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Within the context of the concordance model of cosmology we test the consistency of the angular power
spectrum data from WMAP and Planck looking for possible systematics. The best fit concordance model to
each observation is used as a mean function along with a Crossing function with an orthogonal basis to fit the
data from the other observation searching for any possible deviation. We report that allowing an overall
amplitude shift in the observed angular power spectra of the two observations, the best fit mean function from
Planck data is consistent with WMAP 9-year data but the best fit mean function generated from WMAP-9 data
is not consistent with Planck data at the 3¢ level. This is an expected result when there is no clear systematic/
tension between two observations and one of them has a considerably higher precision. We conclude that there
is no clear tension between Planck and WMAP 9-year angular power spectrum data from a statistical point of
view (allowing the overall amplitude shift). Our result highlights the fact that while the angular power
spectrum from cosmic microwave background observations is a function of various cosmological parameters,
comparing individual parameters might be misleading in the presence of cosmographic degeneracies. Another
main result of our analysis is the importance of the overall amplitudes of the observed spectra from Planck and
WMAP observations. Fixing the amplitudes at their reported values results in an unresolvable tension between

the two observations at more than 3o level which can be a hint towards a serious systematic.
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I. INTRODUCTION

Cosmological observations, in particular the data from
cosmic microwave background (CMB), have been providing
us knowledge of the history and constituents of the Universe
since the cosmic background explorer survey. Over time we
have been able to constrain our knowledge of the early
Universe with increasing precision. Two full sky satellite
surveys of CMB, the Wilkinson microwave anisotropy probe
(WMAP) [1] and Planck [2,3], have released their data very
recently (last release of WMAP data and first release of
Planck data). As the most precise CMB observation, Planck
has modified the derived cosmological parameters that we
had obtained from the WMAP and other CMB surveys
including the Atacama Cosmology Telescope [4] and the
South Pole Telescope [5]. Surprisingly, within the same
framework of the standard concordance ACDM model, we
find that the values of some of the key cosmological
parameters derived from Planck data are significantly differ-
ent than the derived values from earlier CMB observations.
For example, the values of the Hubble parameter H(, and the
dark energy density are found to be considerably less from
Planck data compared to the values reported by WMAP. Two
questions immediately arise from these differences: first,
whether Planck or earlier CMB observations have some
unknown systematic thatis reflected in their reported angular

fdhiraj @apctp.org
arman @apctp.org

1550-7998/2014/89(4)/043004(8)

043004-1

PACS numbers: 98.70.Vc, 98.80.Es

power spectra, and second, whether the standard concord-
ance ACDM model is a suitable and flexible model to explain
different CMB data for large multipoles. In our two paper
series we will try to address these two questions. We address
the consistency of the concordance model of cosmology with
Planck data in the other paper of this series [6]. In this paper
we analyze and compare the reported angular power spectra
from WMAP and Planck surveys, to search for any signifi-
cant deviation.

We should note that looking at individual cosmological
parameters cannot trivially imply inconsistency between
the two observations. This is basically due to the fact that
the standard six cosmological parameters of the concord-
ance model are highly degenerate and not orthogonal. In
this paper we use Crossing statistic and its Bayesian
interpretation [7-10] to compare the two data sets in the
context of the standard model and independent of the
individual cosmological parameters. The best fit model to
each observation is used as a mean function along with a
Crossing function to fit the data from the other observation.
This allows different smooth variations around a given
mean function, allowing us to check whether we can
improve the fit to the other data. We have used
Chebyshev polynomials as the Crossing function, as used
before in a different context [10]. In fact Chebyshev
polynomials have properties of orthogonality and conver-
gence which make them appropriate as a Crossing function
for smooth mean functions. Using the Crossing statistic, the
consistency of the two data sets can be checked and it can be
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addressed whether, between the data sets, there lies unknown
systematic effects. This paper is organized as follows. In
Sec. II we shall describe in detail the framework of the
comparison using the Crossing statistic. In Sec. III we
provide our results and sketch the conclusions.

