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The two-pion contribution from low energies to the muon magnetic moment anomaly, although
small, has a large relative uncertainty since in this region the experimental data on the cross sections are
neither sufficient nor precise enough. It is therefore of interest to see whether the precision can be improved
by means of additional theoretical information on the pion electromagnetic form factor, which controls
the leading-order contribution. In the present paper, we address this problem by exploiting analyticity
and unitarity of the form factor in a parametrization-free approach that uses the phase in the elastic
region, known with high precision from the Fermi–Watson theorem and Roy equations for ππ elastic
scattering as input. The formalism also includes experimental measurements on the modulus in the region
0.65–0.70 GeV, taken from the most recent eþe− → πþπ− experiments, and recent measurements of the
form factor on the spacelike axis. By combining the results obtained with inputs from CMD2, SND,
BABAR, and KLOE, we make the predictions aππ;LOμ ½2mπ ; 0.30 GeV� ¼ ð0.553� 0.004Þ × 10−10 and
aππ;LOμ ½0.30 GeV; 0.63 GeV� ¼ ð133.083� 0.837Þ × 10−10. These are consistent with the other recent
determinations and have slightly smaller errors.
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I. INTRODUCTION

The muon anomalous magnetic moment aμ ¼ gμ=2 − 1
is one of the most precisely measured observables in
particle physics. It can be predicted also by theory with
a high accuracy, serving as a monitor for precise tests of the
Standard Model (SM) [1]. The Brookhaven muon g − 2
experiment [2] revealed a persisting discrepancy between
theory and experiment at the 3 to 4σ level. The present
experimental precision is δexpμ ∼ 63 × 10−11, while most
advanced theoretical predictions claim an of accuracy δthμ ∼
49 × 10−11 (cf. the recent reviews in Refs. [3–8]).
The next generation experiment planned at Fermilab,

with the goal of reaching a precision of δexpμ ∼ 16 × 10−11,
strongly demands improved theoretical predictions. At
present, the biggest theoretical uncertainties are due to
the nonperturbative hadronic contributions, which cannot
be calculated from first principles [9,10]. In particular, the
leading-order (LO) hadronic contribution to vacuum polari-
zation is responsible for an uncertainty δLOVPμ ∼ 41 × 10−11,
of which about a half comes from the two-pion contribution
[9]. High statistics cross section measurements for the
eþe− → πþπ− reaction were performed recently by CMD2
[11,12], SND [13], BABAR [14,15], and KLOE [16–18]
experiments. However, there are some discrepancies
between the recent experiments, in particular, BABAR
and KLOE [19,20]. Moreover, the experimental data are

not very accurate or are missing at low energies so that the
low-energy contribution to the muon g − 2, although small,
has a large uncertainty [9]. Improving this contribution by
exploiting low-energy effective theories for hadrons is
therefore highly desirable.
At leading order the contribution of interest can be

evaluated in terms of the pion electromagnetic form factor.
An accurate knowledge of this quantity plays a crucial role
for the SM calculation of themuon g − 2. Since themodulus
of the form factor at low energies is poorly known, one can
instead use the phase, which is related to the modulus by
analyticity. By the Fermi–Watson theorem, in the isospin
limit, the phase of the pion electromagnetic form factor on
the unitarity cut below the first inelastic threshold is equal to
the P-wave phase shift of pion-pion scattering. This phase
shift was calculated recently with high precision from chiral
perturbation theory (ChPT) and Roy equations [21–24]. As
shown in Ref. [25], it is possible to implement the phase in
the elastic region into what has come to be known as the
Meiman interpolation problem [26,27], which amounts to
finding bounds on an analytic function and its derivatives at
points inside the holomorphy domain (for a recent review of
these techniques, see Ref. [28]).
In a series of recent papers [29–32], we have applied the

formalism for improving the knowledge on the pion form
factor. Bounds on the form factor in the spacelike region
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were derived in Ref. [30] in order to test the onset of the
asymptotic behavior predicted by perturbative QCD. We
have also derived stringent constraints on the shape
parameters (at the origin) [29,32] and on the modulus in
the near threshold part of the unitarity cut [31], which
superseded the experimental data in accuracy. We empha-
size that the method does not rely on specific models of the
form factor, being a parametrization-free approach. The
price to be paid is that we obtain bounds rather than definite
values for the quantities of interest. However, with the
increased precision of input available now, the bounds are
quite stringent, competing with specific models and experi-
ment within errors.
In the present work, we explore the consequences of the

formalism for the muon g − 2. We have already noted that
the bounds on the modulus calculated in Ref. [31] lead to a
more precise description of the modulus at low energies
than the experimental data. We now further improve these
bounds by using some experimental values on the modulus
measured at higher energies as input, where the precision is
better and the data from various experiments are more
consistent among themselves. The aim is to establish
whether the calculated bounds on jFðtÞj are able to improve
the accuracy of the hadronic part of muon g − 2.
The scheme of this paper is as follows. In Sec. II we

briefly review the basic formulas that set the stage for our
work. In Sec. III we formulate the extremal problem that
plays the crucial role in our formalism, and in Sec. IV we
give the solution of this problem. In Sec. V we discuss the
input that goes into our analysis and explain how the
various uncertainties are taken into account. In Sec. VI we
present our results for the low-energy pionic contribution to
the muon g − 2 and compare them with previous determi-
nations. Section VII contains our conclusions.

