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In a large variety of quantum mechanical systems, we show that the full nonperturbative expression for
energy eigenvalues, containing all orders of perturbative, nonperturbative, and quasi-zero-mode terms, may
be generated directly from the perturbative expansion about the perturbative vacuum, combined with a
single global boundary condition. This provides a dramatic realization of the principle of “resurgence,” that
the fluctuations about different semiclassical saddle points are related to one another in a precise
quantitative manner. The analysis of quantum mechanics also generalizes to certain calculable regimes
of quantum field theory.
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It is well known that perturbation theory is generically
divergent and that this fact leads to a deep relationship
between perturbation theory and nonperturbative physics
[1–3]. Here we report a new and deeper level of corre-
spondence. We show that perturbation theory contains, in
an efficiently coded form, all information about all orders
of nonperturbative physics. The decoding of this informa-
tion (explained below) requires only that perturbation
theory be combined with a global boundary condition that
specifies how one degenerate vacuum connects to another.
Our result applies to a wide class of potentials with
degenerate vacua, including the double-well (DW) potential
and the periodic sine-Gordon (SG) potential. These poten-
tials are paradigms for the physics of tunneling, level
splitting, and band splitting, instantons, and multiinstantons
and so have broad applications in many branches of physics.
Our result extends the previous state of the art, due to

Zinn-Justin and Jentschura (ZJJ) [4], who showed that all
orders of the perturbative and nonperturbative expansion
can be generated using a (conjectured) exact quantization
condition, together with two functions, BðE; gÞ and AðE; gÞ,
of the energy E and perturbation parameter g. In ZJJ’s
approach, BðE; gÞ is equivalent to the perturbative expan-
sion, and AðE; gÞ is a nonperturbative single-instanton
function including fluctuations. We prove our result by
showing that AðE; gÞ can be deduced immediately from
BðE; gÞ and moreover that ZJJ’s quantization condition is
the natural global boundary condition in a uniform Wentzel-
Kramers-Brillouin (WKB) approach.
For both the DW and SG systems, at leading instanton

order, the perturbative energy levels are split, but this is just
the tip of the iceberg: there is also an infinite ladder of
higher-order multi-instanton effects. “Resurgence” is a
formalism that unifies perturbative and nonperturbative
analysis, in such a way that the terms in this ladder are
intricately related to one another and can all be expressed in a
compact coded form [3,5,6]. Here we demonstrate explicitly
how resurgence appears in these paradigmatic quantum
problems. We show that the entire (nonperturbative) ladder

can be generated from perturbation theory about the pertur-
bative vacuum.
Although our result is derived in quantum mechanics, it

has implications for asymptotically free quantum field
theories [5–7], such as two-dimensional nonlinear sigma
models and four-dimensional Yang– Mills. A striking
property of these theories is adiabatic continuity upon com-
pactification (with suitable boundary conditions or defor-
mation) [8]. This permits a continuous connection between
the incalculable strong coupling regime and the weak
coupling calculable regime, without a phase transitions
or rapid crossover, where the results of our current work
also apply. Such connections between strong and weak
coupling have broad physical applications. Resurgent
expansions have also been explored recently for string
theory and matrix models [9–12].
For potentials with degenerate harmonic minima, pertur-

bation theory about any minimum is not Borel summable
[13,14], and this leads to ambiguous nonperturbative imagi-
nary terms, first seen at the two-instanton level. These terms
are canceled by corresponding ambiguous imaginary terms
in the instanton/anti-instanton sector [15,16]. This cancella-
tion, which we refer to as the Bogomolny–Zinn-Justin
mechanism, persists to all nonperturbative orders, producing
a real and unambiguous result. For example, the fluctuation
about the single instanton is itself a divergent non-Borel-
summable series, generating an ambiguous imaginary term,
which is canceled by a term in the three-instanton sector.
This infinite ladder of inter-related perturbative and non-
perturbative terms is written as a“resurgent trans-series”
expansion of the Nth energy eigenvalue [3]
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In physical terms, the trans-series is a sum over all instanton
contributions, perturbative fluctuations about each instanton
sector, and log terms coming from quasizero modes, starting
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at the two-instanton level. The� is correlated with the nature
of the quasizero mode integration, yielding þ=− for
repulsive/attractive interactions.
We adopt the normalization conventions of ZJJ [4],

writing potentials for the DW and SG models as VðxÞ ¼
x2ð1 − ffiffiffi

g
p

xÞ2=2, and VðxÞ¼sin2ð2 ffiffiffi
g

p
xÞ=ð8gÞ. Degenerate

vacua are separated by a distance ∼1= ffiffiffi
g

p
, with a barrier

height ∼1=g. When g ¼ 0, we have isolated harmonic
oscillator wells, so for nonzero g, it is natural to use a
uniform WKB approach [17], writing the wave function in
terms of a harmonic oscillator wave function (the parabolic
cylinder function [18]): ΨðxÞ ¼ DνðuðxÞ= ffiffiffi

g
p Þ= ffiffiffiffiffiffiffiffiffiffi

u0ðxÞp
.

