region near the first peak. The
dashed vertical lines in the overlay figures denote the first five
resonant frequencies.
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FIG. 8. Energy of the Dirac field for the evolution of nonreso-
nant initial data with κ ¼ 1, Mm ¼ 0.15, and Mω ¼ 0.1486650.
The overlay figure shows more details of the early evolution.
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Using these stationary resonant solutions, we con-
structed the configurations of the Dirac dynamical reso-
nance states as initial data, and investigated their evolutions
and energy decay. The results were shown in Figs. 4, 5, and
6. As in the scalar case, the energy of the Dirac dynamical
resonance states shows an exponential decay. For the same
κ and Mm, when the resonant frequency Mωn → Mm, the
evolution lasts longer. On the other hand, the lifetime of
evolution increases with decreasing Mm. The effect of κ is
very interesting. The lifetime of evolution increases with jκj
and if we consider the same Mm, n, and jκj, the evolution
lasts much longer when κ < 0. The reason is obvious if we
consider the effect of κ on the effective potential V1 (21).
As mentioned before, the peak of potential increases with
the value of jκj and for the sameMm, n, and jκj, the peak of
potential will be higher in the case with negative κ. As the
potential barrier becomes higher, it will be more difficult
for particles in the potential well to tunnel through the
potential barrier. So they can stay longer around a black
hole. The value of jκj is related to the total angular
momentum number j and the sign of κ could represent
the way of spin-orbit interaction. This implies that not only
the total angular momentum, but also the way of spin-orbit
interaction of Dirac particle affects the lifetime of its
evolution around a black hole, even if the black hole is
an uncharged black hole. The lifetime of evolution can be
described by a parameter s which can be obtained by a
linear fit of lnðE=E0Þ as the function of t=M. The results
were shown in Table III. It is worth noting that, in Ref. [36],
A. Lasenby, C. Doran, J. Pritchard, A. Caceres, and S.
Dolan have discussed the decay of a very similar kind of
Dirac mode. In [54], a good agreement was found on the
numerical results. The possible relation will be discussed
further in other place.
For the nonresonant initial data, the behavior of evolu-

tion could be treated as a combination of evolutions of
different pseudoresonant initial data after a very short time.
There are three stages in the evolution. At the first stage, the
energy falls off very quickly in a very short time. At the
second stage, the energy decays exponentially for a along

time. Finally at the last stage, the energy goes through a
power-law damping at very late time, which is called the
power-law tail behavior [35]. Then we considered the half-
life time of the Dirac dynamical resonance states and got the
similar conclusion as in the scalar case: for the ultralight
Dirac field, particles can stay around a Schwarzschild black
hole for a very long time, even for cosmological time scales.
Inaddition, considering theeffect ofκ, the resultwill bemuch
richer. In fact, according to Ref. [7], the scalar dynamical
resonance states can be described by a state with complex
frequency: the real part of the frequency is the samewith the
frequency of the stationary resonance and the imaginary part
is related to the quasinormal mode and represents the rate of
decay. We suppose it would also apply to the Dirac case and
will discuss this in detail in future works.
There are still some questions. First, in this paper we just

considered a test Dirac field in the Schwarzschild spacetime,
if the back reaction is also considered, we should get more
interesting results. Second, the more realistic black holes are
Kerr black holes, so we should investigate the Dirac
dynamical resonance states around Kerr black holes in our
futureworks. Lastly,we can also consider the coupling of the
Dirac field and scalar field in a black hole spacetime.
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