II. FORMALISM

In this section we shall briefly discuss the Crossing
statistic and how we use the method to compare two
observations. The Crossing statistic was first proposed in
[7] followed by its Bayesian interpretation [8] and was
subsequently used in [9,10] for reconstruction of the
expansion history and in searching for systematics in data
from supernovae and galaxy clusters. The main idea behind
the Crossing statistic is that given data based on an actual
fiducial model and taking a proposed model, the actual
model (hence the data) and the proposed model will cross
each other at 1 — N points. In the Bayesian interpretation of
the Crossing statistic, one can argue that two different
models become virtually indistinguishable if one of them
is multiplied by a suitable function. The coefficients of this
function constitute the Crossing hyperparameters and the
functions themselves will be called Crossing functions
following [8]. A Bayesian interpretation of the Crossing
statistic can be used to test consistency of a proposed model
and a given data set without comparing the proposed model
to any other model. In [10] the Crossing statistic has been
used to compare two different data sets, searching for
possible systematics, and in this paper we will follow a
similar approach. Similar to [10] we use Chebyshev poly-
nomials of different orders as Crossing functions and we
multiply them to a given mean function to fit a data set. If
the given mean function is an appropriate choice to express
the data, the Crossing hyperparameters (coefficients of the
Chebyshev polynomials) would all be consistent with their
fiducial values. This basically means that the given mean
function does not need any significant modification to fit
the data better. However, if the best fit derived Crossing
hyperparameters deviate significantly from zero, then one
can conclude that the given mean function does not express
the data well and including some modifications from the
Crossing function will improve the fit to the data significantly.
The power and accuracy of the method has been shown in
previous publications—it can be used for various purposes
including regression and searching for systematics.

In this paper we consider two data sets,! namely WMAP
9-year and Planck CMB data and we perform our analysis
in the framework of the standard ACDM model as a pool of
mean functions. To test the consistency of the two data sets
our algorithm is as follows:

'Here, by CMB data set we refer to the derived angular power
spectrum from the corresponding survey. On the map level the
coherence of WMAP-9 and Planck data were investigated in
Ref. [11].
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(1) First we fit one of the data sets, let us say Planck data

assuming the standard concordance model. We call
: TT
this best fit model C;'|, ., fi¢ pranck-

(2) Then we assume a Crossing function and multiply it

TT TT
bY Cp' |est fit planck 10 26t Cp |nodified

C;T modified = C;T |best fit model
X Tn(Co, Cy, Cy, ..., Cy, 6). (1)

In this work we use Chebyshev polynomials of
different orders as Crossing functions,

Ty(Co. C1. Cy.x) = Co 4 Crx + G(2¢* — 1), (2)

Tiui(Co, C1, C, C3,x) = Co+ Cix + Co(2x* — 1)
+ C3(4x> — 3x), 3)

T (Cy, Cy1. Cy, Cy, Cy, x)
= Cy+ Cix + C(2x*> — 1) + C5(4x* — 3x)
+ Cy(8x* — 8x% + 1), )

where in our case, x =/l and . is the
maximum multipole moment covered by the survey
(the maximum multipole covered by whichever survey
that has the broader range). To have an idea how
Crossing functions perform, one can look at the effects
of different hyperparameters. Considering Chebyshev
polynomials as the Crossing function, C, clearly
affects the overall amplitudes and shifts the mean
function up and down. C; adds a tilt to the mean
function and C, and higher order coefficients allow
long range fluctuations with increasing frequencies.
The Crossing function can have different forms, but
considering the shape of the data and our expectations
that the angular power spectrum should exhibit
smooth behavior in the context of the concordance
model, we expect Chebyshev polynomials of the first
kind will perform satisfactorily. In this regard one can
find some detailed discussions in [8].