When g ¼ 0, the ansatz parameter ν reduces to the integer
harmonic oscillator level number N. For example,

Eðν; gÞ ¼
X∞
n¼0

EnðνÞgn; (2)

where the nth perturbative coefficient EnðνÞ is a poly-
nomial of degree ðnþ 1Þ in the parameter ν. When ν is an
integer, N, this is precisely the standard Rayleigh–
Schrödinger perturbative expansion about the Nth har-
monic level. This expansion is divergent and not Borel
summable [13,14] and therefore incomplete. This is not
surprising since perturbation theory does not specify a
boundary condition to relate one well to another. For the
DW, this requires writing the upper (lower) level as an odd
(even) function about the barrier midpoint, while for SG,

we impose a Bloch condition, which can also be specified
at a barrier midpoint [18]. The inherent ambiguity in
performing a Borel sum of the perturbative expansion
means that we must analytically continue g → g� iϵ,
which in turn implies that the semiclassical limit requires
the asymptotic behavior of the parabolic cylinder functions
slightly off the real axis. This entails a balance between two
different exponential terms [19], leading to the boundary
conditions (for DW, the ε ¼ �1 refers to the upper/lower
level, and for SG, θ is the Bloch angle):
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where S ¼ 1
6
for the DW and S ¼ 1

2
for SG. Consider the

DW result (3). The rhs contains the single-instanton factor
ξ≡ e−S=g= ffiffiffiffiffi

πg
p

, multiplied by a fluctuation factorH0ðν; gÞ.
When g ¼ 0, the rhs vanishes, forcing ν ¼ N. For nonzero
g, expanding the Gamma function shows that ν is only
exponentially close to N:

νDW ¼ N þ
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Notice the appearance of the ln g factors at the two-
instanton level: Oðξ2Þ. Subsituting the expansion (5,6) into
the energy (2) generates the full trans-series (1).
The conditions (3,4) are identical to the conjectured

exact quantization conditions of ZJJ, but with a different
interpretation. (To convert to the notation of ZJJ [4], write
B≡ νþ 1

2
, and e−A=2 ≡ ffiffiffiffiffi

πg
p

ξH0.) ZJJ view ν ¼ νðE; gÞ as
a function of E, rather than E as a function of ν, as in
Eq. (2); they also express H0 ¼ H0ðE; gÞ as a function of
energy. The ZJJ strategy is to separately compute the
perturbative function BðE; gÞ and the nonperturbative
function AðE; gÞ, and then insert them into the exact
quantization condition (3,4), obtaining an implicit tran-
scendental expression for E as a function of g, for which the
small g expansion yields the trans-series (1). An advantage
of our uniform WKB approach is that it reveals a simple
relation between the functions B and A.

To illustrate this, we first note that the perturbative
expansion E ¼ Eðν; gÞ in Eq. (2) agrees precisely, using the
identification B≡ νþ 1

2
, with the inversion of the ZJJ

expressions for B ¼ BðE; gÞ in Ref. [4]:

EDWðB; gÞ ¼ B − g

�
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4

�
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�
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4
B

�

− g3
�
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2
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4
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32

�
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ESGðB; gÞ ¼ B − g

�
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4

�
− g2

�
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4

�

− g3
�
5B4

2
þ 17B2

4
þ 9

32

�
−… (8)

Next, we use these expressions for EðB; gÞ to write ZJJ’s
nonperturbative function AðE; gÞ [4] as AðB; gÞ:
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ADWðB;gÞ¼
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Inspection of Eqs. (7,8,9,10) reveals the simple relations:

∂EDW

∂B ¼ −6Bg − 3g2
∂ADW

∂g (11)

∂ESG

∂B ¼ −2Bg − g2
∂ASG

∂g : (12)

Similar relations arise by inverting and reexpanding the
expressions for BðE; gÞ and AðE; gÞ in Ref. [4] for the
Fokker–Planck and OðdÞ anharmonic oscillator potentials.
We can write Eq. (11,12) as the general expression,

