
Adjusting chaotic indicators to curved spacetimes

Georgios Lukes-Gerakopoulos*

Theoretical Physics Institute, University of Jena, 07743 Jena, Germany
(Received 26 November 2013; published 5 February 2014)

In this work, chaotic indicators, which have been established in the framework of classical mechanics,
are reformulated in the framework of general relativity in such a way that they are invariant under
coordinate transformation. For achieving this, the prescription for reformulating mLCE given by [Y. Sota,
S. Suzuki, and K.-I. Maeda, Classical Quantum Gravity 13, 1241 (1996)] is adopted. Thus, the geodesic
deviation vector approach is applied, and the proper time is utilized as the measure of time. Following the
aforementioned prescription, the chaotic indicators FLI, MEGNO, GALI, and APLE are reformulated. In
fact, FLI has been reformulated by adapting other prescriptions in the past, but not by adapting the Sota
et al. one. By using one of these previous reformulations of FLI, an approximative expression giving
MEGNO as function of FLI has been applied on nonintegrable curved spacetimes in a recent work. In the
present work the reformulation of MEGNO is provided by adjusting the definition of the indicator to the
Sota et al. prescription. GALI and APLE are reformulated in the framework of general relativity for the first
time. All the reformulated indicators by Sota et al. prescription are tested and compared for their efficiency
to discern order from chaos.
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I. INTRODUCTION

The concept of a chaotic dynamical system is usually
correlated with the property of a system exhibiting
sensitive dependence on initial conditions (see, e.g., the
Devaney definition of chaos [1]). Even though this
correlation might be somehow misleading (see, e.g.,
[2]), the sensitivity to initial conditions provides an
efficient way to detect chaos. Therefore, various such
detecting methods have been developed and established in
the framework of classical celestial mechanics over the
last decades (see, e.g., [3–5]).
From this variety of methods, we are going to inves-

tigate a group of indicators which use the evolution of
deviation vectors along a given orbit. In the classical
framework, the deviation vector evolves in a space
tangential to the phase space, the measure of this vector
is taken to be Euclidean, and the time is an independent
parameter. From the category of these indicators, the most
renowned is the maximal Lyapunov characteristic expo-
nent (mLCE) (see [4] for a survey). Other similar
indicators are the fast Lyapunov indicator (FLI) [6,7],
the mean exponential growth of nearby orbits (MEGNO)
[8,9], the generalized alignment index (GALI) [10,11],
and the average power law exponent (APLE) [12,13]. In
classical mechanics, the above-mentioned indicators have
been compared and studied for their efficiency several
times (see, e.g., [5,12]).
However, the definition and the efficiency of these

indicators pose issues in the framework of general relativity
(GR) (see, e.g., [14,16] and references therein). Namely,

one has to redefine the chaotic indicators in such a way that
they will be invariant under coordinate transformations, and
then to test these redefined indicators for their ability to
detect chaos. In order to do the former, one has to find a
way to define an invariant measure of the deviation vector
in GR, and to choose an invariant time parameter. For the
geodesic motion in curved spacetimes, which is the case
we focus on, some suggestions to solve the above issues
have already been provided. For instance, the indicators
can be evaluated by applying the 3þ 1 spacetime splitting
approach [17] or by choosing the proper time as the time
parameter [15] and using the invariant measure of the
deviation vector either derived by the geodesic deviation
equations [15] or by the two nearby orbits approximation
[16]. In this study, the guideline of Sota et al. [15] was
preferred for adjusting the chaotic indicators to the GR
framework. However, if we depart from the geodesic
motion, for example, by taking into account the spin of
the test particle, then approaches stemming from the 3þ 1
splitting [17] are maybe preferable for addressing the
aforementioned issues (see, e.g., [18,19]).
On the other hand, the above indicators are not the only

methods which have been employed for detecting chaos
in relativistic systems. Frequency analysis techniques,
which were applied initially in the framework of classical
mechanics (see, e.g., [20]), have been lately applied in the
GR framework as well (see, e.g., [21,22]); the same holds
for the recurrence analysis techniques (see [23] for a
review) which were also applied recently in curved space-
times (see, e.g., [21,24]). Both frequency analysis and
recurrence analysis techniques are applied on time series,
which makes them appropriate for the observational data
postanalysis. Moreover, the recurrence analysis is able to*gglukes@gmail.com
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discern deterministic chaos from stochastic noise, which
might be very useful when the signal is embedded in noise.
Yet another kind of approach are the basin boundaries

[25], which take advantage of the fractal geometry of a
nonintegrable system to detect the existence of chaos. The
methods which use the curvature of a spacetime to search
for chaos [15,26] are also geometrical.
The background spacetime of a rapidly spinning neutron

star suggested in [27] provides the nonintegrable dynamical
system to test the adjusted chaotic indicators. We are going
to refer to this spacetime as Manko–Sanabria-Gómez–
Manko or briefly MSM from now on. MSM background
belongs to a broader family of spacetimes describing the
surrounding spacetime of neutron stars; this family of
spacetimes was introduced in [28] and revisited in [29],
and their astrophysical importance was investigated in
[29,30]. Now, from the dynamical point of view, since
the existence of chaos in MSM background has already
been revealed in [31–33], the MSM spacetime provides the
appropriate background for testing chaotic indicators on
geodesic orbits.
The integration scheme applied to evolve these geodesic