It will be explained in the results section that we use
Chebyshev polynomials only up to fourth order.
Because of convergence of the results there is usually
no need to go to the higher orders. One can use higher
orders of Chebyshev polynomials but this would
introduce more degrees of freedom, larger confidence
limits that eventually restrict us from distinguishing
between cases.

(3) Now we fit CJT|N ... to WMAP 9-year data

and derive the confidence limits of the Crossing
hyperparameters C, Cy, Cs, ....., Cy. These coeffi-
cients of the Chebyshev polynomials (Crossing
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hyperparameters) perform as discriminators between
true and false models. Equation (1) generates many
sample models, all based on the given mean function
and each Cy, C,, ....., Cy set produces variation with
a particular likelihood fitting the data. This like-
lihood represents the “probability of a particular
variation given the data”” lo and 20 contours
represent 68% and 95% confidence limits. As an
example, in case of considering T, any point (in the
marginalized C; — C, hyperparameter space) within
20 probability contour, represents a variation that
given this variation, the probability of the observed
data would be more than 5%. Now, depending on
where the Cy = 1, C;_y = 0 point stands (which is
the variation associated to the mean function with no
change) in comparison to the N-dimensional con-
fidence ball, one can state whether the given mean
function can express the data to a given significance.
Let us recall that this mean function is the best fit
model to the other data set.

As we have stated previously C}T|best fit mode 1S the best
fit TT angular power spectra obtained from fitting a
particular data set (say, Planck or WMAP). For a particular
data set this mean function is fixed as the parameters €,
Qcpm»> Hy, and 7 along with Ag and ng are fixed to their best
fit values.” While fitting the CTT| .. to the other data set
we perform Markov chain Monte Carlo (MCMC) analysis
to put constraints on the Crossing hyperparameters. For
MCMC we have used the publicly available software
CosMOMC [12,13]. We should note that in our comparison
between the two data sets we have kept the polarization
sector untouched as Planck has not yet published its
polarization data and our analysis is based on the temper-
ature data from WMAP-9 and Planck. Since the reported
best fit models from WMAP-9 and Planck both include
WMAP-9 low-Z (up to £ = 23) polarization data, we have
used the same best fit models as our mean functions but
beyond that we have only considered the temperature data
from the two observations for our likelihood analysis.

In this paper, we examine a two-way consistency check.
First we use the Planck best fit spectrum as the mean
function and compare with the WMAP-9 data, which
clarifies whether WMAP-9 data is consistent with
Planck best fit model. Then we consider the WMAP
9-year best fit model as the mean function and compare
it with Planck data to check the reverse (whether the best
fit WMAP 9-year model is consistent to Planck data). It
should be mentioned that the two-way consistency check is
important as if the best fit model from WMAP is consistent
with Planck data, it does not necessarily imply that the best
fit model from Planck is consistent with WMAP-9 data.
Planck has much higher precision than WMAP and has

*We have calculated the mean functions using CAMB [14,15].
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provided the data to much higher multipoles (¢ = 2500).
Hence, a theoretical model that fits Planck data may also fit
WMAP-9 data (if there is no systematic) since WMAP-9
data span over a smaller range ¢ < 1200, but the converse
may not be true. This can be easily understood if we
consider the different volumes of the N-dimensional con-
fidence balls (N is associated to degrees of freedom of the
assumed modified model) when we fit a particular modified
model to two data sets with different precision. Fitting the
same modified model, the volume of the confidence ball
for the data with higher precision would be smaller than
the volume of the confidence ball for the data with lower
precision. Hence, a point in the smaller confidence ball
associated to the data with higher precision would be
included in the confidence ball of the data with lower
precision but the reverse may not necessarily be true.
Overall one can argue that it is always better to choose the
mean function from the data with higher precision and
broader range since the interpretation of the results would
be straightforward as a mean function derived from the
broader and more precise data covers the whole range of the
other data set.

We would like to note here that in a same line of our
study, one could possibly use some other approaches too to
compare the two data sets. For example Gaussian processes
can be used to model the two data sets using a single mean
function and compare the confidence limits of the hyper-
parameters [16,17]. Information field theory with some
adjustments can be possibly used as well [18,19].