∂E
∂B ¼ − g

2S

�
2Bþ g

∂A
∂g

�
; (13)

where S is the numerical coefficient of the instanton action
in ξ≡ e−S=g= ffiffiffiffiffi

πg
p

. Equation (13) is our main result. This
relation (13) has a dramatic computational consequence:
we can deduce A ¼ AðB; gÞ immediately from the pertur-
bative expansion (2) for EðB; gÞ; thus, the instanton
computation for AðB; gÞ is actually unnecessary, as it is
already encoded in the perturbative expression for EðB; gÞ.
Furthermore, the overall normalization factor S is encoded

in the leading nonalternating large-order growth n!=ð2SÞn
of the ground state perturbative expansion or is easily
computed from the single instanton integral. This proves
our claim that the entire trans-series can be generated from
perturbation theory, together with the global boundary
condition. The relation (13) is not at all obvious in the
ZJJ expressions where B and A are written as functions of E
because it requires an inversion and reexpansion. For the
DW, a related form of Eq. (11) was noted in Ref. [20], but
its physical meaning and consequences were not pursued.
We now explain the resurgent origin, and implications,

of this general relation (13). The key step is to note that the
trans-series (1) arises from combining the formal pertur-
bative expansion (2) with the global condition that deter-
mines ν to be exponentially close to its perturbative value
N, as, e.g., in Eqs. (5,6). Therefore, we expand

ENðgÞ ¼EðN;gÞþ ðδνÞ
�∂E
∂ν

�
N
þðδνÞ2

2

�∂2E
∂ν2

�
N
þ… (14)

Each correction term involves two factors. One is a
perturbative factor of derivatives with respect to ν of the
perturbative expression Eðν; gÞ, evaluated at ν ¼ N. The
other is a nonperturbative factor of powers of the non-
perturbative shift δν of ν from its integer value N, as in
Eqs. (5,6). But δν is expressed entirely in terms of ξ andH0,
and because of the general relation (13), each of these is
easily deduced from the perturbative expansion. From
Eq. (13) and the identification e−A=2 ≡ ffiffiffiffiffi

πg
p

ξH0, the
instanton fluctuation factor is derived from EðB; gÞ as

H0 ¼ exp

�
S
Z

g

0

dg
g2

�∂E
∂B − 1þ Bg

S

��
: (15)

For example,

HDW
0 ðN; gÞ ¼ 1 − ð102N2 þ 102N þ 35Þ

12
gþ ð10404N4 þ 2808N3 − 9456N2 − 11868N − 3779Þ

288
g2 þ… (16)

HSG
0 ðN; gÞ ¼ 1 − 3ð2N2 þ 2N þ 1Þ

4
gþ ð36N4 − 8N3 − 48N2 − 92N − 35Þ

32
g2 þ… (17)

As an immediate application, consider the first order in the
instanton expansion, which gives the level/band splitting.
For the Nth level, we have

ΔENðgÞ ∼ 2
ð2gÞN
N!

e−S=gffiffiffiffiffi
πg

p F0ðN; gÞ: (18)

The leading factor is the familiar textbook single-instanton
result, while the nontrivial fluctuation factor, F0ðN; gÞ ¼
H0ðN; gÞ½∂E∂ν�N , can be deduced entirely from the perturba-
tive expansion Eðν; BÞ, using Eqs. (2,15):

FDW
0 ðN; gÞ ¼ 1 − ð102N2 þ 174N þ 71Þ

12
gþOðg2Þ (19)

FSG
0 ðN; gÞ ¼ 1 − ð6N2 þ 14N þ 7Þ

4
gþOðg2Þ: (20)

This DW result agrees with available (N ¼ 0) results from
instanton calculus [21,22], which is obtained by evaluating
the Feynman diagrams up to the two-loops order in the
instanton background. Similarly, for SG, we agree with
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results from the Mathieu equation for anyN in Refs. [18,23].
It is striking that our formalism correctly produces the
perturbative fluctuations around an instanton background
without evaluating the Feynman diagrams in that back-
ground. This is the power of resurgence.
Now consider the two-instanton sector. From Eqs. (5,6),

the first imaginary term [24] enters at Oðξ2Þ from δν:

Im ENðgÞ ∼
22N

ðN!Þ2
e−2S=g
g2Nþ1

H2
0ðN; gÞ

�∂E
∂ν

�
N
: (21)

A dispersion relation for the energy gives the leading large-
order growth of the perturbative coefficients, as a function
of the level number N:

cðNÞ
n ∼

1

π

Z
∞

0

dg
gnþ1

Im ENðgÞ

∼ −
1

π

22N

ðN!Þ2
Γðnþ 2N þ 1Þ
ð2SÞnþ2Nþ1

�
1þO

�
2S

nþ 2N

��
: (22)