II. BASIC FORMULAS

As in the recent experimental works [11–18], we
consider the LO two-pion contribution to aμ, which does
not contain the vacuum polarization effects but includes
one-photon final-state radiation (FSR). It is expressed in
terms of the pion electromagnetic form factor FðtÞ as

aππ;LOμ ¼ α2m2
μ

12π2

Z
∞

tþ

dt
t
KðtÞβ3πðtÞjFðtÞj2

�
1þ α

π
ηπðtÞ

�
;

(1)

where tþ ¼ 4m2
π, βπðtÞ ¼ ð1 − tþ=tÞ1=2 and

KðtÞ ¼
Z

1

0

duð1 − uÞu2ðt − uþm2
μu2Þ−1: (2)

The last factor in Eq. (1) accounts for the FSR, calculated in
scalar QED [33,34].

We emphasize that the form factor FðtÞ is defined by

hπþðp0ÞjJelmμ jπþðpÞi ¼ ðpþ p0ÞμFðtÞ; t ¼ ðp − p0Þ2;
(3)

such as to satisfy the Fermi–Watson theorem. Since the
experimental collaborations (CMD2, SND, BABAR, and
KLOE) include the vacuum polarization into the definition
of the pion form factor, to obtain jFðtÞj from experiment,
we remove the vacuum polarization from the values of the
modulus quoted in Refs. [11–18]. Equivalently, we extract
jFðtÞj directly from the measured cross section by

jFðtÞj2 ¼ 3t
α2πβπðtÞ3

σ0ππðγÞðtÞ
1þ α

π ηπðtÞ
; (4)

where σ0ππðγÞ is the undressed cross section of eþe− →
πþπ−ðγÞ quoted in Refs. [11–18].
We are interested in finding the low-energy part

of the integral (1). For comparison with previous works
[9], we shall evaluate in particular the contributions
aππ;LOμ ½2mπ; 0.3 GeV� and aππ;LOμ ½0.3 GeV; 0.63 GeV�. As
we have mentioned, at these energies the experimental data
on jFðtÞj are scarce and have rather large errors. Therefore,
we shall replace them with upper and lower bounds on
jFðtÞj calculated from the extremal problem to be formu-
lated in the next section.

III. EXTREMAL PROBLEM

We consider the following conditions on FðtÞ:
(1) The Fermi–Watson theorem:

Arg½Fðtþ iϵÞ� ¼ δ11ðtÞ; tþ ≤ t ≤ tin; (5)

where δ11ðtÞ is the phase shift of the P-wave of ππ
elastic scattering and tin is the first inelastic threshold
in the unitarity sum.

(2) An integral condition on the modulus squared above
the inelastic threshold, written in the form

1

π

Z
∞

tin

dtρðtÞjFðtÞj2 ≤ I; (6)

where ρðtÞ is a suitable positive-definite weight, for
which the integral converges and an accurate evalu-
ation of I is possible.

(3) The known first two Taylor coefficients at t ¼ 0:

Fð0Þ ¼ 1;

�
dFðtÞ
dt

�
t¼0

¼ 1

6
hr2πi: (7)

(4) The value at one spacelike energy:

FðtsÞ ¼ Fs � ϵs; ts < 0: (8)
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(5) The value of the modulus at one energy in the elastic
region of the timelike axis:

jFðttÞj ¼ Ft � ϵt; tþ < tt < tin: (9)

We now formulate the following problem: find optimal
upper and lower bounds on jFðtÞj on the elastic unitarity
cut, tþ < t < tin for FðtÞ ∈ C, where C is the class of
functions real analytic in the t plane cut along the real axis
for t ≥ tþ, which satisfy the conditions 1–5 given
above.

IV. SOLUTION

For solving the extremal problem stated above, we use a
mathematical method presented in Refs. [25,28]. We first
define the Omnès function

OðtÞ ¼ exp

�
t
π

Z
∞

tþ
dt0

δðt0Þ
t0ðt0 − tÞ

�
; (10)

where δðtÞ ¼ δ11ðtÞ for t ≤ tin and is an arbitrary function,
sufficiently smooth (i.e., Lipschitz continuous) for t > tin.
As discussed in detail in Ref. [28], the results do not depend
on the choice of the function δðtÞ for t > tin.
We remark that the function hðtÞ defined by

FðtÞ ¼ OðtÞhðtÞ (11)

is analytic in the t-plane cut only for t > tin. In terms of hðtÞ
the equality (6) writes as