orbits along with the geodesic deviation equations is a
symmetric, reversible integrator called integrator for geo-
desic equations of motion (IGEM) [33]. IGEM has been
designed to evolve strongly chaotic orbits efficiently and to
preserve the constants of motion. IGEM has been tested
and compared with other integrators in the MSM spacetime
[33]. From the above comparison, IGEM appears to be the
most appropriate for the present study.
The paper is organized as follows. Section II provides a

brief description of the curved spacetime in which the
chaotic indicators are tested. A brief survey on the
geodesic and geodesic deviation equation of motion
follows in Sec. III. The chaotic indicators and their
invariant reformulation in curved spacetimes are presented
in Sec. IV. Numerical examples of these indicators are
given in Sec. V. Section VI surveys the main results, and in
the Appendix the accuracy of the integrating scheme is
discussed.

II. THE MANKO–SANABRIA-GÓMEZ–MANKO
SPACETIME

It has been already mentioned that MSM belongs to a
family of spacetimes that were designed to model neutron
stars (see, e.g., [29,30]). The MSM spacetime is asymp-
totically flat, axisymmetric and stationary; it describes the
“exterior field of a charged, magnetized, spinning deformed
mass” [27]. The MSM is a five-parameter vacuum solution,
it depends on the massm, the spin per unit mass a, the total
charge q, the magnetic dipole moment M, and the mass-
quadrupole moment Q. However, the two latter quantities
are functions of the first three real parameters and of two
other real parameters, i.e., μ and b,

M ¼ μþ qða − bÞ;
Q ¼ −mðd − δ − abþ a2Þ; (1)

where

δ≔
μ2 −m2b2

m2 − ða − bÞ2 − q2
;

d≔
1

4
½m2 − ða − bÞ2 − q2�: (2)

The Weyl-Papapetrou line element of the MSM space-
time in prolate spheroidal coordinates t, x, ϕ, y is

ds2 ¼ gttdt2 þ gtϕdtdϕþ gϕϕ þ gxxdρ2 þ gyydz2; (3)

where

gtt ¼ −f;
gtϕ ¼ fω;

gϕϕ ¼ k2ðx2 − 1Þð1 − y2Þ
f

− fω2;

gxx ¼
k2e2γ

f
x2 − y2

x2 − 1
;

gyy ¼
k2e2γ

f
x2 − y2

1 − y2
: (4)

The functions f, ω, and γ are

f ¼ C=D;

e2γ ¼ C=16k8ðx2 − y2Þ4;
ω ¼ ðy2 − 1ÞF=C; (5)

and

k≔
ffiffiffiffiffiffiffiffiffiffiffi
dþ δ

p
: (6)

The functions C, D, and F are

C ¼ R2 þ λ1λ2S2;

D ¼ Eþ RPþ λ2ST;

F ¼ RT − λ1SP; (7)

where

λ1 ¼ k2ðx2 − 1Þ; λ2 ¼ y2 − 1: (8)
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The functions P, R, S, and T are

P≔ 2fkmx½ð2kxþmÞ2 − 2y2ð2δþ ab − b2Þ
− a2 þ b2 − q2� − 2k2q2x2 − 2y2ð4δd −m2b2Þg;

R≔ 4½k2ðx2 − 1Þ þ δð1 − y2Þ�2
þ ða − bÞ½ða − bÞðd − δÞ −m2bþ qμ�ð1 − y2Þ2;

S≔ − 4ða − bÞ½k2ðx2 − y2Þ þ 2δy2� þ y2ðm2b − qμÞ;
T ≔ 4ð2kmbxþ 2m2b − qμÞ½k2ðx2 − 1Þ þ δð1 − y2Þ�

þ ð1 − y2Þfða − bÞðm2b2 − 4δdÞ
− ð4kmxþ 2m2 − q2Þ½ða − bÞðd − δÞ −m2bþ qμ�g:

(9)

It is useful to mention that in the numerical calculations it
is better to use the following combinations and expressions,
in order to avoid numerical errors when the orbits approach
the static limit gtt ¼ C ¼ 0,

�
e2γ

f

�
¼ D

16k8ðx2 − y2Þ4 ;

½fω� ¼ λ2
F
D
;

and

gϕϕ ¼ − λ2
D
½λ1ðCþ 2ðRPþ λ2STÞÞ þ λ1P2 þ λ2T2�

¼ −
�
2λ1λ2 þ

λ2
D
ðλ1ðP2 − EÞ þ λ2T2Þ

�
:

The numerical calculations were done in prolate sphe-
roidal coordinates x, y, but the results are presented in
cylindrical coordinates ρ, z to facilitate the comparison with
previous works [31–33]. The two coordinate systems relate
through the transformation

ρ ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 − 1Þð1 − y2Þ

q
; z ¼ kxy: (10)

III. GEODESIC AND GEODESIC DEVIATION

The fact that geodesic motion in MSM background
exhibits chaotic behavior was shown in [31–33] mainly by
studying Poincaré sections, but also by applying the FLI
indicator [19] as defined in [16], and by the means of
frequency analysis [33].
For finding Poincaré sections, we have to evolve the

geodesic equations

ẍα þ Γα
βγ _x

β _xγ ¼ 0; (11)

where the dot corresponds to a derivative with respect to
the proper time τ, and Γα