Before going to the results section we should state that
when we compare the modified models with WMAP-9 data
we have included the Sunyaev-Zeldovich effect and in
comparing our modified models with the Planck data we
explored the parameter space of the foreground effects
since the foregrounds are quite important on small scales.
We have marginalized over 14 nuisance parameters for
different foreground and calibration effects.’

III. RESULTS

In this section we shall present our results and address
the consistency of the two recent CMB data sets. To begin,
we test the robustness of the method and perform a self-
consistency test. We fit the modified best fit WMAP-9
model (by modified we mean the best fit model, which is
our mean function, multiplied by the Crossing function) to
WMAP-9 data itself and assess the fiducial point in the
confidence contours of the hyperparameters. In Fig. 1 we
have plotted the marginalized confidence contours of C;
(left panel). It is evident that the mean function (denoted
by the intersection of the two perpendicular black lines at
the center of each plot) lies inside and almost at the center
of the 1o contour. This indicates that the best fit model

3 . .
For more discussions see [3].
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FIG. 1 (color online). In this plot the 36 contours of the Crossing hyperparameters are plotted when we modify the WMAP 9-year best
fit spectrum with a Crossing function (here Chebyshev polynomials) and compare with the WMAP 9-year data itself. All the plots show
that the fiducial model (corresponding and C, , = 0) lies well inside the 1o contours of C; — C,. The plot in the left panel is obtained
when we marginalized over C, and in the right panel we fixed Cy, = 1. The fiducial model remains nearly at the center of the 16 C.L. in
both cases. The reduced size of contours in the right panel is due to the fact that when we fix the amplitude the degeneracies decrease. In
this particular analysis we have fixed #,,,, = 1200, however for plots hereafter we have used Z,,, = 2500, the maximum multipole

covered by Planck.

from WMAP-9 is consistent to WMAP 9-year data. It
should be noted that in this case any significant deviation
from mean function could indicate inconsistency of the
concordance model to the data. This result is in agreement
with our previous analysis on WMAP-9 data [20].
Moreover, as an additional test we have fixed the overall
amplitude to its fiducial value (Cy = 1) and performed
MCMC on C; and C,. We have plotted the result in the
right panel of Fig. 1. As expected, the size of the contours
is decreased considerably as the degeneracies between the
hyperparameters are lifted by fixing the overall amplitude.
Here too we find that the fiducial best fit model lies near
to the center of lo limits of hyperparameters C; — C,.
These figures indicate that the best fit concordance model
to WMAP 9-year data is indeed in good agreement with
the data.

Marginalized C4-C, contours
Planck mean function to Planck
Planck mean function to WMAP-9

FIG. 2 (color online).

Now we fit the modified mean functions of the two data
sets (best fit concordance models to WMAP-9 and Planck
data multiplied by the Crossing function) to WMAP-9 and
Planck data. In Fig. 2 we exhibit the confidence contours of
the Crossing hyperparameters (in this case the coefficients
of the Chebyshev polynomial of second order) when we
fit the modified mean function from Planck data (best fit
concordance model to Planck data multiplied by the
Crossing function) to Planck and WMAP 9-year data. In
the left panel the C; — C, contours are marginalized over
C, allowing the overall amplitudes to vary and the right
panel is for Cy = 1, fixing the overall amplitudes at their
reported values. It is interesting to see that the best fit model
to Planck data (mean functions are denoted by the inter-
section of the two perpendicular black lines at the center of
each plot) is consistent with both observations (see the left