1

π

Z
∞

tin

dtρðtÞjOðtÞj2jhðtÞj2 ≤ I: (12)

This relation is written in a canonical form if we perform
the conformal transformation

~zðtÞ ¼
ffiffiffiffiffi
tin

p − ffiffiffiffiffiffiffiffiffiffiffiffi
tin − t

p
ffiffiffiffiffi
tin

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
tin − t

p ; (13)

which maps the complex t-plane cut for t > tin onto the unit
disk jzj < 1 in the z plane defined by z≡ ~zðtÞ, such that the
origin t ¼ 0 of the t plane is mapped onto the origin z ¼ 0
of the z plane; the point t ¼ tin becomes z ¼ 1; and the
upper/lower edges of the cut along t > tin become the
upper/lower halves of the unit circle ζ ¼ expðiθÞ. We
further define a function gðzÞ by

gðzÞ ¼ wðzÞωðzÞhð~tðzÞÞ: (14)

In this relation ~tðzÞ is the inverse of z ¼ ~zðtÞ, for ~zðtÞ
defined in Eq. (13), and wðzÞ and ωðzÞ are outer functions,
i.e., functions analytic and without zeros in the unit disk
jzj < 1, defined in terms of their modulus on the boundary
jzj ¼ 1, related to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðtÞjdt=d~zðtÞjp

and jOðtÞj, respectively

[25,28]. In particular, choosing in Eq. (6) weight functions
ρðtÞ of the form

ρðtÞ ¼ tb

ðtþQ2Þc ; Q2 ≥ 0; b ≤ c ≤ bþ 2; (15)

the first outer function, wðzÞ, can be written in an analytic
closed form in the z variable as [28]

wðzÞ ¼ ð2 ffiffiffiffiffi
tin

p Þ1þb−c ð1− zÞ1=2
ð1þ zÞ3=2−cþb

ð1þ ~zð−Q2ÞÞc
ð1− z~zð−Q2ÞÞc : (16)

For the second outer function, denoted as ωðzÞ, we use an
integral representation in terms of its modulus on the cut
t > tin, which can be written as [25,28]

ωðzÞ ¼ exp

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tin − ~tðzÞ

p
π

Z
∞

tin

ln jOðt0Þjdt0ffiffiffiffiffiffiffiffiffiffiffiffiffi
t0 − tin

p
ðt0 − ~tðzÞÞ

�
: (17)

Since the function hð~tðzÞÞ defined in Eq. (11) is analytic
in jzj < 1, it follows that the function gðzÞ itself is analytic
in jzj < 1. Moreover, the relation (12) is written in terms of
gðzÞ as

1

2π

Z
2π

0

dθjgðζÞj2 ≤ I; ζ ¼ eiθ: (18)

As proven in the so-called analytic interpolation theory
[26,27], the L2-norm condition (18) leads to rigorous
correlations among the values of the analytic function
gðzÞ and its derivatives at points inside the holomorphy
domain, jzj < 1. In particular, one can show (for a proof
and earlier references, see Ref. [28]) that Eq. (18) implies
the positivity

D ≥ 0 (19)

of the determinant D defined as

D ¼

����������������

Ī ξ̄1 ξ̄2 … ξ̄N

ξ̄1
z2K
1

1−z2
1

ðz1z2ÞK
1−z1z2 … ðz1zNÞK

1−z1zN
ξ̄2

ðz1z2ÞK
1−z1z2

ðz2Þ2K
1−z2

2

… ðz2zNÞK
1−z2zN

..

. ..
. ..

. ..
. ..

.

ξ̄N
ðz1zNÞK
1−z1zN

ðz2zNÞK
1−z2zN …

z2KN
1−z2N

����������������

; (20)

in terms of the quantities

Ī ¼ I −XK−1
k¼0

g2k; ξ̄n ¼ ξn −
XK−1
k¼0

gkzkn; (21)

where
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gk ¼
�
1

k!
dkgðzÞ
dzk

�
z¼0

; 0 ≤ k ≤ K − 1;

ξn ¼ gðznÞ; 1 ≤ n ≤ N: (22)

In fact, it can be shown [28] that the condition (18) implies
not only the positivity (19) ofD but also the positivity of all
its minors.
The inequality (19) defines an allowed domain for the

real values gðznÞ of the function at N real points zn ∈
ð−1; 1Þ and the first K derivatives gk at z ¼ 0. In our
application we consider K ¼ 2, noting that the coefficients
g0 and g1 entering (22) depend on the charge radius hr2πi
defined in Eq. (7). We further take N ¼ 3, choosing two
points as input1, t1 ¼ ts and t2 ¼ tt from the conditions (8)
and (9), while t3 is an arbitrary point below tin. For t1 < 0
we have from Eqs. (11) and (14)

gðz1Þ ¼ wðz1Þωðz1ÞFðt1Þ=Oðt1Þ; z1 ¼ ~zðt1Þ; (23)

while for tn, n ¼ 2, 3 we have

gðznÞ ¼ wðznÞωðznÞjFðtnÞj=jOðtnÞj; zn ¼ ~zðtnÞ; (24)

where the modulus jOðtÞj of the Omnès function is
obtained from Eq. (10) by the principal value (PV) Cauchy
integral

jOðtÞj ¼ exp

�
t
π
PV

Z
∞

4m2
π

dt0
δðt0Þ

t0ðt0 − tÞ
�
: (25)