βγ are the Christoffel symbols. The
greek indices correspond to the whole spacetime.
The geodesic equations (11) are the Euler-Lagrange

equations of the Lagrangian function

L ¼ 1

2
gαβ _xα _xβ; (12)

which is a constant of motion L ¼ −1, and expresses
the conservation of the four-velocity of the test particle.
The stationarity of the MSM spacetime provides the second
constant,

pt ¼
L
_t
¼ −E; (13)

which is the energy of the test particle, while the axisym-
metry provides the third constant,

pϕ ¼ L
_ϕ
¼ Lz; (14)

which is the azimuthal component of the test particle’s
angular momentum. By the last two constants, the system
is reduced to two degrees of freedom, and therefore, the
Poincaré section can be used for detecting chaos in MSM
spacetime backgrounds.
However, for including indicators in the study depending

on deviation vectors like FLI, we need the geodesic
deviation equations

̈ξα þ 2Γα
βγ _x

β _ξγ þ ∂Γα
βγ

∂xδ _xβ _xγξδ ¼ 0; (15)

which show how two initially nearby geodesic orbits “xα”
and “xα þ ξα” diverge from each other. ξα is the deviation
vector, whose behavior plays a major role in distinguishing
order from chaos as discussed in the next section.

IV. CHAOTIC INDICATORS

The measure of the deviation vector for a regular orbit
grows linearly, while for a chaotic the growth is exponential
or at least it follows a power law (see, e.g., [12]). This fact is
the characteristic which mLCE, FLI, MEGNO, and APLE
are designed to track. In order to have an invariant measure
of the deviation vector in the phase space, Sota et al. [15]
defined the quantity

Ξ2 ¼ gαβξαξβ þ gαβ
Dξα

dτ
Dξβ

dτ
; (16)

where the covariant derivative
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Dξα

dτ
¼ _ξα þ Γα

βγ _x
βξγ (17)

provides the divergence of the velocities.
In order to ensure that Ξ2 stays positive throughout

the simultaneous evolution of the Eqs. (11), (15), we have
to ensure that ξα and Dξα

dτ will remain spacelike. The
prescription for this [15,16] is to choose initial conditions
for ξα, Dξα

dτ such that

ξα _xα ¼
Dξα

dτ
_xα ¼ 0: (18)

However, condition (18) is not the only way to ensure
Ξ2 > 0, and in [16] other options are discussed. Anyway,
for the numerical calculations done in this study the initial
prescription of Sota et al. [15] is followed.
To address the issue of invariant time measure, whenever

the definition of an indicator asks for a time parameter,
the proper time is utilized. This parameter should be
normalized by a typical time scale, e.g., τts ≈ Gm=c3

[15]. Throughout the article, geometric units are used,
i.e., G ¼ c ¼ 1, and the value of the mass m of the central
object is chosen to be of order of 1; thus for simplicity, and
without loss of generality, this time scale is set to
be τts ¼ 1.

A. mLCE

The maximal Lyapunov characteristic exponent,

mLCE ¼ lim
τ→∞

1

τ
ln
ΞðτÞ
Ξð0Þ ; (19)

is the most renowned chaotic indicator (see [4] for a
review). The limit at infinity makes mLCE unrealistic
for numerical studies, and the finite form of mLCE,

FmLCE ¼ 1

τ
ln
ΞðτÞ
Ξð0Þ ; (20)

is used instead. In Eq. (20), τ is sufficiently large. However,
in the literature, FmLCE is usually referred to as mLCE,
which is adopted also in this article. Several techniques to
find the invariant form of mLCE have already been
suggested for the geodesic flow in curved spacetimes,
and a survey of these techniques can be found in [16].
One category of these techniques uses a “shadow” orbit

instead of evolving the geodesic deviation Eqs. (15). This
shadow orbit is a geodesic orbit with initial conditions very
near to the orbit under study, and the distance in the
configuration space between these two orbits is used
instead of Ξ. The shadow technique provides probably
an easier way to discover whether an orbit is chaotic or not
than the geodesic deviation technique does, because one
just has to evolve two nearby orbits by computing the

geodesic Eqs. (11). However, since the evolution of two
orbits in a curved spacetime is not as exact as evolving
the geodesic deviation Eqs. (15) in a spacetime tangent to
the phase space where the orbital motion takes place, this
approximation has a cost. Namely, even if we get a value of
the mLCE near to the real mLCE (see, e.g., the numerical
examples in [16]), we lose the invariance of the mLCE
indicator by using the shadow approximation.
The category of techniques using geodesic deviation

equations splits into two subcategories. One subcategory
uses the definition of Ξ given by Sota et al. [15] [Eq. (16)]
and the other measures the distance Ξ only in the
configuration space, i.e., Ξ2 ¼ gαβξαξβ. Now, the fact that
the latter subcategory confines itself to a subspace of the
space tangent to the phase space raises the question of
whether this technique can indeed find the invariant value
of mLCE or it just distinguishes order from chaos, which
would mean that this subcategory shares the same draw-
back with the technique of shadow orbits. On the other
hand, the subcategory using the measure of Ξ as given in
Eq. (16) does not suffer from such ambiguity, since Ξ is
defined in the phase space. The latter has been in fact used
for the reformulation of mLCE in [15].
The principle of chaos detection behind the mLCE

indicator is the following. When an orbit is regular, which
means that on average ΞðτÞ grows linearly, then from
Eq. (20) it is easy to show that

mLCE ∝
ln τ
τ

:

Thus, for a regular orbit,

lim
τ→∞

mLCE → 0:

When an orbit is chaotic, which means usually that ΞðτÞ
grows exponentially, e.g., ΞðτÞ ∝ eλτ where λ is constant,
then from Eq. (20) one gets

mLCE ∝ λ:

Thus, for a chaotic orbit,

lim
τ→∞

mLCE → λ:

B. FLI

The principles behind the mLCE indicator hold also for
the fast Lyapunov indicator [6,7],

FLI ¼ ln
ΞðτÞ
Ξð0Þ : (21)

The difference here is that in order to discern a chaotic orbit
from a regular orbit, one has to define a time-dependent
limit. This limit depends on the maximum value of the FLI
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(FLImax) that a regular orbit reaches at a given time. Then
the FLImax value is compared with the FLI value reached by
the other orbits at this given time. If the FLI value of an
orbit is above FLImax, then the orbit is characterized as
chaotic. In fact, usually this limit is set as FLImax plus a
relatively arbitrary “safety” value. For instance, if the
maximum FLI value is FLImax in the finite proper time
τf, then the limit can be set to FLI0 ¼ FLImax þ Constant,
and any orbit whose FLI > FLI0 is characterized as chaotic.
For a detailed discussion on the FLI0 issue, refer to Sec. 3.2
of [12].
In the framework of general relativity, a reformulation of

FLI was proposed in [16] by employing the shadow orbit
technique already discussed in Sec. IVA. By the means of
this approximative technique, FLI has already been applied
in a few works (see, e.g., [21,32]), but FLI has not yet been
tested by applying the geodesic deviation technique of Sota
et al. according to the author’s knowledge.

C. MEGNO

The basic definition of the mean exponential growth of
nearby orbits [8,9] is

MEGNOðτfÞ ¼
2

τf

Z
τf

0

_Ξ
Ξ
τdτ; (22)

where τf is the finite proper time until which the equations
of motion (11), (15) are computed. A quite good approxi-
mation for MEGNO correlates it with the FLI indicator
[34], i.e.,

MEGNOðτfÞ ¼ 2½FLIðτfÞ − hFLIðτfÞi�; (23)

where hFLIðτfÞi is the mean value of FLI until the time τf.
However, MEGNO defined in the form (22) suffers from
big value oscillations; for this reason, the average value of
MEGNO,

hMEGNOðτfÞi ¼
1

τf

Z
τf

0

MEGNOðτÞdτ; (24)

is more useful. In fact, from now on we are going to refer
to average MEGNO simply as MEGNO. The advantage
of MEGNO over FLI is that it has a time-independent limit
by which an orbit is characterized as a chaotic or a regular
one. For a regular orbit, MEGNO tends asymptotically to 2,
while if the orbit is chaotic it tends asymptotically to
infinity.
Recently, in the last article of the [21] series, the

MEGNO was tested in curved spacetimes describing a
Schwarzschild black hole surrounded by a thin disc or a
ring. The authors of this article used the approximation
given by Eq. (23), and applied the shadow orbit technique
to approximate the deviation vector. In the present study,
another approach is followed. By using the approximation

_ΞðτÞ ¼ ΞðτÞ − Ξðτ − dτÞ
dτ

;

and by rewriting the formula (22) in discrete form, we
arrive at

MEGNOðτfÞ ¼
2

τf

XN
i¼0

�
1 − Ξðτi − dτiÞ

ΞðτiÞ
�
τi; (25)

where τf ¼
P

N
i¼0 τi. Respectively, the discrete form of

Eq. (24) is

hMEGNOðτfÞi ¼
1

τf

XN
i¼0

MEGNOðτiÞdτi; (26)

where dτi ¼ τi − τi−1 is practically the integration step
used in the numerical calculations.

D. APLE

The average power law exponent [12,13],

APLE ¼ lim
τ→∞

ln ΞðτÞ
Ξð0Þ
ln τ

; (27)

was defined in order to detect “metastable” behaviors of
weakly chaotic orbits. During this metastable phase, the
measure of the deviation vector increases following nearly a
power law ΞðτÞ ∝ τp. This phase ends when the measure of
the vector begins to grow exponentially. Like the MEGNO,
APLE has a limit to which regular orbits converge; this
limit is the value 1. If the orbit is weakly chaotic, then
APLE will oscillate around a value equal to p during the
metastable phase. After the metastable phase, or if the orbit
is strongly chaotic, the value of APLE goes to infinity
following the exponential growth of the deviation vector.
In order to avoid a nullification of the denominator in

Eq. (27), we can use various numerical tricks, which do
not compromise the efficiency of the indicator (see [12] for
a detailed discussion). For the purpose of this work,
ln ð1þ τÞ was utilized; thus,

APLE ¼ lim
τ→∞

ln ΞðτÞ
Ξð0Þ

ln ð1þ τÞ (28)

is used in the numerical examples of Sec. V instead of the
Eq. (27). For τ ≫ 1, definition (27) is numerically equiv-
alent to formula (28).