0.1

C4-C, contours, Fixed amplitude
Planck mean function to Planck

005 Planck mean function to WMAP-9
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Plots obtained using Planck best fit concordance model as the mean function to fit WMAP-9 and Planck data

considering a Crossing function of the second order. We have used Chebyshev polynomials as the Crossing functions. Plots show that
allowing the overall amplitude to vary (left panel) the two observations are in good agreement with each other having a large overlap of
the confidence contours at 1o level. The second plot is obtained by keeping Cy = 1 (fixed amplitude) and varying the first and second
order hyperparameters. In this case we can see a clear discrepancy between the two data sets. Our results indicate that if both
observations insist on their reported values of the overall amplitude of the angular power spectrum, the inconsistency between the two
data sets would be unresolvable.
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panel). The large intersection area between the two con-
fidence contours also indicates that the two observations
are very well in agreement. One can interpret this as there
being some hypothetical variations, each denoted by a point
in the hyperparameter space, that can explain both obser-
vations simultaneously with high probabilities if we allow
the overall amplitudes to vary. From the right panel of
Fig. 2, it is evident that by fixing the amplitudes of the
angular power spectra to their reported survey, there is a
significant inconsistency—more than 3¢. This result sug-
gests that by fixing the amplitudes, there is no hypothetical
model that can simultaneously express both observations
with high certainty. Assuming that the proposed model
(ACDM) is correct, this indicates that there is a clear
tension between the two data sets. We conclude that the
overall amplitudes of the angular power spectra from
Planck and WMAP play a very important role to test if
these data sets are consistent. If we allow these amplitudes
to vary, there is no tension, but if both observations insist on
their reported values of the overall amplitudes there will be
an unresolvable tension between the two.

To check the extent of the mismatch we have compared
the Planck best fit model with WMAP-9 data varying only
the amplitude C,. The best fit value of C in this case is
1.024 which implies the WMAP-9 spectrum is about 2.4%
higher than Planck.* Performing our Crossing analysis once
again fixing Cy = 1.024 we found the that the mean
function point C;, = 0 lies now completely inside the
lo contours of C; — C,.

In Fig. 3 we show the WMAP 9-year binned TT
spectrum with some theoretical C,’s overplotted.
Specifically we show the best fit theoretical model from
WMAP-9 (red) and Planck (blue). These two curves clearly
show that WMAP power is higher than Planck in high-#
and this is most evident near the first acoustic peak.
However, the green curve, the Planck best fit modified
with best fit Crossing function, shows that difference
between Planck and WMAP-9 data can be addressed using
a second order Crossing function.

We should mention here that a Crossing function allows
us to match the best fit models from the two data sets up
to a statistically indistinguishable level (depending on the
quality of the data) using an orthogonal basis independent
of the cosmological parameters. This in turn allows us to
understand how far these models are from each other
statistically and if there is any hypothetical variation that
can explain both data sets simultaneously.

Having described the consistency of Planck and
WMAP-9 data using the best fit model from Planck as
the mean function, we shall demonstrate now our results
when we use the best concordance model to WMAP 9-year
data as the mean function. We should note here that

“This amplitude difference was mentioned in the Planck
analysis in CMB power spectrum and likelihood [2].
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FIG. 3 (color online). WMAP 9-year data for temperature
autocorrelation is plotted with different theoretical C,’s. The
WMAP best fit is plotted in red while the Planck best fit is plotted
in blue. Note that the mismatch in power is evident near the first
acoustic peak. It is shown that we can fit the WMAP data pretty
well with the Planck best model modified by the Crossing
function (in green).

comparing two data sets, it is always better to choose a
mean function from the data that has a higher precision and
covers a broader range of scales. Despite this, it is still of
interest to perform the reverse test. We start with a
modulation by Chebyshev polynomials up to second order.
We should emphasize that here we allow the 14 nuisance
parameters for foreground and calibration to vary along
with the Crossing hyperparameters. The contours in Fig. 4
show that the WMAP-9 mean function is 3¢ away in the
C, — C, contour plane fitting Planck data. When we fix the
overall amplitude Cy =1 we find the smaller contour
fitting the Planck data pushes the mean function point
further away. This result clearly indicates that the best fit
concordance model to WMAP 9-year data is inconsistent at
not less than 3¢ level from Planck data. This result is
completely consistent with the previous analysis.