The condition (19) provides the solution of the extremal
problem formulated in the previous section; indeed, it can
be written as a quadratic inequality for the unknown
modulus jFðt3Þj, with coefficients depending on known
quantities, from which we obtain upper and lower bounds
on the unknown modulus. One can prove that the bounds
are optimal and the results remain the same if the ≤ sign in
the condition (6) is replaced by the equality sign [26–28].
Moreover, as shown in Refs. [25,28], for a fixed weight ρðtÞ
in Eq. (6), the bounds depend in a monotonous way on the
value of the quantity I, becoming stronger/weaker when
this value is decreased/increased. The positivity of the
minors of D provide consistency constraints on the quan-
tities that enter as input, which ensures that the quadratic
equations for the bounds have real solutions.

V. INPUT QUANTITIES AND
OPTIMIZATION PROCEDURE

The first inelastic threshold tin for the pion form factor is
due to the opening of the ωπ channel which corresponds toffiffiffiffiffi
tin

p ¼ mω þmπ ¼ 0.917 GeV. We calculate the Omnès
function (10) using as input for t ≤ tin the phase shift δ11ðtÞ
from Refs. [21,22,24], which we denote as Bern and
Madrid phases, respectively. Above tin we use a continuous
function δðtÞ, which approaches asymptotically π. As
shown in Ref. [28], if this function is Lipschitz continuous,
the dependence of the functions OðtÞ and ωðzÞ, defined in
Eqs. (10) and (17), respectively, on the arbitrary function
δðtÞ for t > tin exactly compensate each other, leading to
results fully independent of the unknown phase in the
inelastic region. This is one of the important strengths of
the method applied in this work.
We have calculated the integral defined in Eq. (6) using

the BABAR data [14] from tin up to
ffiffi
t

p ¼ 3 GeV, continued
with a constant value for the modulus in the range
3 GeV ≤

ffiffi
t

p
≤ 20 GeV, smoothly continued at higher

energies by a 1=t decreasing modulus, as predicted by
perturbative QCD [35–37]. This model is expected to
overestimate the true value of the integral; indeed, the
central BABAR value of the modulus at 3 GeV is equal to
0.066, i.e., while next-to-leading-order perturbative QCD
[37] predicts a much lower modulus, equal to 0.011 at
3 GeVand 0.00016 at 20 GeV. As emphasized above, larger
values of I are expected to produce weaker bounds.
Therefore, by using an overestimate of the high-energy
integral, we obtain larger admissible ranges for the result-
ing modulus, and there is no danger of underestimating the
final uncertainties. This makes our procedure very robust.
Wehave consideredweights of the type (15).As discussed

inRef. [30], weightswith a rapid decrease suppress the high-
energy part allowing a precise calculation of the integral but
lead to aweaker constraint on the classof the admissible form
factors. On the other hand, for weights with a slower
decrease, the condition (6) has a bigger constraining power,
but the value of I is more sensitive to the behavior at high
energies.We have adopted finally theweight ρðtÞ ¼ 1=t, for
which the contribution of the range above 3 GeV to the
integral (6) is only of 1%, and the value of I is [31]

I ¼ 0.578� 0.022; (26)

where the uncertainty is due to the BABAR experimental
errors. In the applications we have used as input for I the
central value quoted in Eq. (26) increased by the error, which
leads to the most conservative bounds due to the monotony
property mentioned above.
As spacelike input (8) we have used one of the most

recent experimental determinations [38,39]:

Fð−1.60 GeV2Þ ¼ 0.243� 0.012þ0.019−0.008;
Fð−2.45 GeV2Þ ¼ 0.167� 0.010þ0.013−0.007: (27)

1As discussed in Refs. [31,32], the inclusion of more input
points does not improve automatically the results; indeed, if the
input values are known only within some uncertainties, a
saturation is rapidly reached when more points are included,
and the predicted ranges cannot be further narrowed.
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On the timelike axis, it is convenient to take in Eq. (9)
values tt from a region of higher energies, where the data
are more accurate. In our study we used, as in Ref. [32],
input from the region 0.65 GeV ≤

ffiffiffi
tt

p
≤ 0.70 GeV, where

BABAR [14,15] quotes 26 experimental points, KLOE [18]
reports 8, while CMD2 [12] and SND [13] have each 2
measurements. Input data from higher energies, which can
be included in the same way, are expected to influence the
bounds only near the right end of the range considered.
Since the Fermi–Watson theorem (5) is valid only if

isospin is conserved, we have worked in the exact isospin
limit by correcting the experimental input for the main
isospin violating effect in eþe− → πþπ−, due to the ρ − ω
mixing. More exactly, we have divided the experimental
modulus by the factor jFωðtÞj, where