E. GALI

The generalized alignment index [11] is a generalization
of the smaller alignment index (SALI) [10] (also called the
alignment index [35]). GALI differs from the indicators
discussed above because it does not depend on the rate by
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which a deviation vector grows, but on whether two or
more deviation vectors with different initial directions will
get aligned or not. GALI is identical to SALI when only
two deviation vectors are used.
In particular, GALI uses the following properties of the

deviation vectors. In the case of a chaotic orbit, two or more
deviation vectors with different and arbitrary initial ori-
entations will become parallel or antiparallel exponentially
fast. The speed by which this will happen depends on the
value of the mLCE. On the other hand, in the case of
regular motion, an orbit moves on a torus, and two or more
deviation vectors with different and arbitrary initial ori-
entations will become tangent to that torus with time.
However, if the torus is N dimensional, where N ≥ 2, the
orientation of the deviation vectors will remain, in general,
different. If the torus is one dimensional then the deviation
vectors will become parallel or antiparallel, but the time
will follow a power law. Initially these properties have been
investigated for the spectral distance techniques (see, e.g.,
[36]), but by the introduction of SALI [10] a more simple
and efficient technique to detect chaos has been provided.
In [10] SALI was defined as

SALI ¼ minfjw − w0j; jw þ w0jg; (29)

where w and w0 are the deviation vectors of classical
mechanics normalized to unity by their Euclidean norm.
Another way to define SALI is to take the cross product of
these vectors, i.e.,

SALI ¼ jw × w0j ¼ sin θ; (30)

where θ is the angle between the two vectors. The
definition (30) reveals that SALI, in fact, measures the
surface defined by the two vectors.
In the case of a system with two degrees of freedom or

more, SALI goes to zero for a chaotic orbit, while for a
regular orbit it remains nonzero. In the case of a two
dimensional map, SALI always goes to zero, but for chaotic
orbits this happens exponentially fast, while for regular
orbits SALI ∝ t−q, where q ≈ 2. This kind of power laws,
in fact, provide the means for GALI to find the dimension
of a torus in multidimensional systems [11]. The advantage
of GALI over the other indicators is exactly this ability, but
in order to use it, we have to evolve more than two
deviation vectors. Thus, the advantage of GALI comes with
a certain computational cost.
In curved spacetimes the Euclidean norm is not invariant

under coordinate transformations; thus we cannot normal-
ize the generalized deviation vector [Eq. (16)] defined by ξα

and Dξα

dτ to unity. This certainly is a problem for the
definition (29), because for parallel vectors jw − w0j will
not go to zero and for antiparallel vectors jw þ w0j will not
go to zero.
On the other hand, in the definition (30) we really do not

depend on the strict normalization of the deviation vector to

unity; the only thing we need is to limit the growth of the
components ξα and Dξα

dτ . In order to do that, we can divide
them by the measures of the corresponding vectors, i.e.,
ξαffiffiffiffiffiffi
ξκξ

κ
p and

Dξα

dτffiffiffiffiffiffiffiffiffi
Dξκ
dτ

Dξκ

dτ

p . Then we can use the outer products of

one pair ξα, ζα of the deviation vectors and their corre-
sponding velocities Dξα

dτ ,
Dζα

dτ to provide a definition of SALI
similar to Eq. (30), i.e.,

OIαβ ¼ ηαβγδ
ξγffiffiffiffiffiffiffiffi
ξκξ

κ
p ζδffiffiffiffiffiffiffiffiffi

ζνζ
ν

p ; (31)

OIIαβ ¼ ηαβγδ

Dξγ

dτffiffiffiffiffiffiffiffiffiffiffiffi
Dξκ
dτ

Dξκ

dτ

q Dζδ

dτffiffiffiffiffiffiffiffiffiffiffiffi
Dζν
dτ

Dζν

dτ

q ; (32)

where ηαβγδ is the Levi-Civita density tensor

ηαβγδ ¼
ffiffiffiffiffiffi−gp

ϵαβγδ; (33)

and ϵαβγδ is the Levi-Civita symbol with ϵ0123 ¼ −1.
If the deviation vectors ξα, ζα and their velocities Dξα

dτ ,
Dζα

dτ
are parallel, then both OIαβ and OIIαβ are null. Thus, we can
define the quantity

SALI ¼
X3
α¼0

X3
β¼0

ðOIαβ þ OIIαβÞ; (34)

which will go to zero for chaotic orbits and remain nonzero
for regular orbits. In order to define GALI, we can use outer
products for multiple deviation vectors and their corre-
sponding velocities similar to (31), and sum these outer
products as has been suggested for SALI in Eq. (34).

V. NUMERICAL EXAMPLES

In order to check the ability of the adjusted indicators
(discussed in Sec. IV) to discern chaos from order, it is
better to start with cases where chaos has already been
found. In these cases the indicators just have to verify the
previous findings. Thus, the study starts with two cases of
the MSM spacetime background, which were investigated
in [32].
The first case comes from Fig. 3 of [19], where the mass