As we have noted earlier, when fitting the same
modified model, the area of the marginalized confidence
contours (of the hyperparameters) for the data with higher
precision would be smaller than the marginalized con-
fidence contours for the data with lower precision. Hence,
even if both data sets are different realizations of the
same fiducial model (and by default consistent), a point
in the smaller confidence contour associated to the data
with higher precision would be necessarily included in
the confidence contour of the data with lower precision
but the reverse may not be always true. If we look at the
plots in Figs. 2 and 4 it is evident that the contours fitting
Planck data are much smaller than the ones fitting
WMAP-9. This is simply due to the higher precision
and broader range of the Planck data.

Using the second order Chebyshev polynomials to
modify the WMAP-9 best fit model, we have not yet

043004-5
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Marginalized C4-C, contours
WMAP-9 mean function to Planck
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FIG. 4 (color online).
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Plots obtained using WMAP 9-year best fit spectrum as the mean function to fit WMAP-9 and Planck data

considering a Crossing function of the second order. We have used Chebyshev polynomials as the Crossing functions. Plots clearly
dictate that the WMAP-9 best fit model is not consistent with Planck data. When we fix the overall amplitude C, = 1, the fiducial model
becomes further away from the confidence contours (right panel). Looking at these results still we cannot conclude that the two data sets
are inconsistent. In fact the proper overlap of the confidence contours in the left panel (allowing a shift in the overall amplitude) reflect

the consistency of the two data sets.

reached the likelihood which is comparable to Planck best
fit model (though our analysis was sufficient to show that
the mean function from WMAP is not consistent to Planck
data). Hence, we now modify the spectrum further using
the third and the fourth order Chebyshev polynomials.
While the best fit WMAP-9 model had Ay? ~ 80 worse
with respect to the best fit Planck model to Planck data,
a significant difference, when we use second and third
order Crossing modifications the Ay? reduces to 16 and 7
respectively and with fourth order it reduces further to
less than 5. This indicates that by assuming fourth order
Chebyshev polynomials we are able to almost match the
best fit model from WMAP to the best fit model from
Planck. In Fig. 5 we have plotted the Planck data along with
some theoretical C,’s overlayed. The red and the blue lines
are the WMAP-9 and Planck best fit models, respectively.
The green curve is for the modified WMAP-9 best fit model
with Crossing function (to second order) set to its best fit
form. It is clear that with the Crossing function, we can
address the WMAP-9 and Planck discrepancies. The
Planck high-# binned spectrum is shown in the main plot
and the low-Z data is plotted in the inset. It is clearly visible
that the modified WMAP-9 spectrum matches the Planck
best fit at all scales.

In Fig. 6 we have plotted the samples of Crossing
functions within 26 confidence contours of the Crossing
hyperparameters. Through the red lines we have shown the
samples of second order Crossing function when modified
mean function from WMAP-9 is compared with Planck
data and in blue lines we have compared the former with
the inverse Crossing functions (to second order) when the
modified mean function from Planck is compared with
WMAP-9 data. The smallest scales probed by WMAP
(Z = 1200) are indicated by a vertical line. Apart from an
amplitude shift the plots successfully capture the scale
dependent mismatch between WMAP and Planck. The

agreement of the Crossing functions and the inverse
Crossing functions in this plot reflects the robustness of
our analysis. Note that the blue curves contain a few lines
which are nearly scale invariant, signifying that allowing
for an overall amplitude shift the Planck mean function
can address the WMAP-9 data very well without further
modification. This agreement basically reflects the results
in the left panel of Fig. 2. However, most importantly it can
be seen that the WMAP mean function requires further
modifications than just an overall amplitude shift to address