FωðtÞ ¼
�
1þ ϵ

t
tω − t

�
; tω ¼ ðmω − iΓω=2Þ2; (28)

with mω ¼ 0.7826 GeV, Γω ¼ 0.0085 GeV, and ϵ ¼
1.9 × 10−3 [40,41]. After deriving the upper and lower
bounds on the form factor in the isospin limit, we have
multiplied them back by the factor jFωðtÞj for the calcu-
lation of the integral (1).
An important point to bear in mind is that, except for the

normalization condition (7), which is exact, all the input
quantities that we use are known only with some uncer-
tainty. In fact, the proper treatment of these uncertainties is
essential for drawing correct conclusions from our formal-
ism. Following the discussion given in Ref. [32], in our
analysis we have varied all the input quantities used for the
derivation of the bounds within their error intervals. The
input quantities are the phase (5), the spacelike value (8),
the timelike value (9), and the charge radius hr2πi. From the
combinations of these values, we have generated a large
sample of “pseudoexperimental data,” which we have used
as input for the calculation of upper and lower bounds on
jFðtÞj in the region of interest. Finally, we have taken the
most conservative bounds, i.e., the largest upper bound and
the smallest lower bound, on jFðtÞj from the values
obtained with the sample of generated data.
The procedure described above has been applied with the

input from a fixed spacelike point ts as given in Eq. (27)
and a fixed timelike point tt in the range 0.65 GeV ≤

ffiffiffi
tt

p
≤

0.70 GeV (for completeness the input timelike data are
shown in Fig. 1), with the variation in the spacelike and the
timelike points taken into account. For each input available
at a fixed energy, we have obtained an allowed interval for
jFðtÞj. Since the constraints provided by the measurements
at different energies must be valid simultaneously, we have
taken the “intersection” of the ranges obtained with fixed
spacelike and fixed timelike input, i.e., the smallest upper
bound and the largest lower bound [32]. The procedure
has been carried out efficiently with a combination of
Mathematica and Fortran programs.

Using a similar procedure, we derived in Ref. [32]
bounds on the shape parameters at t ¼ 0, in particular
the charge radius hr2πi. The intersection of the admissible
intervals obtained with input from various energy points led
to the range ð0.42–0.44Þ fm2 for this quantity. In the
present study, we have allowed the charge radius to vary
in the slightly larger range ð0.41–0.45Þ fm2, which covers
practically the allowed intervals obtained with input from
individual points. In fact, the positivity of the minors of the
determinant (20), which is imposed in order to obtain real
bounds on jFðtÞj from the inequality (19), amounts to the
same restrictions on the radius as those considered in
Ref. [32]. Therefore, the input range adopted for hr2πi plays
a weak constraining role on the final bounds on jFðtÞj.
By applying the procedure described above, we have

computed bounds on jFðtÞj for energies between threshold
and 0.63 GeV. We have repeated the calculation separately
with the timelike input from the four eþe− experiments
CMD2-2006 [12], SND [13], BABAR [14], and KLOE-
2013 [18]. In each case we have used as input the
two phases [21,22,24], denoted as Bern and Madrid,
respectively.

VI. RESULTS

We first illustrate the intersection procedure explained in
the previous section considering as an observable the
contribution aππ;LOμ ½0.30 GeV; 0.63 GeV� to the muon
g − 2. In Fig. 2 we present the allowed ranges for this
quantity obtained using as input one experimental modulus
as a function of the energy of the input in the range 0.65–
0.7 GeV. More precisely, the intervals are delimited by the
upper and lower bounds on the quantity of interest
calculated for each input modulus shown in Fig. 1, taking
into account all the uncertainties and including the space-
like input as explained in the previous section. The Bern
phase from Refs. [21,22] was used in this calculation. The

0.65 0.66 0.67 0.68 0.69 0.7

Energy [GeV]

12

14

16

18

20

22

24

26

28

F
(t

)
2

BaBar 2009
KLOE 2013
SND 2006
CMD2 2006

FIG. 1 (color online). Modulus squared jFðtÞj2 measured by
CMD2, SND, BABAR, and KLOE experiments in the region
0.65–0.70 GeV, used as input in our work.
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final allowed domain is obtained for each experiment as
the common part of the corresponding intervals shown
in Fig. 2.
For the BABAR experiment, we have obtained a large

number of such intervals, which are narrower than those
obtained with input from the other experiments, due the
greater accuracy of the measurements, seen in Fig. 1. In
addition the intervals are mutually consistent in an impres-
sive way. The allowed intervals obtained with CMD2 and
SND input are larger, reflecting the poorer accuracy of the
measurements of these experiments in the range 0.65–
0.70 GeV. The intervals obtained with the KLOE input are
slightly larger than those obtained with BABAR and exhibit
a more pronounced variation with the input point. As a
consequence, the final range obtained from the common
overlap of the individual intervals will be slightly smaller
for KLOE than for BABAR. This result signals the sensi-
tivity of our machinery to the internal consistency of each
data set we have used as our inputs. As our purpose is just
to illustrate the power of the formalism, we have taken the
experimental data as such and have kept all the input points
as acceptable.
For the near-threshold integral aππ;LOμ ½2mπ; 0.30 GeV�,