Figure 1 shows excellent agreement with the numerically
computed large-order growth, from the first 30 terms in
the perturbative expansion, also including subleading
corrections to Eq. (22) that come from the fluctuations
about the instanton/anti-instanton sector, for the DW
potential, using Eqs. (16,17,21,22). Analogous results
apply to the SG potential.
This large-order growth is not directly evident from the

perturbative expansion (2), as it involves the large-order
growth of the polynomials EnðBÞ, for different values of B.
The result (22) requires the input of the general relation
(13) and its immediate corollary (15). An interesting
example is the Fokker–Planck potential [4], the supersym-
metry (SUSY) quantum mechanical double-well potential,
with ground state energy that is perturbatively zero. Here
the global condition leads to B ∼ N þ δB, and SUSY is
broken nonperturbatively at the two-instanton level:
Eð0Þ ∼ 1

2π e
− 1

3g. The ground state perturbation expansion is
convergent (equal to 0), and correspondingly the two-
instanton term has no imaginary part for N ¼ 0. For all
excited states N ≥ 1, the perturbative expansion is not Borel
summable, with associated imaginary parts in the two-
instanton sector. All this information is encoded in the
perturbative expansion (2), via relation (13).
A deeper manifestation of the relation (13) comes from

consideration of the high orders of the perturbative fluctua-
tions F0ðN; gÞ about the single-instanton term in Eq. (18).
Like the perturbation around the vacuum, these fluctuations
are divergent and not Borel summable, producing ambigu-
ous nonperturbative imaginary terms that must be cancelled
by other terms in the trans-series. The leading large-order
growth of ∂E

∂ν can be deduced from Eq. (22):

∂cðNÞ
n

∂N ∼ − 1

π

22Nþ1

ðN!Þ2
Γðnþ 2N þ 1Þ
ð2SÞnþ2Nþ1

lnðnþ 2N þ 1Þ: (23)

Notice the ðn! lnnÞ large-order growth, different from the
conventional n! behavior. The origin of this lies in the
resurgent structure of the trans-series. These perturbative
fluctuations about the single instanton produce an imaginary
term ∼e−2S=g, which, when combined with the single
instanton factor ξ, become Oðe−3S=gÞ, which must be
cancelled by a term in the three-instanton sector, coming
from instanton/instanton/anti-instanton quasizero modes
terms, as encoded in the “resurgence triangle” [6,19].
Indeed, in the three-instanton sector of the trans-series
(1), because of the ðlnð−2=gÞÞ2 term, the trans-series has
an imaginary part proportional to e−3S=g ln g, and this
corresponds to this novel ðn! ln nÞ large-order growth in
the perturbative fluctuations around the single instanton.
Again, this correspondence relies crucially on the general
relation (13).
To conclude, we have shown that the remarkable results

of Zinn-Justin and Jentschura [4] can be extended even
further: the full nonperturbative trans-series expansion of
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FIG. 1 (color online). Plots of the ratio of the exact perturbative
coefficients to the large-order growth (22), for the double-well
potential, for the N ¼ 0 ground state (upper plot) and N ¼ 1 first
excited state (lower plot). The solid (blue) circles, (red) squares,
and (gold) diamonds denote the leading, subleading, and sub-
subleading large n behavior, respectively, including increasing
information from Eqs. (15,21,22) concerning the fluctuations
about the instanton/anti-instanton sector.
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energy eigenvalues is encoded already in the perturbative
expansion Eðν; gÞ. Practically speaking, this eliminates the
necessity of computing the complicated multi-instanton
function AðE; gÞ in the ZJJ approach, as it can be deduced
immediately from Eq. (13). We have further shown that this
relation is itself a statement of resurgence, required in order
to produce the correct cancellations between the zero and
two-instanton sectors, the one- and three-instanton sectors,
and so on. Ultimately, our result is a manifestation of
resurgent structure [6,9–11,25,26] in the quantum path
integral: the fluctuations about different saddle points
(vacuum and different multi-instanton sectors) are quanti-
tatively related so tightly that the entire trans-series, to all

nonperturbative orders, can be encoded in terms of just the
perturbative saddle point.
By the idea of adiabatic continuity mentioned in the

introduction, resurgent structure is also present in the weak
coupling calculable regimes of quantum field theory. It is
important to understand how this result can be generalized
to strongly coupled quantum fields.
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