is m ¼ 2.904, the spin is a ¼ 1.549, the charge is q ¼ 0,
and the two real parameters are μ ¼ 0 and b ¼ 6. In fact,
for all the MSM spacetimes in this work the charge q and
the parameter μ were set to zero like in previous studies
[31,32]. The constants of motion in this example are
E ¼ 0.96 and Lz ¼ 2.75m. In Fig. 1, behaviors of different
chaos detection techniques are shown for a regular orbit
(black) and a chaotic orbit (gray). The initial radial distance
for the former orbit is ρ ¼ 16, and for the latter ρ ¼ 11,
while for both of them _ρ ¼ z ¼ 0, and the _z is derived from
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FIG. 1. The behavior of chaotic indicators for two geodesic orbits, one regular (black) and one chaotic (gray), evolving in a MSM
spacetime with m ¼ 2.904, a ¼ 1.549, q ¼ 0, μ ¼ 0, and b ¼ 6. The constants of motion are E ¼ 0.96 and Lz ¼ 2.75m. Panel
(a) shows the evolution of mLCE as function of the proper time τ in logarithmic scale, panel (b) shows the FLI as function of log10τ,
panel (c) shows the APLE, panel (d) the MEGNO, panel (e) the log10SALI as function of log10τ, and panel (f) shows the Poincaré
section on the equatorial plane z ¼ 0.
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Eq. (12) with positive sign. The initial deviation vector used
for Figs. 1(a)–(d) has ξx ¼ 10−4, _ξx ¼ 10−3, and _ξy was
calculated from the conditions (18), while the other
components of the deviation vector and its derivative were
set to zero. For the SALI in Fig. 1(e), a second deviation
vector has been used, which initially has ζϕ ¼ 10−3 and
_ζx ¼ 10−1; _ζy was evaluated from the conditions (18),
while the other components of the deviation vector and its
derivative were set to zero. Both deviation vectors satisfy
the conditions (18). The preservation of these conditions
and in general the numerical accuracy of the investigation is
discussed in the Appendix.
The Poincaré section (z ¼ 0, _z > 0) of the orbits is

shown in Fig. 1(f) (Fig. 3 of [19] has more details). The
chaotic orbit evolves in a chaotic sea (gray dots); thus, we
expect it to be strongly chaotic, while the regular orbit
belongs to the resonance 9=65 and it forms a chain of small
islands of stability appearing like a “dashed” black curve.
In Fig. 1(a), the log10mLCE is plotted as function of

log10τ. In such plots, the curve of regular orbits tends to
zero with a slop log10mLCE

log10τ
∝ −1 (see the discussion in

Sec. IV A); even if the curve of chaotic orbits can follow
the slop−1 for a while, when the curve reaches the value of
mLCE it becomes horizontal. The behavior described
above is what we see in Fig. 1(a). Namely, the black
points of the regular orbit follow the slope −1 as mLCE
tends to zero, and the gray points showing the evolution
of the chaotic orbit follow the −1 slope for a while, but
after the time τ ≈ 10−3 they change their inclination and
become horizontal, indicating the corresponding mLCE
value (log10mLCE ≈ −3.15).
The black points of the regular orbit in Fig. 1(b) show the

anticipated linear growth of the corresponding deviation
vector; i.e., we can see that FLI ∝ log10τ. The oscillations
in FLI’s value come from the fact that the tori on which the
regular orbits are evolving are not in general direct products
of circles, but rather products of ellipses; thus, the deviation
vector’s components stress and shrink periodically (for
more details on these oscillations see, e.g., the discussion
in [12]). On the other hand, the gray points of the chaotic
orbit, after a certain period that they behave similarly to the
regular orbit, begin to diverge from the regular behavior
with time because the exponential growth of the deviation
vector dominates. Thus, until the time of this divergence
we cannot distinguish a chaotic orbit from a regular one.
The level a regular orbit reaches at a certain time indicates
the threshold above which we can characterize an orbit as
chaotic or regular (Sec. IV B). However, this threshold is
not only time dependent, but also a little bit arbitrary
because we have to include a safety margin for the
oscillations (see Sec. IV B and discussion in [12]).
Examples of indicatorswith a time-independent threshold

are the APLE and theMEGNO. These indicators for regular
orbits tend asymptotically to 1 and 2, respectively [black
points inFigs. 1(c)–(d)]. In our examples [Figs. 1(c)–(d)], the

indicators tend to their asymptotic values from below
(smaller values than the threshold); however, this is not
always the case and the asymptotic behavior may be from
above (see, e.g., [22]). Moreover, we have to take into
account the oscillations of the deviation vector as we did for
FLI. Thus, it is better to set higher values than the theoretical
values to these thresholds, in order not to characterize regular
orbits as chaotic. The actual thresholds’values are usually set
empirically, but they are notmuch higher than the theoretical
ones. Now, for chaotic orbits the values of APLE and
MEGNO tend to infinity, which is the case for the corre-
sponding gray points shown in Figs. 1(c)–(d).
SALI differs from the other four indicators not only by

the fact that it does not take advantage of the deviation
vector’s growth (in fact, SALI kills this growth by normal-
izing the components of the deviation vectors), but also by
the fact that it needs two deviation vectors with different
initial orientations in order to distinguish regular from
chaotic orbits. For regular orbits, SALI oscillates around a
nonzero value [black dots in Fig. 1(e)], while for chaotic
orbits SALI initially also oscillates around a nonzero value,
but afterwards it plunges to zero [gray dots in Fig. 1(e)].
The oscillations (10−14 ≲ SALI≲ 10−19) for the chaotic
orbit at large values of proper time in Fig. 1(e) are artificial,
and they result from numerical round-offs in the summation
of Eq. (34). Thus, we have to set quite an arbitrary
semiempirical threshold, as was previously done for the
other indicators, in order to characterize an orbit as chaotic.
For example, in the case of Fig. 1(e), this could be set
to 10−10.
The second example comes from Fig. 4 of [32], where