the corresponding intervals are almost identical for all
experiments and show a great stability with variation of the
input, which is explained by the fact that in this region the
bounds are less influenced by the data above 0.65 GeVand
more by the common inputs, i.e., the spacelike values, the
charge radius, and the phase.
In Tables I and II, we present the results obtained from

the intersection of the intervals discussed above. We write
them in terms of a central value and an error, obtained from
the average of the upper and lower bounds and half of the
interval width, respectively. For completeness we give the
results obtained separately with the two phases, Bern and
Madrid.

Since the input phases are calculated theoretically by a
similar procedure, the two determinations based on them
cannot be considered as statistically independent. It is
reasonable then to take as the final prediction, for each
experiment, the simple average of the two values given in
Tables I and II. In contrast, the results obtained with input
from the four independent experiments, BABAR, KLOE,
SND, and CMD2, are statistically independent and can be
combined with standard techniques for independent deter-
minations [1]. This gives

aππ;LOμ ½2mπ; 0.30 GeV� ¼ ð0.553� 0.004Þ × 10−10; (29)

and

aππ;LOμ ½0.30 GeV;0.63 GeV� ¼ ð132:703� 1.018Þ× 10−10:
(30)

To draw a comparison, we note that Ref. [9] quotes
for the contribution from the threshold to 0.30 GeV the
value ð0.55� 0.01Þ × 10−10 obtained from a ChPT fit
since in this region there are no data. For the contribution
from 0.30 to 0.63 GeV, Ref. [9] quotes the value
ð132.6� 1.3Þ × 10−10, obtained from combined eþe− →
πþπ− experiments.
It is of interest to compare in particular the results

given by the BABAR experiment, for which good data
exist also at low energies. For the region from 0.30 to
0.63 GeV, the experiment BABAR measures (with the
covariance matrix) the contribution to muon g − 2 as2

ð133.877� 1.472Þ × 10−10, the error being determined

0.65 0.66 0.67 0.68 0.69 0.7

Energy (GeV)

126

128

130

132

134

136

138

140

BaBar - black
CMD2 - red
SND   - blue
KLOE - green

FIG. 2 (color online). Upper and lower bounds on
aππ;LOμ ½0.30 GeV; 0.63 GeV� × 1010 using as input the Bern
phase and the timelike modulus measured in the region
0.65–0.70 GeV by the eþe− experiments.

TABLE I. Central values and errors for the quantity
aππ;LOμ ½2mπ; 0.30 GeV� × 1010 obtained from the bounds on
jFðtÞj calculated with input from the four eþe− experiments.

Bern phase Madrid phase

CMD2 06 0.5528� 0.0089 0.5527� 0.0092
SND 06 0.5532� 0.0083 0.5530� 0.0086
BABAR 09 0.5534� 0.0080 0.5533� 0.0083
KLOE 13 0.5531� 0.0080 0.5530� 0.0084

TABLE II. Central values and errors for the quantity
aππ;LOμ ½0.30 GeV; 0.63 GeV� × 1010 obtained from the bounds
on jFðtÞj calculated with input from the four eþe− experiments.

Bern phase Madrid phase

CMD2 06 130.531� 3.955 129.739� 4.545
SND 06 132.775� 2.862 132.313� 2.759
BABAR 09 133.732� 1.761 133.484� 1.461
KLOE 13 132.380� 1.721 132.086� 1.451

2We are grateful to Bogdan Malaescu for sending us these
values.
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from ð0.8605stat CovMat � 1.1942syst CovMatÞ × 10−10. On the
other hand, from Table II we obtain for BABAR the
contribution ð133.608� 1.611Þ × 10−10, quite close and
with a slightly larger error than the direct determination.
This shows the remarkable consistency of the BABAR data
with the analyticity constraints imposed in this work. We
emphasize that these are independent determinations: in the
first method, one integrates the data available below
0.63 GeV, while the second method uses data from energies
above 0.65 GeVand extrapolates them in a parametrization-
free formalism. Their combination gives the best BABAR
value:

aππ;LOμ;BABAR½0.30 GeV; 0.63 GeV�
¼ ð133.755� 1.087Þ × 10−10: (31)

By combining this value with the determinations with input
from CMD2, SND, and KLOE given in Table II, we obtain
our final prediction:

aππ;LOμ ½0.30 GeV;0.63 GeV� ¼ ð133.083� 0.837Þ× 10−10:
(32)