6000

High-¢ binned data +—+—

WMAP-9 best fit ACDM model

Planck best fit ACDM model

WMAP-9 best fit ACDM model x best fit Crossing function

5000 |

4000

3000

(1), T 2r [k

2000

1000

1500 2000

500 1000

2500

FIG. 5 (color online). Planck data and various theoretical C,’s
are plotted here. The color codes of WMAP-9 and Planck best fit
are the same as in Fig. 3. The green line corresponds to the
WMAP-9 best fit model modified with best fit Crossing function.
It can be clearly seen that the amplitude difference is appropri-
ately addressed with the Crossing function. In the inset, Planck
data for low-7 (¢ = 2-49) is plotted. High-# binned spectrum is
plotted in the main plot which provides an idea of the differences
between Planck and WMAP mean functions and the modified
spectrum.
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FIG. 6 (color online). Samples of Crossing and inverse
Crossing functions within the 20 allowed range of Crossing
hyperparameters are plotted. The largest multipole range covered
by WMAP is indicated by the vertical line.

the Planck data (the red curves), especially, the preferred
modifications (beyond the overall amplitude shift) are
more evident in the smaller scales probed by Planck
(¢ > 1200). For the range of scales probed by WMAP
(¢ = 2-1200) the Crossing functions suggest an overall
amplitude correction.

IV. DISCUSSION

In this paper, which is the first of the two consistency
check papers, we have addressed the consistency of
WMAP-9 data to the recent Planck data set within the
framework of the concordance ACDM model. In the
context of Crossing statistic, we adopted the best fit
concordance model to WMAP 9-year (Planck) data as
the mean function and multiplied it to a Crossing function
to fit Planck (WMAP 9-year) data. The marginalized
confidence contours of the Crossing hyperparameters have
been used to check the consistency of the two observations.
In our analysis we used Chebyshev polynomials as the
Crossing functions. Allowing the overall amplitude of the
data sets to vary, which is an important assumption, we
found that the best fit model to Planck data is consistent
with WMAP 9-year data. However, contrary to this, we
found that the best fit model to WMAP-9 data is not
consistent to Planck data at worse than 3¢. This is not
particularly unexpected since the precision of the Planck
data is considerably higher than WMAP-9 data. Since the
area of the confidence contours of the hyperparameters
using Planck data is smaller than the area of the confidence
contours using WMAP 9-year data, not all points in the
confidence contours of WMAP-9 (models consistent to
WMAP-9) should remain within smaller confidence con-
tours of Planck. Looking at the large overlap of the
confidence contours of the Crossing hyperparameters

PHYSICAL REVIEW D 89, 043004 (2014)

(Fig. 2) we can conclude that allowing the overall shift
of the amplitude of the two spectra, there is no strong
statistical evidence that Planck and WMAP-9 data are
inconsistent. Our results show that there are some hypo-
thetical models from which both data can be simultane-
ously drawn. In other words, there are some hypothetical
models that given these variations, the probabilities of
both observed data are high. In the plot of the Crossing
functions we have shown a family of modifications which
can explain the possible discrepancies between the two data
sets as a function of angular scales apart from an overall
amplitude factor.

This highlights the fact that comparing the derived
individual cosmological parameters from different data
sets might be misleading when the observables are com-
plicated functions of these parameters. The basic six
cosmological parameters of the concordance model have
a very different nonlinear effect on the angular power
spectrum and we use Boltzmann codes to derive C,’s.
These parameters are degenerate and they are not orthogo-
nal to each other. However, the Chebyshev polynomials
that we used as our Crossing functions have properties
of orthogonality which makes it suitable to test the
consistency of the data from two observations.

We should emphasize that the consistency of Planck
and WMAP 9-year data holds only if we allow the overall
amplitudes of the two spectra to vary. Fixing the ampli-
tudes at their reported values results in a clear and
significant inconsistency of the two data sets at more
than 3¢ and the best fit models from both observations are
ruled out strongly by the other observation. In this case, in
fact there is no hypothetical variation that can express
both data sets simultaneously with high probabilities.
This is an important issue to be resolved. Resolving this
issue, one can claim that the two observations are
consistent.
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