the parameters of the MSM spacetime are m ¼ 1, a ¼ 0.6,
and b ¼ 3, while the test particle has E ¼ 0.95 and Lz ¼ 3.
The indicators seen in Figs. 2(a)–(e) were computed with
the same initial deviation vectors’ setup as in Fig. 1. The
black points correspond to the regular orbit with initial
radial distance ρ ¼ 5.5, while the chaotic orbit has ρ ¼
8.65. Both orbits started with z ¼ _ρ ¼ 0, while _z has been
derived from Eq. (12). The Poincaré section for these orbits
is shown in Fig. 2(f), the black curve corresponds to a
regular orbit, while the gray curve shows an orbit evolving
in a chaotic layer inside the main island of stability.
The mLCEs of chaotic orbits moving in chaotic layers

like the one in Fig. 2(f) are usually smaller than the mLCEs
of chaotic orbits moving in a chaotic sea [e.g., Fig. 1(f)],
when the chaotic orbits belong to the same Poincaré
section. It is rather coincidental that this holds also when
we compare the mLCE (gray dots) in Fig. 2(a) with that in
Fig. 1(a), because the orbits in Fig. 1 evolve in a different
MSM spacetime than the orbits in Fig. 2. In such layers,
chaotic orbits tend to stick for considerable intervals of time
near a regular orbit, and to imitate its behavior, this
phenomenon is called stickiness (see [3] for a review on
the stickiness phenomenon). For instance, if a chaotic orbit
moving in a chaotic layer seems to give the final value of
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(a) (b)

(c) (d)

(e) (f)

FIG. 2. The behavior of chaotic indicators for two geodesic orbits, one regular (black) and one chaotic (gray), evolving in a MSM
spacetime with m ¼ 1, a ¼ 0.6, q ¼ 0, μ ¼ 0, and b ¼ 3. The constants of motion are E ¼ 0.95 and Lz ¼ 3. Panel (a) shows the
evolution of mLCE as function of the proper time τ in logarithmic scale, panel (b) shows the FLI as function of log10τ, panel (c) shows
the APLE, panel (d) the MEGNO (the embedded panel shows the nonaveraged MEGNO), panel (e) the log10SALI as function of log10τ,
and panel (f) shows the Poincaré section on the equatorial plane z ¼ 0.
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FIG. 3 (color online). The values of the chaotic indicators on the Poincaré section lying on the equatorial plane z ¼ 0. The orbits
evolve in a MSM spacetime withm ¼ 2.904, a ¼ 1.549, q ¼ 0, μ ¼ 0, and b ¼ 6. The constants of motion are E ¼ 0.96 and Lz ¼ 3m.
Panels (a)–(e) show the values of mLCE, FLI, APLE, MEGNO, and log10SALI, respectively, in scales shown at the bottom right corner
of the figure.
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mLCE [Fig. 2(a) until log10τ ≈ 5.5], then if the orbit gets
sticky, the mLCE will start dropping following a slope
similar to a regular orbit [see the small drop in the mLCE
value at 5.5≲ log10τ ≲ 6 in Fig. 2(a)]. After the orbit leaves
the sticky region, mLCE grows again [Fig. 2(a)]. Thus, the
adjusted mLCE to curved spacetimes is able to detect fine
structures in the phase space.
Recall that FLI stands for fast Lyapunov indicator; thus,

FLI has been designed to indicate the chaotic nature of an
orbit quickly. For example, in Fig. 2(b) FLI has indicated
that the orbit is chaotic at log10τ ≈ 5, while mLCE gives
this indication at log10τ ≈ 5.5 [Fig. 2(a)], because we have
to wait awhile until we are reassured that the mLCE has
stopped dropping following the −1 inclination. However,
this delay is not always the case; for example, Figs. 1(a)–(b)
show a case for which the detection needs approximately
the same order of time, because the oscillations of FLI
compel us to give a larger boundary to the limit for which
we would characterize an orbit as chaotic (see previous
discussions).
APLE and MEGNO are as quick as FLI in detecting

the chaoticity of an orbit [e.g., Figs. 2(b)–(d) and
Figs. 1(b)–(d)], and they show the same sensitivity in
detecting the stickiness interval. In particular, in Fig. 2(c)
only a small break in the rate at which APLE tends to
infinity can be seem for 5.5≲ log10τ ≲ 6. FLI can detect
this stickiness interval in the same way, but the change in
this inclination is nearly visible like for APLE in Fig. 2.
However, the MEGNO without the averaging [Eq. (25)]
produces an observable plateau [inset in Fig. 2(d)], during
the time the orbit is sticky. The averaging is the reason why
this plateau disappears in the averaged MEGNO and only a
break in the rate gives away the stickiness. Thus, like in the
case of mLCE, the reformulated chaotic indicators dis-
cussed in this paragraph, and in particular the reformulated
MEGNO, are able to detect fine structures.
On the other hand, even if SALI is as fast as FLI, APLE,

and MEGNO in detecting chaos, there is no apparent
evidence of stickiness in Fig. 2(e). It appears that once the
deviationvectors become parallel, they do not diverge again.
The two examples (Figs. 1 and 2) show that the read-

justed indicators have the behavior which we would expect
from their classical definition. In general, all the indicators
have the same time response in detecting chaos, and this
time depends on the maximum Lyapunov characteristic
exponent. However, each of them has a special ability,
which can make it ideal when a specific investigation of a
dynamical system is required; e.g., APLE was designed to
detect power law governed metastable behaviors. However,
when the only aim is chaos detection, the indicator one
chooses is a matter of convenience and taste.
In order to reinforce the above point, the values of the

five indicators under discussion are plotted on a Poincaré
section in Fig. 3. This Poincaré section lies on the equator
z ¼ 0 and has _z > 0. The scales of the indicators’ values are

given in the bottom right corner of Fig. 3. The orbits evolve
in a MSM spacetime with m ¼ 2.904, a ¼ 1.549, b ¼ 6,
and the constants of the motion are E ¼ 0.96, Lz ¼ 3.m.
For all orbits, the initial deviation vectors are the same as
those in Figs. 1 and 2, and all five indicators have been
evaluated for 1000 sections. All five show clearly which
regions are dominated by chaotic orbits and which by
regular motion.