It is useful to present also the bounds on the modulus
jFðtÞj itself at all energies below 0.63 GeV. In Fig. 3 we
show the allowed ranges delimited by the upper and lower
bounds on jFðtÞj2 in the energy region from threshold to
0.63 GeV obtained with timelike data in the region 0.65–
0.70 GeV from BABAR, KLOE, CMD2, and SND experi-
ments. At each energy the largest interval was obtained
using as input the sample of pseudoexperimental data
discussed above; then the intersection of the ranges
obtained with the input spacelike and timelike data was

taken. Finally, the average of the results obtained with
Madrid and Bern phases was computed.
The comparison with the similar bounds on the modulus

at low energies given in Ref. [31], which were obtained
without the input on the modulus from the elastic part of the
unitarity cut, indicates that the additional information on
the modulus improves the bounds in a sizeable way,
especially with the data from BABAR and KLOE. As
shown above, the BABAR experiment has many points in
this region, and the measurements are consistent among
them so that the intersection of the individual allowed
intervals analogous to those shown in Fig. 2 has a little
effect in further reducing the domain. For KLOE the
relatively narrow domain results mainly from the small
common overlap of the individual intervals, as in the
previous discussion of aμ illustrated in Fig. 2.
By combining the bounds obtained with data from the

four eþe− experiments, we obtained the final allowed
bands for jFðtÞj2, shown separately in Figs. 4 and 5 for
the regions from threshold to 0.5 GeV and from 0.5 to
0.63 GeV. For comparison we show also the experimental
data points available in each region. We note that for KLOE
we use the 2013 data published in Ref. [18].
From Figs. 4 and 5, it follows that the allowed ranges for

jFðtÞj2 calculated here are narrower than the error bars,
especially at low energies. For the bounds obtained with
BABAR and KLOE input, this feature is valid also at higher
energies, up to the upper limit of 0.63 GeV. For complete-
ness we list in Table III the results of the combined bounds
on jFðtÞj2 for a set of t values, presented in terms of a
central value and an error.
Finally, the values given in Table III allow a direct

determination of the low-energy contribution to aμ. We
obtain for the near threshold contribution a value identical
to that quoted inEq. (29) and for thecontribution from0.30 to
0.63GeVthevalueð132.738� 0.949Þ × 10−10,veryclose to
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KLOE

FIG. 3 (color online). Upper and lower bounds on jFðtÞj2 in the
energy region from threshold to 0.63 GeV, using timelike data
from the region 0.65–0.70 GeV from CMD2, SND, BABAR, and
KLOE experiments.
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FIG. 4 (color online). Allowed band for jFðtÞj2 in the energy
region from threshold to 0.5 GeV, obtained by combining the
bounds from eþe− experiments, compared with the available
experimental data.
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the prediction (30) obtained by combining the values of aμ,
which is a good consistency check of our procedure.

VII. DISCUSSIONS AND CONCLUSION

In this paper we have devised an efficient nonperturba-
tive analytic tool for improving the determination of the
pionic contribution to muon g − 2. The work was motivated
by the fact that the two-pion contribution to the muon
magnetic anomaly at low energies is affected by a large
relative uncertainty, due to the poor quality of the measured
cross sections. Our aim was to improve the accuracy by
using additional information on the pion electromagnetic
form factor and its analyticity and unitarity properties.
The knowledge of the pion form factor has improved

considerably in recent years, from different phenomeno-
logical sources: the phase below 0.917 GeV is known
through the Fermi–Watson theorem from the P-wave phase
shift of ππ scattering, the modulus has been measured by
high statistics experiments on eþe− annihilation and τ
decays, and measurements on the spacelike axis from
electroproduction data with improved accuracy were also
reported.
We have applied a formalism that exploits in an optimal

way the information on the phase below the inelastic
threshold, using weak constraints (expressed as an
L2-norm condition) on the modulus above the inelastic
threshold. Combined with the well-known analytic inter-
polation theory, the formalism is flexible enough to include
information at some points inside the analyticity domain
and to lead to upper and lower bounds on the values at other
points. We have used as input the modulus of the form
factor measured by the eþe− experiments above 0.65 GeV,
where the accuracy is better, and derived bounds on the
modulus below 0.63 GeV, where the experimental data are
poor. A remarkable feature is that, while most of the

previous treatments use specific parametrizations to
extrapolate to regions not directly accessible to experiment
or where the precision of direct measurements is poor, our
formalism is parametrization free. As we have mentioned,
the price paid for this is that we can derive only bounds on
the quantities of interest, instead of making definite
predictions. Nevertheless, the bounds are very stringent,
competing in precision with the present experimental data.
Moreover, they are independent of the unknown phase
above the inelastic threshold.
Our results for the two-pion low-energy contribution to

the anomalous magnetic moment of the muon, obtained
with input from the CMD2, SND, KLOE, and BABAR
experiments, are given in Tables I and II. The combined
predictions of the eþe− experiments are quoted in Eqs. (29)
and (30). We have further illustrated with BABAR how to
use precise data at both low and higher energies: by
combining the direct integration of the data below
0.63 GeV with our independent determination based on
data from higher energies, we obtained the value given in
Eq. (31), which has a slightly better precision than the
separate determinations.
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FIG. 5 (color online). Allowed band for jFðtÞj2 in the energy
region from 0.5 to 0.63 GeV, obtained by combining the
bounds from eþe− experiments, compared with the available
experimental data.