VI. CONCLUSIONS

The chaotic indicators mLCE, FLI, GALI, MEGNO, and
APLE had been defined in the framework of classical
mechanics. In order to make these indicators appropriate
for studying geodesic motion in curved spacetimes, they
have to be reformulated in a way that will make them
invariant under coordinate transformations. The authors of
[15] provided a guideline to do this when they reformulated
mLCE. By following this guideline, the other four chaotic
indicators were reformulated accordingly in Sec. IV. All
five reformulated indicators were tested in Sec. V for their
efficiency in discerning regular from chaotic motion in the
MSM spacetime background. It was shown that these five
indicators have inherited the anticipated behavior from
their classical counterparts; they are reliable, and, in
general, equally fast in detecting chaotic motion.

ACKNOWLEDGMENTS

G. L.-G. was supported by the DFG Grant SFB/
Transregio 7. I would like to thank Bernd Brügmann,
Tim Dietrich, and Jonathan Seyrich for their suggestions.

APPENDIX: NUMERICAL ACCURACY

For integrating the geodesics Eq. (11) and their devia-
tions Eq. (15), the IGEM integration scheme [33] was
implemented. This scheme was designed to cope with
strongly chaotic geodesic motion efficiently and accurately.
In this section, we discuss IGEM’s performance.
One point not included in our previous analysis [33] is

the renormalization of evaluated quantities during the
evolution. The renormalization is applied in order to avoid
the occurrence of very large numbers, which aside from
causing other problems would slow down the IGEM
integration scheme. These very large numbers appear
due to the fact that the measure of the deviation vector
grows exponentially; thus, in order to get rid of the growth
of the corresponding values, we renormalize them. In fact,
the renormalization of the deviation vector is a common
ground in dynamical studies. Hence, any time Ξ becomes
larger than 10, the components of the deviation vector and
the components of its velocity are multiplied by 10−2.
However, there are times at which the measure of Ξ can
become very small; in such cases IGEM would choose its
integrating step by taking into account mainly the needs of
the geodesic orbit. In order to avoid this, any time Ξ drops

ADJUSTING CHAOTIC INDICATORS TO CURVED SPACETIMES PHYSICAL REVIEW D 89, 043002 (2014)

043002-11



(a)
(b)

(c) (d)

(e) (f)

FIG. 4. Accuracy checks of IGEM for the two orbits shown in Fig. 1. The black points correspond to the regular orbit, while the gray to the

chaotic. Panel (a) shows the relative error between two time steps log10j1 − LðτÞ
Lðτ−dτÞ j, where the LðτÞ is the value of the Lagrangian function

evaluatedat timeτ.Panel (b)showstheoverall relativeerror log10j1 − LðτÞ
L j,whereL is thetheoreticalvalueof theLagrangianfunction.Panels (c)

and (d) show the conservation of the constraints ξα _xα ¼ 0 (C1V1) and Dξα

dτ _xα ¼ 0 (C2V1) [Eq. (18)], respectively, for the first vector, while

panels (e) and (f) show the conservation of the constraints ζα _xα ¼ 0 (C1V2) and Dζα

dτ _xα ¼ 0 (C2V2), respectively, for the second vector.

GEORGIOS LUKES-GERAKOPOULOS PHYSICAL REVIEW D 89, 043002 (2014)

043002-12



below 10−3, the aforementioned components are divided
by 10−2. Thus, by renormalization, the IGEM scheme is
kept accurate and fast.
There are three independent and in involution constants

of motion, namely, the energy E, the z component of the
angular momentum Lz, and the Lagrangian function L
itself. The Lagrangian function contains all the variables
involved in the geodesic motion; thus, it is a very efficient
quantity to check the accuracy of the numerical scheme
applied. There are two relative errors that are of interest:
first, the relative error between two time steps, i.e.,
log10j1 − LðτÞ

Lðτ−dτÞ j, and the overall relative error, i.e.,

log10j1 − LðτÞ
L j, where LðτÞ is the value of the

Lagrangian function evaluated at time τ. Figure 4(a) shows
that the relative error between two time steps is of the order
of the machine precision; however, the overall relative
error seems to grow following a power law with exponent
≈5=9 [Fig. 4(b)]. This behavior appears to be independent
of the character of the orbit; i.e., it does not depend on
whether the orbit is chaotic (gray points) or regular (black
points).
The deviation vectors ξα, ζα were set to satisfy the

constraints (18) during the evolution of the orbits of Fig. 1.
Panels (c)–(d) show how much these constraints were
preserved. The slopes in these panels again indicate power
laws, but each of them has a different exponent.
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