TABLE III. Central values and errors on jFðtÞj2 in the range
from threshold to 0.63 GeV, calculated from the upper and lower
bounds obtained with the timelike input from the eþe−
experiments.
ffiffi
t

p
(GeV) jFðtÞj2 ffiffi

t
p

(GeV) jFðtÞj2
0.2791 1.3803� 0.0096 0.4555 2.7227� 0.0261
0.2854 1.4055� 0.0102 0.4618 2.8135� 0.0261
0.2917 1.4315� 0.0108 0.4681 2.9086� 0.0266
0.2980 1.4585� 0.0115 0.4744 3.0168� 0.0270
0.3043 1.4866� 0.0121 0.4807 3.1258� 0.0274
0.3106 1.5159� 0.0128 0.4870 3.2396� 0.0276
0.3169 1.5463� 0.0136 0.4933 3.3628� 0.0260
0.3232 1.5780� 0.0143 0.4996 3.4945� 0.0272
0.3295 1.6110� 0.0151 0.5059 3.6363� 0.0288
0.3358 1.6455� 0.0158 0.5122 3.7958� 0.0264
0.3421 1.6813� 0.0167 0.5185 3.9453� 0.0305
0.3484 1.7188� 0.0176 0.5248 4.1173� 0.0313
0.3547 1.7578� 0.0185 0.5311 4.3121� 0.0260
0.3610 1.7988� 0.0195 0.5374 4.4971� 0.0332
0.3673 1.8413� 0.0205 0.5437 4.7201� 0.0309
0.3736 1.8860� 0.0215 0.5500 4.9548� 0.0302
0.3799 1.9329� 0.0226 0.5563 5.2015� 0.0281
0.3862 1.9819� 0.0236 0.5626 5.4681� 0.0289
0.3925 2.0346� 0.0239 0.5689 5.7562� 0.0292
0.3988 2.0874� 0.0245 0.5815 6.4043� 0.0301
0.4051 2.1455� 0.0234 0.5878 6.7741� 0.0293
0.4114 2.2059� 0.0242 0.5941 7.1755� 0.0305
0.4177 2.2692� 0.0232 0.6004 7.6231� 0.0340
0.4240 2.3361� 0.0238 0.6067 8.1028� 0.0320
0.4303 2.4058� 0.0248 0.6130 8.6231� 0.0299
0.4366 2.4775� 0.0233 0.6193 9.1781� 0.0293
0.4429 2.5585� 0.0264 0.6256 9.7991� 0.0254
0.4492 2.6365� 0.0253 0.6319 10:4738� 0.0176
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The comparison of the results obtained with input from
various eþe− experiments given in Table II shows the
role played by the accuracy of the input from higher
energies. As a mathematical exercise, we investigated the
improvement of the bounds after artificially reducing the
quoted errors of the CMD2 and SND input data. A
definite improvement is obtained, but it turns out that it
depends to a large extent also on the central values of the
input, which is explained by the fact that the input
quantities are strongly constrained by analyticity. For
KLOE, if the input errors are artificially reduced, the data
at various energies quickly become mutually inconsistent,
and no solution for the bounds is found. Our analysis
shows that accurate timelike data on the form factor at
intermediate energies are crucial not only for improving
the direct contribution to muon g − 2 but also as
ingredients for the analytic extrapolation to lower ener-
gies performed with the present method.
Recent work that merits mention is the resonance-

based parametrization of the form factor in a wide range
of energies, also including the same energy ranges of
interest to us in this work, using the same experimental
information and wiring in analyticity properties, which
is one that is based on a field-theory approach [42–44].
It would be of interest to evaluate the contribution to the
muon g − 2 from these parametrizations. It would also
be possible to check whether these parametrizations
produce form factors that agree everywhere in the

relevant energy range with the bounds derived in the
present work.
The final result of our analysis, obtained by including

also the BABAR direct measurement, is quoted in Eq. (32).
Compared to the previous determination from combined
eþe− experiments quoted in Ref. [9], it implies a reduction
of the error by δππμ ∼ 5 × 10−11. Although not spectacular,
the reduction proves the role of the data from higher
energies, exploited by means of analyticity and unitarity,
for improving the determination of the low-energy pionic
contribution to muon g − 2. Moreover, the confirmation of
the central values is striking as the inputs are completely
different. Our analysis can be considered as provisional:
with an improved input from low and intermediate ener-
gies, it is expected to further reduce the uncertainty on the
hadronic part of the muon anomaly. The application of the
method to data coming from τ decays is also of interest and
will be investigated in a separate work.
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